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Abstract: We proposed a new efficient image denoising scheme, which leads to four important
contributions. The first is to integrate both reconstruction and learning based approaches into a single
model so that we are able to benefit advantages from both approaches simultaneously. The second is
to handle both multiplicative and additive noise removal problems. The third is that the proposed
approach introduces a sparse term to reduce non-Gaussian outliers from multiplicative noise and
uses a Laplacian Schatten norm to capture the global structure information. In addition, the image is
represented by preserving the intrinsic local similarity via a sparse coding method, which allows our
model to incorporate both global and local information from the image. Finally, we propose a new
method that combines Method of Optimal Directions (MOD) with Approximate K-SVD (AK-SVD)
for dictionary learning. Extensive experimental results show that the proposed scheme is competitive
against some of the state-of-the-art denoising algorithms.

Keywords: image denoising; novel dictionary; learning algorithms

1. Introduction

While images are widely used in various fields, they are usually contaminated by noise during
acquisition, transmission and compression. Consequently, real-life images are often degraded with
noise and there is often a need for image denoising techniques. Image denoising is known to be
ill-posed problem in image processing and computer vision. Theoretically, it is hard to guarantee the
recovery of a distored image since image denoising is a highly under-constrained problem. For instance,
medical images are usually affected by a combination of impulsive, additive or multiplicative noise [1]
and it is hard to identify the type and model the noise in real world problems [2]. Images with
high resolutions are desirable in many applications, e.g., object recognition [3], face clustering [4,5],
and image segmentation in medical and biological science [6]. Hence, denoising is a critical step
for improving the visual quality of images [7]. Denoising methods developed so far have focused
one of the two forms of noise, additive and multiplicative. Though a plethora of noise removal
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techniques have appeared in recent years, image denoising for real-life noise still remains an important
challenge [8].

A number of denoising techniques have been developed to address this problem. For example,
pixel level filtering methods and patch based filtering methods such as Gaussian filtering, total variation
(TV) [9], non-local means (NLM) [7], block-matching 3D filtering (BM3D) [10], and low-rank
regularization [11] have provided improved image quality with image details well recovered.
Among them, the classic TV method makes use of Laplacian or hyper-Laplacian models for
image filtering, where they assume that natural image gradients usually exhibit heavy-tailed
distributions [12–14]. For instance, the Hessian-Schatten approach has been proposed in [15],
which maintains the advantages of TV while eliminating the staircase effect by not penalizing first-order
derivatives. The patch-based filtering methods group similar image patches together and then recover
their common structures. For instance, BM3D usually requires expensive pair-wise patch comparisons.
Its basic idea is to get a sparse representation in the transformed domain. It first groups similar 2D
patches of the image into 3D data arrays. A highly sparse representation is obtained through 3D
transformation and shrinkage. Through this procedure, the finest details shared by grouped patches
are captured while the essential, unique features of each individual patch are preserved. This algorithm
obtains outstanding denoising performance; however, it requires many implementation tricks [16].
Though observed effective for slightly noisy image, the performance of the above-mentioned methods
is far from satisfying by the over-smooth effect, due to the reason of significantly degraded accuracy
in patch matching. Besides such single-image based methods, learning based methods have been
developed by integrating natural image priors, such as neural network training [16], maximizing
expected patch log-likehood (EPLL) [17], and fields of experts [18].

Sparse and redundant representation modeling [19] has recently received extensive research
attention and found quite successful applications in signal and image processing. The most common
framework for image denoising is formulated with an energy to minimize the following [20]:

min
x∈RN

1
2
‖y− x‖2

2 + λψ(x), (1)

where ψ : RN → R is a regularization function, and the quadratic “data-fitting” term ensures that the
estimated x is close to the noisy observation y. In general, it is difficult to find a good regularization
function ψ, and, in fact, it is probably one of the most important research topics in image processing
nowadays [21].

Sparse signal representation has been shown successful [20]. It describes that a signal can
be approximated as a linear combination of as few as possible atoms from a given dictionary.
More precisely, a target signal y ∈ RN can be described as y ≈ Φω, where Φ ∈ RN×M is
an overcomplete dictionary if M > N and ω is a vector containing the representation coefficient
of y. We are interested in seeking the sparsest solution ω, i.e., the one with the fewest nonzero entries.
The solution can be obtained by solving the following problem:

min
ω∈RM

1
2
‖y−Φω‖2

2 + λψ(ω). (2)

Here, a typical choice for the regularization term ψ(ω) might be the L0-norm of ω that counts
the number of nonzero elements of ω. Exact determination of sparsest representations is known to
be an non-deterministic polynomial (NP)-hard problem. Thus, a number of algorithms have been
proposed to provide the sparsest approximation of a signal, including Orthogonal Matching Pursuit
(OMP) and Basis Pursuit (BP) [21]. BP relaxes the L0-penalty by replacing it with L1-penalty [21].
Dictionary design employed for sparse decomposition of a signal is also an important problem.
Basically, the dictionaries can be classified into two categories: non-adaptive dictionaries and adaptive
dictionaries [21].
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Although current methods have been shown successful, they are often designed for a specific type
of noise removel problem. Unfortunately, it is usually hard to have a perfect knowledge of the noise
in real world problems. To address this problem, in this paper, we propose a new image denoising
method that is capable of removing both additive and multiplicative noise. Moreover, our new method
integrates both learning-based and recosntruction-based parts, allowing them to mutually enhance
along with the optimization procedure, leading to a powerful denoising capability. For optimization,
we use a two-stage optimization strategy, which divides our objective function into convex and
non-convex parts. Specifically, for the non-convex part, we embark from the framework of K-SVD
denoising and improved it based on [22]; for the convex part, we use an alternating optimization and
gradient descent method similar to the one used in [23].

We summarize the contributions of this paper as follows:

• We developed an image denoising approach that processes advantages of both reconstruction-based
and learning-based methods. A practical two-stage optimization solution is proposed for the
implementation.

• We introduced a sparse term to reduce the multiplicative noise approximately to additive noise.
Consequently, our method is capable of removing both additive and multiplicative noise from
a noisy image.

• We used the Laplacian Schatten norm to capture the edge information and preserve small
details that may be potentially ignored by learning based methods. Hence, both global and
local information can be preserved in our model for image denoising.

• We established a new method that combines Method of Optimal Directions (MOD) with
Approximate K-SVD (AK-SVD) for dictionary learning.

The rest of the paper is organized as follows. In Section 2, we introduce our proposed method
and develop a two-stage optimization procedure. We conduct extensive experiments and show the
results in Section 3 to verify the effectiveness of the proposed method. Finally, we conclude our work
in Section 4.

2. Proposed Method

In this section, we discuss the proposed method. First, we present the formulation of the proposed
model. Then, we develop a practical yet effective optimization strategy for the proposed method.

2.1. Formulation

A visually meaningful image usually contains global structures such as edges, contours,
textures and smooth regions. These structures constitute the visual contents and can be captured with
an aid of a high-pass filter. At the same time, local image patches usually have high self similarities.
Any image patch could be sparsely represented as a linear combination of the others. The local
similarity is revealed via a learned dictionary. In the global structure part, it contains a fidelity term,
a low rank term, and a sparse term while, in the local similarity part, it contains a patch based term and
constraint. We use one formulation, which consists of two parts: one part is designed for reconstruction
of global structure while the other one for preservation of local similarity.

1. Global Structure Reconstruction: High pass filter emphasizes fine details of an image by
effectively enhancing contents that are of high intensity gradient in the image. After high
pass filtering, clean image contains the high frequency contents that represent global structures
while low frequency contents are eliminated, making the filtered image of low rank. However,
since noise usually has high-frequency components too, it may still remain together with the
structural information after high-pass filtering. For each pixel, noise usually does not depend
on neighboring pixels while the pixels on the global structure such as edges and textures
have correlations with their neighbouring pixels. To differentiate noise and structural pixels,



Symmetry 2018, 10, 167 4 of 20

we consider minimizing the rank of high-pass filtered image. As Schatten norm can effectively
approximate the rank [24], we use the Schatten norm of high-pass filtered image to capture the
underlying structures.

Let X ∈ Rn1×n2 be a matrix with singular value decomoposition (SVD) X = UΣVT where
U ∈ Rn1×n1 and V ∈ Rn2×n2 are unitary matrices consisting of singular vectors of X, and Σ ∈
Rn1×n2 is a rectangular diagonal matrix consisting of singular values of X. Then, the Schatten
p-norm (Sp norm) of X is defined as

‖X‖Sp =

(
min{n1,n2}

∑
k=1

σ
p
k

) 1
p

, (3)

where p ≥ 1 is the order of Schatten norm and σk is the kth singular value of X. The family
of Schatten norms include three common matrix norms, including the nuclear norm (p = 1),
the Frobenius norm (p = 2) and the spectral norm (p = ∞).

In this paper, to high-pass filter the image, we adopt an 8-neighborhoods Laplacian operator
defined as

L =
1
9

−1 −1 −1
−1 8 −1
−1 −1 −1

 . (4)

This Laplacian filter captures 8-directional connectedness of each pixel and thus the structures of
the image as well. By filtering the image with such Laplacian filter, we can obtain a low-rank
filtered image LX containing the global structures of the image. Hence, it is desireable to
minimize the rank of LX to ensure the low-rankness of the global structures. To achieve this goal,
we propose to adopt the above defined Hessian Schatten-p norm as rank approximation, and by
minimizing LSp = ‖LX‖Sp , the global structures of the image can be well preserved.

Because multiplicative noise is image content dependent, it may remain mixed with the clean
image after minimizing Laplacian Schatten norm of the noisy image. To alleviate the effect of
multiplicative noise, we introduce a sparse matrix S that may as well capture the outliers in the
case of additive noise. In a now-standard way, we minimize the 1-norm of S to obtain the sparsity.
In summary, our model is as follows:

Y = X + S + E, (5)

where Y is the noisy image, X is the clean image, S denotes a matrix containing globally
sparse noise, and E is the remaining noise matrix. For convenience of optimization, we use
Frobenius norm as a loss function to measure the strength of E. Combining them together,
we formulate an objective function to preserve the global structure as follows:

min
X,S
‖Y− X− S‖2

F + λ1‖LX‖p
Sp

+ λ2‖S‖1, (6)

where ‖ · ‖1 represents the matrix l1 norm, and λ1, λ2 are balancing parameters.
2. Local Similarity Preservation: We define the local similarity of an image using its patches with

a size of
√

n×
√

n pixels. We define an operator Ri that extracts the ith patch from X and orders
it as a column vector, i.e., xi = RiX ∈ Rn×1. To preserve the local similarity of image patches
we exploit the dictionary learning. Define a dictionary Φ ∈ Rn×k, where k > n is the number
of dictionary basis. Each column of Φ is a basis, i.e., Φ = [ϕ1, . . . , ϕn] and the dictionary is
redundant. The local similarity suggests that every patch x in the clean image may be sparsely
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represented over this dictionary. The sparse representation vector is obtained by solving the
following constrained minimization problem:

ω∗ = arg min
ω
‖ω‖0 s.t.‖Φω− x‖2

2 ≤ ε

or alternatively by MAP estimator

ω∗ = arg min
ω
‖Φω− x‖2

2 s.t.‖ω‖0 ≤ T

where ω∗ is the sparse representation vector of patch ϕ, ‖ · ‖0 represents the l0 norm and ε and T
are parameters that control the error of the sparse coding and the sparsity of representation.

For reconstruction of global structures and preservation of local similarities, the unified image
denoising needs to solve the following optimization problem:

min
X,S,Φ,ω1,··· ,ωM

‖Y− X− S‖2
F + λ1‖LX‖p

Sp
+ λ2‖S‖1

+µ
N

∑
i=1
‖RiX−Φωi‖2

2 s.t. ‖ωi‖0 ≤ T.
(7)

It is seen that the above model has incorporated both global and local information in the first
three terms and the last term, respectively, to recover the original image. We will develop an effective
optimization scheme in the remainder of this section.

2.2. Practical Solution for Optimization

In the following, for the ease of notation, we define Ω to be the matrix of which each column is ωi,
i.e., Ω = [ω1, · · · , ωM]. It is noted that the first three terms of Equation (7) are pixel based while the
last and the constraint are patch based. Due to this fact, it is difficult to directly optimize the overall
objective function. Inspired by [24], we use a two-stage approach to find a local optimal solution in
which we do optimization over pixel and patch based terms separately.

We decompose the objective function into two parts, each of which contains only pixel-wise
operation or patch-wise operation:

F(X, S, Φ, Ω) = G(X, S) + µH(X, Φ, Ω)

where
G(X, S) = ‖Y− X− S‖2

F + λ1‖LX‖p
Sp

+ λ2‖S‖1, (8)

and

H(X, Φ, Ω) =
N

∑
i=1
‖RiX−Φωi‖2

2 s.t.‖ωi‖0 ≤ T. (9)

Basically, the updating rules of the two-stage strategy is given by alternatively applying
Equations (10) and (11)

Xt+1
1 ← arg min

X,S
G(X, S) + µ‖X− Xt

2‖2
F, (10)

Xt+1
2 ← arg min

X,Φ,Ω
H(X, Φ, Ω) +

1
µ
‖X− Xt+1

1 ‖2
F. (11)
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It is important to notice that the terms µ‖X − Xt
2‖2

F and
1
µ
‖X − Xt+1

1 ‖2
F are critical because

they represent the connection between the two stages. For simpler notation, we define two
modified functions:

Ḡ(X, S) = G(X, S) + µ‖X− Xt
2‖2

F, (12)

H̄(X, Φ, Ω) = H(X, Φ, Ω) +
1
µ
‖X− Xt+1

1 ‖2
F. (13)

2.2.1. Global Structure Reconstruction Stage

For the first-stage optimization, we use an alternating strategy to optimize the function with
respect to X and S by fixing one and updating another. For the initialization of X0

2 , there are two
choices: (1) for the very first iteration, we only do optimization over function G instead of Ḡ and later
do optimization over the modified one; and (2) we initialize X0

2 = Y. The second choice is potentially
more computationally expensive because it forces X0

2 to be the noisy image Y. In our experiments, we
use the first approach. Since at each alternating step the objective function is convex, we make use of
gradient descent method for the optimization. By the fact that ‖Z‖p

Sp
= Tr

[(
ZTZ

)p/2
]
, the Laplacian

Schatten norm term can be reformulated as

‖LX‖p
Sp

= Tr
[
(LX)T (LX)

]p/2
. (14)

When p = 1, the Schatten norm is non-smooth. In addition, the sparse term is non-smooth. For
the two non-smooth terms, we use two different approaches to obtain the gradient. On one hand, we
introduce a small smoothing parameter δ in the above equation to get a smoothed approximation:

‖LX‖p
Sp

= Tr
[
(LX)T (LX) + δ2 I

]p/2
, (15)

where I ∈ RN2×N2 is the identity matrix and δ. Thus, G could be reformulated by replacing the
Schatten norm with a smoothed trace norm in Equation (8):

G(X) =‖Y− X− S‖2
F + λ1Tr

[
(LX)T (LX) + δ2 I

]p/2

+ λ2‖S‖1.
(16)

Using the alternating optimization strategy, we get the updating rule of X and S in the first stage
as follows:

S(s+1)
t ← arg min

S
‖Y− X(s)

t − S‖2
F + λ2‖S‖1, (17)

X(s+1)
t ← arg min

X
‖Y− X− S(s+1)

t ‖2
F

+ λ1Tr[(LX)T(LX) + δ2 I]p/2 + µ‖X− Xt
2‖2

F,
(18)

where t denotes the iteration of the outer optimization, s represents the iteration of the inner alternating
optimization in the first stage, and X(s)

t and S(s)
t denote the values of X and S at the tth outer and sth

inner iteration, respectively.
Notice that Ḡ(X, S) is not differentiable with respect to S at zeros. On the other hand, we adopt a

sub-gradient when taking a derivative with respect to S, i.e.,

∆SḠ = 2(S + X(s)
t −Y) + λ2∂S‖S‖1
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where ∂S‖S‖1 is the sub-differential matrix defined as:

∂Si,j‖S‖1 =

{
sgn(Si,j), Si,j 6= 0,

0, Si,j = 0.

The Laplacian Schatten norm term has been smoothed by using δ, so it is straightforward to take
the derivative of G with respect to X:

∆XḠ =2(X + S(s+1)
t −Y) + 2(X− Xt

2)

+
λ1 p

2
(LTLX)[(LX)T(LX) + δ2 I]p/2−1.

Now, using gradient descent method, S and X are updated alternatively until convergence,
i.e., S(s,r)

t
r−→ S(s+1)

t and X(s,r)
t

r−→ X(s+1)
t by the follows:

S(s,r+1)
t ← S(s,r)

t − dS∆SḠ
(

S|X(s,r)
t , Xt

2

)
, (19)

X(s,r+1)
t ← X(s,r)

t − dX∆XḠ
(

X|S(s,r+1)
t , Xt

2

)
, (20)

where r denotes the iteration of gradient descent optimization.

Proposition 1. The above updating rules including Equations (10), (11), (17)–(20) are convergent.

The proof of the proposition is in the Appendix A.

2.2.2. Dictionary Learning Stage

In the second stage, we optimize the following function:

H̄(X, Φ, Ω) =
1
µ
‖X− Xt

1‖2
F+

N

∑
i=1
‖RiX−Φωi‖2

2

s.t. ‖ωi‖0 ≤ T.

(21)

There are three variables in this objective function: the underlying clean image X , the sparse
coefficient matrix Ω and the underlying dictionary Φ. The underlying dictionary Φ is initialized with
a 2D separable Discrete Cosine Transform(DCT) dictionary of size L× K. First, we produce a 1D-DCT
matrix Φ1D of size

√
L×
√

K. Each atom of the matrix Φ1D can be obtained by ϕ1D
k = cos((i− 1)(k−

1)π/11), i = 1, 2, ...
√

L, k = 1, 2, ...,
√

K. Then, we use a Kronecker-product Φ = Φ1D ⊗Φ1D to initialize
the dictionary Φ.

We adopt also the alternating optimization strategy for this stage. First, by fixing Φ and X,
we update Ω. Then, by fixing Ω and X, we update Φ. Finally, by fixing Φ and Ω, we update X.
We repeat these three steps a given number of times. In the first step, we aim to find optimal ωi
by solving:

ωi = arg min
ωi
‖RiX−Φωi‖2

2 s.t.‖ωi‖0 ≤ T. (22)

This problem is equivalent to the following with a proper value of the penalty parameter τ:

ωi = arg min
ωi
‖RiX−Φωi‖2

2 + τ‖ωi‖0. (23)

The main task of this stage is thus to solve a set of l0 minimization problems. The exact solution
of l0 minimization is very difficult and has been proven to be NP hard. Because of this fact, matching
pursuit algorithms such as basis pursuit (BP) [25], matching pursuit (MP) [26], orthogonal matching
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pursuit (OMP) [27], and the focal underdetermined system solver (FOCUSS) [28] are widely considered
to obtain the approximate solutions of sparse representation [21]. MP and OMP greedily select the
dictionary atoms sequentially. BP suggests an approximation of the sparse representation by replacing
l0-norm with l1-norm. FOCUSS is similar to BP, which replaces l0-norm by lp-norm with 0 < p < 1
instead of l1-norm. This generalization measure approximates the true sparsity better when p < 1, but
the overall problem becomes nonconvex. However, convergence is not always guaranteed using the
above methods. Besides the matching pursuit methods, the message passing algorithm (MPA) [19]
is able to directly solve l0 minimization problem. MPA is designed to solve lp problem with p ≥ 0.
When the problem is convex, i.e., p ≥ 1, MPA gives global optimum and when the problem is
nonconvex, i.e., 0 ≤ p < 1, MPA finds a local minimum. Besides K-SVD, the idea of obtaining a
sparse representation for a set of training image patches by learning a dictionary has been studied in
a series of works during the recent years. Although we have convergence guarantee from MPA, in
this paper, we adopt an OMP method as in [22] because MPA takes more time than OMP, which is
effective enough in our problem. After the sparse representation matrix Ω is fixed, we adopt AK-SVD
algorithm in [22] to update the dictionary Φ column by column. The AK-SVD proposes an iterative
algorithm that handle the task effectively. Finally, given the coefficient matrix Ω, we then update X
by solving:

X̂ = arg min
X

1
µ
‖X− Xt

1‖2
F +

N

∑
i=1
‖RiX−Φωi‖2

2. (24)

For this quadratic function, there is a close-form solution, which can be obtained by setting its
first-order derivative to zero:

2
µ
(X− Xt

1) + 2
N

∑
i=1

(RT
i RiX− RT

i Φωi) = 0, (25)

leading to (
1
µ
+

N

∑
i=1

RT
i Ri

)
X =

1
µ

Xt
i +

N

∑
i=1

RT
i Φωi. (26)

Hence, it is clear to see the closed-from solution of X:

X̂ =

(
1
µ

I +
N

∑
i=1

RT
i Ri

)−1(
1
µ

Xt
1 +

N

∑
i=1

RT
i Φωi

)
. (27)

This expression implies that the clean image is obtained by averaging the denoised patches with
some relaxation by averaging the patches of Xt

1, regarded as an original noised image input in the
learning based stage. By introducing the additional term in Equation (13), we can directly use AK-SVD
in [22] to solve Equation (21). It is flexible and can work well with OMP.

Now, following [22], we use X as an initial value to update the dictionary, which is to solve

min
Φ

N

∑
i=1
‖RiX−Φωi‖2

2 s.t. ‖ϕj‖ = 1, 1 < j < M. (28)

MOD is an appealing dictionary training algorithm [21]. A significant advantage of this method is
its simple way for updating the dictionary. The MOD algorithm involves two stages described above.
Assume that we fix Φ and aim to find the representations coefficient vectors ωi to build the matrix Ω
by using OMP. We define the errors ei = xi −Φωi and evaluate the overall representation mean square
error using a Frobenius norm, which is given by

‖E‖2
F = ‖[e1, e2, . . . , eN ]‖2

F =
N

∑
i=1
‖RiX−Φωi‖2

2. (29)
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Once the sparse coding task is done, we fix X and search for an update to Φ to minimize the
above error, which is (using pseudo-inverse)

Φ = XΩT(ΩΩT)−1. (30)

The K-SVD algorithm [21,29] takes a different update rule for the dictionary, in which the atoms
in Φ are updated sequentially. Moreover, the K-SVD updates each atom along with the coefficients in
Φ that multiply it using singular value decomposition (SVD) [30]. As described above, this problem
leads to a matrix rank-l approximation [30] given by

min
Φ
‖X−ΦΩ‖2

F

= min
ϕj0

‖(X− ∑
j 6=j0

ϕjω j̄)− ϕj0 ω j̄0‖
2
F (31)

= min
ϕj0

‖Ej0 − ϕj0 ω j̄0‖
2
2 s.t. ‖ϕj0‖

2
2 = 1,

where ϕj denotes the j-th atom in Φ, ω j̄ denotes the j-th coefficients row in Ω, Ej0 = X−∑j 6=j0 ϕjω j̄ is
a known pre-computed error matrix without the j0-th atom. ϕj0 is the updated atom, and ω j̄0 is the new
coefficients row in Φ. The optimal solution can be directly obtained via performing an SVD operation.

In practice, it is difficult to obtain the exact solution of Label (31), as performing SVD for atom
updating leads to its computational burden, especially in high dimensions. Therefore, Rubinstein [31]
proposed a new algorithm to provide an approximate solution rather than the exact one. The resulting
algorithm is known as the Approximate K-SVD (AK-SVD). The AK-SVD perform a single iteration of
alternate optimization over the atom ϕj0 and the coeffcients row ω j̄0 , which is given by

ϕj0 = Ej0 ωT
j̄0

,

ω j̄0 = ϕT
j0 Ej0 .

(32)

This process is simple and also quite intuitive. It is important that this process not only finally
converges to the optimum, but also provides an approximate solution, which effectively minimizes the
error as defined in Label (31). The main contribution of the AK-SVD method is that it avoids the use of
the SVD to find alternative dj0 and ω j̄0 .

Smith [32] puts forward an idea that applying multiple dictionary update cycles via the MOD
or K-SVD approach can effectively minimize the representation error. In this paper, following [22],
we derive a new method for dictionary learning based on multiple dictionary update cycles. We call
this method as MOD-AK-SVD to distinguish it from the above reported algorithms.

Our objective is to find an update of Φ and X such that the supports in Φ remain intact.
To achieve this, the dictionary update stage is divided into two optimization process. Minimizing
∑N

i=1 ‖RiX−Φωi‖2
2 over Φ with a fixed X and getting the results of formula (30). Next, we minimize

∑N
i=1 ‖RiX −Φωi‖2

2 over Φ and X keeping the support in Φ intact. By defining tj = {i : ω j̄(i) 6= 0},
ω j̄(tj) denotes the non-zeros coefficients in ω j̄. Our problem becomes

min
ϕj0 ,ω j̄0

‖Ej0(:, tj0)− ϕj0 ω j̄0(tj0)‖
2
2 s.t.‖ϕj0‖

2
2 = 1. (33)

Applying alternating minimization, formula (33) leads to the following solutions:

ϕj0 = Ej0(:, tj0)ω
T
j̄0
(tj0),

ω j̄0(tj0) = ϕT
j0 Ej0(:, tj0).

(34)
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At the first stage, we update ϕj0 with a fixed ω j̄0(tj0), and, at the second stage, we allow only the
existing non-zeros coefficients ω j̄0(tj0) to update using the previously updated ϕj0 .

Performing a few alternations between Label (30) and Label (34) can better approximate the
overall solution of Label (21).

The detailed parameter setting is described in next Section. In summary, the above practical
solution is listed in Algorithm 1. We name our algorithm the Laplacian Schatten p-norm and Learning
Algorithm (LSLA-p). In our work, we consider the cases when p = 1 and p = 2, namely, LSLA-1 and
LSLA-2. The empirical value of parameters in Algorithm 1 was shown in Table 1.

Algorithm 1 The Laplacian Schatten p-norm and Learning Algorithm (LSLA-p).
Require: Noisy Image: Y;

Penalty parameter: λ1, λ2, µ;
Smoothing parameter: δ;
Stopping tolerence: ε1, ε2;
Clearn Image X;

1: Initialize Φ, X0
2 = 0, S = 0

2: t = 0; a = 1; j = 1; ∆1 = ε1 + 1; ∆2 = ε2 + 1
3: repeat
4: s = 0
5: while ∆2 ≥ ε2 & s ≤ smax do
6: Ss+1

t ← arg minS ‖Y− Xs
t − S‖2

F + λ2‖S‖1 (17)
7: Xs+1

t ← arg minX ‖Y− X− Ss+1
t ‖2

F + λ1Tr[(LX)T(LX) + δ2 I]p/2 + µ‖X− Xt
2‖2

F (18)

8: ∆2 = min
{
‖Xs+1

t − Xs
t‖2

F, ‖Ss+1
t − Ss

t‖2
F

}
9: s = s + 1

10: end while
11: Xt+1

1 = X(s)
t

12: Xt+1
2 ← arg minX

1
µ
‖X− Xt+1

1 ‖2
F + ∑N

i=1 ‖RiX−Φωi‖2
2 s.t.‖ωi‖0 ≤ T (21)

13: ∆1 = min
{
‖Xt+1

1 − Xt
1‖2

F, ‖Xt+1
2 − Xt

2‖2
F

}
14: t = t + 1
15: until ∆1 ≤ ε1 or t ≥ tmax
16: return X = Xt

2
17: Sparse Coding Stage: Ω = OMP(X, Φ, k0)
18: Update Dictionary Φ
19: repeat

20: X =

(
1
µ

I + ∑N
i=1 RT

i Ri

)−1 ( 1
µ

Xt
1 + ∑N

i=1 RT
i Φωi

)
(27)

21: E = X−ΦΩ
22: repeat
23: Ej = E + ϕjω j̄

24: ϕj = Ej(:, tj)ω
T
j̄ (tj) where tj = {i : ω j̄(i) 6= 0}

25: ω j̄(tj) = ϕT
j Ej(:, tj)

26: E = Ej − ϕjω j̄
j++

27: until j = K
a++

28: until a = A
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Table 1. Empirical value of parameters.

Parameter Symbol Empirical Value for p = 1 Empirical Value for p = 2

Penalty parameter λ1 10 10
Penalty parameter λ2 0.1 0.1
Penalty parameter µ σ/30 σ/30

Smoothing parameter δ 0.12 0
Stopping tolerence ε1 0.001 0.001
Stopping tolerence ε2 0.001 0.001

3. Experiments

In this section, we conduct extensive experiments to verify the effectiveness of the proposed
method. Particularly, we present the parameter settings in the first subsection and discuss the
experimental results in the second subsection.

3.1. Parameter Setting

We tune the parameters in two parts: the reconstruction based part and the learning based part,
which are described independently.

For the reconstruction part, usually λ1 and λ2 are selected from a set of values with λ1 ∈
{2, 3, 5, 8, 10, 15, 20, 25, 30} and λ2 ∈ {0.01, 0.02, 0.05, 0.08, 0.1}. Large values such as {100, 150,
200, 250, 300, 400} for λ1 and {0.5, 1, 2, 3, 5} for λ2 are also used for a small number of images.
As a common stragety for unsupervised learning methods [4], in the experiments, we use all
combinations of parameters from the above sets and report the best performance. As will be clearer in
the later section, our method has comparable performance with a broad range of parameters values.
Parameter µ appears in both of the two stages and the setting will be mentioned later. The smoothing
parameter δ is set to be 0 for LSLA-2, since the L2S2 = ‖LX‖2

S2
is smooth. For LSLA-1, we test a

set of values of δ. It reveals that very small δ would possibly cause numerical issues and leads to
poor performance in both Peak Signal to Noise Ratio(PSNR) and Structural SIMilarity index(SSIM).
Empirically, a good choice for δ is around 0.1 and we set δ to be 0.1 or 0.12, i.e., δ2 to be 0.01 or 0.014,
depending on the image with the purpose of high PSNR and SSIM.

For the dictionary learning-based part, in our work, the required parameters for this algorithm
are the penalty parameter 1/µ, the noise level σ, the patch size of dictionary L and the number of
atoms in the dictionary K. The number of atoms is set to be K = 4L2, where 4 is a redundancy
parameter. The patch sizes in our experiments are 8, 10, 12 and 14. Usually, based on our experience,
small patch size would cause an over smooth effect, and a larger patch size would increase the basis,
which leads to more computation. Based on our results, finally, we use 12× 12 patches to balance
the two effects. The penalty parameter τ, i.e., 1/µ is related to the noise level σ. In fact, it has
been revealed that empirically a good relationship that leads to the best results is τ = 1/µ = 30/σ,
i.e., µ = σ/30. Here, it is natural to assume that, with the iteration number of two stages increasing,
the level of the remaining noise would decrease. This implies that each time when we apply K-SVD
algorithm, the input σ should change to meet the variation of noise level, and thus the best parameter
µ should also change with it. We initialize an estimate of noise level σ as input of K-SVD and reduce
it by multiplying 0.9 every time after the first stage process and keep µ constant naturally. By our
experience, although we do not always satisfy µ = σ/30, the influence is not noticeable. The reasons
for this may include the following: (1) the remaining noise is small and the result is not sensitive to
parameters of a given set of values in our experiments; (2) the number of alternating steps between
the first and second stages is small and thus it avoids the “bad” effects to accumulate to a remarkable
extent. Depending on the noise levels and types, we assign σ to be 3, 4, 5 for additive noise with noise
level from low to high and 4, 6, 8 for multiplicative noise with level from low to high respectively,
which empirically shows to be reasonable.

In our practical optimization method, by introducing the additional terms in Equations (12) and (13),
at each stage, we make use of information from another. Based on this, it is not necessary to process
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the first and second stages with the same times. Learning based stage would potentially have over
smoothing effects and ignore fine details in the resulting image, and, as mentioned before, the first
stage would recapture the lost details to ensure the image fine details. Thus, in our experiments, we
start with the first stage and end with the first stage.

3.2. Performance and Analysis

We use six standard test images, including Face, Kids, Wall, Abdomen, Nimes, and Fields with
different noise types and levels to evaluate the performance of our proposed method. Face, Kids,
Wall and Abdomen images are used for additive noise experiments; Fields and Nimes are used for
multiplicative noise experiments. Face, Kids, and Wall images are of size 255× 255. Among the
rest images, Nimes and Fields are of size 512× 512 and Abdomen is of size 360× 540. In our work,
we evaluate our performance with two criterion: peak signal-to-noise ratio (PSNR) and structure
similarity (SSIM). PSNR is defined as 10 log10

M2

MSE , where M denotes the maximum intensity of the
underlying image and MSE = 1

n1×n2
∑n1

i=1 ∑n2
j=1(Xi,j − X̂i,j)

2 is the mean squared error between the

denoised image X̂ and the noiseless image X. SSIM is defined as (2µXµX̂ + c1)(σX,X̂ + c2)/[(µ2
Xµ2

X̂
+

c1)(σ2
Xσ2

X̂
+ c2)], where µX , µX̂ , σ2

X , σ2
X̂

, and σX,X̂ denote the average of X, the average of X̂, the variance
of X and the variance of X̂, respectively. c1 and c2 are two variables to stabilize the division with
weak denominator. In Table 2, we provide the additive noise image restoration results in comparison
with Block-matching three dimension (BM3D) [10], Hessian Schatten-norm (HS1) [33], Expected Patch
Log Likelihood (EPLL) [17], and Total Variation (TV) [34] for a set of four images with different noise
levels. In Table 3, we list the results of our proposed method and two other methods including
(multiplicative image denoising by augmented Lagrangian (MIDAL) [35] and AA [36] for a set of two
images degraded by different levels of multiplicative noise.

Table 2. Comparison of different methods, in PSNR and SSIM, for additive noise with different noise levels.

Image Face Kids

σ = 0.05 σ = 0.07 σ = 0.10 σ = 0.04 σ = 0.07 σ = 0.10

Method

TV PSNR 21.47 20.44 19.02 23.06 21.03 19.49
SSIM 0.6915 0.6435 0.6131 0.6790 0.5932 0.5667

HS1
PSNR 22.13 20.92 19.42 24.03 21.60 19.96
SSIM 0.7417 0.6992 0.6616 0.7409 0.6706 0.6333

EPLL PSNR 22.02 20.85 19.30 24.02 21.62 19.39
SSIM 0.7320 0.7030 0.6636 0.7531 0.6817 0.6366

BM3D PSNR 22.80 20.76 20.05 24.52 22.08 20.40
SSIM 0.7536 0.6679 0.6765 0.7603 0.6882 0.6458

LSLA-2 PSNR 23.25 22.50 20.95 24.69 23.03 23.68
SSIM 0.7679 0.7396 0.6851 0.7555 0.7052 0.6578

LSLA-1 PSNR 23.48 22.05 21.19 24.59 23.29 22.45
SSIM 0.7694 0.7217 0.6912 0.7423 0.7063 0.6825

Image Wall Abdomen

σ = 0.05 σ = 0.07 σ = 0.10 σ = 0.04 σ = 0.07 σ = 0.10

Method

TV PSNR 20.70 18.19 16.80 22.57 20.06 18.50
SSIM 0.6521 0.5601 0.4978 0.5579 0.4940 0.4697

HS1
PSNR 21.33 18.54 17.03 23.29 20.52 18.77
SSIM 0.7043 0.5975 0.5460 0.6384 0.5592 0.5300

EPLL PSNR 21.36 18.38 16.76 23.51 20.64 18.84
SSIM 0.7254 0.6254 0.5698 0.6517 0.5915 0.5440

BM3D PSNR 21.97 19.04 17.42 24.14 21.26 19.50
SSIM 0.7421 0.6410 0.5838 0.6700 0.6026 0.5603

LSLA-2 PSNR 22.28 20.11 19.22 25.06 22.68 21.47
SSIM 0.7598 0.6730 0.6477 0.7530 0.6680 0.6237

LSLA-1 PSNR 22.51 20.31 19.12 24.97 22.72 21.37
SSIM 0.7675 0.6736 0.6311 0.7462 0.6663 0.6096
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Table 3. Comparison of different methods for multiplicative noise with different noise levels.

Image Noise Level

Method

AA MIDAL LSLA-2

PSNR SSIM PSNR SSIM PSNR SSIM

Nimes
L = 1 22.40 0.5378 22.68 0.5041 23.64 0.5942
L = 4 25.59 0.7572 25.36 0.7537 26.50 0.7757
L = 10 27.53 0.8511 27.88 0.8910 28.51 0.8625

Fields
L = 1 24.38 0.3369 25.13 0.3380 25.27 0.3505
L = 4 26.43 0.4230 27.40 0.4024 27.46 0.4622
L = 10 26.77 0.4464 28.27 0.5371 28.64 0.5421

From Table 2, it is noted that our method has the best performance in PSNR in all cases and 11 out
of 12 cases in SSIM with significant improvements. In terms of PSNR, our proposed method usually
outperforms BM3D by around 1–2 dB. In addition, it is observed that our methods have improved
SSIM by around 0.05 on Wall and Abdomen images. Overall, LSLA-1 and LSLA-2 produce the best
results although Figure 1 shows that LSLA-1 has some dark peaks in the uniform regions (liver and
kidney). To visually evaluate the performance, we show some visual results. Figures 1–4 show some
examples of the resulting images by different methods. Visually, BM3D results in very clean images,
but many fine details are eliminated. To better show visual effects of the methods, we enlarge some
local patches in Figures 3 and 4. It is observed that indeed BM3D has an over smoothing effect and the
major details are missing, whereas our methods keep such details. Moreover, it is observed that the
brightness of different regions has changed in the images produced by BM3D, whereas our method
shows similar brightness to the original ones. Our method shows similar results to TV and HS1 with
more smoothing effects in the smooth region.

(a) Abdomen (b) noisy Abdomen (c) TV (d) HS1

(e) EPLL (f) BM3D (g) LSLA-2 (h) LSLA-1

Figure 1. Results on the abdomeng image degraded by Gaussian noise of level = 0.1.

For multiplicative noise removal, it is seen that the proposed method has the best performance in
all tests, except in one case when compared with MIDAL in SSIM. This observation, again, verifies that
the proposed method is indeed effective for both additive and multiplicative noise removal. To visually
evalute the results, we show some examples of the resulting images in Figures 5 and 6. It is observed
that the proposed method captures the edges well from the images, while MIDAL fails when the
noise is strong. In the smooth regions, our method keeps the fine details such as the gradual change
well, while MIDAL makes such gradual change difficult to distinguish. In addition, the intensities
shown in the denoised images by our method appears to be much closer to the clean ones than AA
and MIDAL because the contrast between the darkness and brightness is more like that in the clean
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images. Such observations have confirmed the effectiveness of the proposed method. At the same
time, it can be seen that multiplicative noise is a much harder problem.

(a) Kids (b) noisy kids (c) TV (d) HS1

(e) EPLL (f) BM3D (g) LSLA-2 (h) LSLA-1

Figure 2. Results on the kids image degraded by Gaussian noise of level = 0.07.

(a) face (b) noisy face (c) TV (d) HS1

(e) EPLL (f) BM3D (g) LSLA-2 (h) LSLA-1

Figure 3. Results on the face image degraded by Gaussian noise of level = 0.05.
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(a) Wall (b) noisy wall (c) TV (d) HS1

(e) EPLL (f) BM3D (g) LSLA-2 (h) LSLA-1

Figure 4. Results on the wall image degraded by Gaussian noise of level = 0.1.

(a) Fields (b) noisy fields (c) AA result (d) MIDAL (e) LSLA-2

Figure 5. Results on the Fields image degraded by multiplicative noise of level L = 1.

(a) Nimes (b) noisy nimes (c) AA result (d) MIDAL (e) LSLA-2

Figure 6. Results on the Nimes image degraded by multiplicative noise of level L = 4.

3.3. Parameter Sensitivity

For image denoising problem, it is hard to learn or theoretically analyze or the optimal parameters.
To better investigate the performance of the proposed method, in this subsection, we present how the
parameters affect the denoising performance. We have used the combination of parameters {λ1, λ2}
selected from the set {2, 5, 10, 15, 20} × {0.01, 0.05, 0.1, 0.2, 0.3}. Without loss of generality, we test
our method on two degraded images and report the results in Figure 7 where all combinations of
parameters are used from the above set. It is seen that our method has comparablely high performance
with a broad range of parameter values on both images, which implies the insensitivity of our method to
the parameters. This observation indeed ensures the potential of our method in real world applications.
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Figure 7. Example of denoising performance changes with respect to parameters. From left to right are
results on images of Face with Gaussian noise of level 0.05 and Kids with Gaussian noise of level 0.04.

3.4. Time Comparison and Analysis

In this subsection, we test the time needed for the methods in comparison. Our simulations
were performed in a MATLAB R2010b environment (MathWorks, Natick, Massachusetts, USA) on a
Windows 7 operating system (Microsoft, Redmond, Washington, USA) with 2.60 GHz CPU and 4 GB
RAM. Without loss of generality, we test the methods on images as given in Table 2, where average
time costs are reported in Table 4 for each image and method. It is observed that the proposed methods
need more time than others except EPLL. Considering that our methods have superior performance in
denoising results, such cost in time is fairly acceptable.

Moreover, we investigate the time cost for each stage of our algorithm. Without loss of generality,
we report the results on Face and Kids images in Figure 8. It is seen that the second stage costs roughly
60% of the overall time on average. As the major step for time cost, it should be noted that this
stage involves K-SVD, which generally is time-consuming. In this paper, we aim at proposing a new
image denoising method and the way to speed up our method is not in the scope of our current work,
which will be considered in the future.

Table 4. Time comparison on Gaussian noise removal.

Algorithm
Time (s)

Face Kids Wall Abdomen

BM3D 1.0284 1.0336 1.1008 3.7333
HS1 16.9454 18.0842 17.5324 37.0296

EPLL 146.2443 78.3126 146.561 502.4728
TV 0.6696 0.6841 0.6538 1.3947

LSLA2 124.036 185.6624 122.9288 404.6401
LSLA1 169.4185 139.1726 178.3549 438.5715
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(a)

(b)

Figure 8. (a) Face image degraded by Gaussian noise of level 0.05; (b) Kids image degraded by Gaussian
noise of level 0.04. Example of time cost on two stages using different combinations of parameters.

3.5. Discussion

From the above experiments, it is seen that the proposed methods have superior performance
to state-of-the-art algorithms both quantatively and visually. Quantatively, the proposed methods
improve PSNR and SSIM significantly while visually they keep fine details of the images when other
methods fail. Though the proposed method has slower speed than BM3D, TV, etc., it is noted that our
method is comparable to some state-of-the-art algorithms such as EPLL, yet with superior performance.
Hence, it is convincing to claim the stronger applicability of the proposed method to real world
applications, such as hyperspectal image denoising, biomedical image denoising, or preprocessing
of noisy image data for recognition, etc. Possible reasons for slower speed of the proposed method
may be the need of matrix inverse operations and sparse coding, which generally have high cost. It is
possible to speed up the proposed method with approximation techniques for matrix inverse or with
more efficient sparse coding technique. This may be considered as a further line of research.

4. Conclusions

This paper presents an image denoising method that can be applied to both additive and
multiplicative noise. The proposed method is designed to capture global structures and preserve local
similarities simultaneously. This method produces promising results in terms of PSNR, SSIM and
visual quality. The advantages of this novel method include the following: (1) for additive noise,
our method outperforms or shows comparable results to TV , HS1 and BM3D methods either in terms
of SSIM or PSNR; (2) for multiplicative noise, our method has performance superior to AA and MIDAL
algorithms either in SSIM or PSNR; and (3) our method captures structures and keeps fine details well.

There are several future research directions. We are further exploring other optimization
strategies for more effective convergence and further improvement. We are also considering
transformation based method. Transformation and learning based model might potentially lead
to more promising results.
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Appendix A

Proof. Because Ḡ(X, S) is convex, in the tth outer and kth inner iteration, Ḡ
(

S|X(k)
t , Xt

2

)
and

Ḡ
(

X|S(k)
t , Xt

2

)
are both convex. By the gradient descent method,

Ḡ
(

S(k+1)
t , X(k)

t |X
t
2

)
< Ḡ

(
S, X(k)

t |X
t
2

)
and

Ḡ
(

S(k+1)
t , X(k+1)

t |Xt
2

)
< Ḡ

(
S(k+1)

t , X|Xt
2

)
.

Regardless of Xt
2, we may get the inequality sequence:

Ḡ
(

S(k+1)
t , X(k+1)

t

)
< Ḡ

(
S(k+1)

t , X(k)
t

)
< Ḡ

(
S(k)

t , X(k)
t

)
.

Because Ḡ
(

S(k)
t , X(k)

t

)
is a positive sequence, Ḡ

(
S(k)

t , X(k)
t

)
converges.
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