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Abstract: The classical Sierpinski Gasket defined on the equilateral triangle is a typical example of fractals.
Sierpinski-like triangles can also be constructed on isosceles or scalene triangles. An explicit formula
for the intrinsic metric on the classical Sierpinski Gasket via code representation of its points is given.
The aim of this paper is to generalize this formula to the Sierpinski-like triangles. We also investigate
geometrical properties of these triangles with respect to the intrinsic metric. Moreover, we describe
certain properties of the classical Sierpinski gasket which are not shared by all of its analogues.
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1. Introduction

Fractals are popular research subjects not only in mathematics but also in physics, chemistry,
biology, social science, computer science, engineering and economics. There have been many studies
on fractals in the last decade (for details see [1–4]). Most classic fractals have two basic features: the
first one is self-similarity, and the second one is that their Hausdorff dimensions are larger than their
topological dimensions. The Sierpinski Gasket, which is named after Waclaw Sierpinski, is one of the
leading examples of fractals. The basic characteristics of the Sierpinski Gasket, S, are given as follows:

This fractal is the attractor of an iterated function system (IFS). An IFS on a metric space X is
a finite family { f0, f1, . . . , fn} of contracting maps fi : X → X whose contracting factors are ri for
i = 0, 1, 2, . . . , n. It is well-known that if { f0, f1, . . . , fn} is an IFS on a complete metric space X, then
there is unique non-empty compact subset K of X such that

K =
n⋃

i=0

fi(K).

The set K is called the attractor associated with the IFS (for the construction of S as the attractor of
an IFS see Equation (1)).

The area of the Sierpinski Gasket is zero and its fractal dimension is non-integer. The topological
dimension of this fractal is one. It satisfies the open set condition and thus its fractal dimension,
the unique real solution of the Moran equation

2

∑
i=0

rs
i =

1
2s +

1
2s +

1
2s =

3
2s = 1,

is ln 3
ln 2 .

That is, Hausdorff dimension of the Sierpinski Gasket is larger than its topological dimension.
Therefore, this set exhibits all of the classical properties of fractals.
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However, none of the above listed features depend on whether the Sierpinski Gasket is constructed
on the equilateral, isosceles, scalene triangles or not. The only difference that will occur is the
coefficients of the functions with respect to IFS. In other words, S, which is constructed with the
vertices P = (p0, p1), Q = (q0, q1) and R = (r0, r1), is the attractor of the iterated function system
{R2; f0, f1, f2} such that

f0(x, y) =
( x

2
+

p0

2
,

y
2
+

p1

2

)
,

f1(x, y) =
( x

2
+

q0

2
,

y
2
+

q1

2

)
,

f2(x, y) =
( x

2
+

r0

2
,

y
2
+

r1

2

)
.

(1)

It is obvious that if we choose p0 = p1 = q1 = 0, q0 = 1, r0 = 1
2 and r1 =

√
3

2 , then we get the
classical Sierpinski Gasket as the attractor of the IFS. If these coefficients are taken as p0 = p1 = q1 =

r0 = 0, q0 = 1 and r1 = 1, then the right angled Sierpinski Gasket becomes the attractor of the IFS
(see Figure 1).

Figure 1. The Sierpinski Gaskets constructed on the equilateral, isosceles and scalene triangles respectively.

Besides these characteristics, different geometric properties can be examined by defining the
intrinsic metrics on the equilateral, isosceles and scalene Sierpinski triangles. It is well-known that
there are different ways to define the Sierpinski Gasket apart from the notion of IFS. By using these
alternative definitions, various different properties of this fractal can be obtained. As one of them,
the construction of the intrinsic metric on S can be given in several ways (for details see [5–10]).

The general definition of the intrinsic metric on S is expressed as follows:

d(x, y) = min{δ | δ is the length of a rectifiable curve in S joining x and y}, (2)

for x, y ∈ S (for details see [11]). Throughout this paper, we will only deal with the intrinsic metric
obtained from the code representations of points on S. In [12], the intrinsic metric on the equilateral
Sierpinski Gasket is explicitly formulated as follows:

Definition 1. Let a1a2 . . . ak−1akak+1 . . . and b1b2 . . . bk−1bkbk+1 . . . be two representations respectively of
the points A and B on the equilateral Sierpinski Gasket such that ai = bi for i = 1, 2, . . . , k− 1 and ak 6= bk.
The distance d(A, B) between A and B is determined by the following formula:

d(A, B) = min

{
∞

∑
i=k+1

αi + βi

2i ,
1
2k +

∞

∑
i=k+1

γi + δi

2i

}
, (3)

where

αi =

{
0, ai = bk
1, ai 6= bk

, βi =

{
0, bi = ak
1, bi 6= ak

,
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γi =

{
0, ai 6= ak and ai 6= bk
1, otherwise

, δi =

{
0, bi 6= bk and bi 6= ak
1, otherwise

.

Note that, since there exists at least one shortest path between any two points, the metric d defined
in Equation (3) is a strictly intrinsic metric on the code set of S ([12]). Moreover, in [13], we classify
geodesics of the Sierpinski Gasket by using this metric.

In this paper, we give a general formula for the case of different edge lengths of the triangle.
That is, we obtain a formula for the intrinsic metric on the code set of the scalene Sierpinski Gasket in
Theorem 1. Afterwards, we show the relationship between the coefficients of formulas computed for
the equilateral, isosceles and scalene Sierpinski Gasket. Finally, in Propositions 3 and 4, we get some
important geometrical properties by using these formulas.

In the following section, we express some basic concepts that are needed to describe the metric
given in Equation (4).

2. Preliminaries

Let us fix w1, w2, . . . , wn where wi ∈ {0, 1, 2} for i = 1, 2, . . . , n. The bottom-left part,
the bottom-right part and the upper part of Sw1w2 ...wn are denoted by Sw1w2 ...wn0, Sw1w2 ...wn1 and
Sw1w2 ...wn2 respectively. Thus, we have the sub-triangle

Sw1 ...wn0 = {w1 . . . wn0an+2an+3 . . . | ai ∈ {0, 1, 2} and i = n + 2, n + 3, . . .},

Sw1 ...wn1 = {w1 . . . wn1an+2an+3 . . . | ai ∈ {0, 1, 2} and i = n + 2, n + 3, . . .},

Sw1 ...wn2 = {w1 . . . wn2an+2an+3 . . . | ai ∈ {0, 1, 2} and i = n + 2, n + 3, . . .}.

Hence, the code set of S is the union of the code sets S0, S1 and S2 (see Figure 2).

P Q
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1s
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2s
S

Figure 2. The equilateral Sierpinski Gasket and the sub-triangle Sσ where σ = w1w2 . . . wn.

From now on, we will define the code representation of a point on S by using these code sets.
The construction above shows that

Sa1 , Sa1a2 , Sa1a2a3 , . . . , Sa1a2 ...an , . . .

is a nested sequence of sets such that

Sa1 ⊃ Sa1a2 ⊃ Sa1a2a3 ⊃ . . . ⊃ Sa1a2 ...an ⊃ . . . .
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The Cantor intersection theorem states that the infinite intersection

∞⋂
n=1

Sa1a2 ...an

is a point on S, which we denote by A. A code representation of A is the infinite word a1a2 . . . an . . .
where an ∈ {0, 1, 2}, n ∈ N. Note that, if A ∈ S is the intersection point of any two sub-triangles of
Sa1a2 ...ak , then A is called a junction point of S. In such a case, A has two different code representations
of forms a1a2 . . . akβααα . . . and a1a2 . . . akαβββ . . . where α, β ∈ {0, 1, 2} and α 6= β. (If a point is not
in this form, then it has a unique code representation. For example, the vertices P, Q and R have
the code representations 000 . . . 111 . . . and 222 . . . respectively). Let S0 ∩ S1 = {K}, S1 ∩ S2 = {L}
and S0 ∩ S2 = {M}. 0111 . . . and 1000 . . . are different code representations of K, 1222 . . . and 2111 . . .
are different code representations of L, 0222 . . . and 2000 . . . are different code representations of M.
Moreover, the code set of all points on the line segment connecting the vertices P and Q is

PQ = {a1a2a3 . . . | ai ∈ {0, 1}},

the code set of all points on the line segment connecting the vertices P and R is

PR = {a1a2a3 . . . | ai ∈ {0, 2}},

and the code set of all points on the line segment connecting the vertices Q and R is

QR = {a1a2a3 . . . | ai ∈ {1, 2}}.

For the general case, let us fix σ = a1a2a3 . . . ak−1 where ai ∈ {0, 1, 2} for i = 1, 2, . . . , k − 1.
We now consider the sub-triangles Sσ0, Sσ1 and Sσ2. Let Sσ0 ∩ Sσ1 = {Kσ}, Sσ1 ∩ Sσ2 = {Lσ} and
Sσ0 ∩ Sσ2 = {Mσ}. Similarly, σ0111 . . . and σ1000 . . . are different code representations of Kσ, σ1222 . . .
and σ2111 . . . are different code representations of Lσ, σ0222 . . . and σ2000 . . . are different code
representations of Mσ. Furthermore, the code set of all points on the line segment connecting the
vertices Kσ and Lσ is

KσLσ = {σ1ak+1ak+2ak+3 . . . | ai ∈ {0, 2} for i = k + 1, k + 2, . . . },

the code set of all points on the line segment connecting the vertices Kσ and Mσ is

Kσ Mσ = {σ0ak+1ak+2ak+3 . . . | ai ∈ {1, 2} for i = k + 1, k + 2, . . . },

and the code set of all points on the line segment connecting the vertices Lσ and Mσ is

Lσ Mσ = {σ2ak+1ak+2ak+3 . . . | ai ∈ {0, 1} for i = k + 1, k + 2, . . . }.

Moreover, it can be easily seen that

|KσLσ| =
|PR|

2k =
deucl(P, R)

2k ,

|Kσ Mσ| =
|QR|

2k =
deucl(Q, R)

2k ,

|Lσ Mσ| =
|PQ|

2k =
deucl(P, Q)

2k ,

owing to the fact that PR ‖ KσLσ, QR ‖ Kσ Mσ, PQ ‖ Lσ Mσ and | σ |= k− 1.
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3. The Intrinsic Metric on the Scalene Sierpinski Gasket

Consider a scalene Sierpinski Gasket with vertices P = (p0, p1), Q = (q0, q1) and R = (r0, r1).
In the following proposition, we formulate the distance between two different points on a scalene
Sierpinski Gasket by using the code representations of these points. Then a special case of this formula
will be given on the isosceles Sierpinski Gasket and it will be associated with the formula given in
Definition 1 on the equilateral Sierpinski Gasket.

Theorem 1. Suppose that the points A and B on the scalene Sierpinski Gasket have two representations
a1a2 . . . ak−1akak+1 . . . and b1b2 . . . bk−1bkbk+1 . . . respectively such that ai = bi for i = 1, 2, . . . , k− 1 and
ak 6= bk. Then the distance d(A, B) between A and B is determined by the following formula;

d(A, B) = min

{
∞

∑
i=k+1

αi + βi

2i ,
κ

2k +
∞

∑
i=k+1

γi + δi

2i

}
(4)

such that

αi =


0, ai = bk
|PQ|, (ai = 0, bk = 1) or (ai = 1, bk = 0)
|PR|, (ai = 0, bk = 2) or (ai = 2, bk = 0)
|QR|, (ai = 1, bk = 2) or (ai = 2, bk = 1)

,

βi =


0, bi = ak
|PQ|, (bi = 0, ak = 1) or (bi = 1, ak = 0)
|PR|, (bi = 0, ak = 2) or (bi = 2, ak = 0)
|QR|, (bi = 1, ak = 2) or (bi = 2, ak = 1)

,

γi =


0, ai = ck
|PQ|, (ai = 0, ck = 1) or (ai = 1, ck = 0)
|PR|, (ai = 0, ck = 2) or (ai = 2, ck = 0)
|QR|, (ai = 1, ck = 2) or (ai = 2, ck = 1)

,

δi =


0, bi = ck
|PQ|, (bi = 0, ck = 1) or (bi = 1, ck = 0)
|PR|, (bi = 0, ck = 2) or (bi = 2, ck = 0)
|QR|, (bi = 1, ck = 2) or (bi = 2, ck = 1)

,

where

κ =


|PQ|, (ak = 0, bk = 1) or (ak = 1, bk = 0)
|PR|, (ak = 0, bk = 2) or (ak = 2, bk = 0)
|QR|, (ak = 1, bk = 2) or (ak = 2, bk = 1)

,

and ak 6= ck 6= bk and ck ∈ {0, 1, 2}.

Note that we only give a sketch proof since it is long and tedious to show all the cases. However,
different cases can be shown in a similar way.

Proof. Suppose that A and B, which are two different points of the scalene Sierpinski, have the code
representations a1a2 . . . an . . . and b1b2 . . . bn . . . respectively. It is obvious that there exists at least one
natural number s such that as 6= bs. Thus, we have A ∈ Sσak and B ∈ Sσbk

where k = min{s | as 6=
bs, s = 1, 2, 3, . . .}. Let ak = 0 and bk = 1 (or ak = 1 and bk = 0). In this case, the shortest paths between
A and B must pass through either the point Kσ or the line Lσ Mσ. If ak = 0 and bk = 2 (or ak = 2 and
bk = 0), then the shortest paths between a and b must pass through either the point Mσ or the line
KσLσ. If ak = 1 and bk = 2 (or ak = 2 and bk = 1), then the shortest paths between a and b must pass
through either the point Lσ or the line Kσ Mσ.
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Case 1. Firstly, we will deal with the shortest paths that pass through the point Kσ. We thus have ak = 0 and
bk = 1 or ak = 1 and bk = 0. Let us only investigate ak = 0 and bk = 1 because the proof is the same for ak = 1
and bk = 0. The union of a path between A and Kσ and a path between Kσ and B gives a path between A and
B. If we compute the length of the shortest paths between A and Kσ, then the paths between Kσ and B can be
obtained using a similar argument.

Given A ∈ Sσ00 and let Sσ′0 ∩ Sσ′1 = {Kσ′} where σ′ = σ0. Then we must compute the length of

the line segment KσKσ′ . Thus, the length of the shortest paths between A and Kσ is µ =
|PQ|
2k+1 + ε for

some ε ≥ 0. (For the case ak+1 = 0 and bk = 1, we actually get αk+1 = |PQ|).
If A ∈ Sσ02, then we must compute the length of the line KσLσ′ where Sσ′1 ∩ Sσ′2 = {Lσ′} to

obtain the length of the shortest path between A and Kσ. Hence, this length equals to µ =
|QR|
2k+1 + ε

for some ε ≥ 0 (that is, if ak+1 = 2 and bk = 1, then αk+1 = |QR|).
If A = Mσ′ where Mσ′ is the intersection point of the sub-triangles Sσ′0 and Sσ′2, then there are

two shortest paths between A and Kσ. These paths are the union of the line segments Mσ′Kσ′ and
Kσ′Kσ or the union of the line segments Lσ′Mσ′ and Lσ′Kσ. So, the length of these paths are exactly
obtained as

µ =
|QR|
2k+1 +

|PQ|
2k+1 .

(In this case, a has the code representations σ00222 . . . or σ02000 . . .. For i = 2, 3, 4, . . ., if ak+1 = 0 and
ak+i = 2, then we obtain αk+1 = |PQ| and αk+i = |QR| or similarly if ak+1 = 2 and ak+i = 0, then we
get αk+1 = |QR| and αk+i = |PQ|).

Let us now consider A ∈ Sσ01. Notice that, the multiplier 1
2k+1 is not included in the computation of

the length of the shortest paths between A and Kσ since Kσ ∈ Sσ01. If A ∈ Sσ010 or A ∈ Sσ012, then we
must compute the length of the line segment Kσ′′Kσ or the length of the line segment Lσ′′Kσ to get the
shortest distance such that Kσ′′ = Sσ′′0 ∩ Sσ′′1 ,Lσ′′ = Sσ′′1 ∩ Sσ′′2 where σ′′ = σ01. In this case, we get

µ =
|PQ|
2k+2 + ε

or

µ =
|QR|
2k+2 + ε

respectively for some ε ≥ 0.
For the case A = Mσ′′ , where Mσ′′ is the intersection point of the sub-triangles Sσ′′0 and Sσ′′2, there

are two paths to obtain the shortest distance between A and Kσ as before. These paths are the union of
the line segments Mσ′′Kσ′′ and Kσ′′Kσ or the union of the line segments Mσ′′Lσ′′ and Lσ′′Kσ. The length
of these two paths is

µ =
|PQ|
2k+2 +

|QR|
2k+2 .

This procedure also continues for smaller triangles. By splicing these shortest paths between “A
and Kσ” and “Kσ and B”, we can determine the length of the shortest paths between A and B passing
through the point Kσ.

Case 2. Now, we will investigate the length of the shortest paths passing through the line segment LσMσ. In this
case, we must figure out the shortest paths between “A and Mσ” and between “B and Lσ”. Note that we can
compute the lengths of these shortest paths in the same way as the Case 1. As we add |PQ|

2k (the length of the path
LσMσ) to these lengths, we obtain the length of the shortest path passing through LσMσ.

We now consider the shortest paths passing through the line segment KσLσ. The shortest paths
(thus the corresponding length) between “A and Kσ” and between “B and Lσ” can be obtained similarly.
We get the length of the shortest path passing through KσLσ by adding the length of the path KσLσ,
which equals to |PR|

2k , to these lengths.
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Also, we can compute the length of the shortest paths passing through the line segment KσMσ.
In this sense, this length is obtained by adding |QR|

2k to the length of the shortest paths between “A and
Kσ” and between “B and Mσ”.

As a result, the minimum of the lengths obtained from Case 1 and 2 gives us the length of the
shortest paths between A and B.

Remark 1. The length of the shortest paths passing through one of the points Kσ, Lσ and Mσ is the first sum in

Equation (4), µ =
∞
∑

i=k+1

αi+βi
2i . And the second value in Equation (4), ν = κ

2k +
∞
∑

i=k+1

γi+δi
2i , gives us the length

of the shortest paths passing through one of the line segment KσLσ, LσMσ and KσMσ where κ
2k is the length of

the line segment KσMσ, LσMσ and KσMσ respectively.

The metric given in Theorem 1 is equivalent to the metric given in Equation (2) due to the fact that
the metric d is defined as the minimum of the lengths of the admissible paths connecting the points A
and B of the scalene Sierpinski Gasket.

The proof of the following proposition is similar to the proof in [12]. Thus the proof here will be omitted.

Proposition 1. The metric d defined in Theorem 1 does not depend on the choice of the code representations of
the points.

Suppose that the points A and B on the isosceles Sierpinski Gasket have the code representations
a1a2 . . . ak−1akak+1 . . . and b1b2 . . . bk−1bkbk+1 . . . respectively where ai = bi for i = 1, 2, . . . , k− 1 and
ak 6= bk. In Theorem 1, if we choose P0 = (0, 0), P1 = (1, 0) and P2 = (0, 1), then the distance formula on
isosceles Sierpinski Gasket will be as follows:

Corollary 1. The distance between A and B is defined by the following formula:

d(A, B) = min

{
∞

∑
i=k+1

αi + βi

2i ,
κ

2k +
∞

∑
i=k+1

γi + δi

2i

}
such that

αi =


0, ai = bk√
2, (ai = 1, bk = 2) or (ai = 2, bk = 1)

1, otherwise
,

βi =


0, bi = ak√
2, (bi = 1, ak = 2) or (bi = 2, ak = 1)

1, otherwise
,

γi =


0, ai = ck√
2, (ai = 1, ck = 2) or (ai = 2, ck = 1)

1, otherwise
,

δi =


0, bi = ck√
2, (bi = 1, ck = 2) or (bi = 2, ck = 1)

1, otherwise
,

where

κ =

{ √
2, (ak = 1, bk = 2) or (ak = 2, bk = 1)

1, otherwise
,

and ak 6= ck 6= bk and ck ∈ {0, 1, 2}.
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Note that if we take P0 = (0, 0), P1 = (1, 0) and P2 = ( 1
2 ,
√

3
2 ), then the distance formula on

equilateral Sierpinski Gasket is obtained as Definition 1. Hence, Theorem 1 is very useful since it gives
us the general case.

We now give an illustrative example which shows the computation of the distance between any
two points on an isosceles Sierpinski triangle.

Example 1. Consider an isosceles triangle with vertices P = (0, 0), Q = (1, 0) and R = (0, 1). Let A and B be
the points of S whose code representations are 00201 = 0020111 · · · and 21012 = 2101222 · · · respectively.

We get k = 1 since the first terms of the code representations of A and B are different. By using Corollary 1,
we compute

α2 = 1, α3 = 0, α4 = 1, αi =
√

2 for i = 5, 6, 7, . . . ,

β2 = 1, β3 = 0, βi = 1 for i = 4, 5, 6, . . . ,

and
γ2 = 1, γ3 =

√
2, γ4 = 1, γi = 0 for i = 5, 6, 7 . . . ,

δ2 = 0, δ3 = 1, δ4 = 0, δi =
√

2 for i = 5, 6, 7 . . . .

It follows that

µ =
∞

∑
i=2

αi + βi

2i = 1+1
22 + 0+0

23 + 1+1
24 +

∞
∑

k=5

√
2+1
2k

= 1
2 +

1
23 +

√
2+1
24

= 11+
√

2
24 ,

and

ν =
1
2
+

∞

∑
i=2

γi + δi

2i = 1+0
22 +

√
2+1
23 + 1+0

24 +
∞
∑

k=5

0+
√

2
2k

= 1
2 +

1
22 +

√
2+1
23 + 1

24 +
√

2
24

= 15+2
√

2
24 ,

which shows d(A, B) = 11+
√

2
24 (see Figure 3).

A

B.

.

P Q

R

Figure 3. The shortest paths between the points A and B of the isosceles Sierpinski Gasket.
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4. Some Interesting Properties of the Equilateral, Isosceles and Scalene Sierpinski Gaskets

In this section, we give some important geometrical properties with the intrinsic metric on
the equilateral, scalene and isosceles Sierpinski Gaskets via the code representations of their points.
We first begin with a proposition related to the equilateral Sierpinski Gasket whose proof is given
in [12] as follows:

Proposition 2 ([12]). Let Sσ be a sub-triangle of the equilateral Sierpinski Gasket with edge length 1 and let
Pσ, Qσ and Rσ be vertices of Sσ. If Aσ is an arbitrary point of Sσ then

d(Aσ, Pσ0) + d(Aσ, Pσ1) + d(Aσ, Pσ2) =
1

2k−2 ,

where σ = a1a2a3 . . . ak−1.

Proposition 2 does not hold for scalene and isosceles Sierpinski Gaskets. That is, there are points
A and B such that

d(A, P) + d(A, Q) + d(A, R) 6= d(B, P) + d(B, Q) + d(B, R), (5)

as shown the following example:

Example 2. Let us consider the scalene Sierpinski Gasket with vertices P = (0, 0), Q = (6, 0) and R = (0, 8).
Let A and B be the points of S such that their code representations are 01 = 0111 . . . and 12 = 1222 . . .
respectively. It is clear that P, Q and R have the code representations 000 . . ., 111 . . ., 222 . . . respectively.
For the computation of the shortest distance between A and P, we obtain k = 2, αi = 6, βi = 6, γi = 10
and δi = 8 for i = 3, 4, 5 . . . and thus d(A, P) = min{3, 19

4 } = 3. Since k = 1, αi = 0, βi = 6, γi = 10
and δi = 10 for i = 2, 3, 4 . . ., we compute d(A, Q) = min{3, 13} = 3. Due to the fact that k = 1, αi = 0,
βi = 10, γi = 0 and δi = 10 for i = 2, 3, 4 . . ., we get µ = ν = 9 and thus d(A, R) = 9. By using the formula
given in Theorem 1, we have

d(A, P) + d(A, Q) + d(A, R) = 15.

Moreover, d(B, P) = 7 since we have k = 1, αi = 8, βi = 6, γi = 0 and δi = 8 for i = 2, 3, 4 . . ..
Owing to the fact that k = 2, αi = 10, βi = 10, γi = 10 and δi = 10 for i = 3, 4, 5 . . ., we compute
d(B, Q) = min{5, 6} = 5. Given k = 1, αi = 0, βi = 10, γi = 8 and δi = 8 for i = 2, 3, 4, . . ., we get
d(B, R) = min{5, 13} = 5. This shows that

d(B, P) + d(B, Q) + d(B, R) = 17.

By the code representations of points, we will demonstrate another property that is obtained on
the equilateral Sierpinski Gasket but not on the isosceles and scalene Sierpinski Gaskets. We first recall
the definition of the distance of a point to a set:

Definition 2. Let (X, d̃) is a metric space and let B be a point of X and A ⊆ X. Then the distance of B to A is
determined by

d̃(B,A) = inf{d̃(B, A) | A ∈ A}.

Obviously, if B ∈ A, then we get d̃(B,A) = 0.

Remark 2. It is well-known that the sum of the shortest distances of an arbitrary point on one edge of an
equilateral triangle to the other two edges is fixed, and this number is equal to the height of the triangle. In the
following proposition, we apply this property to the equilateral Sierpinski Gasket with the intrinsic metric and
obtain a remarkable result.
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Proposition 3. Let Sσ be a sub-triangle of the equilateral Sierpinski Gasket with edge length 1 and let Pσ, Qσ

and Rσ be vertices of Sσ. If Aσ with code representation σakak+1ak+2 . . . is an arbitrary point on the edge PσQσ

of Sσ, then

d(Aσ, PσRσ) + d(Aσ, QσRσ) =
1

2k−1 = |PσQσ|. (6)

Proof. Firstly, assume that Aσ = Pσ. In such a case, the code representation of Aσ is σ000 . . ..
Thus, d(Aσ, PσRσ) = 0 since Aσ ∈ PσQσ. We will compute d(Aσ, QσRσ). Let X be any point on
QσRσ which is the closest points to Aσ. It is clear that X has the code representation σxkxk+1xk+2 . . .
where xi ∈ {1, 2}. Because ak 6= xk, xi 6= ak and ai 6= xk for i = k + 1, k + 2, k + 3, . . ., we have

µ =
∞

∑
i=k+1

αi + βi

2i =
∞

∑
i=k+1

1 + 1
2i =

1
2k−1 .

We now show ν = 1
2k−1 . Let us consider cases xk = 1 and xk = 2 separately. If xk = 1, then we

obtain ck = 2. Due to the fact that ai = 0, we have γi = 1 for i = k + 1, k + 2, k + 3, . . .. In order to get
the closest distance, xi must be 2 and thus δi = 0 for i = k + 1, k + 2, k + 3, . . .. Therefore, we get

ν =
1
2k +

∞

∑
i=k+1

γi + γi

2i =
1
2k +

∞

∑
i=k+1

0 + 1
2i =

1
2k−1 .

Similarly, ν equals to 1
2k−1 for the case xk = 2. Following the similar way, the same result is

acquired if Aσ = Qσ. Hence, the proof is completed for the special cases Aσ = Pσ and Aσ = Qσ.
We now consider Aσ 6= Pσ and Aσ 6= Qσ. There exist m ∈ N and n ∈ N such that am = 0 and

an = 1. We choose m and n as the first index such that m ≥ k and n ≥ k. Let n > m (the other case
is done analogously). As Aσ is on the edge PσQσ of Sσ, we get ak = 0. Hence, we have ai = 0 for
i = k + 1, k + 2, . . . , n− 1 and an = 1. Consider any point X with code representation σxkxk+1xk+2 . . .
on PσRσ and any point Y with code representation σykyk+1yk+2 . . . on QσRσ which are the closest
points to Aσ. In that case, xi must be 0 for i = k, k + 1, . . . , n− 1. There are only two options for xn

which are 0 or 2. In the case of xn = 2, it is obtained αi = 1 for i = n + 1, n + 2, . . .. So, xn must
be equal to 0 for the computation of the closest distance. In addition, we attain βi = 1 since xi 6= 1
for i = n + 1, n + 2, . . .. Moreover, we get yi 6= ak for i = k, k + 1, k + 2 . . . because Y is on the edge
QσRσ (that is, yi ∈ {1, 2} for i = k, k + 1, k + 2 . . .). We thus have β′i = 1 for i = k + 1, k + 2, k + 3 . . ..
Furthermore, for i = k + 1, k + 2, . . . , n− 1, we obtain α′i = 1 and α′n = 0 since ai = 0 and an = 1. (Note
that, yk must be equal to 1). For any i = n + 1, n + 2, n + 3 . . ., if ai = 0, then αi = 0 and α′i = 1 and if
ai = 1, then αi = 1, α′i = 0. It follows that

µ + µ′ =
∞

∑
i=k+1

αi + βi

2i +
∞

∑
i=k+1

α′i + β′i
2i

=
∞

∑
i=n+1

αi + βi

2i +
∞

∑
i=k+1

α′i + β′i
2i

=
∞

∑
i=n+1

αi + 1
2i +

∞

∑
i=k+1

α′i + 1
2i

=
1
2n +

1
2k +

n−1

∑
i=k+1

α′i
2i +

∞

∑
i=n+1

αi + α′i
2i

=
1
2n +

1
2k +

n−1

∑
i=k+1

1
2i +

∞

∑
i=n+1

1
2i

=
1
2n +

1
2k +

n−1

∑
i=k+1

1
2i +

∞

∑
i=n+1

1
2i

=
1

2k−1 .

(7)
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A similar computation shows ν + ν′ ≥ 1
2k−1 . This concludes the proof.

Remark 3. If Bσ and Cσ are on the sides QσRσ and PσRσ of the equilateral Sierpinski Gasket with edge length
1 respectively, then we have

d(Bσ, PσQσ) + d(Bσ, PσRσ) =
1

2k−1 = |QσRσ|, (8)

and
d(Cσ, PσQσ) + d(Cσ, QσRσ) =

1
2k−1 = |PσRσ|. (9)

However, Proposition 3 does not hold for every edges of scalene and isosceles Sierpinski Gaskets.

Example 3. Consider the scalene Sierpinski Gasket with vertices P = (0, 0), Q = (0, 8) and R = (6, 0). Let A
with code representation 10 = 1000 . . . be a point on the edge PQ of the scalene Sierpinski Gasket. By using the
formula given in Theorem 1, we first compute the distance d(100 . . . , PR). The code representation of any point
on PR must be in the form x1x2x3 . . . where xi ∈ {0, 2}. In order to obtain αi as 0, x1 must be 0 since the term
ai of A equals to zero for i = 2, 3, 4 . . .. Moreover, we have to take xi as 0 for i = 2, 3, 4 . . . owing to the fact that
a1 = 1, |PQ| = 8 and |QR| = 10. We thus obtain

d(100 . . . , PR) = d(100 . . . , 000 . . .) =
|PQ|

22 + 23 + 24 + · · · = 4.

We now compute the distance d(100 . . . , RQ). The code representation of any point on RQ must be in
the form y1y2y3 . . . where yi ∈ {1, 2}. To get the shortest distance, we must choose y1 as a1 (if we take y1=2,
then we obtain y1y2y3 . . . = 2111 . . . for computation of shortest distance). Furthermore, yi must be 2 for
i = 2, 3, 4 . . . because a2 = 0, |PQ| = 8 and |PR| = 6. Thus we have y1y2y3 . . . = 1222 . . .. So, we have

d(100 . . . , RQ) = d(100 . . . , 1222 . . .) =
|PR|+ |PR|

23 + 24 + 25 + · · · = 3,

which shows
d(100 . . . , PR) + d(100 . . . , PR) = 7 6= 8 = |PQ|.

By similar calculations, the following result can be given.

Corollary 2. Let S be a scalene or an isosceles Sierpinski Gasket. If A is a point on the shortest edge of S,
then the sum of the distances of point A to the other two edges is fixed and this distance equals to the length of
the shortest edge.

Proposition 4. Let S be an equilateral Sierpinski Gasket with vertices P, Q and R. Suppose that A is a point
on the edge PQ with the code representation a1a2a3 . . . where A 6= P. Then there are many points on PR that
determine the shortest distance of the point A to the line PR. Additionally, if n is the first index such that ai 6= 0,
then the set of points on PR which determines this shortest distance is

{a1a2a3 . . . an−1xnxn+1xn+2xn+3 . . . | xi ∈ {0, 2} for i = n, n + 1, n + 2, . . .}.

Proof. Let A be a point on the edge PQ with the code representation a1a2a3 . . . where A 6= P and let n
be the first index such that ai 6= 0. Consider any point X on PR with the code representation x1x2x3 . . .
where xi ∈ {0, 2}.

Firstly, suppose that ai = 1 for i = n + 1, n + 2, n + 3, . . .. In this case, xi must be 0 for i =

1, 2, . . . , n− 1 to obtain the shortest distance between X and A. We can choose xn as 0 or 2 since ai = 1
for i = n + 1, n + 2, n + 3, . . ., and thus αi = 1 for i = n + 1, n + 2, n + 3, . . .. Additionally, xi can be
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taken 0 or 2 for i = n + 1, n + 2, n + 3, . . . because ai = 1, and so βi = 1 for i = n + 1, n + 2, n + 3, . . ..
This shows that the set of points X is

{a1a2a3 . . . an−1xnxn+1xn+2xn+3 . . . | xi ∈ {0, 2} for i = n + 1, n + 2, n + 3, . . .}.

We now assume that there exists at least one as = 0 for s ∈ {n + 1, n + 2, n + 3, . . .}. Obviously,
xi must be 0 for i = 1, 2, . . . , n− 1. Note that there are two options for xn such as 0 and 2. However,
in order to obtain the shortest distance between X and A, xn has to be 0 since at least one as is 0 for
s ∈ {n + 1, n + 2, n + 3, . . .}. Hence, at least one αs must be 0. Moreover, xi can be taken 0 or 2 for
i = n + 1, n + 2, n + 3, . . . as ai = 1, and thus βi = 1 for i = n + 1, n + 2, n + 3, . . .. Consequently, the set
of points X are

{a1a2a3 . . . an−10xn+1xn+2xn+3 . . . | xi ∈ {0, 2} for i = n + 1, n + 2, n + 3, . . .}.

5. Conclusions

In this paper, we define code metrics on the code sets of Sierpinski-like triangles and then we give
some interesting geometrical properties by using these metric formulas. These metric formulas can be
also used in different computational works associated with the Sierpinski triangle.
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