
Article

Integrated Hybrid Second Order Algorithm for
Orthogonal Projection onto a Planar Implicit Curve

Xiaowu Li 1,† ID , Feng Pan 1,†, Taixia Cheng 2,†, Zhinan Wu 3,†, Juan Liang 4,† and Linke Hou 5,*,†

1 College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, China;
lixiaowu002@126.com (X.L.); panf@vip.163.com (F.P.)

2 Graduate School, Guizhou Minzu University, Guiyang 550025, China; lissacheng@163.com
3 School of Mathematics and Computer Science, Yichun University, Yichun 336000, China; zhi_nan_7@163.com
4 Department of Science, Taiyuan Institute of Technology, Taiyuan 030008, China; liangjuan76@126.com
5 Center for Economic Research, Shandong University, Jinan 250100, China
* Correspondence: abram75@163.com; Tel.: +86-135-0640-1186
† These authors contributed equally to this work.

Received: 17 April 2018; Accepted: 8 May 2018; Published: 15 May 2018
����������
�������

Abstract: The computation of the minimum distance between a point and a planar implicit curve is
a very important problem in geometric modeling and graphics. An integrated hybrid second order
algorithm to facilitate the computation is presented. The proofs indicate that the convergence of
the algorithm is independent of the initial value and demonstrate that its convergence order is up to
two. Some numerical examples further confirm that the algorithm is more robust and efficient than
the existing methods.

Keywords: point projection; intersection; planar implicit curve; Newton’s second order method;
integrated hybrid second order algorithm

1. Introduction

Due to its great properties, the implicit curve has many applications. As a result, how to render
implicit curves and surfaces is an important topic in computer graphics [1], which usually adopts four
techniques: (1) representation conversion; (2) curve tracking; (3) space subdivision; and (4) symbolic
computation. Using approximate distance tests to replace the Euclidean distance test, a practical
rendering algorithm is proposed to rasterize algebraic curves in [2]. Employing the idea that field
functions can be combined both on their values and gradients, a set of binary composition operators
is developed to tackle four major problems in constructive modeling in [3]. As a powerful tool for
implicit shape modeling, a new type of bivariate spline function is applied in [4], and it can be created
from any given set of 2D polygons that divides the 2D plane into any required degree of smoothness.
Furthermore, the spline basis functions created by the proposed procedure are piecewise polynomials
and explicit in an analytical form.

Aside from rendering of computer graphics, implicit curves also play an important role in other
aspects of computer graphics. To facilitate applications, it is important to compute the intersection of
parametric and algebraic curves. Elimination theory and matrix determinant expression of the resultant
in the intersection equations are used in [5]. Some researchers try to transform the problem of
intersection into that of computing the eigenvalues and eigenvectors of a numeric matrix. Similar to
elimination theory and matrix determinant expression, combining the marching methods with
the algebraic formulation generates an efficient algorithm to compute the intersection of algebraic
and NURBSsurfaces in [6]. For the cases with a degenerate intersection of two quadric surfaces,
which are frequently applied in geometric and solid modeling, a simple method is proposed to

Symmetry 2018, 10, 164; doi:10.3390/sym10050164 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-9923-0011
http://dx.doi.org/10.3390/sym10050164
http://www.mdpi.com/journal/symmetry
http://www.mdpi.com/2073-8994/10/5/164?type=check_update&version=1

Symmetry 2018, 10, 164 2 of 34

determine the conic types without actually computing the intersection and to enumerate all possible
conic types in [7]. M.Aizenshtein et al. [8] present a solver to robustly solve well-constrained
n × n transcendental systems, which applies to curve-curve, curve-surface intersections, ray-trap
and geometric constraint problems.

To improve implicit modeling, many techniques have been developed to compute the distance
between a point and an implicit curve or surface. In order to compute the bounded Hausdorff distance
between two real space algebraic curves, a theoretical result can reduce the bound of the Hausdorff
distance of algebraic curves from the spatial to the planar case in [9]. Ron [10] discusses and analyzes
formulas to calculate the curvature of implicit planar curves, the curvature and torsion of implicit space
curves and the mean and Gaussian curvature for implicit surfaces, as well as curvature formulas to
higher dimensions. Using parametric approximation of an implicit curve or surface, Thomas et al. [11]
introduce a relatively small number of low-degree curve segments or surface patches to approximate
an implicit curve or surface accurately and further constructs monoid curves and surfaces after
eliminating the undesirable singularities and the undesirable branches normally associated with
implicit representation. Slightly different from ref. [11], Eva et al. [12] use support function representation
to identify and approximate monotonous segments of algebraic curves. Anderson et al. [13] present an
efficient and robust algorithm to compute the foot points for planar implicit curves.

Contribution: An integrated hybrid second order algorithm is presented for orthogonal projection
onto planar implicit curves. For any test point p, any planar implicit curve with or without singular
points and any order of the planar implicit curve, any distance between the test point and the planar
implicit curve, the algorithm could be convergent. It consists of two parts: the hybrid second order
algorithm and the initial iterative value estimation algorithm.

The hybrid second order algorithm fuses the three basic ideas: (1) the tangent line orthogonal
iteration method with one correction; (2) the steepest descent method to force the iteration point to fall on
the planar implicit curve as much as it can; (3) Newton–Raphson’s iterative method to accelerate iteration.

Therefore, the hybrid second order algorithm is composed of six steps. The first step uses the
steepest descent method of Newton’s iterative method to force the iterative value of the initial value
to lie on the planar implicit curve, which is not associated with the test point p. In the second
step, Newton’s iterative method employs the relationship determined by the test point p to accelerate
the iteration process. The third step finds the orthogonal projection point q on the tangent line, which
goes through the initial iterative point, of a test point p. The fourth step gets the linear orthogonal
increment value. The same relationship in the second step is used once more to accelerate the iteration
process in the fifth step. The final step gives some correction to the result of the iterative value in
the fourth and fifth step.

One problem for the hybrid second order algorithm is that it appears divergent if the test point p
lies particularly far away from the planar implicit curve. Since it has been found that when the initial
iterative point is close to the orthogonal projection point pΓ, no matter how far away the test point p is
from the planar implicit curve, it will be convergent, an algorithm, named the initial iterative value
estimation algorithm, is proposed to drive the initial iterative value toward the orthogonal projection
point pΓ as much as possible. Accordingly, the second order algorithm with the initial iterative value
estimation algorithm is named as the integrated hybrid second order algorithm.

The rest of this paper is organized as follows. Section 2 presents related work for orthogonal
projection onto the planar implicit curve. Section 3 presents the integrated hybrid second order
algorithm for orthogonal projection onto the planar implicit curve. In Section 4, convergent analysis
for the integrated hybrid second order algorithm is described. The experimental results including
the evaluation of performance data are given in Section 5. Finally, Sections 6 and 7 conclude the paper.

2. Related Work

The existing methods can be divided into three categories: local methods, global methods and
compromise methods between local and global methods.

Symmetry 2018, 10, 164 3 of 34

2.1. Local Methods

The first one is Newton’s iterative method. Let point x = (x, y) be on a plane, and let Γ : f (x) = 0
be a smooth planar implicit curve; its specific form can be represented as:

f (x, y) = 0. (1)

Let p = (p1, p2) be a point in the vicinity of curve Γ. The orthogonal projection point pΓ satisfies
the relationships: {

f (pΓ) = 0,
∇ f (pΓ) ∧ (p− pΓ) = 0,

(2)

where ∧ is the difference-product ([14]). The nonlinear system (2) can be solved using Newton’s
iterative method [15]:

xm+1 = xm − J−1(xm)L(xm), (3)

where L(x) =

{
f (x),
∇ f (x) ∧ (p− x),

J(x) is the Jacobian matrix of partial derivatives of L(x) with respect

to x. Sullivan et al. [16] used Lagrange multipliers and Newton’s algorithm to compute the closest
point on the curve for each point.

2 + λ
∂2 f
∂x2 λ

∂2 f
∂x∂y

∂ f
∂x

λ
∂2 f

∂x∂y 2 + λ
∂2 f
∂y2

∂ f
∂y

∂ f
∂x

∂ f
∂y 0

 δx

δy
δλ

 = −

 −2(p1 − x) + λ
∂ f
∂x

−2(p2 − y) + λ
∂ f
∂y

f (x, y)

 , (4)

where λ is the Lagrange multiplier. It will converge after repeated iteration of Equation (4) for
increment δx, δy, δλ with the initial iterative point and λ = 0. However, Newton’s iterative method
or Newton-type’s iterative method is of local convergence, i.e., it sometimes failed to converge even
with a reasonably good initial guess. On the other hand, once a good initial guess lies in the vicinity
of the solution, two advantages emerge: its fast convergence speed and high convergence accuracy.
In this paper, these two advantages to improve the accuracy and effectiveness of convergence for
the integrated hybrid second order algorithm will be employed.

The second one is the homotopy method [17,18]. In order to solve the target system of nonlinear

Equation (2), they start with nonlinear equations g(x) = 0, where g(x) =

{
g1(x, y) = 0,
g2(x, y) = 0,

and give

a homotopy formula:
H(x,t) = (1− t)g(x) + tL(x) = 0, t ∈ [0, 1], (5)

where t is a continuous parameter and ranges from 0–1, deforming the starting system of nonlinear
equations g(x) into the target system of nonlinear equations L(x). The numerical continuous homotopy
methods can compute all isolated solutions of a polynomial system and are globally convergent and
exhaustive solvers, i.e., their robustness is summarized by [19], and their high computational cost is
confirmed in [20].

2.2. Global Methods

Firstly, a global method is a resultants’ one. For the algebraic curve with low degree no more
than quartic, the resultant methods are a good choice. With classical elimination theory, it will
yield a resultant polynomial from two polynomial equations with two unknown variables where
the roots of the resultant polynomial in one variable correspond to the solution of the two simultaneous
equations [21–24]. Assume two polynomial equations f (x, y) = 0 and g(x, y) = 0 with respective
degree m and n. Let p(p ≤ m) and q(q ≤ n) are two integers, respectively. To facilitate the resultant
method calculation, y is a constant in this case. It indicates that:

Symmetry 2018, 10, 164 4 of 34

δ = (αl , αl−1, ..., α, 1)B(y)(xl ,xl−1,...,x, 1)T , (6)

where α is the zero of the x-coordinate and (x, y) is a common solution of f = 0 and g = 0,
δ(x, α) = f (x,y)g(α,y)− f (α,y)g(x,y)

x−α , l = max(m, n)− 1 and B is the Bézout matrix of f (x, y) and g(x, y)
(with elements consisting of polynomials in y) that has nothing to do with variables α and x. Therefore,
the determinant det(B(y)) = 0 of the Bézout matrix is a polynomial in y, and there are at most mn
intersections of f = 0 and g = 0. Therefore, the roots of this polynomial give the y-coordinates of
mn possible closest points on the curve. The best known results, such as the Sylvester’s resultant
and Cayley’s statement of Bézout’s method [21,22,24], obviously indicate that, if the algebraic
curve has a high degree more than quintic, it is very difficult to use the resultant method to solve
a two-polynomial system.

Secondly, the global method uses the Bézier clipping technique. Using the convex hull property
of Bernstein–Bézier representations, footpoints can be found by solving the nonlinear system of
Equation (2) [25–27]. Transformation of (2) into Bernstein–Bézier form eliminates parts of the domains
outside the convex hull box not including a solution. Elimination rules are repeatedly applied using
the de Casteljau subdivision algorithm. Once it meets a certain accuracy requirement, the algorithm
will end. The Bézier clipping method can find all solutions of the system (2), especially the singular
points on the implicit curve. Certainly, the Bézier clipping method is of global convergence, but with
relatively expensive computation due to many subdivision steps.

Based on and more efficient than [26], a hybrid parallel algorithm in [28] is proposed to solve
systems with multivariate constraints by exploiting both the CPU and the GPU multi-core architectures.
In addition, their GPU-based subdivision method utilizes the inherent parallelism in the multivariate
polynomial subdivision. Their hybrid parallel algorithm can be geometrically applied and improves the
performance greatly compared to the state-of-the-art subdivision-based CPU. Two blending schemes
presented in [29] efficiently eliminate domains without any root and therefore greatly cut down
the number of subdivisions. Through a simple linear blend of functions of the given polynomial
system, this seek function would satisfy two conditions: no-root contributing and exhausting all
control points of its Bernstein–Bézier representation of the same sign. It continually keeps generating
these functions so as to eliminate the no-root domain during the subdivision process.

Van Sosin et al. [30] decompose and efficiently solve a wide variety of complex piecewise
polynomial constraint systems with both zero constraints and inequality constraints with
zero-dimensional or univariate solution spaces. The algorithm contains two parts: a subdivision-based
polynomial solver and a decomposition algorithm, which can deal with large complex systems.
It confirms that its performance is more effective than the existing ones.

2.3. Compromise Methods between Local and Global Methods

Firstly, the compromise method lies between the local and global method and uses successive
tangent approximation techniques. The geometrically iterative method for orthogonal projection
onto the implicit curve presented by Hartmann [31,32] consists of two steps for the whole process
of iteration, while the local approximation of the curve by its tangent or tangent parabola is the
key step.

yn = xn − (f (xn)/ 〈∇ f (xn),∇ f (xn)〉)∇ f (xn), (7)

where f (x) = f (x, y). The first step in [31,32] repeatedly iterates the iterative Formula (7) in the steepest
way such that the iterative point is as close as possible to the curve f (x) = 0 with arbitrary initial
iterative point. This is called the first step of [31,32]. Then, the second step of [31,32] will get the vertical
point q by the iterative Formula (8).

q = p− (
〈
p− yn,∇ f (yn)

〉
/
〈
∇ f (yn),∇ f (yn)

〉
)∇ f (yn). (8)

Symmetry 2018, 10, 164 5 of 34

Repeatedly run these two steps until the vertical point q falls on the curve f (x). Unfortunately,
the successive tangent approximation method fails for the planar implicit curves.

Secondly, the compromise method between the local and global method uses the successive
circular approximation technique. Similar to [31,32], Nicholas [33] uses the osculating circle to develop
another geometric iteration method. For a planar implicit curve f (x) = 0, the curvature formula of
a point on an implicit curve could be defined as K (see [10]), and the radius r of curvature could be
expressed as:

r = −

{(
∂ f
∂x

)2
+
(

∂ f
∂y

)2
}3/2

∂2 f
∂x2

(
∂ f
∂y

)2
+ ∂2 f

∂y2

(
∂ f
∂x

)2
− 2 ∂2 f

∂x∂y
∂ f
∂x

∂ f
∂y

(9)

The osculating circle determined by the point xk has its center at xr where the radius r is
from Formula (9). For the current point xk from the orthogonal projection point pΓ on the curve to
the test point p, then the next iterative point xk+1 will be the intersection point determined by the line
segment pxr and the current osculating circle. Repeatedly iterate until the distance between the former
iterative point xk and the latter iterative point xk+1 is almost zero. The geometric iteration method [33]
may fail in three cases in which there is no intersection, or the intersection is difficult to solve when
the algebraic curve is of high degree more than quintic, or the new estimated iterative point lies very far
from the planar implicit curve. The third geometric iteration method uses the curvature information to
orthogonally project point onto the parametric osculating circle and osculating sphere [34]. Although
the method in [34] handles point orthogonal projection onto the parametric curve and surface, the basic
idea is the same as that in [33] to deal with the problem for the planar implicit curve. The convergence
analysis for the method in [34] is provided in [35]. The third geometric iteration method [34] is more
robust than the existing methods, but it is time consuming.

Thirdly, the compromise method between the local and global method also uses the circle
shrinking technique [14]. It repeatedly iterates Equation (7) in the steepest way such that the iterative
point is as close as possible to the curve f (x) with the arbitrary initial iterative point. This time,
the iterative point falling on the curve is called the point pc, and then, two points p and pc define
a circle with center p. Compute the point p+ by calculating the (local) maximum of curve f (x) along
the circle with center p, starting from pc. The intersection between the line segment pp+ and the planar
implicit curve f (x) will be the next iterative point p’c. Replace the point pc with the point p’c, repeat
the above process until the distance between these two points approaches zero. Hu et al. [36] proposed
a circle double-and-bisect algorithm to reliably evaluate the accurate geometric distance between
a point and an implicit curve. The circle doubling algorithm begins with a very small circle centered at
the test point p. Extend the circle by doubling its radius if the circle does not intersect with the implicit
curve f (x). The extending process continues until the circle intersects with the implicit circle where
the former circle does not hit the curve, but the current one does. At the same time, the former radius
and the current radius are called interior radius r1 and exterior radius r2, respectively. The bisecting
process continues yielding new radius r = r1+r2

2 . If a circle with its radius r intersects with the curve,
replace r with r2, else with r1. Repeatedly iterate the above procedure until |r1 − r2| < ε. Similar to
the circle shrinking method, Chen et al. [37,38] made some contribution to the orthogonal projection
onto the parametric curve and surface. Given a test point p = (p1, p2) and a planar implicit curve
f (x) = 0, the footpoint pΓ has to be a solution of a 2× 2 well-constrained system:{

f (x) = 0,
〈rot(grad f (x)), f (x)− p〉 = 0,

(10)

where this formula is from [38]. The efficient algebraic solvers can solve this system, and one just
needs to take the minimum over all possible footpoints. It uses a circular/spherical clipping technique
to eliminate the curve parts/surface patches outside a circle/sphere with the test point as its center

Symmetry 2018, 10, 164 6 of 34

point, where the objective squared distance function for judging whether a curve/surface is outside
a circle/sphere is the key technique. The radius of the elimination circle/sphere gets smaller and
smaller during the subdivision process. Once the radius of the circle/sphere can no longer become
smaller, the iteration will end. With the advantage of high robustness, the algorithm still faces two
difficulties: it is time consuming and had difficulty calculating the intersection between the circle and
the planar implicit curve with a relatively high degree (more than five).

3. Integrated Hybrid Second Order Algorithm

Let Γ : f (x) = f (x, y) = 0 be a smooth planar implicit curve, and let p = (p1, p2) be a point in
the vicinity of curve Γ (test point). Assume that s is the arc length parameter for the planar implicit
curve Γ : f (x) = f (x, y) = 0. t = [dx/ds, dy/ds] is the tangent vector along the implicit curve
Γ : f (x) = 0. The orthogonal projection point pΓ to satisfy this relationship:

pΓ = arg min
x∈Γ
‖p− x‖ ,

f (pΓ) = 0,
∇ f (pΓ) ∧ (p− pΓ) = 0,

(11)

where ∧ is the difference-product ([14]).

3.1. Orthogonal Tangent Vector Method

The derivative of the planar implicit curve f (x) with respect to parameter s is,

〈t,∇ f 〉 = 0, (12)

where∇ =

[
∂

∂x
,

∂

∂y

]
is the Hamiltonian operator and the symbol 〈 〉 is the inner product. Its geometric

meaning is that the tangent vector t is orthogonal to the corresponding gradient ∇ f . The combination
of the tangent vector t and Formula (12) will generate:{

〈t,∇ f 〉 = 0,
‖t‖ = 1.

(13)

From (13), it is not difficult to know that the unit tangent vector of t is:

t0 =

[
− fy, fx

]
‖∇ f ‖ .

The following first order iterative algorithm determines the foot point of p on Γ.

yn = xn + sign(〈p− xn, t0〉)t0∆s, (14)

where t0 =

[
− fy, fx

]
‖∇ f ‖ , ∆s = ‖q− xn‖. q is the corresponding orthogonal projection point of test point

p at the tangent line determined by the initial iterative point xn (see Figure 1). Formula (14) can be
expressed as, {

q = p− (〈(p− xn),∇ f (xn)〉 / 〈∇ f (xn),∇ f (xn)〉)∇ f (xn),
xn+1 = yn = xn + sign(〈p− xn, t0〉)t0∆s.

(15)

where xn is the initial iterative point. Many numerical tests illustrate that iterative Formula (15)
depends on the initial iterative point, namely it is very difficult for the iterative value yn to fall on
the planar implicit curve.

Symmetry 2018, 10, 164 7 of 34

p

pГ

xn

f x()

zn

Zn

'

qun
vn

xn 1+

Figure 1. Graphic demonstration for the hybrid second order algorithm.

3.2. Steepest Descent Method

To move the iterative value yn to fall on the planar implicit curve f (x) as much as possible,
a method of preprocessing is introduced. Before the implementation of the iterative Formula (15),
the steepest descent method will be adopted, namely a basic Newton’s iterative formula is added such
that the iterative value yn falls on the planar implicit curve f (x) as much as possible.

yn = xn − (f (xn)/ 〈∇ f (xn),∇ f (xn)〉)∇ f (xn),
q = p− (

〈
(p− yn),∇ f (yn)

〉
/
〈
∇ f (yn),∇ f (yn)

〉
)∇ f (yn),

xn+1 = zn = yn + sign(
〈
p− yn, t0

〉
)t0∆s,

(16)

where t0 =

[
− fy, fx

]
‖∇ f ‖ , ∆s =

∥∥q− yn
∥∥.

3.3. Linear Calibrating Method

Although more robust than the iterative Formula (15) to a certain extent, the iterative Formula (16)
will often change convergence if the test point p or the initial iterative point x0 takes different values.
Especially for large ∆s, iterative point zn will deviate from the planar implicit curve greatly, namely
| f (zn)| = |∆e| > ε. In this case, a correction for the deviation of iterative point zn is proposed as follows.
If | f (zn)| > ε, the increment δzn = [δx, δy] is used for correction. That is to say, z′n = zn + δzn, zn and z′n
are the iteration values before and after correction, respectively, and | f (z′n)| < ε. The correction aims to
make the deviation of the iteration value z′n from the planar implicit curve as small as possible. Let δzn

be perpendicular to increment value ∆zn = sign(∆s)t0∆s and orthogonal to the planar implicit curve
such that 〈δzn, ∆zn〉 = 0 and 〈∇ f , δzn〉 = −∆e, where ∇ f and ∆e take the value at zn. Then, it is easy

to get δzn = [−∆e, 0]
[
∇ f T , (∆zn)T]−1 and z′n = zn + [−∆e, 0]

[
∇ f T , (∆zn)T

]−1
. The corresponding

iterative formula for correction will be,

Symmetry 2018, 10, 164 8 of 34

yn = xn − (f (xn)/ 〈∇ f (xn),∇ f (xn)〉)∇ f (xn),
q = p− (

〈
(p− yn),∇ f (yn)

〉
/
〈
∇ f (yn),∇ f (yn)

〉
)∇ f (yn),

zn = yn + sign(
〈
p− yn, t0

〉
)t0∆s,

xn+1 = zn + [−∆e, 0]
[
∇ f T , (∆zn)T

]−1
,

(17)

where t0 =

[
− fy, fx

]
‖∇ f ‖ , ∆s =

∥∥q− yn
∥∥, ∆zn = sign(〈p− zn, t0〉)t0∆s, f (zn) = ∆e. Obviously

the stability and efficiency of the iterative Formula (17) improve greatly, compared with the previous
iterative Formulas (15) and (16).

3.4. Newton’s Accelerated Method

Many tests for the iterative Formula (17) conducted indicate that it is sometimes not convergent
when the test point lies far from the planar implicit curve. Newton’s accelerated method is then
adopted to correct the problem. For the classic Newton second order iterative method, its iterative
expression is:

xn+1 = xn − (F0(xn)/ 〈∇F0(xn),∇F0(xn)〉)∇F0(xn), (18)

where 〈∇F0(x),∇F0(x)〉 is inner product of the gradient of the function F0(x) with itself. The function
F0(x) is expressed as,

F0(x) = [(p − x)×∇ f (x)] = 0, (19)

where the symbol [] denotes the determinant of a matrix (p− x)×∇f(x). In order to improve
the stability and rate of convergence, based on the iterative Formula (17), the hybrid second order
algorithm is proposed to orthogonally project onto the planar implicit curve f (x). Between Step 1 and
Step 2 of the iterative Formula (17) and between Step 3 and Step 4 of the same formula, the iterative
Formula (18) is inserted twice. After this, the stability, the rapidity, the efficiency and the numerical
iterative accuracy of the iterative algorithm (17) all improve. Then, the iterative formula becomes,

yn = xn − (f (xn)/ 〈∇ f (xn),∇ f (xn)〉)∇ f (xn),
zn = yn −

(
F0(yn)/

〈
∇F0(yn),∇F0(yn)

〉)
∇F0(yn),

q = p− (〈(p− zn),∇ f (zn)〉 / 〈∇ f (zn),∇ f (zn)〉)∇ f (zn),
un = zn + sign(〈p− zn, t0〉)t0∆s,
vn = un − (F0(un)/ 〈∇F0(un),∇F0(un)〉)∇F0(un),

xn+1 = vn + [−∆e, 0]
[
∇ f T , (∆vn)T

]−1
(i f

∣∣∣[∇ f T , (∆vn)T
]∣∣∣ = 0, xn+1 = vn).

(20)

where t0 =

[
− fy, fx

]
‖∇ f ‖ , ∆s = ‖q− zn‖, f (vn) = ∆e, ∆vn = − (F0(un)/ 〈∇F0(un),∇F0(un)〉)∇F0(un).

Iterative termination for the iterative Formula (20) satisfies: ‖xn+1 − xn‖ < ε. The robustness and
the stability of the iterative Formula (20) improves, compared with the previous iteration formulas.
That is to say, even for test point p being far away from the planar implicit curve, the iterative
Formula (20) is still convergent.

After normalization of the second equation and the fifth equation in the iterative Formula (20),
it becomes,

yn = xn − (f (xn)/ 〈∇ f (xn),∇ f (xn)〉)∇ f (xn),
zn = yn −

(
F(yn)/

〈
∇F(yn),∇F(yn)

〉)
∇F(yn),

q = p− (〈(p− zn),∇ f (zn)〉 / 〈∇ f (zn),∇ f (zn)〉)∇ f (zn),
un = zn + sign(〈p− zn, t0〉)t0∆s,
vn = un − (F(un)/ 〈∇F(un),∇F(un)〉)∇F(un),

xn+1 = vn + [−∆e, 0]
[
∇ f T , (∆vn)T

]−1
(i f
∣∣[∇ f T , (∆vn)T]∣∣ = 0, xn+1 = vn),

(21)

Symmetry 2018, 10, 164 9 of 34

where F(x) = F0(x)√
〈∇ f (x),∇ f (x)〉

. The iterative Formula (21) can be implemented in six steps. The first

step computes the point xn on the planar implicit curve using the basic Newton’s iterative formula,
which is not associated with test point p for any initial iterative point. The second step uses Newton’s
iterative method to accelerate the whole iteration process and get the new iterative point zn, which is
associated with test point p. The third step gets the orthogonal projection point q (footpoint) at
the tangent line to f (x). The fourth equation in iterative Formula (21) yields the new iterative
point un. The third step and the fourth step compute the linear orthogonal increment, which is the core
component (including linear calibrating method of sixth step) of the iterative Formula (21). The fifth
step accelerates the previous steps again and yields the iterative point, which is associated with test
point p. The sixth step corrects the iterative result for the previous three steps. Therefore, the whole
six steps ensure the robustness of the whole iteration process. The above procedure is repeated until
the iterative point coincides with the orthogonal projection point pΓ (see Figure 1 and the detailed
explanation of Remark 3).

Remark 1. In the actual implementation of the iterative Formula (21) of the hybrid second order algorithm
(Algorithm 1), three techniques are used to optimize the process. On the right-hand side of Step 1, Step 2, Step 3
and step 5, the part in parentheses is calculated firstly and then the part outside the parentheses to prevent
overflow of the intermediate calculation process. Error handling for the second term is added in the right-hand
side of Step 4 in the iterative Formula (21). Namely, if 〈p− zn, t0〉 = 0, sign(〈p− zn, t0〉) = 1. For the second
term of the right-hand side in Step 6 of the iterative Formula (21), if the determinant of

[
∇ f T , (∆vn)T] is zero,

then xn+1 = vn. Namely, if any component of [−∆e,0]
[
∇ f T , (∆vn)T]−1 equals zero, then substitute the sixth

step with xn+1 = vn to avoid the overflow problem.

According to the analyses above, the hybrid second order algorithm is presented as follows.

Algorithm 1: Hybrid second order algorithm.

Input: Initial iterative value x0, test point p and planar implicit curve f (x) = 0.
Output: The orthogonal projection point pΓ.
Description:
Step 1:

xn+1 = x0;
do{

xn = xn+1;
Update xn+1 according to the iterative Formula (21);

}while(‖xn+1 − xn‖2 > ε1);
Step 2:

pΓ=xn+1;
return pΓ;

Remark 2. Many tests demonstrate that if the test point p is not far away from the planar implicit
curve, Algorithm 1 will converge for any initial iterative point x0. For instance, assume a planar
implicit curve f (x, y) = x6 + 2x5y − 2x3y2 + x4 − y3 + 2y8 − 4 and four different test points
(13, 7), (3,−4), (−2, 2), (−7,−3); Algorithm 1 converges efficiently for the given initial iterative value.
See Table 1 for details, where p is the test point, x0 is the initial iterative point, iterations is the number
of iterations, | f (pΓ)| is the absolute function value with the orthogonal projection point pΓ and Error_2
=|[(p− pΓ)×∇ f (pΓ)]|.

Symmetry 2018, 10, 164 10 of 34

Table 1. Convergence of the hybrid second order algorithm for four given test points.

p (13,7) (3,−4) (−2,2) (−7,−3)

x0 (2,2) (3,−2) (−1.5,1.5) (−1,−1)

Iterations 35 49 11 48

pΓ (1.0677273301335340,
0.98814885115384405)

(3.2064150662530660,
−1.8804902065934096)

(−1.1847729458379061,
0.97069828125793904)

(−0.96286546696734312,
−0.67794903011569976)

| f (pΓ)| 0 3.5218× 10−10 9.153595× 10−10 1.0× 10−16

Error_2 2.7× 10−13 6.1× 10−14 8.0× 10−16 3.5389× 10−11

However, when the test point p is far away from the planar implicit curve, no matter whether
the initial iterative point p is close to the planar implicit curve, Algorithm 1 sometimes produces
oscillation such that subsequent iterations could not ensure convergence. For example, for the same
planar implicit curve with test point p = (17,−11) and initial iterative point x0 = (2,−2), it constantly
produces oscillation such that subsequent iterations could not ensure convergence after 838 iterations
(see Table 2).

Table 2. Oscillation of the hybrid second order algorithm for the planar implicit curve with a far-away
test point.

Iterations 691 703 709 715 721

xn (16.5606,−6.3965) (16.8426,−7.0908) (8.7616,−3.3728) (16.9335,−7.5757) (9.3579,−3.5205)

| f (xn)| 10,001,975.0670 15,989,718.8891 128,212.4352 23,705,389.2353 200,851.6993

Iterations 727 733 739 745 751

xn (16.9837,−8.1857) (10.1857,−3.7217) (16.9979,−8.6470) (10.7849,−3.8660) (3.4438,−3.2804)

| f (xn)| 40,608,498.6528 355,827.4721 61,442,889.2860 521,346.2808 24,602.7729

Iterations 761 771 781 791 801

xn (6.9925,−2.9214) (9.5387,−3.5647) (12.0328,−4.1693) (15.6601,−5.4760) (16.9137,−7.4381)

| f (xn)| 26,408.0394 228,676.1751 1,074,966.2463 5,881,539.2784 21,106,110.9316

Iterations 811 821 831 832 833

xn (4.6652,−2.1979) (8.1550,−3.2191) (10.9409,−3.9036) (9.4499,−3.5430) (8.3148,−3.2592)

| f (xn)| 1183.7775 78,196.8686 573,585.9893 214,640.2588 89,454.0288

Iterations 834 835 836 837 838

xn (7.5358,−3.0631) (5.9435,−2.6227) (4.3903,−1.8397) (5.3516,−6.3813) (17.0038,−9.5117)

| f (xn)| 44,975.5254 8028.5679 1222.8394 5,455,596.6976 130,321,659.7406

3.5. Initial Iterative Value Estimation Algorithm

Through Remark 2, when the test point p is not far away from the planar implicit curve, with
the initial iterative point x0 in any position, Algorithm 1 could ensure convergence. However, when
the test point p is far away from the planar implicit curve, even if the initial iterative point x0 is
close to the planar implicit curve, Algorithm 1 sometimes produces oscillation such that subsequent
iterations could not ensure convergence. This is essentially a problem for any Newton-based method.

Symmetry 2018, 10, 164 11 of 34

Consider high nonlinearity, which cannot be captured just by f (x, y) = 0, i.e, the surface [x, y, f (x, y)]
is very oscillatory in the neighborhood of the z = 0 plane, but it does intersect the z = 0 plane in
a single closed branch. Under this case, for far-away test point p from the planar implicit curve,
any Newton-based method sometimes will produce oscillation to cause non-convergence. We will
give a counter example in Remark 2. To solve the problem of non-convergence, some method is
proposed to put the initial iterative point x0 close to the orthogonal projection point pΓ. Therefore, the
task changes to construct an algorithm such that the initial iterative value x0 of the iterative
Formula (21) and the orthogonal projection point pΓ are as close as possible. The algorithm can
be summarized as follows. Input an initial iterative point x0, and repeatedly iterate with the basic
Newton’s iterative formula y = x − (f (x)/ 〈∇ f (x),∇ f (x)〉)∇ f (x) such that the iterative point
lies on the planar implicit curve f (x) (see Figure 2c). After that, iterate once through the formula
q = p− (〈(p− x),∇ f (x)〉 / 〈∇ f (x),∇ f (x)〉)∇ f (x) where the blue point denotes the initial iterative
value (see Figure 2c). After the first round iteration in Figure 2, then replace the initial iterative value
with the iterated value q, and do the second round iteration (see Figure 3). After the second round
iteration, replace the initial iterative value with the iterated value q, and do the third round iteration
(see Figure 4). The detailed algorithm is the following.

Firstly, the notations for Figures 2–4 are clarified. Black and green points represent test
point p and orthogonal projection point pΓ, respectively. The blue point denotes xn+1 = xn −
(f (xn)/ 〈∇ f (xn),∇ f (xn)〉)∇ f (xn) of Step 2 in Algorithm 2, whether it is on the planar implicit curve
f (x) or not. The footpoint q(red point) denotes q in Step 3 of Algorithm 2, and the brown curve
describes the planar implicit curve f (x) = 0.

Secondly, Algorithm 2 is interpreted geometrically. Step 2 in Algorithm 2 uses basic Newton’s
iterative method. That is to say, it repeatedly iterates using the steepest descent method in Section 3.2
until the blue point xn+1 = xn− (f (xn)/ 〈∇ f (xn),∇ f (xn)〉)∇ f (xn) of Step 2 lies on the planar implicit
curve f (x). At the same time, through Step 3 in Algorithm 2, it yields footpoint q (see Figure 2). The
integer n of the iteration round counts one after the first round iteration of Algorithm 2. When the
blue point is on the planar implicit curve f (x), at this time, replace the initial iterative value with
the iterated value q, and do the second round iteration; the integer n of the iteration round counts
two (see Figure 3). Replace the initial iterative value with the iterated value q again after the second
round iteration, and do the third round iteration; the integer n of the iteration round counts three (see
Figure 4). When n = 3 in Step 4, then exit Algorithm 2. At this time, the current footpoint q from
Algorithm 2 will be the initial iterative value for Algorithm 1.

Algorithm 2: Initial iterative value estimation algorithm.

Input: Initial iterative value x0, test point p and planar implicit curve f (x) = 0.
Output: The footpoint point q.
Description:
Step 1: n = 0; xn+1 = x0;
Step 2:

do{
xn = xn+1;

xn+1 = xn − (f (xn)/ 〈∇ f (xn),∇ f (xn)〉)∇ f (xn);
}while(‖xn+1 − xn‖2 > ε2);

Step 3: q = p− (〈(p− xn+1),∇ f (xn+1)〉 / 〈∇ f (xn+1),∇ f (xn+1)〉)∇ f (xn+1);
Step 4: n = n + 1;

if (n ≤ 3) {
xn+1 = q;
go to Step 1;
}

else
return q;

Symmetry 2018, 10, 164 12 of 34

Thirdly, the reason for choosing n = 3 in Algorithm 2 is explained. Many cases are tested for
planar implicit curves with no singular point. As long as n = 2, the output value from Algorithm 2
could be used as the initial iterative value of Algorithm 1 to get convergence. However, if the planar
implicit curve has singular points or big fluctuation and oscillation appear, n = 3 can guarantee
the convergence. In a future study, a more optimized and efficient algorithm needs to be developed to
automatically specify the integer n.

(a) (b) (c)

Figure 2. The entire graphical demonstration of the first round iteration in Algorithm 2. (a) Initial
status; (b) Intermediate status; (c) Final status.

(a) (b) (c)

Figure 3. The entire graphical demonstration of the second round iteration in Algorithm 2. (a) Initial
status; (b) Intermediate status; (c) Final status.

(a) (b) (c)

Figure 4. The entire graphical demonstration of the third round iteration in Algorithm 2. (a) Initial
status; (b) Intermediate status; (c) Final status.

Symmetry 2018, 10, 164 13 of 34

3.6. Integrated Hybrid Second Order Algorithm

Algorithm 2 can optimize the initial iterative value for Algorithm 1. Then, Algorithm 1 can
project the test point p onto planar implicit curve f (x). The integrated hybrid second order algorithm
(Algorithm 3) is presented to take advantage of Algorithms 1 and 2, which are denoted as Algorithm 1
((x0, p, f (x)) and Algorithm 2 (q, p, f (x)) for convenience, respectively. Algorithm 3 can be described
as follows (see Figure 5).

(a) (b) (c)

(d) (e) (f)

Figure 5. The entire graphical demonstration for the whole iterative process of Algorithm 3. (a) Initial
status; (b) First intermediate status; (c) Second intermediate status; (d) Third intermediate status;
(e) Fourth intermediate status; (f) Final status.

Firstly, the notations for Figure 5 are clarified, which describes the entire iterative process
in Algorithm 3. The black point is test point p; the green point is orthogonal projection point pΓ;
the blue point is the left-hand side value of the equality of the first step of the iterative Formula (21)
in Algorithm 1; footpoint q (red point) is the left-hand side value of the equality of the third step
of the iterative Formula (21) in Algorithm 1; and the brown curve represents the planar implicit
curve f (x).

Symmetry 2018, 10, 164 14 of 34

Algorithm 3: Integrated hybrid second order algorithm.

Input: Initial iterative value x0, test point p and planar implicit curve f (x) = 0.
Output: The orthogonal projection point pΓ.
Description:
Step 1: q = Algorithm 2 (x0, p, f (x));
Step 2: pΓ = Algorithm 1 (q, p, f (x));
Step 3: return pΓ;

Secondly, Algorithm 3 is interpreted. The output from Algorithm 2 is taken as the initial iterative
value for Algorithm 1 (see footpoint q or the red point in Figure 4c). Algorithm 1 repeatedly iterates
until it satisfies the termination criteria (‖xn+1 − xn‖ < ε) (see Figure 5). The six subgraphs in Figure 5
represent successive steps in the entire iterative process of Algorithm 1. In the end, three points of
green, blue and red merge into orthogonal projection point pΓ (see Figure 5f).

Remark 3. Algorithm 3 with two sub-algorithms is interpreted geometrically, where Algorithms 1 and 2 are
graphically demonstrated by Figures 6 and 7, respectively. In Figures 6a and 7a, several closed loops represent
the orthogonal projection of the contour lines on the surface z = f (x, y) onto the horizontal plane x − y,
respectively. In Figure 7b,e, several closed loops also represent orthogonal projection of the contour lines on
the surface z = F(x, y) onto the horizontal plane x− y, respectively. In Figure 6a, the vector starting with point
x0 is gradient−∇ f (x0), and the length of the vector is f (x0)/ 〈∇ f (x0),∇ f (x0)〉. For arbitrary initial iterative
point x0, the iterative formula xn+1 = xn − (f (xn)/ 〈∇ f (xn),∇ f (xn)〉)∇ f (xn) (Step 2 of Algorithm 2) from
the steepest descent method repeatedly iterates until the iterative point xn lies on the planar implicit curve f (x).
In Figure 6b, the footpoint q, i.e., the intersection of tangent line (from the point xn on the planar implicit curve
f (x)) and perpendicular line (from test point p) is acquired by Step 3 in Algorithm 2. After the first round
iteration of Algorithm 2, replace the initial iterative point x0 with the footpoint q, and then, do the second round
and the third round iteration. The three rounds of iteration constitute Algorithm 2 and part of Algorithm 3.

In each sub-figure of Figure 7, points p and pΓ are the test point and the corresponding
orthogonal projective point, respectively. In Figure 7a, the vector starting with point xn is gradient
−∇ f (xn), and the length of the vector is f (xn)/ 〈∇ f (xn),∇ f (xn)〉. For the initial iterative point
xn from Algorithm 2, the iterative formula yn = xn − (f (xn)/ 〈∇ f (xn),∇ f (xn)〉)∇ f (xn) (Step 1
of Algorithm 1) from the steepest descent method iterates once. In Figure 7b, the vector starting
with point yn is gradient −∇F(yn), and the length of the vector is F(yn)/

〈
∇F(yn),∇F(yn)

〉
.

For the initial iterative point yn from Step 1 in Algorithm 1, F(x) =
[(p−x)×∇ f (x)]√
〈∇ f (x),∇ f (x)〉

, the iterative

formula zn = yn −
(
F(yn)/

〈
∇F(yn),∇F(yn)

〉)
∇F(yn) (Step 2 of Algorithm 1) from the steepest

descent method iterates once. In Figure 7c, the footpoint q, i.e., the intersection of tangent line (from
the point z’n on the planar implicit curve f (x)) and the perpendicular line (from test point p), is
acquired by Step 3 in Algorithm 1. In the actual iterative process, point z’n is approximately equivalent
to the point zn. In Figure 7d, point un comes form the fourth step of Algorithm 1, which aims to
obtain a linear orthogonal increment. In Figure 7e, the vector starting with point un is gradient
−∇F(un), and the length of the vector is F(un)/ 〈∇F(un),∇F(un)〉. For the initial iterative point
un from Step 4 in Algorithm 1, the iterative formula vn = un − (F(un)/ 〈∇F(un),∇F(un)〉)∇F(un)

(Step 5 of Algorithm 1) from the steepest descent method iterates once more. In Figure 7f, the iterative
point xn+1 from the sixth step in Algorithm 1 gives a correction for the iterative point vn from the fifth
step in Algorithm 1. Repeatedly iterate the above six steps until the iteration exit criteria are met.
In the end, three points of footpoint q, the iterative point xn+1 and the orthogonal projecting point
pΓ merge into orthogonal projection point pΓ. These six steps constitute Algorithm 1 and part of
Algorithm 3.

Symmetry 2018, 10, 164 15 of 34

X

Y

X
0

(a)

p

q

xn

f x() pГ

(b)

Figure 6. The entire graphical demonstration of Algorithm 2. (a) Step 2 of Algorithm 2; (b) Step 3 of
Algorithm 2.

X

Y

Xn

yn

(a)

X

Y

z
n

y
n

(b)

p

pГ

xn

f x()

zn

Zn

'

q

(c)

p

pГ

xn

f x()

zn

Zn

'

qun

(d)

X

Y

u
n

v
n

(e)

p

pГ

xn

f x()

zn

Zn

'

qun
vn

xn 1+

(f)

Figure 7. The entire graphical demonstration of Algorithm 1. (a) The first step of the iterative
Formula (21); (b) The second step of the iterative Formula (21); (c) The third step of the iterative
Formula (21); (d) The fourth step of the iterative Formula (21); (e) The fifth step of the iterative
Formula (21); (f) The sixth step of the iterative Formula (21).

Symmetry 2018, 10, 164 16 of 34

4. Convergence Analysis

In this section, the convergence analysis for the integrated hybrid second order algorithm is
presented. Proofs indicate the convergence order of the algorithm is up to two, and Algorithm 3 is
independent of the initial value.

Theorem 1. Given an implicit function f (x) that can be parameterized, the convergence order of the iterative
Formula (21) is up to two.

Proof. Without loss of generality, assume that the parametric representation of the planar implicit
curve Γ : f (x) = 0 is c(t) = (f1(t), f2(t)). Suppose that parameter α is the orthogonal projection point
of test point p = (p1, p2) onto the parametric curve c(t) = (f1(t), f2(t)).

The first part will derive that the order of convergence of the first step for the iterative Formula (21)
is up to two. It is not difficult to know the iteration equation in the corresponding Newton’s second
order parameterized iterative method, i.e., the first step for the iterative Formula (21):

tn+1 = tn −
c(tn)

c′(tn)
. (22)

Taylor expansion around α generates:

c(tn) = c0 + c1en + c2e2
n + o(e3

n), (23)

where en = tn − α and ci = (1/i!)(f (i)(α)), i = 0, 1, 2. Thus, it is easy to have:

c′(tn) = c1 + 2c2en + o(e2
n). (24)

From (22)–(24), the error iteration can be expressed as,

en+1 = C0e2
n + o(e3

n), (25)

where C0 =
c2

c1
.

The second part will prove that the order of convergence of the second step for the iterative
Formula (21) is two. It is easy to get the corresponding parameterized iterative equation for Newton’s
second-order iterative method, essentially the second step for the iterative Formula (21),

tn+1 = tn −
F(tn)
F′(tn)

, (26)

where:
F(t) =

〈
p− c(t), c′(t)

〉
= 0. (27)

Using Taylor expansion around α, it is easy to get:

F(tn) = b0 + b1en + b2e2
n + o(e3

n), (28)

where en = tn − α and bi = (1/i!)(F′(α)), i = 0, 1, 2. Thus, it is easy to get:

F′(tn) = b1 + 2b2en + o(e2
n). (29)

According to Formula (26)–(29), after Taylor expansion and simplifying, the error relationship can
be expressed as follows,

en+1 = C1e2
n + o(e3

n), (30)

Symmetry 2018, 10, 164 17 of 34

where C1 =
b2

b1
. Because the fifth step is completely equal to the second step of the iterative Formula (21)

and outputs from Newton’s iterative method are closely related with test point p, the order of
convergence for the fifth step of the iterative Formula (21) is also two.

The third part will derive that the order of convergence of the third step and fourth step for
iterative Formula (21) is one. According to the first order method for orthogonal projection onto
the parametric curve [32,39,40], the footpoint q = (q1, q2) of the parameterized iterative equation of
the third step of the iterative Formula (21) can be expressed in the following way,

q = c(tn) + ∆tc′(tn). (31)

From the iterative Equation (31) and combining with the fourth step of the iterative Formula (21),
it is easy to have:

∆t =
〈c′(tn), q− c(tn)〉
〈c′(tn), c′(tn)〉 ,

(32)

where 〈x, y〉 denotes the scalar product of vectors x, y ∈ R2. Let tn + ∆t→ tn, and repeat the procedure
(32) until ∆t is less than a given tolerance ε. Because parameter α is the orthogonal projection point of
test point p = (p1, p2) onto the parametric curve c(t) = (f1(t), f2(t)), it is not difficult to verify,〈

p− c(α), c′(α)
〉
= 0. (33)

Because the footpoint q is the intersection of the tangent line of the parametric curve c(t) at t = tn

and the perpendicular line −→pq determined by the test point p, the equation of the tangent line of
the parametric curve c(t) at t = tn is: {

x1 = f1(tn) + f ′1(tn)s,
x2 = f2(tn) + f ′2(tn)s.

(34)

At the same time, the vector of the line segment connected by the test point p and the point
c(tn) is:

(y1, y2) = (p1 − x1, p2 − x2). (35)

The vector (35) and the tangent vector c′(tn) = (f ′1(tn), f ′2(tn)) of the tangent line (34) are mutually
orthogonal, so the parameter value s0 of the tangent line (34) is:

s0 =
〈p− c(tn), c′(tn)〉
〈c′(tn), c′(tn)〉

. (36)

Substituting (36) into (34) and simplifying, it is not difficult to get the footpoint q = (q1, q2),{
q1 = f1(tn) + f ′1(tn)s0,
q2 = f2(tn) + f ′2(tn)s0.

(37)

Substituting (37) into (32) and simplifying, it is easy to obtain,

∆t =
〈p− c(tn), c′(tn)〉
〈c′(tn), c′(tn)〉

. (38)

From (33) and combined with (38), using Taylor expansion by the symbolic computation software
Maple 18, it is easy to get:

∆t =
2c2(c0 − p)− c2

1
c2

1
en + o(e2

n). (39)

Symmetry 2018, 10, 164 18 of 34

Simplifying (30), it is easy to obtain:

en+1 =
2c2(c0 − p)

c2
1

en + o(e2
n),

=C2en + o(e2
n),

(40)

where the symbol C2 denotes the coefficient in the first order error en of the right-hand side of
Formula (40). The result shows that the third step and the fourth step of the iterative Formula (21)
comprise the first order convergence. According to the iterative Formula (21) and combined with three
error iteration relationships (25), (30) and (40), the convergent order of each iterative formula is not
more than two. Then, the iterative error relationship of the iterative Formula (21) can be expressed
as follows:

en+1 = C0C1C2e2
n + o(e3

n). (41)

To sum up, the convergence order of the iterative Formula (21) is up to two.

Theorem 2. The convergence of the hybrid second order algorithm (Algorithm 1) is a compromise method
between the local and global method.

Proof. The third step and fourth step of the iterative Formula (21) of Algorithm 1 are equivalent to the
foot point algorithm for implicit curves in [32]. The work in [14] has explained that the convergence of
the foot point algorithm for the implicit curve proposed in [14] is a compromise method between the
local and global method. Then, the convergence of Algorithm 1 is also a compromise method between
the local and global method. Namely, if a test point is close to the foot point of the planar implicit
curve, the convergence of Algorithm 1 is independent of the initial iterative value, and if not, the
convergence of Algorithm 1 is dependent on the initial iterative value. The sixth step in Algorithm 1
promotes the robustness. However, the third step, the fourth step and the sixth step in Algorithm 1 still
constitute a compromise method between the local and global ones. Certainly, the first step (steepest
descent method) of Algorithm 1 can make the iterative point fall on the planar implicit curve and
improves its robustness. The second step and the fifth step constitute the classical Newton’s iterative
method to accelerate convergence and improve robustness in some way. The steepest descent method
of the first step and Newton’s iterative method of the second step and the fifth step in Algorithm 1 are
more robust and efficient, but they can change the fact that Algorithm 1 is the compromise method
between the local and global ones. To sum up, Algorithm 1 is the compromise method between the
local and global ones.

Theorem 3. The convergence of the integrated hybrid second order algorithm (Algorithm 3) is independent of
the initial iterative value.

Proof. The integrated hybrid second order algorithm (Algorithm 3) is composed of two parts
sub-algorithms (Algorithm 1 and Algorithm 2). From Theorem 2, Algorithm 1 is a compromise
method between the local and global method. Of course, whether the test point p is very far away or
not far away from the planar implicit curve f (x), if the initial iterative value lies close to the orthogonal
projection point pΓ, Algorithm 1 could be convergent. In any case, Algorithm 2 can change the initial
iterative value of Algorithm 1 sufficiently close to the orthogonal projection point pΓ to ensure
the convergence of Algorithm 1. In this way, Algorithm 3 can converge for any initial iterative
value. Therefore, the convergence of the integrated hybrid second order algorithm (Algorithm 3) is
independent of the initial value.

Symmetry 2018, 10, 164 19 of 34

5. Results of the Comparison

Example 1. ([14]) Assume a planar implicit curve Γ : f (x, y) = (y5 + x3 − x2 + 4
27)(

x
2 + 1) = 0. One

thousand and six hundred test points from the square [−2, 2]× [−2, 2] are taken. The integrated hybrid second
order algorithm (Algorithm 3) can orthogonally project all 1600 points onto planar implicit curve Γ. It satisfies
the relationships | f (pΓ)| < 10−10 and |[(p− pΓ)×∇ f (pΓ)]| < 10−10.

It consists of two steps to select/sample test points:
(1) Uniformly divide planar square [−2, 2]× [−2, 2] of the planar implicit curve into m2 = 1600

sub-regions [ai, ai+1] ×
[
cj, cj+1

]
, i, j = 0, 1, 2, ..., m − 1, where a = a0 = −2, ai+1 − ai = b−a

m =

1/10, b = am = 2, c = c0 = −2, cj+1 − cj =
d−c
m = 1/10, d = cm = 2.

(2) Randomly select a test point in each sub-region and then an initial iterative value in its vicinity.
The same procedure to select/sample test points applies for other examples below.
One test point p = (−0.1, 1.0) in the first case is specified. Using Algorithm 3, the corresponding

orthogonal projection point is pΓ = (−0.47144354751227009, 0.70879213227958752), and the initial
iterative values x0 are (−0.1,0.8), (−0.1,0.9), (−0.1,1.1), (−0.1,1.2), (−0.2,0.8), (−0.2,0.9), (−0.2,1.1)
and (−0.2,1.2), respectively. Each initial iterative value iterates 12 times, respectively, yielding 12
different iteration times in nanoseconds. In Table 3, the average running times of Algorithm 3 for eight
different initial iterative values are 1,099,243, 582,078, 525,942, 490,537, 392,090, 364,817, 369,739 and
367,654 nanoseconds, respectively. In the end, the overall average running time is 524,013 nanoseconds,
while the overall average running time of the circle shrinking algorithm in [14] is 8.9 ms under the same
initial iteration condition.

Table 3. Running time for different initial iterative values by Algorithm 3 in Example 1.

x0 is the initial iterative point of Algorithm 3

x0 (−0.1,0.8) (−0.1,0.9) (−0.1,1.1) (−0.1,1.2) (−0.2,0.8) (−0.2,0.9) (−0.2,1.1) (−0.2,1.2)

1 1,031,458 538,050 596,727 451,274 374,678 352,327 379,469 427,197

2 101,3206 713,362 729,091 325,384 369,743 382,516 335,742 437,603

3 1045,695 579,753 547,925 471,946 380,761 316,481 372,246 381,766

4 1,078,068 602,184 479,085 509,162 354,854 354,927 327,876 388,046

5 1,051,972 455,932 452,681 472,085 380,566 289,771 382,982 277,172

6 1,091,185 607,295 488,716 509,573 316,803 375,499 46,0602 386,560

7 1,096,132 530,438 587,515 570,143 419,934 336,110 383,509 401,181

8 1,233,339 593,947 578,717 545,768 460,682 355,538 355,029 243,244

9 1,117,403 506,794 459,098 511,229 503,686 367,257 402,610 397,652

10 1,021,603 704,671 5186,47 521,823 400,035 530,328 304,194 371,079

11 1,080,953 601,478 357,766 474,679 367,275 371,883 378,800 395,593

12 1,329,903 551,034 515,341 523,378 376,062 345,164 353,803 304,752

Average 1,099,243 582,078 525,942 490,537 392,090 364,817 369,739 367,654

Total average 524,013

The iterative error analysis for the test point p = (−0.1, 1.0) under the same condition is presented
in Table 4 with initial iterative points in the first row. The distance function

√
〈xn − pΓ, xn − pΓ〉 is used

to compute error values in other rows than the first one, and other examples below apply the same
criterion of the distance function. The left column in Table 4 denotes the corresponding number of
iterations, which is the same for Tables 8–15.

Symmetry 2018, 10, 164 20 of 34

Table 4. The error analysis of the iteration process of Algorithm 3 in Example 1.

(−0.1,0.8) (−0.1,0.9) (−0.2,0.8) (−0.3,1.1) (−0.3,1.0) (−0.4,1.1)

Iterations 2 9.6× 10−5 2 8.84× 10−5 1 1.83× 10−4 1 8.37× 10−5 1 5.38× 10−5 1 2.01× 10−4

Iterations 3 2.45× 10−5 3 2.25× 10−5 2 4.66× 10−5 2 2.13× 10−5 2 1.37× 10−5 2 5.13× 10−5

Iterations 4 6.23× 10−6 4 5.74× 10−6 3 1.19× 10−5 3 5.44× 10−6 3 3.49× 10−6 3 1.31× 10−5

Iterations 5 1.59× 10−6 5 1.47× 10−6 4 3.03× 10−6 4 1.39× 10−6 4 8.9× 10−7 4 3.34× 10−6

Iterations 6 4.06× 10−7 6 3.74× 10−7 5 7.73× 10−7 5 3.53× 10−7 5 2.26× 10−7 5 8.50× 10−7

Iterations 7 1.04× 10−7 7 9.61× 10−8 6 1.98× 10−7 6 8.93× 10−8 6 5.7× 10−8 6 2.16× 10−7

Iterations 8 2.72× 10−8 8 2.52× 10−8 7 5.11× 10−8 7 2.21× 10−8 7 1.39× 10−8 7 5.44× 10−8

Iterations 9 7.62× 10−9 9 7.09× 10−9 8 1.37× 10−8 8 4.95× 10−9 8 2.86× 10−9 8 1.32× 10−8

Iterations 10 2.62× 10−9 10 2.48× 10−9 9 4.17× 10−9 9 5.8× 10−10 9 5.3× 10−11 9 2.69× 10−9

Iterations 11 1.34× 10−9 11 1.31× 10−9 10 1.74× 10−9 10 5.26× 10−10 10 0 10 9.83× 10−12

Iterations 12 0 12 0 11 0 11 0 11 0

Another test point p = (0.2, 1.0) in the second case is specified. Using Algorithm 3,
the corresponding orthogonal projection point is pΓ = (−0.42011639143389254, 0.63408011508207950),
and the initial iterative values x0 are (0.3,0.9), (0.3,1.2), (0.4,0.9), (0.3,0.7), (0.1,0.8), (0.1,0.6), (0.4,1.1),
(0.4,1.3), respectively. Each initial iterative value iterates 10 times, respectively, yielding 10 different
iteration times in nanoseconds. In Table 5, the average running times of Algorithm 3 for eight different
initial iterative values are 1,152,664, 844,250, 525,540, 1,106,098, 1,280,232, 1,406,429, 516,779 and 752,429
nanoseconds, respectively. In the end, the overall average running time is 948,053 nanoseconds, while
the overall average running time of the circle shrinking algorithm in [14] is 12.6 ms under the same
initial iteration condition.

Table 5. Running times for different initial iterative values by Algorithm 3 in Example 1.

x0 is the initial iterative point of Algorithm 3

x0 (0.3,0.9) (0.3,1.2) (0.4,0.9) (0.3,0.7) (0.1,0.8) (0.1,0.6) (0.4,1.1) (0.4,1.3)

1 1,164,778 904,059 579,295 1,114,129 1,280,455 1,454,025 465,279 708,716

2 1,140,141 833,580 481,721 1,120,376 1,377,362 1,399,881 592,257 734,098

3 1,183,268 803,603 533,630 1,065,742 1,397,677 1,402,067 531,884 711,159

4 1,135,094 803,246 569,030 1,158,952 1,201,031 1,435,595 514,823 676,583

5 1,172,067 815,995 571,490 1,163,800 1,243,258 1,527,248 533,081 770,473

6 1,117,475 774,629 490,593 1,036,615 1,274,132 1,242,756 519,046 771,301

7 1,163,268 822,776 498,860 1,159,194 1,219,451 1,388,997 474,097 787,570

8 1,119,391 926,534 517,528 1,108,671 1,270,160 1,389,981 509,675 782,308

9 1,152,275 812,589 471,791 1,139,983 1,256,247 1,411,654 516,719 779,118

10 1,178,886 945,485 541,465 993,515 1,282,548 1,412,090 510,928 802,963

Average 1,152,664 844,250 525,540 1,106,098 1,280,232 1,406,429 516,779 752,429

Total average 948,053

The third test point p = (0.1, 0.1) in the third case is specified. Using Algorithm 3,
the corresponding orthogonal projection point is pΓ=(−0.33334322619432892, 0.099785192603767206),
and the initial iterative values x0 are (0.1,0.2), (0.1,0.3), (0.1,0.4), (0.2,0.2), (0.2,0.3), (0.3,0.2), (0.3,0.3),
(0.3,0.4), respectively. Each initial iterative value iterates 12 times, respectively, yielding 12 different
iteration times in nanosecond. In Table 6, the average running times of Algorithm 3 for eight different
initial iterative values are 183,515, 680,338, 704,694, 192,564, 601,235, 161,127, 713,697 and 1,034,443
nanoseconds, respectively. In the end, the overall average running time is 533,952 nanoseconds,

Symmetry 2018, 10, 164 21 of 34

while the overall average running time of the circle shrinking algorithm in [14] is 9.4 ms under
the same initial iteration condition.

Table 6. Running times for different initial iterative values by Algorithm 3 in Example 1.

x0 is the initial iterative point of Algorithm 3

x0 (0.1,0.2) (0.1,0.3) (0.1,0.4) (0.2,0.2) (0.2,0.3) (0.3,0.2) (0.3,0.3) (0.3,0.4)

1 270,852 550,856 429,712 64,804 741,044 168,364 697,266 1,167,562

2 179,999 774,383 654,951 217,510 672,888 166,763 725,336 1,060,097

3 178,160 798,853 813,331 198,976 672,317 166,154 559,483 1,015,338

4 186,535 675,339 803,148 197,350 448,300 199,670 769,088 723,503

5 109,438 649,105 718,140 197,350 807,169 166,773 737,536 1,482,467

6 176,768 470,092 647,855 198,572 802,901 83,965 747,517 993,150

7 175,553 818,775 647,105 20,6361 546,516 157,367 811,350 1,073,860

8 191,716 736,196 773,135 205,615 630,238 168,234 722,490 779,046

9 181,990 501,572 791,132 198,336 346,053 178,239 469,160 1,258,887

10 181,779 810,108 719,110 193,709 317,171 142,726 845,630 1,084,398

11 180,133 730,819 785,248 223,815 669,142 167,794 961,633 1,001,710

12 189,254 647,958 673,456 207,237 561,077 167,477 517,874 77,3293

Average 183,515 680,338 704,694 192,564 601,235 161,127 713,697 1,034,443

Total average 533,952

To sum up, Algorithm 3 is faster than the circle shrinking algorithm in [14] (see Figure 8).

Figure 8. Graphic demonstration for Example 1.

Symmetry 2018, 10, 164 22 of 34

Example 2. Assume a planar implicit curve Γ : f (x, y) = x6 + 4xy + 2y18− 1 = 0. Nine hundred test points
from square [−1.5, 1.5]× [−1.5, 1.5] are taken. Algorithm 3 can rightly orthogonally project all 900 points onto
planar implicit curve Γ. It satisfies the relationships | f (pΓ)| < 10−10 and |[(p− pΓ)×∇ f (pΓ)]| < 10−10.
One test point p = (−1.5, 0.5) in this case is specified. Using Algorithm 3, the corresponding orthogonal
projection point is pΓ = (−1.2539379406252056281, 0.57568037362837924613), and the initial iterative values
x0 are (−1.4,0.6), (−1.3,0.7), (−1.2,0.6), (−1.6,0.4), (−1.4,0.7), (−1.4,0.3), (−1.3,0.6), (−1.2,0.8), respectively.
Each initial iterative value iterates 10 times, respectively, yielding 10 different iteration times in nanoseconds.
In Table 7, the average running times of Algorithm 3 for eight different initial iterative values are 4,487,449,
4,202,203, 4,555,396, 4,533,326, 4,304,781, 4,163,107, 4,268,792 and 4,378,470 nanoseconds, respectively. In
the end, the overall average running time is 4,361,691 nanoseconds (see Figure 9).

Figure 9. Graphic demonstration for Example 2.

Table 7. Running times for different initial iterative values by Algorithm 3 in Example 2.

x0 is the initial iterative point of Algorithm 3

x0 (−1.4,0.6) (−1.3,0.7) (−1.2,0.6) (−1.6,0.4) (−1.4,0.7) (−1.4,0.3) (−1.3,0.6) (−1.2,0.8)

1 4,811,297 4,626,018 4,902,396 4,431,627 4,115,036 4,326,372 4,130,822 4,859,314

2 4,505,727 3,912,778 4,665,879 4,242,339 4,503,391 4,278,999 4,288,241 3,866,268

3 4,124,334 4,230,176 5,060,009 4,460,799 3,869,937 4,283,195 4,155,043 4,619,351

4 4,147,473 4,609,361 4,243,387 4,869,970 4,167,195 4,007,433 4,147,670 4,774,583

5 4,440,814 3,617,951 4,384,258 4,852,657 4,593,295 4,297,552 4,611,293 4,125,097

6 4,227,363 4,138,344 3,966,863 4,783,579 3,902,268 4,248,232 3,897,182 4,835,741

7 4,449,021 4,153,901 4,847,488 4,902,842 4,580,368 4,147,208 4,134,164 3,991,250

8 4,646,411 4,189,724 4,474,738 4,309,208 4,296,653 4,219,366 4,481,757 4,285,602

9 5,092,419 4,263,006 4,759,462 4,358,871 4,220,163 3,850,277 4,496,335 4,347,691

10 4,429,635 4,280,772 4,249,480 4,121,366 4,799,502 3,972,433 4,345,415 4,079,804

Average 4,487,449 4,202,203 4,555,396 4,533,326 4,304,781 4,163,107 4,268,792 4,378,470

Total average 4,361,691

Symmetry 2018, 10, 164 23 of 34

The iterative error analysis for the test point p = (−1.5,0.5) under the same condition is presented
in Table 8 with initial iterative points in the first row.

Table 8. The error analysis of the iteration process of Algorithm 3 in Example 2.

(−1.4,0.6) (−1.3,0.7) (−1.6,0.4) (−1.4,0.7) (−1.3,0.6) (−1.2,0.8)

Iterations 1 0.4693 1 0.46667 7 1.438× 10−4 7 1.598× 10−4 6 1.450× 10−3 4 5.603× 10−3

Iterations 3 0.2340 2 0.34342 8 9.97× 10−6 8 1.11× 10−5 8 7.59× 10−6 5 5.19× 10−4

Iterations 4 8.47× 10−2 4 9.06× 10−2 9 6.83× 10−07 9 7.61× 10−07 9 5.20× 10−07 6 3.70× 10−05

Iterations 6 1.82× 10−3 5 1.58× 10−2 10 4.68× 10−08 10 5.21× 10−08 10 3.56× 10−08 7 2.54× 10−06

Iterations 8 9.78× 10−06 9 7.42× 10−07 11 3.20× 10−09 11 3.57× 10−09 11 2.44× 10−09 8 1.74× 10−07

Iterations 12 2.15× 10−10 11 3.48× 10−09 12 2.19× 10−10 12 2.44× 10−10 12 1.67× 10−10 10 8.17× 10−10

Iterations 13 1.47× 10−11 13 1.63× 10−11 13 1.50× 10−11 13 1.67× 10−11 13 1.14× 10−11 11 5.60× 10−11

Iterations 14 1.00× 10−12 14 1.11× 10−12 14 1.02× 10−12 14 1.13× 10−12 14 7.77× 10−13 12 3.82× 10−12

Iterations 15 6.01× 10−14 15 6.74× 10−14 15 6.35× 10−14 15 7.14× 10−14 15 4.52× 10−14 13 2.54× 10−13

Iterations 16 3.87× 10−15 16 3.87× 10−15 16 3.58× 10−15 16 4.74× 10−15 16 3.92× 10−15 14 1.20× 10−14

Iterations 17 0 17 0 17 0 17 0 17 0 15 0

Example 3. Assume a planar implicit curve Γ : f (x, y) = 12(x− 2)8 + (x− 2)(y− 3)− (y− 3)4 − 1 = 0.
Three thousand and six hundred points from square [0.0, 4.0] × [−3.0, 6.0] are taken. Algorithm 3 can
can orthogonally project all 3600 points onto planar implicit curve Γ. It satisfies the relationships
| f (pΓ)| < 10−10 and |[(p− pΓ)×∇ f (pΓ)]| < 10−10. One test point p = (−5.0,−4.0) in
this case is specified. Using Algorithm 3, the corresponding orthogonal projection point is pΓ =
(−0.027593939033081903,−4.6597845115690539), and the initial iterative values x0 are (−12,−7), (−3,−5),
(−5,−4), (−6.6,−9.9), (−2,−7), (−11,−6), (−5.6,−2.3), (−4.3,−5.7), respectively. Each initial iterative
value iterates 10 times, respectively, yielding 10 different iteration times in nanoseconds. In Table 9, the average
running times of Algorithm 3 for eight different initial iterative values are 299,569, 267,569, 290,719, 139,263,
125,962, 149,431, 289,643 and 124,885 nanoseconds, respectively. In the end, the overall average running time
is 210,880 nanoseconds (see Figure 10).

Table 9. Running times for different initial iterative values by Algorithm 3 in Example 3.

x0 is the initial iterative point of Algorithm 3

x0 (−12,−7) (−3,−5) (−5,−4) (−6.6,−9.9) (−2,−7) (−11,−6) (−5.6,−2.3) (−4.3,−5.7)

1 277,343 310,316 297,033 124,951 116,396 138,701 245,851 112,212

2 274,666 111,959 293,097 124,472 134,506 137,604 301,231 125,493

3 312,195 298,543 296,703 149,529 116,891 137,555 297,777 124,936

4 304,881 290,118 295,982 125,436 116,668 196,756 270,360 125,484

5 292,178 305,172 292,199 171,079 127,808 155,390 305,791 135,424

6 303,868 289,045 286,100 175,455 125,171 150,051 271,976 125,083

7 312,322 289,584 289,836 126,528 127,215 145,563 296,391 124,877

8 302,843 288,736 292,614 143,963 135,337 146,006 281,778 124,166

9 312,034 202,823 283,124 125,254 132,755 141,240 300,383 125,310

10 303,362 289,392 280,498 125,962 126,876 145,447 324,891 125,860

Average 299,569 267,569 290,719 139,263 125,962 149,431 289,643 124,885

Total average 210,880

Symmetry 2018, 10, 164 24 of 34

Figure 10. Graphic demonstration for Example 3.

The iterative error analysis for the test point p = (−5,−4) under the same condition is presented
in Table 10 with initial iterative points in the first row.

Table 10. The error analysis of the iteration process of Algorithm 3 in Example 3.

(−3,−5) (−2,−1) (−1,−2) (−2,−2) (−2,−5) (−1,−4)

Iterations 37 1.36× 10−7 37 1.18× 10−7 37 1.48× 10−7 37 1.37× 10−7 37 1.36× 10−7 37 1.29× 10−7

Iterations 38 1.18× 10−7 38 1.0× 10−7 38 1.28× 10−7 38 1.18× 10−7 38 1.18× 10−7 38 1.11× 10−7

Iterations 39 1.0× 10−7 39 8.43× 10−8 39 1.10× 10−7 39 1.01× 10−7 39 1.0× 10−7 39 9.43× 10−8

Iterations 40 8.42× 10−8 40 6.94× 10−8 40 9.34× 10−8 40 8.45× 10−8 40 8.41× 10−8 40 7.86× 10−8

Iterations 41 6.93× 10−8 41 5.55× 10−8 41 7.79× 10−8 41 6.96× 10−8 41 6.93× 10−8 41 6.41× 10−8

Iterations 42 5.54× 10−8 42 4.27× 10−8 42 6.34× 10−8 42 5.57× 10−8 42 5.54× 10−8 42 5.07× 10−8

Iterations 43 4.26× 10−8 43 3.08× 10−8 43 5.0× 10−8 43 4.29× 10−8 43 4.26× 10−8 43 3.82× 10−8

Iterations 44 3.07× 10−8 44 1.98× 10−8 44 3.76× 10−8 44 3.1× 10−8 44 3.07× 10−8 44 2.67× 10−8

Iterations 45 1.97× 10−8 45 9.56× 10−9 45 2.61× 10−8 45 5.89× 10−9 45 1.97× 10−8 45 1.59× 10−9

Iterations 46 9.49× 10−9 46 6.11× 10−11 46 1.54× 10−8 46 9.71× 10−10 46 9.49× 10−9 46 5.97× 10−10

Iterations 47 1.78× 10−15 47 2.43× 10−11 47 5.48× 10−9 47 2.03× 10−12 47 1.31× 10−12 47 3.79× 10−12

Iterations 48 0 48 0 48 0 48 0 48 0 48 0

Example 4. Assume a planar implicit curve Γ : f (x, y) = x6 + 2x5y− 2x3y2 + x4 − y3 + 2y8 − 4 = 0.
Two thousand one hundred test points from the square [−2.0, 4.0] × [−2.0, 1.5] are taken. Algorithm 3
can orthogonally project all 2100 points onto planar implicit curve Γ. It satisfies the relationships
| f (pΓ)| < 10−10 and |[(p− pΓ)×∇ f (pΓ)]| < 10−10. One test point p = (2.0,−2.0) in this case is
specified. Using Algorithm 3, the corresponding orthogonal projection point is pΓ = (2.1654788271485294,
−1.5734131236664724), and the initial iterative values x0 are (2.2,−2.1), (2.3,−1.9), (2.4,−1.8), (2.1,−2.3),
(2.4,−1.6), (2.3,−1), (1.6,−2.5), (2.6,−2.5), respectively. Each initial iterative value iterates 10 times,
respectively, yielding 10 different iteration times in nanoseconds. In Table 11, the average running times

Symmetry 2018, 10, 164 25 of 34

of Algorithm 3 for eight different initial iterative values are 403,539, 442,631, 395,384, 253,156, 241,510,
193,592, 174,340 and 187,362 nanoseconds, respectively. In the end, the overall average running time is 286,439
nanoseconds (see Figure 11).

Figure 11. Graphic demonstration for Example 4.

Table 11. Running times for different initial iterative values by Algorithm 3 in Example 4.

x0 is the initial iterative point of Algorithm 3

x0 (2.2,−2.1) (2.3,−1.9) (2.4,−1.8) (2.1,−2.3) (2.4,−1.6) (2.3,−1) (1.6,−2.5) (2.6,−2.5)

1 430,112 740,948 421,825 254,230 260,450 172,025 180,110 115,138

2 404,301 406,073 420,653 253,648 221,176 198,725 179,517 187,424

3 426,059 429,215 354,579 207,810 249,507 171,104 179,836 210,163

4 412,996 372,201 420,155 252,192 260,296 169,377 179,735 198,288

5 349,826 407,902 420,748 254,064 169,470 256,737 136,947 194,841

6 412,088 422,447 433,176 316,291 249,825 187,722 149,392 195,673

7 413,990 410,384 453,070 253,329 249,704 176,733 198,042 188,232

8 454,218 409,190 314,484 251,488 248,592 170,296 180,078 194,450

9 425,873 418,357 357,542 236,264 249,482 252,598 179,940 194,180

10 305,927 409,593 357,610 252,244 256,600 180,605 179,806 195,230

Average 403,539 442,631 395,384 253,156 241,510 193,592 174,340 187,362

Total average 286,439

The iterative error analysis for the test point p = (2,−2) under the same condition is presented in
Table 12 with initial iterative points in the first row.

Symmetry 2018, 10, 164 26 of 34

Table 12. The error analysis of the iteration process of Algorithm 3 in Example 4.

(2.2,−2.1) (2.3,−1.9) (2.1,−2.3) (2.4,−1.6) (1.6,−2.5) (2.6,−2.5)

Iterations 5 7.42× 10−6 3 1.42× 10−4 4 1.65× 10−4 4 4.29× 10−5 4 2.21× 10−4 4 1.45× 10−4

Iterations 6 6.41× 10−7 4 1.22× 10−5 5 1.23× 10−6 5 3.70× 10−6 5 1.90× 10−5 5 1.25× 10−5

Iterations 7 5.53× 10−8 5 1.05× 10−6 6 1.06× 10−7 6 3.20× 10−7 6 1.64× 10−6 6 1.08× 10−6

Iterations 8 4.7× 10−9 6 9.12× 10−8 7 9.19× 10−9 7 2.76× 10−8 7 1.41× 10−7 7 9.34× 10−8

Iterations 9 4.12× 10−10 7 7.87× 10−9 8 7.94× 10−10 8 2.38× 10−9 8 1.22× 10−8 8 8.07× 10−9

Iterations 10 3.56× 10−11 8 6.80× 10−10 9 6.85× 10−11 9 2.06× 10−10 9 1.05× 10−9 9 6.96× 10−10

Iterations 11 3.05× 10−12 9 5.87× 10−11 10 5.89× 10−12 10 1.78× 10−11 10 9.13× 10−11 10 6.01× 10−11

Iterations 12 2.39× 10−13 10 5.04× 10−12 11 4.87× 10−13 11 1.56× 10−12 11 7.85× 10−12 11 5.17× 10−12

Iterations 13 1.89× 10−15 11 4.15× 10−13 12 2.20× 10−14 12 1.58× 10−13 12 6.51× 10−13 12 4.25× 10−13

Iterations 14 2.12× 10−16 12 1.53× 10−14 13 4.71× 10−16 13 3.56× 10−14 13 3.37× 10−14 13 1.61× 10−14

Iterations 15 0 13 0 14 0 14 0 14 0 14 0

Example 5. Assume a planar implicit curve Γ : f (x, y) = x15 + 2x5y− 2x3y2 + x4 − y3 − 4y18 − 4 = 0.
Tow thousand four hundred test points from the square [0, 3]× [−3, 3] are taken. Algorithm 3 can orthogonally
project all 2400 points onto planar implicit curve Γ. It satisfies the relationships | f (pΓ)| < 10−10 and
|[(p− pΓ)×∇ f (pΓ)]| < 10−10.

One test point p = (12,−20) in this case is specified. Using Algorithm 3, the corresponding
orthogonal projection point is pΓ = (16.9221067487652, −9.77831982969495), and the initial iterative
values x0 are (12,−20), (3,−5), (5,−4), (66,−99), (14,−21), (11,−6), (56,−23), (13,−7), respectively.
Each initial iterative value iterates 10 times, respectively, yielding 10 different iteration times in
nanoseconds. In Table 13, the average running times of Algorithm 3 for eight different initial iterative
values are 285,449, 447,036, 405,726, 451,383, 228,491, 208,624, 410,489 and 224,141 nanoseconds,
respectively. In the end, the overall average running time is 332,667 nanoseconds (see Figure 12).

Figure 12. Graphic demonstration for Example 5.

Symmetry 2018, 10, 164 27 of 34

Table 13. Running times for different initial iterative values by Algorithm 3 in Example 5.

x0 is the initial iterative point of Algorithm 3

x0 (12,−20) (3,−5) (5,−4) (66,−99) (14,−21) (11,−6) (56,−23) (13,−7)

1 248,703 449,007 234,127 485,542 236,887 262,514 441,322 217,746

2 323,108 448,493 442,871 406,267 262,696 217,260 449,011 217,915

3 247,861 456,350 418,751 467,633 259,544 198,615 418,260 217,787

4 284,727 448,722 465,808 458,852 138,867 217,176 476,528 217,776

5 321,696 444,663 403,970 466,525 237,369 189,288 414,269 211,879

6 320,798 451,849 450,119 465,345 138,523 265,633 418,683 241,267

7 327,936 448,836 321,268 417,030 266,929 217,299 413,880 217,836

8 321,471 435,693 465,314 445,768 239,203 161,549 482,363 217,234

9 147,980 449,984 398,126 446,046 267,621 239,762 415,523 241,129

10 310,207 436,765 456,906 454,822 237,269 117,144 175,049 240,841

Average 285,449 447,036 405,726 451,383 228,491 208,624 410,489 224,141

Total Average 332,667

The iterative error analysis for the test point p = (12,−20) under the same condition is presented
in Table 14 with initial iterative points in the first row.

Table 14. The error analysis of the iteration process of Algorithm 3 in Example 5.

(12,−20) (3,−5) (66,−99) (5,−4) (56,−23) (13,−7)

Iterations 7 3.42× 10−3 10 3.32× 10−3 15 3.25× 10−3 15 3.22× 10−3 23 4.68× 10−3 1 3.09× 10−3

Iterations 8 3.05× 10−3 11 2.95× 10−3 16 2.88× 10−3 16 2.85× 10−3 24 4.65× 10−3 2 3.34× 10−4

Iterations 9 2.68× 10−3 12 2.59× 10−3 17 2.52× 10−3 17 2.49× 10−3 25 4.62× 10−3 3 0

Iterations 10 2.33× 10−3 13 2.24× 10−3 18 2.17× 10−3 18 2.14× 10−3 26 4.58× 10−3

Iterations 11 1.98× 10−3 14 1.89× 10−3 19 1.82× 10−3 19 1.79× 10−3 27 4.55× 10−3

Iterations 12 1.63× 10−3 15 1.54× 10−3 20 1.48× 10−3 20 1.45× 10−3 28 4.52× 10−3

Iterations 13 1.29× 10−3 16 1.21× 10−3 21 1.14× 10−3 21 1.12× 10−3 29 4.48× 10−3

Iterations 14 9.62× 10−4 17 8.77× 10−4 22 8.13× 10−4 22 7.89× 10−4 30 4.45× 10−3

Iterations 15 6.35× 10−4 18 5.52× 10−4 23 4.89× 10−4 23 4.66× 10−4 31 4.42× 10−3

Iterations 16 3.15× 10−5 19 2.33× 10−4 24 1.71× 10−4 24 1.49× 10−4 32 4.39× 10−4

Iterations 17 0 20 8.04× 10−5 25 1.41× 10−5 25 1.63× 10−5 33 4.36× 10−5

Example 6. Assume a planar implicit curve Γ : f (x, y) = −(x6 + 2y4 − 4) = 0. One spatial test point
p’ = (2.0, 1.5, 5) in this case is specified, and orthogonally project it onto plane x− y, so the planar test point
will be p = (2.0,1.5). Using Algorithm 3, the corresponding orthogonal projection point on plane x− y is pΓ =

(1.1436111944138613,0.96895628133918197), and it satisfies the two relationships | f (xn+1)| < 1.2× 10−14

and |〈p− xn+1, t〉| < 1.2× 10−15. In the iterative error Table 15, six points (1,1), (1.5,1.5), (−1,1), (1,−1),
(1.5,1), (1,1.5) in the first row are the initial iterative points x0 of Algorithm 3. In Figure 13, red, green and blue
points are the spatial test point, planar test point and their common corresponding orthogonal projection point,
respectively. Assume surface z = f (x, y) with two free variables x and y. The yellow curve is planar implicit
curve f (x, y) = 0.

Symmetry 2018, 10, 164 28 of 34

Figure 13. Graphic demonstration for Example 6.

Table 15. The error analysis of the iteration process of Algorithm 3 in Example 6.

(1,1) (−1.1,1.5) (−1,1) (1,−1) (−1.5,1) (1,1.5)

Iterations 1 3.03× 10−3 2 1.01× 10−2 1 3.95 1 8.67× 10−1 4 3.53× 10−4 1 2.03× 10−1

Iterations 2 1.21× 10−7 3 1.06× 10−8 2 3.37 2 2.72× 10−1 5 2.78× 10−5 2 4.71× 10−3

Iterations 3 6.22× 10−11 4 8.82× 10−10 3 3.85 3 1.21× 10−2 6 2.18× 10−6 3 2.38× 10−8

Iterations 4 1.52× 10−11 5 2.16× 10−10 4 1.00 4 2.20× 10−6 7 1.70× 10−7 4 3.84× 10−11

Iterations 5 5.58× 10−13 6 6.04× 10−11 5 3.80× 10−1 5 1.34× 10−11 8 1.33× 10−8 5 1.07× 10−11

Iterations 6 1.34× 10−13 7 4.74× 10−12 6 3.14× 10−2 6 3.30× 10−12 9 1.04× 10−9 6 8.30× 10−13

Iterations 7 4.56× 10−14 8 3.82× 10−13 7 2.37× 10−5 7 9.36× 10−13 10 8.20× 10−11 7 5.36× 10−14

Iterations 8 0 9 4.13× 10−14 8 6.56× 10−12 8 8.46× 10−14 11 5.62× 10−12 8 7.04× 10−15

Iterations 10 1.45× 10−14 9 8.74× 10−13 9 1.79× 10−14 12 0 9 0

Iterations 11 1.23× 10−14 10 7.97× 10−14 10 0

Iterations 12 0 11 0

Remark 4. In the 22 tables, all computations were done by using g++ in the Fedora Linux 8 environment.
The iterative termination criteria ε1 for Algorithm 1 and Algorithm 2 are ε1 = 10−7 and ε2 = 10−15,
respectively. Examples 1–6 are computed using a personal computer with Intel i7-4700 3.2-GHz CPU and
4.0 GB memory.

In Examples 2–6, if the degree of every planar implicit curve is more than five, it is difficult to get
the intersection between the line segment determined by test point p and p+ and the planar implicit
curve by using the circle shrinking algorithm in [14]. The running time comparison for Algorithm
in [14] was not done, and it was not done for the circle double-and-bisect algorithm in [36] due to
the same reason. The running time comparison test by using the circle double-and-bisect algorithm
in [36] has not been done because it is difficult to solve the intersection between the circle and the planar
implicit curve by using the circle double-and-bisect algorithm. In addition, many methods (Newton’s
method, the geometrically-motivated method [31,32], the osculating circle algorithm [33], the Bézer
clipping method [25–27], etc.) cannot guarantee complete convergence for Examples 2–5. The running
time comparison test for those methods in [25–27,31–33] has not been done yet. From Table 2 in [36],
the circle shrinking algorithm in [14] is faster than the existing methods, while Algorithm 3 is faster than
the circle shrinking algorithm in [14] in our Example 1. Then, Algorithm 3 is faster than the existing
methods. Furthermore, Algorithm 3 is more robust and efficient than the existing methods.

Symmetry 2018, 10, 164 29 of 34

Besides, it is not difficult to find that if test point p is close to the planar implicit curve and initial
iterative point x0 is close to the test point p, for a lower degree of and fewer terms in the planar
implicit curve and lower precision of the iteration, Algorithm 3 will use less total average running
time. Otherwise, Algorithm 3 will use more time.

Remark 5. Algorithm 3 essentially makes an orthogonal projection of test point onto a planar implicit curve
Γ : f (x) = 0. For the multiple orthogonal points situation, the basic idea of the authors’ approach is as follows:

(1) Divide a planar region [a, b] × [c, d] of planar implicit curve into m2 sub-regions [ai, ai+1] ×[
cj, cj+1

]
, i, j = 0, 1, 2, ..., m − 1, where a = a0, ai+1 − ai = b−a

m , b = am, c = c0, cj+1 −
cj = d−c

m , d = cm.
(2) Randomly select an initial iterative value in each sub-region.
(3) Using Algorithm 3 and using each initial iterative value, do the iteration, respectively. Let us assume that

the corresponding orthogonal projection points are pΓij
, i, j = 0, 1, 2, ..., m− 1, respectively.

(4) Compute the local minimum distances dij, i, j = 0, 1, 2, ..., m− 1, where dij =
∥∥∥p− pΓij

∥∥∥.

(5) Compute the global minimum distance d = ‖p− f (pΓ)‖ = min{dij}, i, j = 0, 1, 2, ..., m− 1.

To find as many solutions as possible, a larger value of m is taken.

Remark 6. In Example 1, for the test points (−0.1,1.0), (0.2,1.0), (0.1,0.1), (0.45,0.5), by using Algorithm 3,
the corresponding orthogonal projection points pΓ are (−0.47144354751227009, 0.70879213227958752),
(−0.42011639143389254, 0.63408011508207950), (−0.33334322619432892, 0.099785192603767206),
(−0.34352305539212918,0.401230229163152532), respectively (see Figure 14 and Table 16). In addition
to the six test examples, many other examples have also been tested. According to these results, if test point
p is close to the planar implicit curve f (x), for different initial iterative values x0, which are also close to
the corresponding orthogonal projection point pΓ, it can converge to the corresponding orthogonal projection
point pΓ by using Algorithm 3, namely the test point p and its corresponding orthogonal projection point pΓ
satisfy the inequality relationships: {

| f (pΓ)| < 10−10,
|[(p− pΓ)×∇ f (pΓ)]| < 10−10.

(42)

Thus, it illustrates that the convergence of Algorithm 3 is independent of the initial value and
Algorithm 3 is efficient. In sum, the algorithm can meet the top two of the ten challenges proposed by
Professor Les A. Piegl [41] in terms of robustness and efficiency.

Remark 7. From the authors’ six test examples, Algorithm 3 is robust and efficient. If test point p is very
far away from the planar implicit curve and the degree of the planar implicit curve is very high, Algorithm 3
also converges. However, inequality relationships (42) could not be satisfied simultaneously. In addition,
if the planar implicit curve contains singular points, Algorithm 3 only works for test point p in a suitable
position. Namely, for any initial iterative point x0, test point p can be orthogonally projected onto the planar
implicit curve, but with a larger distance ‖p− pΓ‖ than the minimum distance ‖p− ps‖ between the test
point and the orthogonal projection point, where ps is the singular point. For example, for the test point
(1.0,0.01), (0.6,0.1), (0.5,−0.15), (0.8,−0.1), Algorithm 3 gives the corresponding orthogonal projection points
pΓ as (0.66370473801453017, 0.092784537693334545), (0.66704812931370775, 0.097528910436113817),
(0.663704738014530, 0.13435089298485379), (0.66418591136724639,−0.090702201378858334),
respectively. However, the actual corresponding orthogonal projection point of four test points is
(0.66666666666666667, 0.0) (see Figure 14 and Table 16).

Symmetry 2018, 10, 164 30 of 34

Figure 14. Graphic demonstration for the singular point case of Algorithm 3.

Table 16. Distance for the singular point case of Algorithm 3.

Test point p Initial iterative point x0 Distance in [14] Distance in [36] Distance by ours

(−0.1,1) (−0.5,0.9) 0.471990 0.471988 0.47198763883259622

(0.2,1) (−0.6,0.6) 0.720032 0.720030 0.72002895851718132

(0.1,0.1) (−0.2,0.2) 0.433352 0.433345 0.43334327943413038

(0.45,0.5) (−0.2,0.5) 0.549262 0.79964636375714451

(1.0,0.01) (0.6,0.01) 0.32956742971206581

(0.6,0.1) (0.5,0.01) 0.063752646448070471

(0.5,−0.15) (0.55,−0.2) 0.16628421658831499

(0.8,−0.1) (0.75,−0.1) 0.13613197908773955

Remark 8. This remark is added to numerically validate the convergence order of two, thanks to the reviewers’
insightful comments, which corrects the previous wrong calculation of the convergence order. The iterative error
ratios for the test point p = (−0.1, 1.0) in Example 1 are presented in Table 17 with initial iterative points in

the first row. The formula

∣∣∣∣∣ln
(√
〈xn+1−pΓ ,xn+1−pΓ〉√
〈xn−pΓ ,xn−pΓ〉

)∣∣∣∣∣ is used to compute error ratios for each iteration in

rows other than the first one, which is the same for Tables 18–22. From the six tables, once again combined with

the order of convergence formula ρ ≈
∣∣∣∣∣ ln
(√
〈xn+1−pΓ ,xn+1−pΓ〉/

√
〈xn−pΓ ,xn−pΓ〉

)
ln
(√
〈xn−pΓ ,xn−pΓ〉/

√
〈xn−1−pΓ ,xn−1−pΓ〉

)
∣∣∣∣∣, it is not difficult to find out

that the order of convergence for each example is approximately between one and two, which verifies Theorem 1.

The convergence formula ρ comes from the Formula [42], i.e., ρ ≈ ln |(xn+1 − α) / (xn − α)|
ln |(xn − α) / (xn−1 − α)| .

Symmetry 2018, 10, 164 31 of 34

Table 17. The error ratios for each iteration in Example 1 of Algorithm 3.

(−0.1,0.8) (−0.1,0.9) (−0.2,0.8) (−0.3,1.1) (−0.3,1.0) (−0.4,1.1)

Iterations 1 5.6 1 7.05 1 6.33 1 7.55 1 7.55 1 6.38

Iterations 2 6.97 2 8.42 2 7.69 2 8.92 2 8.92 2 7.75

Iterations 3 8.34 3 9.79 3 9.06 3 10.3 3 10.3 3 9.11

Iterations 4 9.71 4 11.2 4 10.4 4 11.7 4 11.7 4 10.5

Iterations 5 11.1 5 12.5 5 11.8 5 13.0 5 13.0 5 11.8

Iterations 6 12.4 6 13.9 6 13.2 6 14.4 6 14.4 6 13.2

Iterations 7 13.8 7 15.3 7 14.5 7 15.7 7 15.7 7 14.6

Iterations 8 15.2 8 16.7 8 15.9 8 17.0 8 17.0 8 15.9

Iterations 9 16.6 9 18.3 9 17.4 9 18.1 9 18.1 9 17.2

Iterations 10 18.2 10 21.8 10 19.4 10 18.2

Table 18. The error ratios for each iteration in Example 2 of Algorithm 3.

(−1.4,0.6) (−1.3,0.7) (−1.6,0.4) (−1.4,0.7) (−1.3,0.6) (−1.2,0.8)

Iterations 1 3.032 1 2.743 1 1.258 1 6.052 1 4.324 1 3.032

Iterations 2 7.816 2 7.234 2 3.891 2 11.26 2 10.41 2 7.819

Iterations 3 2.539 3 5.801 3 9.538 3 3 3 3.060

Table 19. The error ratios for each iteration in Example 3 of Algorithm 3.

(−3,−5) (−2,−1) (−1,−2) (−2,−2) (−2,−5) (−1,−4)

Iterations 1 4.81× 10−2 1 4.81× 10−2 1 4.81× 10−2 1 4.81× 10−2 1 4.81× 10−2 1 4.81× 10−2

Iterations 2 2.81× 10−2 2 2.81× 10−2 2 2.81× 10−2 2 2.81× 10−2 2 2.81× 10−2 2 2.81× 10−2

Iterations 3 1.67× 10−2 3 1.67× 10−2 3 1.67× 10−2 3 1.67× 10−2 3 1.67× 10−2 3 1.67× 10−2

Iterations 4 9.97× 10−3 4 9.97× 10−3 4 9.98× 10−3 4 9.97× 10−3 4 9.97× 10−3 4 9.98× 10−3

Iterations 5 9.0× 10−3 5 9.0× 10−3 5 9.0× 10−3 5 9.0× 10−3 5 9.0× 10−3 5 9.0× 10−3

Iterations 6 3.62× 10−3 6 3.62× 10−3 6 3.62× 10−3 6 3.62× 10−3 6 3.62× 10−3 6 3.62× 10−3

Iterations 7 2.19× 10−3 7 2.19× 10−3 7 2.19× 10−3 7 2.19× 10−3 7 2.19× 10−3 7 2.19× 10−3

Iterations 8 1.32× 10−3 8 1.32× 10−3 8 1.32× 10−3 8 1.32× 10−3 8 1.32× 10−3 8 1.32× 10−3

Iterations 9 8.01× 10−4 9 8.01× 10−4 9 8.01× 10−4 9 8.01× 10−4 9 8.01× 10−4 9 8.01× 10−4

Iterations 10 4.85× 10−4 10 4.85× 10−4 10 4.85× 10−4 10 4.85× 10−4 10 4.85× 10−4 10 4.85× 10−4

Table 20. The error ratios for each iteration in Example 4 of Algorithm 3.

(2.2,−2.1) (2.3,−1.9) (2.1,−2.3) (2.4,−1.6) (1.6,−2.5) (2.6,−2.5)

Iterations 1 0.6782 1 0.6779 1 0.6785 1 0.6776 1 0.6794 1 0.677

Iterations 2 1.356 2 1.356 2 1.355 2 1.356 2 1.355 2 1.356

Iterations 3 1.356 3 1.356 3 1.356 3 1.356 3 1.356

Iterations 4 1.356 4 1.356 4 1.356 4 1.356 4 1.356

Iterations 5 1.356 5 1.356 5 1.356 5 1.356 5 1.356

Iterations 6 1.356 6 1.356 6 1.356

Symmetry 2018, 10, 164 32 of 34

Table 21. The error ratios for each iteration in Example 5 of Algorithm 3.

(12,−20) (3,−5) (66,−99) (5,−4) (56,−23) (13,−7)

Iterations 8 1.64× 10−2 11 1.64× 10−2 16 1.64× 10−2 16 1.64× 10−2 24 1.26× 10−2 1 8.99× 10−3

Iterations 9 1.64× 10−2 12 1.64× 10−2 17 1.64× 10−2 17 1.64× 10−2 25 1.26× 10−2 2 1.59× 10−2

Iterations 10 1.64× 10−2 13 1.64× 10−2 18 1.64× 10−2 18 1.64× 10−2 26 1.27× 10−2

Iterations 11 1.64× 10−2 14 1.63× 10−2 19 1.63× 10−2 19 1.63× 10−2 27 1.27× 10−2

Iterations 12 1.63× 10−2 15 1.63× 10−2 20 1.63× 10−2 20 1.63× 10−2 28 1.27× 10−2

Iterations 13 1.63× 10−2 16 1.63× 10−2 21 1.63× 10−2 21 1.63× 10−2 29 1.27× 10−2

Iterations 14 1.63× 10−2 17 1.63× 10−2 22 1.63× 10−2 22 1.63× 10−2 30 1.28× 10−2

Iterations 15 1.63× 10−2 18 1.62× 10−2 23 1.62× 10−2 23 1.62× 10−2 31 1.28× 10−2

Iterations 16 1.62× 10−2 19 1.62× 10−2 24 1.62× 10−2 24 1.62× 10−2 32 1.28× 10−2

Iterations 17 1.62× 10−2 20 1.62× 10−2 25 1.62× 10−2 25 1.62× 10−2 33 1.28× 10−2

Table 22. The error ratios for each iteration in Example 6 of Algorithm 3.

(1,1) (−1.1,1.5) (−1,1) (1,−1) (−1.5,1) (1,1.5)

Iterations 1 6.69× 10−1 6 6.69× 10−1 9 6.69× 10−1 13 6.69× 10−1 23 6.69× 10−1 5 6.69× 10−1

Iterations 2 6.69× 10−1 7 6.69× 10−1 10 6.69× 10−1 14 6.69× 10−1 24 6.69× 10−1 6 6.69× 10−1

Iterations 3 6.69× 10−1 8 6.69× 10−1 11 6.69× 10−1 15 6.69× 10−1 25 6.69× 10−1 7 6.69× 10−1

Iterations 4 6.69× 10−1 9 6.69× 10−1 12 6.69× 10−1 16 6.69× 10−1 26 6.69× 10−1 8 6.69× 10−1

Iterations 5 6.69× 10−1 10 6.69× 10−1 13 6.69× 10−1 17 6.69× 10−1 27 6.69× 10−1 9 6.69× 10−1

Iterations 6 6.69× 10−1 11 6.69× 10−1 14 6.69× 10−1 18 6.69× 10−1 28 6.69× 10−1 10 6.69× 10−1

Iterations 7 6.69× 10−1 12 6.69× 10−1 15 6.69× 10−1 19 6.69× 10−1 29 6.69× 10−1 11 6.69× 10−1

Iterations 8 6.69× 10−1 13 6.69× 10−1 16 6.69× 10−1 20 6.69× 10−1 30 6.69× 10−1 12 6.69× 10−1

Iterations 9 6.69× 10−1 14 6.69× 10−1 17 6.69× 10−1 21 6.69× 10−1 31 6.69× 10−1 13 6.69× 10−1

Iterations 10 6.69× 10−1 15 6.69× 10−1 18 6.69× 10−1 22 6.69× 10−1 32 6.69× 10−1 14 6.69× 10−1

6. Conclusions

This paper investigates the problem related to a point projection onto a planar implicit curve.
The integrated hybrid second order algorithm is proposed, which is composed of two sub-algorithms
(hybrid second order algorithm and initial iterative value estimation algorithm). For any test point p,
any planar implicit curve containing singular points, whether test point p is close to or very far away
from the planar implicit curve, the integrated hybrid second order algorithm could be convergent. It is
proven that the convergence of Algorithm 3 is independent of the initial value. Convergence analysis
of the integrated hybrid second order algorithm demonstrates that the convergence order is second
order. Numerical examples illustrate that the algorithm is robust and efficient.

7. Future Work

For any initial iterative point and test point in any position of the plane, for any planar implicit
curve (including containing singular points, the degree of the planar implicit curve being arbitrarily
high), the future work is to construct a brand new algorithm to meet three requirements: (1) it does
converge, and the orthogonal projection point does simultaneously satisfy three relationships of
Formula (11); (2) it is very effective at tackling singularity; (3) it takes less time than the current
Algorithm 3. Of course, it will be very challenging to find this kind of algorithm in the future.

Another potential topic for future research is to develop a more efficient method to compute
the minimum distance between a point and a spatial implicit curve or a spatial implicit surface.

Symmetry 2018, 10, 164 33 of 34

The new method must satisfy three requirements in terms of convergence, effectiveness at tackling
singularity and efficiency.

Author Contributions: The contributions of all of the authors were the same. All of them have worked together
to develop the present manuscript.

Funding: This research was funded by [National Natural Science Foundation of China] grant number [71772106],
[Scientific and Technology Foundation Funded Project of Guizhou Province] grant number [[2014]2093],
[The Feature Key Laboratory for Regular Institutions of Higher Education of Guizhou Province] grant number
[[2016]003], [Training Center for Network Security and Big Data Application of Guizhou Minzu University] grant
number [20161113006], [Shandong Provincial Natural Science Foundation of China] grant number [ZR2016GM24],
[Scientific and Technology Key Foundation of Taiyuan Institute of Technology] grant number [2016LZ02], [Fund
of National Social Science] grant number [14XMZ001] and [Fund of the Chinese Ministry of Education] grant
number [15JZD034].

Acknowledgments: We take the opportunity to thank the anonymous reviewers for their thoughtful and
meaningful comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gomes, A.J.; Morgado, J.F.; Pereira, E.S. A BSP-based algorithm for dimensionally nonhomogeneous planar
implicit curves with topological guarantees. ACM Trans. Graph. 2009, 28, 1–24. [CrossRef]

2. Gabriel, T. Distance approximations for rasterizing implicit curves. ACM Trans. Graph. 1994, 13, 342.
3. Gourmel, O.; Barthe, L.; Cani, M.P.; Wyvill, B.; Bernhardt, A.; Paulin, M.; Grasberger, H. A gradient-based

implicit blend. ACM Trans. Graph. 2013, 32, 12. [CrossRef]
4. Li, Q.; Tian, J. 2D piecewise algebraic splines for implicit modeling. ACM Trans. Graph. 2009, 28, 13.

[CrossRef]
5. Dinesh, M.; Demmel, J. Algorithms for intersecting parametric and algebraic curves I: Simple intersections.

ACM Trans. Graph. 1994, 13, 73–100.
6. Krishnan, S.; Manocha, D. An efficient surface intersection algorithm based on lower-dimensional formulation.

ACM Trans. Graph. 1997, 16, 74–106. [CrossRef]
7. Shene, C.-K.; John, K.J. On the lower degree intersections of two natural quadrics. ACM Trans. Graph. 1994,

13, 400–424. [CrossRef]
8. Maxim, A.; Michael, B.; Gershon, E. Global solutions of well-constrained transcendental systems using

expression trees and a single solution test. Comput. Aided Geom. Des. 2012, 29, 265–279.
9. Sonia, L.R.; Juana, S.; Sendra, J.R. Bounding and estimating the Hausdorff distance between real space

algebraic curves. Comput. Aided Geom. Des. 2014, 31, 182–198.
10. Ron, G. Curvature formulas for implicit curves and surfaces. Comput. Aided Geom. Des. 2005, 22, 632–658.
11. Thomas, W.S.; Zheng, J.; Klimaszewski, K.; Dokken, T. Approximate implicitization using monoid curves

and surfaces. Graph. Mod. Image Proc. 1999, 61, 177–198.
12. Eva, B.; Zbyněk, Š. Identifying and approximating monotonous segments of algebraic curves using support

function representation. Comput. Aided Geom. Des. 2014, 31, 358–372.
13. Anderson, I.J.; Cox, M.G.; Forbes, A.B.; Mason, J.C.; Turner, D.A. An Efficient and Robust Algorithm for

Solving the Foot Point Problem. In Proceedings of the International Conference on Mathematical Methods
for Curves and Surfaces II Lillehammer, Lillehammer, Norway, 3–8 July 1997; pp. 9–16.

14. Martin, A.; Bert, J. Robust computation of foot points on implicitly defined curves. In Mathematical Methods
for Curves and Surfaces: Tromsø; Nashboro Press: Brentwood, TN, USA, 2004; pp. 1–10.

15. William, H.P.; Brian, P.F.; Teukolsky, S.A.; William, T.V. Numerical Recipes in C: The Art of Scientific Computing,
2nd ed.; Cambridge University Press: Cambridge, UK, 1992.

16. Steve, S.; Sandford, L.; Ponce, J. Using geometric distance fits for 3-D object modeling and recognition.
IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 1183–1196.

17. Morgan, A.P. Polynomial continuation and its relationship to the symbolic reduction of polynomial systems.
In Symbolic and Numerical Computation for Artificial Intelligence; Academic Press: Cambridge, MA, USA,
1992; pp. 23–45.

http://dx.doi.org/10.1145/1516522.1516528
http://dx.doi.org/10.1145/2451236.2451238
http://dx.doi.org/10.1145/1516522.1516524
http://dx.doi.org/10.1145/237748.237751
http://dx.doi.org/10.1145/195826.197316

Symmetry 2018, 10, 164 34 of 34

18. Layne, T.W.; Billups, S.C.; Morgan, A.P. Algorithm 652: HOMPACK: A suite of codes for globally convergent
homotopy algorithms. ACM Trans. Math. Softw. 1987, 13, 281–310.

19. Berthold, K.P.H. 1Relative orientation revisited. J. Opt. Soc. Am. A 1991, 8, 1630–1638.
20. Dinesh, M.; Krishnan, S. Solving algebraic systems using matrix computations. ACM SIGSAM Bull. 1996,

30, 4–21.
21. Chionh, E.-W. Base Points, Resultants, and the Implicit Representation of Rational Surfaces. Ph.D. Thesis,

University of Waterloo, Waterloo, ON, Canada, 1990.
22. De Montaudouin, Y.; Tiller, W. The Cayley method in computer aided geometric design. Comput. Aided

Geom. Des. 1984, 1, 309–326. [CrossRef]
23. Albert, A.A. Modern Higher Algebra; D.C. Heath and Company: New York, NY, USA, 1933.
24. Thomas, W.; David, S.; Anderson, C.; Goldman, R.N. Implicit representation of parametric curves and

surfaces. Comput. Vis. Graph. Image Proc. 1984, 28, 72–84.
25. Nishita, T.; Sederberg, T.W.; Kakimoto, M. Ray tracing trimmed rational surface patches. ACM SIGGRAPH

Comput. Graph. 1990, 24, 337–345. [CrossRef]
26. Elber, G.; Kim, M.-S. Geometric Constraint Solver Using Multivariate Rational Spline Functions.

In Proceedings of the 6th ACM Symposium on Solid Modeling and Applications, Ann Arbor, MI, USA,
4–8 June 2001; pp. 1–10.

27. Sherbrooke, E.C.; Patrikalakis, N.M. Computation of the solutions of nonlinear polynomial systems.
Comput. Aided Geom. Des. 1993, 10, 379–405. [CrossRef]

28. Park, C.-H.; Elber, G.; Kim, K.-J.; Kim, G.Y.; Seong, J.K. A hybrid parallel solver for systems of multivariate
polynomials using CPUs and GPUs. Comput. Aided Des. 2011, 43, 1360–1369. [CrossRef]

29. Bartoň, M. Solving polynomial systems using no-root elimination blending schemes. Comput. Aided Des.
2011, 43, 1870–1878.

30. Van Sosin, B.; Elber, G. Solving piecewise polynomial constraint systems with decomposition and
a subdivision-based solver. Comput. Aided Des. 2017, 90, 37–47. [CrossRef]

31. Hartmann, E. The normal form of a planar curve and its application to curve design. In Mathematical Methods
for Curves and Surfaces II; Vanderbilt University Press: Nashville, TN, USA, 1997; pp. 237–244.

32. Hartmann, E. On the curvature of curves and surfaces defined by normal forms. Comput. Aided Geom. Des.
1999, 16, 355–376. [CrossRef]

33. Nicholas, J.R. Implicit polynomials, orthogonal distance regression, and the closest point on a curve.
IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 191–199.

34. Hu, S.-M.; Wallner, J. A second order algorithm for orthogonal projection onto curves and surfaces.
Comput. Aided Geom. Des. 2005, 22, 251–260. [CrossRef]

35. Li, X.; Wang, L.; Wu, Z.; Hou, L.; Liang, J.; Li, Q. Convergence analysis on a second order algorithm for
orthogonal projection onto curves. Symmetry 2017, 9, 210. [CrossRef]

36. Hu, M.; Zhou, Y.; Li, X. Robust and accurate computation of geometric distance for Lipschitz continuous
implicit curves. Vis. Comput. 2017, 33, 937–947. [CrossRef]

37. Chen, X.-D.; Yong, J.-H.; Wang, G.; Paul, J.C.; Xu, G. Computing the minimum distance between a point and
a NURBS curve. Comput. Aided Des. 2008, 40, 1051–1054. [CrossRef]

38. Chen, X.-D.; Xu, G.; Yong, J.-H.; Wang, G.; Paul, J.C. Computing the minimum distance between a point and
a clamped B-spline surface. Graph. Mod. 2009, 71, 107–112. [CrossRef]

39. Hoschek, J.; Lasser, D.; Schumaker, L.L. Fundamentals of Computer Aided Geometric Design; A. K. Peters, Ltd.:
Natick, MA, USA, 1993.

40. Hu, S.; Sun, J.; Jin, T.; Wang, G. Computing the parameter of points on NURBS curves and surfaces via
moving affine frame method. J. Softw. 2000, 11, 49–53. (In Chinese)

41. Piegl, L.A. Ten challenges in computer-aided design. Comput. Aided Des. 2005, 37, 461–470. [CrossRef]
42. Weerakoon, S.; Fernando, T.G.I. A variant of Newton’s method with accelerated third-order convergence.

Appl. Math. Lett. 2000, 13, 87–93. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0167-8396(84)90019-0
http://dx.doi.org/10.1145/97880.97916
http://dx.doi.org/10.1016/0167-8396(93)90019-Y
http://dx.doi.org/10.1016/j.cad.2011.08.030
http://dx.doi.org/10.1016/j.cad.2017.05.023
http://dx.doi.org/10.1016/S0167-8396(99)00003-5
http://dx.doi.org/10.1016/j.cagd.2004.12.001
http://dx.doi.org/10.3390/sym9100210
http://dx.doi.org/10.1007/s00371-017-1370-0
http://dx.doi.org/10.1016/j.cad.2008.06.008
http://dx.doi.org/10.1016/j.gmod.2009.01.001
http://dx.doi.org/10.1016/j.cad.2004.08.012
http://dx.doi.org/10.1016/S0893-9659(00)00100-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Local Methods
	Global Methods
	Compromise Methods between Local and Global Methods

	Integrated Hybrid Second Order Algorithm
	Orthogonal Tangent Vector Method
	Steepest Descent Method
	Linear Calibrating Method
	Newton's Accelerated Method
	Initial Iterative Value Estimation Algorithm
	Integrated Hybrid Second Order Algorithm

	Convergence Analysis
	Results of the Comparison
	Conclusions
	Future Work
	References

