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Abstract: The bismuth tri-iodide (BiI3) is an inorganic compound. It is the result of the response
of bismuth and iodine, which has inspired enthusiasm for subjective inorganic investigation.
The topological indices are the numerical invariants of the molecular graph that portray its
topology and are normally graph invariants. In 1975, Randic presented, in a bond-added substance,
a topological index as a descriptor for portraying subatomic branching. In this paper, we investigate
the precious stone structure of bismuth tri-iodide chain and sheet. Moreover, exact formulas of
degree-based added-substance topological indices principally the first, second, and hyper Zagreb
indices, the general Randic index, the geometric-arithmetic index, the fourth atom-bond connectivity
index, and the fifth geometric arithmetic index of the subatomic graph of bismuth tri-iodide for both
chain and sheet structures are determined.

Keywords: molecular descriptors; crystal structures; bismuth tri-iodide; atom-bond connectivity index;
geometric–arithmetic index; zagreb type indices

1. Introduction

Graph theory is a multidimensional subject in light of its huge applications in both unadulterated
and connected science. It is viable in terms of displaying and planning crystal structures, complex
systems, and synthetic graphs. There are number of chemical compounds that are organic and
inorganic and that have applications in commercial, industrial, and laboratory contexts and in daily
life. A relationship exists between synthetic mixes and their atomic structures. Graph theory is an
effective territory of arithmetic that has a tremendous scope of utilizations in numerous areas of
science, such as chemistry, software engineering, electrical, and electronics. Chemical graph theory
is a branch of science in which proficient apparatuses of graph theory are utilized to graphically
demonstrate concoctions.

The physical structure of strong materials depends generally on the courses of action of atoms,
particles, or atoms that make up the strong holding powers between them. The crystal structure,
also referred to as crystalline material or crystalline strong is made out of unit cells, and molecules are
organized in 3D on a grid. The schemes of atoms or crystalline material are vital in determining the

Symmetry 2018, 10, 201; doi:10.3390/sym10060201 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://dx.doi.org/10.3390/sym10060201
http://www.mdpi.com/journal/symmetry
http://www.mdpi.com/2073-8994/10/6/201?type=check_update&version=1


Symmetry 2018, 10, 201 2 of 15

conduct and properties of a material, such as metals, composites, and artistic materials. The unit cell is
the smallest auxiliary unit that can clarify the precious stone structure. The redundancy of the unit cell
creates the entire precious stone.

Let G = (V, E) be a subatomic diagram, where V is the arrangement of the vertex, called
atoms, and E is the edge set, called the chemical bond. The degree dv of v is the quantity of edges
of G occurrence with v. An atomic diagram can be informed by a polynomial, a numerical esteem,
an eigenvalue, a topological index, and so forth. There are certain types of topological indices mostly
distance-based, degree-based, and distance-based indices. This article is completely dedicated to
managing degree-based additive topological indices. A topological index is a number that depicts vital
and valuable information about molecular structure. It is a numerical invariant of a subatomic graph
and is very valuable we’re comparing their bioactivity and physio-synthetic properties.

In 1975, the very first degree-based index was introduced by Randić [1]:

R− 1
2
(G) = ∑

e f∈E(G)

1√
de × d f

.

In 1988, Bollobás et al. [2] and Amic et al. [3] independently proposed the general Randic
index. For more details about the important results and chemical properties of the Randić index,
we recommend [4]. The general Randic index is defined as

Rα(G) = ∑
e f∈E(G)

(de × d f )
α, α = 1,−1,

1
2

,
−1
2

.

Estrada et al. [5] introduced the atom-bond connectivity index:

ABC(G) = ∑
e f∈E(G)

√
de + d f − 2

de × d f

In 1972, both the first and second Zagreb indices were formulated by Gutman [6] as follows:

M1(G) = ∑
e f∈E(G)

(de + d f )

M2(G) = ∑
e f∈E(G)

(de × d f ).

For more details about Zagreb indices, their properties, and important results, see [7–9].
Shirdel et al. introduced the hyper Zagreb index in 2013 [10]. The mathematical representation of this
index is as follows:

HM(G) = ∑
e f∈E(G)

(de + d f )
2.

The fourth version of the atom-bond connectivity index ABC4 of a graph G was introduced by
Ghorbhani et al. [11] and is defined as follows:

ABC4(G) = ∑
e f∈E(G)

√
Se + S f − 2

Se × S f

where Se = ∑
e f∈E(G)

d f and S f = ∑
e f∈E(G)

de.
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Vukicevic et al. [12] defined the geometric arithmetic index GA of a graph G as follows:

GA(G) = ∑
e f∈E(G)

2
√

de × d f

de + d f
.

Another well known molecular descriptor is the fifth version of the geometric arithmetic index
GA5 of a graph G. It was introduced by Graovac et al. [13] and is defined as follows:

GA5(G) = ∑
e f∈E(G)

2
√

Se × S f

Se + S f
.

2. Applications of Topological Indices

The Randic index is a topological descriptor related to a great deal of synthetic qualities of
atoms and was discovered parallel to processing the boiling point and Kovats constants of the
particles. The particle bond network (ABC) index connects to the security of direct alkanes and
stretched alkanes and is used to process the strain vitality of cyclo alkanes [14,15]. In terms of
physico-concoction properties, the GA index has prescient control superior to the prescient energy of
the Randic connectivity index [16]. The first and second Zagreb indices were found to be helpful for
calculation of the aggregate π-electron energy of the particles inside particular rough articulations [17].
These are among the graph invariants proposed for the estimation of skeletons of stretching of carbon
atoms [18].

During the last two decades, analysts created substance diagrams, and they arranged and
processed particular indices. W. Gao and M. R. Farahani calculated degree-based indices of synthetic
structures by utilizing an edge-separated technique [19]. Gao et al. [20,21] created concoction structures
in medications and processed overlooked topological indices. As of late, Baig et al. [22] computed and
graphically portrayed topological descriptors of concoction graphs of carbon graphite and precious
stone cubic carbon structures. Different utilizations of atomic descriptors of subatomic diagrams and
systems are given in the reference list and the references in [23,24]. These applications and literature
reviews inspired us to investigate new substance diagrams and gem structures and process their
topological records.

3. Methods

For the computation of our results, we utilized a strategy for combinatorial registering, a vertex
partition strategy, an edge partition technique, graph hypothetical instruments, scientific systems,
a degree-counting strategy, and a degrees of neighbors strategy. In addition, we used Matlab for
scientific estimations and confirmations. We likewise utilized Maple for plotting numerical results.

4. Bismuth Tri-Iodide

The bismuth tri-iodide BiI3 is an outstanding inorganic compound. This dark gray solid is
the product of a reaction of bismuth and iodine, which was once of interest in qualitative inorganic
analysis [25]. It has been demonstrated over the years that Bi-doped glass optical strands are among the
most promising dynamic laser media. Different kinds of Bi-doped optical strands have been created as a
result and have been used to build Bi-doped fiber lasers and optical speakers [26]. Layered BiI3 precious
stone is thought to be a three-layered stacking structure, where bismuth atom planes are sandwiched
between iodide particle planes, which shape the succession I− Bi− I planes [27]. The periodic stacking
of three layers forms rhombohedral BiI3 crystal with R− 3 symmetry [28,29]. The progressive stacking
of one I − Bi− I layer shapes the hexagonal structure with symmetry [30]. A solitary precious stone
of BiI3 has been integrated by Nason and Keller [31]. The graph of a solitary unit of bismuth tri-iodide
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contains six 4-cycles, of which two are on the main, two are in the center, and two are at the base.
The bismuth tri-iodide can be organized either straightly (chain) or in a sheet frame [32].

4.1. Results for Bismuth Tri-Iodide Chain
(
m− BiI3

)
The linear arrangement of bismuth tri-iodide with m unit cells is called m-bismuth tri-iodide

chain. The unit cell of bismuth tri-iodide BiI3 is illustrated in Figure 1. The cardinality of vertices and
edges of bismuth tri-iodide chain m− BiI3 are 6(3m + 2) and 12(2m + 1), respectively. In m− BiI3

chain, the 1 degree vertices are 4(m + 2), the 2 degree vertices are 2(5m + 1), and the 6 degree vertices
are 2(2m + 1). The edge set of m− BiI3 chain is divided into two partitions based on the degree of
end vertices. The first edge partition contains 4m + 8 edges uv, where de = 1 and d f = 6. The second
edge partition contains 20m + 4 edges uv, where de = 2 and d f = 6. Table 1 shows the edge partition
of bismuth tri-iodide m− BiI3 for m > 1.

The chain bismuth tri-iodide for m = 3 is formed by combining one unit cell of BiI3 three times
together as shown in Figure 2.

c4

c4 c4

c4

c4c4
1

6

5 4

3

2

Main Cycles: c4
1 , c4

2

Central Cycles: c4
3 , c4

6

Base Cycles: c4
4 , c4

5

Figure 1. The unit cell of bismuth tri-iodide.

Figure 2. The chain bismuth tri-iodide for m = 3.

Table 1. Edge partition of m− BiI3.

(de, d f ) (1, 6) (2, 6)

Number of Edges 4m + 8 20m + 4

In the next step, we computed the atom-bond connectivity index, the general Randić Rα index for
α = {−1, 1,− 1

2 , 1
2}, the geometric arithmetic index, the fourth atom-bond connectivity index ABC4,

the fifth geometric arithmetic index GA5, and the first, second, and hyper Zagreb indices. We present
these results graphically for the crystal structure of bismuth tri-iodide for both chain and sheet.

• Atom-bond connectivity index.
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Let G represent the molecular graph of m− BiI3. Then, from Table 1, the atom-bond connectivity
index is computed as

ABC(G) = ∑
e f∈E(G)

√
de + d f − 2

de × d f

ABC(G) = 4(m + 2)

√
1 + 6− 2

1× 6
+ 4(5m + 1)

√
2 + 6− 2

2× 6

=
2
√

2
3
((√

15 + 15
)
m + 2

√
15 + 3

)
.

• The geometric arithmetic index GA
(

m − BiI3

)
.

Let G be the graph of m− BiI3. Now, using Table 1, the geometric arithmetic index is computed as

GA(G) = ∑
e f∈E(G)

2
√

ded f

de + d f

GA(G) = 4(m + 2)
2
√

1× 6
1 + 6

+ 4(5m + 1)
2
√

2× 6
2 + 6

=
2
√

3
7
((

4
√

2 + 35
)
m + 8

√
2 + 7

)
.

• The general Randić index Rα

(
m − BiI3

)
.

Let G be the graph of m− BiI3. Now, using Table 1, the general Randić index for α = 1 is

R1(G) = ∑
e f∈E(G)

(de × d f )

R1(G) = 4(m + 2)(1× 6) + 4(5m + 1)(2× 6) = 264m + 24.

For α = −1,

R−1(G) = ∑
e f∈E(G)

1
(de × d f )

R−1(G) = 4(m + 2)
1

(1× 6)
+ 4(5m + 1)

1
(2× 6)

=
7m + 5

3
.

For α = 1
2 ,

R 1
2
(G) = ∑

e f∈E(G)

√
(de × d f )

R 1
2
(G) = 4(m + 2)

√
(1× 6) + 4(5m + 1)

√
(2× 6)

= 4
((

10
√

3 +
√

6
)
m + 2

(√
3 +
√

6
))

.
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For α = − 1
2 ,

R− 1
2
(G) = ∑

e f∈E(G)

1√
(de × d f )

R− 1
2
(G) = 4(m + 2)

1√
(1× 6)

+ 4(5m + 1)
1√

(2× 6)

=
2
3
((

5
√

3 +
√

6
)
m +
√

3 + 2
√

6
)
.

• First, second, and hyper Zagreb indices.

Let G be the graph of m− BiI3. Now, using Table 1, the first, second, and hyper Zagreb indices
are computed as

M1(G) = ∑
e f∈E(G)

(de + d f )

M1(G) = 4(m + 2)(1 + 6) + 4(5m + 1)(2 + 6) = 188m + 88

M2(G) = ∑
e f∈E(G)

(de × d f )

M2(G) = 4(m + 2)(1× 6) + 4(5m + 1)(2× 6) = 264m + 96.

The hyper Zagreb index is computed as

HM(G) = ∑
e f∈E(G)

(de + d f )
2

HM(G) = 4(m + 2)(1 + 6)2 + 4(5m + 1)(2 + 6)2 = 1474m + 684.

Table 2 demonstrates the edge distribution in light of the degree sum of the end vertices of each
edge. We find an exact formula for the fourth atom-bond connectivity index and the fifth geometric
arithmetic index using Table 2.

Table 2. Edge partition of m− BiI3 based on the degree sum of end vertices of each edge.

(Se, S f ) (6, 10) (10, 12) (12, 12)

Number of Edges 4m + 8 8m + 16 12m− 12

• The fourth atom-bond connectivity index ABC4

(
m − BiI3

)
.

Let G be the graph of m− BiI3. Now, using Table 2, the fourth atom-bond connectivity index is
computed as

ABC4(G) = ∑
e f∈E(G)

√
Se + S f − 2

Se × S f

ABC4(G) = 4(m + 2)

√
6 + 10− 2

6× 10
+ 8(m + 2)

√
10 + 12− 2

10× 12
+ 12(m− 1)

√
12 + 12− 2

12× 12

=

√
2

15
((

20
√

3 + 15
√

11 + 2
√

105
)
m + 40

√
3− 15

√
11 + 4

√
105
)
.
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• The fifth geometric arithmetic index GA5

(
m − BiI3

)
.

Let G be the graph of m − BiI3. Now, using Table 2, the fifth geometric arithmetic index is
computed as follows:

GA5(G) = ∑
e f∈E(G)

2
√

Se × S f

Se + S f

GA5(G) = 4(m + 2)
2
√

6× 10
6 + 10

+ 8(m + 2)
2
√

10× 12
10 + 12

+ 12(m− 1)
2
√

12× 12
12 + 12

=
1
11
((

11
√

15 + 16
√

30 + 132
)
m + 22

√
15 + 32

√
30− 132

)
.

4.2. Results for Bismuth Tri-Iodide Sheet BiI3(m× n)

In this section, the topological additive indices based on the degree and sum of degree of bismuth
tri-iodide sheet are computed. The linear arrangement of bismuth tri-iodide with mn unit cells is
called m× n bismuth tri-iodide sheet, where m unit cells are taken as rows and n unit cells are taken as
columns. The graph of bismuth tri-iodide sheet for m = 2 and n = 3 is represented in Figure 3.

Figure 3. The sheet bismuth tri-iodide for m = 2 and n = 3.

The cardinality of vertices and edges of bismuth tri-iodide sheet BiI3(m× n) are 11mn + 10m +

7n + 2 and 18mn + 12m + 6n, separately. In BiI3(m× n) sheet, the 1 degree vertices are 4(m + n + 1),
the 2 degree vertices are 6mn + 4m4n− 2, the 3 degree vertices are 2mn− 2n, and the 6 degree vertices
are 3mn + 2m + n. The edge set of the BiI3(m× n) sheet is separated into three parcels in light of the
level of the end vertices. The main edge parcel contains 4m + 4n + 4 edges uv, where de = 1 and
d f = 6. The second edge segment contains 12mn + 8m + 8n− 4 edges uv, where de = 2 and d f = 6.
The third edge segment contains 6mn− 6n edges uv, where de = 3 and d f = 6. Table 3 demonstrates
the edge parcel of the bismuth tri-iodide sheet for m, n > 1.

Table 3. Edge partition of BiI3(m× n) based on the degree of end vertices of each edge.

(de, d f ) (1, 6) (2, 6) (3, 6)

Number of Edges 4m + 4n + 4 12mn + 8m + 8n− 4 6mn− 6n

• The atom-bond connectivity index ABC
(

BiI3(m × n)
)

.
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Let G be the graph of BiI3(m× n) with m, n > 1. From the edge partition of BiI3(m× n), which is
given in Table 3, the atom-bond connectivity index is computed as

ABC(G) = ∑
e f∈E(G)

√
de + d f − 2

de × d f

ABC(G) = 4(m + n + 1)

√
1 + 6− 2

1× 6
+ (12mn + 8m + 8n− 4)

√
2 + 6− 2

2× 6
+ (6mn− 6n)

√
3 + 6− 2

3× 6

=
(
6
√

2 +
√

14
)
mn + 2

(
m + n

)(
2
√

2 +

√
30
3
)
−
√

14n− 2
√

2 +
2
√

30
3

.

• The geometric arithmetic index GA
(

BiI3(m × n)
)

.

Let G be the graph of BiI3(m× n) with m, n > 1. Now, using Table 3, the geometric arithmetic
index is computed as follows:

GA(G) = ∑
e f∈E(G)

2
√

de × d f

de + d f

GA(G) = 4(m + n + 1)
2
√

1× 6
1 + 6

+ (12mn + 8m + 8n− 4)
2
√

2× 6
2 + 6

+ (6mn− 6n)
2
√

3× 6
3 + 6

= 2
(
2
√

2 + 3
√

3
)
mn + 4

(
m + n

)(7
√

3 + 2
√

6
7

)
− 4
√

2n− 2
√

3 +
8
√

6
7

.

• The General Randić index Rα

(
BiI3(m × n)

)
.

Let G be the graph of BiI3(m× n) with m, n > 1. Now, using Table 3, the general Randić index
is given:

For α = 1,

R1(G) = ∑
e f∈E(G)

(de × d f )

R1(G) = 4(m + n + 1)(1× 6) + (12mn + 8m + 8n− 4)(2× 6) + (6mn− 6n)(3× 6)

= 252mn + 120m + 12n− 24.

For α = −1,

R−1(G) = ∑
e f∈E(G)

1
(de × d f )

R−1(G) = 4(m + n + 1)
1

(1× 6)
+ (12mn + 8m + 8n− 4)

1
(2× 6)

+ (6mn− 6n)
1

(3× 6)

=
4mn + 4m + 3n + 1

3
.

For α = − 1
2 ,

R− 1
2
(G) = ∑

e f∈E(G)

1√
(de × d f )

R− 1
2
(G) = 4(m + n + 1)

1√
(1× 6)

+ (12mn + 8m + 8n− 4)
1√

(2× 6)
+ (6mn− 6n)

1√
(3× 6)

=
(√

2 + 2
√

3
)
mn + 2

(
m + n

)(2
√

3 +
√

6
3

)
−
√

2n− 2
√

3
3

+
2
√

6
3

.
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For α = 1
2 ,

R 1
2
(G) = ∑

e f∈E(G)

√
(de × d f )

R 1
2
(G) = 4(m + n + 1)

√
(1× 6) + (12mn + 8m + 8n− 4)

√
(2× 6) + (6mn− 6n)

√
(3× 6)

= 6
(
3
√

2 + 4
√

3
)
mn + 4

(
m + n

)(
4
√

3 +
√

6
)
− 18
√

2n− 8
√

3 + 4
√

6.

• The first, second, and hyper Zagreb indices

Let G ∼= BiI3(m × n) be a molecular graph of bismuth tri-iodide sheet. Now, using Table 3,
the first, second, and hyper Zagreb indices are computed as

M1(G) = ∑
e f∈E(G)

(de + d f )

M1(G) = 4(m + n + 1)(1 + 6) + (12mn + 8m + 8n− 4)(2 + 6) + (6mn− 6n)(3 + 6)

= 150mn + 92m + 38n− 4.

M2(G) = ∑
e f∈E(G)

(de × d f )

M2(G) = 4(m + n + 1)(1× 6) + (12mn + 8m + 8n− 4)(2× 6) + (6mn− 6n)(3× 6)

= 252mn + 120m + 12n− 24.

HM(G) = ∑
e f∈E(G)

(de + d f )
2

HM(G) = 4(m + n + 1)(1 + 6)2 + (12mn + 8m + 8n− 4)(2 + 6)2 + (6mn− 6n)(3 + 6)2

= 1254mn + 708m + 222n− 60.

Table 4 demonstrates the edge segment in view of the degree sum of the end vertices of each
edge. We derived the exact result for the fourth atom-bond connectivity index and the fifth geometric
arithmetic index using Table 4.

Table 4. Edge partition of BiI3(m× n) based on the degree sum of the end vertices of each edge.

(Se, S f ) Number of Edges

(6, 10) 4n + 8
(6, 12) 4m− 4
(10, 12) 8n + 16
(12, 12) 16m + 12n− 28
(12, 14) 12mn− 8m− 12n + 8
(12, 18) 4m− 4
(14, 18) 6mn− 4m− 6n + 4

• The fourth atom-bond connectivity index ABC4

(
BiI3(m × n)

)
.

Let G be the graph of silicon carbide of type BiI3(m× n). Now, using Table 4, the fourth atom-bond
connectivity index is computed as

ABC4(G) = ∑
e f∈E(G)

√
Se + S f − 2

Se × S f
.
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ABC4(G) = 4(n + 2)

√
6 + 10− 2

6× 10
+ 4(m− 1)

√
6 + 12− 2

6× 12
+ 8(n + 2)

√
10 + 12− 2

10× 12

+ (16m + 12n− 28)

√
12 + 12− 2

12× 12
+ (12mn− 8m− 12n + 8)

√
12 + 14− 2

12× 14

+ 4(m− 1)

√
12 + 18− 2

12× 18
+ (6mn− 4m− 6n + 4)

√
14 + 18− 2

14× 18

=
(12
√

7 +
√

210
7

)
mn +

(4
√

2
3
− 8
√

7
7

+
4
√

22
3

+
2
√

42
9
− 2
√

210
21

)
m

+
(4
√

6
3
− 12

√
7

7
+
√

22−
√

210
105

)
n− 4

√
2

3
+

8
√

6
3

+
8
√

7
7
− 7
√

22
3
− 2
√

42
9

+
38
√

210
105

.

• The fifth geometric arithmetic index GA5

(
BiI3(m × n)

)
.

Let G be a molecular graph of bismuth tri-iodide sheet BiI3(m× n). Then, using Table 4, the fifth
geometric arithmetic index is computed as

GA5(G) = ∑
e f∈E(G)

2
√

Se × S f

Se + S f

GA5(G) = 4(n + 2)
2
√

6× 10
6 + 10

+ 4(m− 1)
2
√

6× 12
6 + 12

+ 8(n + 2)
2
√

10× 12
10 + 12

+ (16m + 12n− 28)
2
√

12× 12
12 + 12

+ (12mn− 8m− 12n + 8)
2
√

12× 14
12 + 14

+ 4(m− 1)
2
√

12× 18
12 + 18

+ (6mn− 4m− 6n + 4)
2
√

14× 18
14 + 18

=
(112

√
7 + 96

√
42

52
)
mn +

(8
√

2
3

+
8
√

6
5
− 3
√

7
2
− 16

√
42

13
+ 16

)
m

−
(9
√

7
4
−
√

15− 16
√

30
11

+
24
√

42
13

− 12
)
n

− 8
√

2
3
− 8
√

6
5

+
3
√

7
2

+ 2
√

15 +
32
√

30
11

+
16
√

42
13

− 28.

5. Comparisons and Discussion

• For the comparison of these indices numerically for m− BiI3, we computed all indices for different
values of m. Now, from Table 5, we can easily see that all indices are in increasing order as the
values of m are increasing. The graphical representations of the topological indices for m− BiI3

are depicted in Figures 4–7 for certain values of m.

Table 5. All indices for m− BiI3.

m ABC R1 R−1 R 1
2

R− 1
2

GA M1 M2 HM ABC4 GA5

1 26.5 288 4 49.5 8.5 45.5 276 360 2158 86.7 181.4
2 34.8 552 6.2 102.8 15.9 58.9 464 624 3632 174.6 358.5
3 52.3 816 8.3 145.2 22.8 98.7 652 888 5106 536.2 536.4
4 85.4.3 1080 11.4 192.5 30.5 142.5 840 1152 6580 704.2 704.3
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Figure 4. The graphical representation of ABC
(

m− BiI3
)

index in blue and that of the GA
(

m− BiI3
)

index in green.

Figure 5. The graphical representation of the Randić index for α = 1 in green, that for α = −1 in red,
that for α = 1

2 in yellow, and that for α = − 1
2 in blue.

Figure 6. The graphical representation of the first, second, and hyper Zagreb indices in cyan, pink,
and green, respectively.
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Figure 7. The graphical representation of ABC4

(
m− BiI3

)
index in blue and that of the GA5

(
m− BiI3

)
index in brown.

• We computed all indices numerically for BiI3(m × n) for different values of m, n. We can
easily see, from Table 6, that all indices are in increasing order as the values of m, n are
increasing. The graphical representations of the topological indices for BiI3(m× n) are depicted
in Figures 8–11 for certain values of m, n.

Table 6. All indices for BiI3(m× n).

[m, n] ABC R1 R−1 R 1
2

R− 1
2

GA M1 M2 HM ABC4 GA5

[1, 1] 14.2 360 3.4 7.6 81.2 13.2 276 360 2124 11.3 9.8
[2, 2] 43.3 744 8.6 23.2 234.9 43.3 585 1248 6816 50.8 43.6
[3, 3] 96.5 1128 19.2 45.8 565.3 96.5 1736 2640 14016 100.3 98.5
[4, 4] 164.3 1412 31.4 64.3 965.4 164.8 2918 4536 23724 160.6 157.3

Figure 8. The graphical representation of the ABC
(

BiI3(m × n)
)

index in green, and that of the

GA
(

BiI3(m× n)
)

index in blue.
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Figure 9. The graphical representation of the Randić index for α = 1 in red, that for α = −1 in green,
that for α = 1

2 in pink, and that for α = −1
2 in blue.

Figure 10. The graphical representation of the first, second, and hyper Zagreb indices in blue, green,
and yellow, respectively.

Figure 11. The graphical representation of ABC4

(
BiI3(m × n)) index in blue, and that of the

GA5

(
BiI3(m× n)) index in brown.
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6. Conclusions

We computed additive degree-based topological indices, the atom-bond network ABC index,
the general Randić index, the first, second, and hyper Zagreb indices, the arithmetic GA index,
the fourth atom-bond connectivity ABC4 index, and the fifth geometric arithmetic GA5 index of
m− BiI3 and BiI3(m× n).

The Randic index is a topological descriptor that correlates with many chemical characteristics of
molecules. It was found that the boiling point of m− BiI3 and BiI3(m× n) varies in increasing order
for α ∈ {1,−1, 1/2,−1/2}.

The atom-bond connectivity (ABC) index provides a very good correlation for computing the
strain energy of molecules. One can easily see that the strain energy of m− BiI3 and BiI3(m× n) is
high as the values of m, n increase.

The GA index has as much predictive power as that of the Randic index, so the GA index is more
useful than the Randic index for α ∈ {−1,−1/2}, as compared to the Randic index for α ∈ {1, 1/2},
in the case of m− BiI3 and BiI3(m× n).

The first and second Zagreb indices were found to occur for the computation of the total π-electron
energy of molecules; thus, in the case of m − BiI3 and BiI3(m × n), their values provide the total
π-electron energy in increasing order for higher values of m, n.

However, computation of distance-based and counting-related topological indices for these
symmetrical chemical structures are open challenges and have yet to be investigated.
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