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Abstract: A relation is viewed as a granularity from a granular computing perspective. A classic rough
set contains only one granularity. A multi-granulation rough set contains multiple granularities, which
promotes the applications of classical rough set. Firstly, this paper uses the incomplete interval-valued
decision information system (IIVDIS) as research object and constructs two rough set models in the light
of single granularity rough set model for applying the rough set theory to real life more widely, which
are optimistic multi-granulation rough set (OMGRS) model and pessimistic multi-granulation rough
set (PMGRS) model in the IIVDIS. Secondly, we design two algorithms to compute the roughness and
the degree of dependence that are two tools for measuring uncertainty of rough set. Finally, several
experiments are performed on six UCI data sets to verify the validity of the proposed theorems.

Keywords: multi-threshold tolerance relation; multi-granulation; incomplete interval-valued decision
information system; rough set

1. Introduction

Pawlak raised rough set theory (RST) [1] in 1982, which has become a relatively complete system
after more than thirty years of rapid development. Since the advent of this theory, its strong qualitative
analysis [2] makes it a great success in many science and technology fields. As an effective tool for
handling ambiguity and uncertainty, the RST has been widely applied in many areas based on its
preliminary knowledge. For instance, artificial intelligence, machine learning, data mining, medical
diagnosis, algebra [3–9] and so on. The RST has extended rapidly in recent years and has a lot of
fruitful research results [10–17], which is concerned by domestic and foreign scholars and peers.

A subset of universe be often referred to as a concept. The set of these subsets is called knowledge
with regard to U. An information system (IS) can represent knowledge and information. Many scholars
have studied a variety of rough set problems about information system. Initially, attribute values
of the information system are characteristic values or single-values. Later, due to some scholars
have different practical needs during their researches, the attribute values are gradually extended to
interval numbers, set values, intuitionistic fuzzy numbers, lattice values, etc. and relevant information
systems are correspondingly produced [18–23]. However, data obtained from real world may exist
the phenomena of missing, measurement errors, data noise or other situations. It is inevitable that
these reasons will cause the incompleteness of information system. In general, this information
system is called an incomplete information system. At first, attribute values studied in the incomplete
information system were discrete. Subsequently, the discrete attribute values were extended to
continuous values or even other values (such as interval numbers, set values and so on). The classical
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rough set theory cannot handle problems in incomplete information systems [24–26]. Hence many
professors pretreated the data, and then used the ideology of the classical RST to solve the problem.
These articles [27,28] adopted complete methods to study and deal with the incomplete information
system. Nevertheless, these approaches may changed the original data and increased new human
uncertainty of information system. Therefore, many scholars provided some relations that were
distinct from equivalence relation to avoid changing the original data in the incomplete information
system. Zhang [29] studied a method of acquisition rules in incomplete decision tables in the light of
similarity relation. The literature [30] calculated the core attribute set based on ameliorative tolerance
relationship. Wei [31] optimized the dominance relation and proposed a valued dominance relationship
that was negatively/positively concerned in classification analysis. The essay [32] raised α-dominance
relationship by using the dominant degree between interval values and gave methods for solving
approximate reductions. Gao [33] gave the concept of approximate set based on θ-improved limited
tolerance relation. Some researchers [34–37] took into account preference orders in incomplete ordered
information system, and put forward methods to acquire reductions or rules. To study incomplete
interval-values information system, Dai [38,39] defined two different similar relations to further explore
system uncertainty.

The classification is the foundation of research in RST. From this perspective, a discourse is
divided into knowledge granules [40–43] or concepts. An equivalence relation on the discourse can
be considered as a granularity. The partition induced by equivalence relation is treated as a granular
space. The classical RST can be seen as a theory that is formed by a single granularity under the
equivalence relation. To better apply and promote RST, a new multi-view data analysis method was
emerged in recent years, which was data modeling method in multi-granulation rough set (MGRS).
Between 1996 and 1997, Zadeh first proposed the concept of granular computing [44]. Qian [45]
advanced multi-granulation rough set, which has been researched by many scholars and specialists.
However, in practical problems, a discourse is not only divided by one relation, sometimes it will
be divided by multiple relations. Faced with this problem, the previously studied single-granularity
rough set theory was powerless. It is necessary to consider multiple granularities. Some professors
consider fuzzy logic and fuzzy logic inference in [46–48]. The literature [49] extended two MGRS
models into an incomplete information system. Yang [50] mainly researched several characteristics
of MGRS in interval-valued information systems. Xu [51] used the order information system as their
investigative object and discussed some measurement methods. Wang [52] introduced the similarity
dominance relation for studying MGRS in incomplete ordered decision systems. Yang [53] mainly
discussed the relationships among several of multigranulation rough sets in incomplete information
system. However, experts and professors have less researches on MGRS in incomplete interval-valued
information systems.

To facilitate our discussion, Section 2 mainly introduces some essential notions about RST and
incomplete interval-valued decision information system. A single granularity rough set model is
established based on the multi-threshold tolerance relation that is defined as the connection degree
of Zhao’s [54] set pair analysis. Section 3 establishes two MGRS models (namely, OMRGS model and
PMGRS model), and discusses their properties in accordance with the multi-threshold tolerance relation
and the viewpoint of multiple granularities. Section 4 explores the uncertainty measure of MGRS
in IIVDIS, which are the roughness and the degree of dependence of MGRS in IIVDIS to measure
uncertainty of rough set. Section 5 exhibits two algorithms for computing the roughness and the degree
of dependence in single granularity rough set and MGRS, respectively. In addition, several UCI data
sets are used to verify the correctness of proposed theorems in Section 6. The article ends up with
conclusion in Section 7.

2. Preliminaries about RST and IIVDIS

In many cases, we utilize a table to collect data and knowledge. This table regards the universe
(that is, objects of discussion) as rows, attributes features represented by objects as columns, which
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is usually called an information system. For the convenience of the discussion later, this section first
gives a few basic definitions [24,38,39].

In general, an information system is denoted as a quadruple IS = (U, A, V, f ). When A = C ∪ D
and C ∩ D 6= ∅ hold simultaneously, DT = (U, C ∪ D, V, f ) is known as a decision table. It also can
be called a decision information system. In here, U is called universe/discourse that represents objects
of discussing. Set of characteristics represented by discourse is usually called attribute set A, which
contains two parts: the set of condition attributes C and the set of decision attributes D. Va is a subset
of V that is the domain of attributes. It can be written as V = ∏a∈A Va. f : U× A→ V is a mapping to
transform an ordered pair (x, a) to a value for each x ∈ U, a ∈ A. In addition, the mapping is called an
information function. Especially, f (x, d)(d ∈ D) is single-valued for every x ∈ U.

In mathematics, any subset R of the product of the universe U can be known as a binary relation
on U. R is usually referred to as an equivalence relation on U if and only if R satisfies reflexivity,
symmetry and transitivity. Pawlak approximation space can be denoted by a binary group U, R.
Another mathematical object is the partition on the universe U, which is closely related to the
equivalence relation. Specifically, a quotient set is the set of all equivalence classes obtained from the
equivalence relation R. It can be easily verify that the quotient set is a partition on U, written down as
U/R = {[x]R|x ∈ U}. Where equivalence class [x]R = {y ∈ U|xRy} for x ∈ U.

If for ∀a ∈ A, x ∈ U, attribute value ( f (x, a) = [l−, l+]) is an interval number, then IS is an
interval-valued information system, referred to as I IS = (U, A, V, f ). Particularly, if l− = l+, f (x, a) is
a real number, so the interval-valued information system is the generalization of classical information
system. Where l−, l+ ∈ R, R is the set of real number.

Let f (x, a) = [l−, l+], if at least one of lower bound l− and upper bound l+ is an unknown
value, thus we will write down as f (x, a) = *. In addition, I I IS = (U, A, V, f ) is an incomplete
interval-valued information system. I IDIS = (U, C ∪ D, V, f ) is an incomplete interval-valued
decision information system or incomplete interval-valued decision table. In the following discussion,
we only discuss the situation where D = {d}.

Definition 1. Given an incomplete interval-valued information system II IS = (U, A, V, f ), for ∀ ak ∈ A,
xi, xj ∈ U. The attribute values of two objects xi, xj are not *. Let f k(xi, a) = µ = [µ−, µ+], f k(xj, a) = ν =

[ν−, ν+], then the similarity degree [55] with reference to xi, xj under the attribute ak is

Sk
ij(µ, ν) =

|µ ∩ ν|
|µ ∪ ν| . (1)

In the above equation, | · | represents the length of the closed interval. The similarity degree can also be
transformed as

Sk
ij(µ, ν) =

|µ ∩ ν|
|µ|+ |ν| − |µ ∪ ν| . (2)

Remark 1. (1) The length of the empty set and the single-point set are equal to zero;
(2) Assume that two attribute values are single-point set. If µ = ν, then Sk

ij(µ, ν) = 1; if µ 6= ν, then

Sk
ij(µ, ν) = 0.

(3) If µ = * or ν = * or µ = *, ν = *, then set the similarity degree with respect to xi, xj equals N.

Definition 2. [54] Let two sets Q, G constitute a set pair H = (Q, G). According to the need of the problem
W, we can analyze the characteristics of set pair H, and obtain N characteristics (attributes). For two sets Q,
G, which have same values on S attributes, different values on P attributes, and the rest of F = N − S− P
attribute values are ambiguous. S

N is called the identical degree of these two sets under problem W. Referred to
as the identical degree. P

N is called the opposite degree of these two sets under problem W. Referred to as the
opposite degree. F

N is called the difference degree of these two sets under problem W. Referred to as the difference
degree. Then the connection degree with respect to two sets Q, G can be defined as
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µ(Q, G) =
S
N

+
F
N
· i + P

N
· j. (3)

Denoted as µ(Q, G) = s + f · i + p · j. Where s, f , p ∈ [0, 1], s + f + p = 1. In the calculation, set
j = −1, i ∈ [−1, 1], i and j also participate in the operation as coefficients. However, the function of i, j are just
markings in this paper. i is the marking of the difference degree, j is the marking of the opposite degree.

Given an incomplete interval-valued information system (IIIS), the similarity degree of the two objects can
be calculated in the light of the values of Definition 1. There are three possible cases:

(1) The two attribute values are both not equal to *, and their similarity degree is greater than or equal to a
given threshold;

(2) The two attribute values are both not equal to *, and their similarity degree is less than a given threshold;
(3) At least one of the two attribute values is equal to *, and their similarity degree is considered to be N.

Definition 3. [56] Given an incomplete interval-valued information system IIIS = (U, A, V, f ), B ⊆ A,
∀xi, xj ∈ U. Let S1 = {bk ∈ B|(Sk

ij(µ, ν) ≥ λ)∧ ν 6= *∧ µ 6= *} is a set of the attributes that the similarity degree

of xi, xj under the attribute bk is not less than a similar level λ. P1 = {bk ∈ B|Sk
ij(µ, ν) < λ∧ ν 6= *∧ µ 6= *}

is a set of the attributes that the similarity degree of xi, xj under the attribute bk is less than a similar level λ.
F1 = {bk ∈ B|Sk

ij(µ, ν) = N} is a set of the attributes that the similarity degree of xi, xj under the attribute bk
is equal to N.

Where |S1|
|B| shows the tolerance degree of the two objects with regard to B. |P1|

|B| shows the opposite degree of

the two objects with regard to B. |F1|
|B| shows the difference degree of the two objects with regard to B. Then the

relationship of xi, xj is known as

µ1(xi, xj) =
|S1|
|B| +

|F1|
|B| · i +

|P1|
|B| · j. (4)

µ1 indicates similar connection degree of the two objects xi, xj. Referred to as µ1(xi, xj) = s1 + f1 · i+ p1 · j.
Where s1, f1, p1 ∈ [0, 1], s1 + f1 + p1 = 1, the function of i, j are just markings. i is the marking of the difference
degree, j is the marking of the opposite degree.

It is unreasonable to put two objects in the same class only if the tolerance degree of the two objects under
the attribute subset is equal to 1. In [56], the paper considers the tolerance degree and the opposite degree but is
unaware of difference degree. Whether two objects x1, x2 should be classified as the same class, the article [56]
defines the tolerance relation based on similarity connection degree to solve this problem. In there, we assume
that λ = 0.5, α = 0.6, β = 0.2 and there are five attributes, that is B = {a1, a2, a3, a4, a5}. If attribute
values of x1, x2 under the attribute set B are [1, 2], [1, 3], [1, 5], [∗, 2], [∗, 1] and [1, 2], [1, 4], [1, 5], [5, ∗], [2, ∗],
respectively. We can see from the calculation that (x1, x2) ∈ Bαβ(Bαβ is the tolerance relation based on similarity
connection degree in [56]). However, it is obvious that the attribute values of x1, x2 under attribute a4, a5 are
absolutely different. Therefore, in order to better study the information system containing multiple unknown
values or missing parts. Based on the above discussion, this article also considers the difference degree apart from
the tolerance degree and the opposite degree. The concrete method is: the tolerance degree of the two objects under
the attribute subset is greater than or equal to α and the opposite degree of the two objects under the attribute
subset is less than or equal to β. Moreover, the difference degree of the two objects under the attribute subset is
less than or equal to γ. In summary, the multi-threshold tolerance relation is given below.

Definition 4. In the incomplete interval-valued decision information system (IIVDIS) I IVDIS = (U, C ∪
{d}, V, f ), for any B ⊆ C, xi, xj ∈ U. α ∈ (0.5, 1], β, γ ∈ [0, 0.5). The multi-threshold tolerance relation can
be referred as

Rαβγ
B = {(xi, xi)} ∪ {(xi, xj)|µ1(xi, xj) = s1 + f1 · i + p1 · j,

s1 ≥ α, f1 ≤ γ, p1 ≤ β, s1 + f1 + p1 = 1}
(5)
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s1, f1, p1 represent, respectively, the tolerance degree, the difference degree and the opposite degree of objects
xi, xj with reference to B. α is the threshold of the tolerance degree, β is the threshold of the opposite degree, γ is
the threshold of the difference degree.

The multi-threshold tolerance class can be defined as

[xi]Rαβγ
B

= {xj ∈ U|(xi, xj) ∈ Rαβγ
B }. (6)

U/Rαβγ
B = {[x1]Rαβγ

B
, [x2]Rαβγ

B
, · · · , [x|U|]Rαβγ

B
}. (7)

In addition, a binary relation under decision attribute d is remembered as Rd = {(xi, xj) ∈ U2| fd(xi) =

fd(xj)}. Decision class and quotient set can be alluded to as [x]d = {y ∈ U| fd(x) = fd(y)}, U/d =

{[x]d|∀x ∈ U} = {D1, D2, · · · , Dq}(Di ⊆ U, i = 1, 2, · · · , q), respectively. Obviously, relation Rd is an
equivalence relation and U/d constitutes a partition on U.

Remark 2. (1) It obviously observes that the multi-threshold tolerance relation is reflexive and symmetrical
rather than transitive, which is a tolerance relation; J = ∪{[xi]Rαβγ

B
} is a cover on U.

(2) It is reasonable to put two objects in the same class if the tolerance degree of the two objects under the
attribute subset is not less than α and the opposite degree, the difference degree of the two objects under the
attribute subset is less than or equal to β, γ, respectively.

(3) If we don’t consider parameter γ and the range of α, β, the multi-threshold tolerance relation is degraded
into the tolerance relation in [56]. Therefore, the tolerance relation in [56] can be regarded as a specific
situation of multi-threshold tolerance relation.

(4) When B = {a}, {a} can be replaced by a. The following paper will denote Rαβγ
a , [xi]Rαβγ

a
, U/Rαβγ

a .

Definition 5. In the I IVDIS = (U, C ∪ {d}, V, f ), for each B ⊆ C, X ⊆ U. The approximations of X
concerning a multi-threshold tolerance relation Rαβγ

B can be represented by

Rαβγ
B (X) = {x ∈ U|[x]

Rαβγ
B
⊆ X};

Rαβγ
B (X) = {x ∈ U|[x]

Rαβγ
B
∩ X 6= ∅}.

(8)

Rαβγ
B , Rαβγ

B are called lower and upper approximation operator of X concerning a multi-threshold tolerance

relation Rαβγ
B .

Moreover, similar to classical rough set, positive region is recorded as Pos
Rαβγ

B
(X) = Rαβγ

B (X), negative region

is known as Neg
Rαβγ

B
(X) = U − Rαβγ

B (X), what boundary region represents the difference between the lower

approximation and upper approximation of X concerning Rαβγ
B is denoted by Bn

Rαβγ
B

(X) = Rαβγ
B (X)− Rαβγ

B (X).

Some relationships between upper and lower approximation are similar to the properties of upper and lower
approximation of the classical rough set. Detailed results are as follows.

Theorem 1. In the I IVDIS = (U, C ∪ {d}, V, f ), for any B ⊆ C, X, Y ⊆ U. There have

(1) Rαβγ
B (X) ⊆ X ⊆ Rαβγ

B (X). (Boundedness)

(2) Rαβγ
B (∼ X) =∼ Rαβγ

B (X); Rαβγ
B (∼ X) =∼ Rαβγ

B (X). (Duality)

(3) Rαβγ
B (∅) = Rαβγ

B (∅) = ∅; Rαβγ
B (U) = Rαβγ

B (U) = U. (Normality)

(4) Rαβγ
B (X ∩Y) = Rαβγ

B (X) ∩ Rαβγ
B (Y); Rαβγ

B (X ∪Y) = Rαβγ
B (X) ∪ Rαβγ

B (Y). (Multiplicativity and
Additivity)
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(5) If X ⊆ Y holds, then Rαβγ
B (X) ⊆ Rαβγ

B (Y) and Rαβγ
B (X) ⊆ Rαβγ

B (Y). (Monotonicity)

(6) Rαβγ
B (X ∪Y) ⊇ Rαβγ

B (X) ∪ Rαβγ
B (Y); Rαβγ

B (X ∩Y) ⊆ Rαβγ
B (X) ∩ Rαβγ

B (Y). (Inclusion)

Proof. (1) For ∀x ∈ Rαβγ
B (X), have [x]

Rαβγ
B
⊆ X. If x ∈ [x]

Rαβγ
B

, thus x ∈ X hold. So Rαβγ
B (X) ⊆ X.

For ∀x ∈ X. x ∈ [x]
Rαβγ

B
must be hold on account of Rαβγ

B satisfies reflexivity, so [x]
Rαβγ

B
∩ X 6= ∅.

That is x ∈ Rαβγ
B (X). Hence X ⊆ Rαβγ

B (X).

From the above, we can prove that Rαβγ
B (X) ⊆ X ⊆ Rαβγ

B (X).

(2) For ∀x ∈ Rαβγ
B (∼ X), according to Definition 5 (Equation (8)), there have [x]

Rαβγ
B
⊆∼ X ⇔

[x]
Rαβγ

B
∩ X = ∅⇔ x /∈ Rαβγ

B (X)⇔ x ∈∼ Rαβγ
B (X).

In summary, Rαβγ
B (∼ X) =∼ Rαβγ

B (X). Obviously, Rαβγ
B (X) =∼ Rαβγ

B (∼ X), therefore,

Rαβγ
B (∼ X) =∼ Rαβγ

B (X).

(3) It can be known from (1) of this theorem that Rαβγ
B (∅) ⊆ ∅, moreover, it is evident that

∅ ⊆ Rαβγ
B (∅), so Rαβγ

B (∅) = ∅.

Suppose that Rαβγ
B (∅) 6= ∅, then there must be exists x ∈ Rαβγ

B (∅) s.t. [x]
Rαβγ

B
∩∅ 6= ∅, which is

a contradiction with [x]
Rαβγ

B
∩∅ = ∅. Hence Rαβγ

B (∅) = ∅.

From the proof of (2) of this theorem, we can see Rαβγ
B (U) =∼ Rαβγ

B (∼ U) =∼ Rαβγ
B (∅) =∼ ∅ =

U. Rαβγ
B (U) =∼ Rαβγ

B (∼ U) =∼ Rαβγ
B (∅) =∼ ∅ = U.

(4) For ∀x ∈ Rαβγ
B (X ∩ Y), have [x]

Rαβγ
B
⊆ X ∩ Y⇔ [x]

Rαβγ
B
⊆ X and [x]

Rαβγ
B
⊆ Y⇔ x ∈ Rαβγ

B (X)

and x ∈ Rαβγ
B (Y)⇔ x ∈ Rαβγ

B (X) ∩ Rαβγ
B (Y).

For ∀x ∈ Rαβγ
B (X ∪ Y), have [x]

Rαβγ
B
∩ (X ∪ Y) 6= ∅ ⇔ [x]

Rαβγ
B
∩ X 6= ∅ or [x]

Rαβγ
B
∩ Y 6= ∅ ⇔

x ∈ Rαβγ
B (X) or x ∈ Rαβγ

B (Y)⇔ x ∈ Rαβγ
B (X) ∪ Rαβγ

B (Y).
(5) Since X ⊆ Y, so Rαβγ

B (X∩Y) = Rαβγ
B (X). Under the equation (4) of this theorem, Rαβγ

B (X∩Y) =

Rαβγ
B (X)∩ Rαβγ

B (Y). Therefore, Rαβγ
B (X) = Rαβγ

B (X)∩ Rαβγ
B (Y). In other words, Rαβγ

B (X) ⊆ Rαβγ
B (Y).

Since X ⊆ Y, so Rαβγ
B (X ∪Y) = Rαβγ

B (Y). Under the equation (4) of this theorem, Rαβγ
B (X ∪Y) =

Rαβγ
B (X) ∪ Rαβγ

B (Y). Therefore, Rαβγ
B (Y) = Rαβγ

B (X) ∪ Rαβγ
B (Y). In other words, Rαβγ

B (X) ⊆ Rαβγ
B (Y).

(6) For X ⊆ X ∪ Y, Y ⊆ X ∪ Y. In the light of the equation (5) of this theorem, we can acquire
Rαβγ

B (X) ⊆ Rαβγ
B (X ∪Y), Rαβγ

B (Y) ⊆ Rαβγ
B (X ∪Y). So Rαβγ

B (X) ∪ Rαβγ
B (Y) ⊆ Rαβγ

B (X ∪Y).

For X ∩Y ⊆ X, Y. According to the equation (5) of this theorem, we can obtain Rαβγ
B (X ∩Y) ⊆

Rαβγ
B (X), Rαβγ

B (X ∩Y) ⊆ Rαβγ
B (Y). So Rαβγ

B (X ∩Y) ⊆ Rαβγ
B (X) ∩ Rαβγ

B (Y),
Inspired by the roughness of X with regard to the classical approximation space. Following definition

describes the roughness and the degree of dependence of X based on the multi-threshold tolerance relation
in single granularity rough set.

Definition 6. In the I IVDIS = (U, C ∪ {d}, V, f ), for any B ⊆ C, X ⊆ U. Then the roughness of X is

ρ
αβγ
B (X) = 1−

|Rαβγ
B (X)|

|Rαβγ
B (X)|

. (9)

Moreover, what the quality of approximation of d is decided by B is referred to as the degree of dependence.
It can be denoted as
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δ(B, d) =
1
|U| ·

q

∑
j=1
|Rαβγ

B (Dj)|. (10)

3. Two Multi-Granulation Rough Set Models in IIVDIS

The classical rough set studies the single-granularity space when an equivalence relation in the
discourse is regarded as a granularity. According to the needs of real life, it is also very significant
to research multiple granularities. For every x, a multi-threshold tolerance class induced by the
multi-threshold tolerance relation be considered as a granule. In IIVDIS, multiple multi-threshold
tolerance relations and multiple granules are obtained in consideration of multiple granularities.
There are four situations:

(a) At least one granule is contained in a given concept;
(b) All granules have intersection with a given concept;
(c) All granules can be included in a given concept;
(d) At least one granule can intersect with a given concept.

We can utilize (a) and (b) to depict lower approximation and upper approximation (approximations
for short) of the multi-granulation rough set under optimistic situation. (c) and (d) are treated as main
idea for defining approximations of the multi-granulation rough set under pessimistic circumstance.
The following will elaborate the OMGRS and PMGRS.

3.1. The Optimistic Multi-Granulation Rough Set in IIVDIS

To more broadly apply RST to the complex IIVDIS of real life, this section studies multiple
granularities on the basis of the multi-threshold tolerance relation. For the sake of convenience, the
proof of all the following theorems only consider the case with respect to two granularities while the
studied granularities are limited.

Definition 7. In the I IVDIS = (U, C∪{d}, V, f ), B1, B2, · · · , Bt ⊆ C(t ≤ 2|C|), X ⊆ P(U). The following

defines two operators OCαβγ

∑t
i=1 Bi

and OCαβγ

∑t
i=1 Bi

on P(U):

OCαβγ

∑t
i=1 Bi

(X) = {x ∈ U| ∨t
i=1 [x]Rαβγ

Bi

⊆ X};

OCαβγ

∑t
i=1 Bi

(X) = {x ∈ U| ∧t
i=1 [x]Rαβγ

Bi

∩ X 6= ∅}.
(11)

where P(U) is all subsets of U, “∨ ”, “∧ ” represent the meaning of “or”, “and”, respectively. OCαβγ

∑t
i=1 Bi

(X)

and OCαβγ

∑t
i=1 Bi

(X) are known as lower approximation and upper approximation of X concerning optimistic

multi-granulation in the IIVDIS, respectively.

If OCαβγ

∑t
i=1 Bi

(X) = OCαβγ

∑t
i=1 Bi

(X), we call that X is the optimistic exact set in the IIVDIS. If not, X is

called the optimistic rough set.
According to prior definition, in the IIVDIS, the boundary region of optimistic rough set is

BnOC
∑t

i=1 Bi
(X) = OCOC

∑t
i=1 Bi

(X)−OCαβγ

∑t
i=1 Bi

(X). (12)

The boundary region of optimistic rough set denotes the distinction of both approximations in the IIVDIS.
When BnOC

∑t
i=1 Bi

(X) = 0, then X is the optimistic exact set. Otherwise, X is the optimistic rough set.

Theorem 2. In the I IVDIS = (U, C ∪ {d}, V, f ), B1, B2, · · · , Bt ⊆ C(t ≤ 2|C|), X, Y ⊆ P(U).
Then approximations of the optimistic multi-granulation satisfy the following properties:
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(1) OCαβγ

∑t
i=1 Bi

(X) ⊆ X ⊆ OCαβγ

∑t
i=1 Bi

(X). (Optimistic boundedness)

(2) OCαβγ

∑t
i=1 Bi

(∼ X) =∼ OCαβγ

∑t
i=1 Bi

(X), OCαβγ

∑t
i=1 Bi

(∼ X) =∼ OCαβγ

∑t
i=1 Bi

(X). (Optimistic duality)

(3) OCαβγ

∑t
i=1 Bi

(∅) = OCαβγ

∑t
i=1 Bi

(∅) = ∅, OCαβγ

∑t
i=1 Bi

(U) = OCαβγ

∑t
i=1 Bi

(U) = U. (Optimistic normality)

(4) OCαβγ

∑t
i=1 Bi

(X ∩Y) ⊆ OCαβγ

∑t
i=1 Bi

(X) ∩OCαβγ

∑t
i=1 Bi

(Y),

OCαβγ

∑t
i=1 Bi

(X ∪Y) ⊇ OCαβγ

∑t
i=1 Bi

(X) ∪OCαβγ

∑t
i=1 Bi

(Y). (Optimistic inclusion 1)

(5) If X ⊆ Y, then OCαβγ

∑t
i=1 Bi

(X) ⊆ OCαβγ

∑t
i=1 Bi

(Y), OCαβγ

∑t
i=1 Bi

(X) ⊆ OCαβγ

∑t
i=1 Bi

(Y). (Optimistic monotonicity)

(6) OCαβγ

∑t
i=1 Bi

(X ∪Y) ⊇ OCαβγ

∑t
i=1 Bi

(X) ∪OCαβγ

∑t
i=1 Bi

(Y),

OCαβγ

∑t
i=1 Bi

(X ∩Y) ⊆ OCαβγ

∑t
i=1 Bi

(X) ∩OCαβγ

∑t
i=1 Bi

(Y). (Optimistic inclusion 2)

Proof. For convenience of description, here let t = 2, that is B1, B2. When B1 = B2, these properties
are clearly established. Now prove the case of B1 6= B2.

(1) For ∀x ∈ OCαβγ
B1+B2

(X), there have [x]
Rαβγ

B1

⊆ X or [x]
Rαβγ

B2

⊆ X. In addition, because

multi-threshold tolerance relation satisfies reflexivity, forasmuch x ∈ [x]
Rαβγ

B1

and x ∈ [x]
Rαβγ

B2

. It can be

acquired that x ∈ X. Hence, OCαβγ
B1+B2

(X) ⊆ X.

For ∀x ∈ X, apparently, x ∈ [x]
Rαβγ

B1

and x ∈ [x]
Rαβγ

B2

. So [x]
Rαβγ

B1

∩ X 6= ∅ and [x]
Rαβγ

B2

∩ X 6= ∅.

According to the Definition 7 (Equation (11)), x ∈ OCαβγ
B1+B2

(X). Therefore, X ⊆ OCαβγ
B1+B2

(X).

Therefore, we can prove OCαβγ
B1+B2

(X) ⊆ X ⊆ OCαβγ
B1+B2

(X).

(2) For ∀x ∈ OCαβγ
B1+B2

(∼ X), have

[x]
Rαβγ

B1

⊆∼ X or [x]
Rαβγ

B2

⊆∼ X ⇔ [x]
Rαβγ

B1

∩ X = ∅ or [x]
Rαβγ

B2

∩ X = ∅ ⇔ x /∈ OCαβγ
B1+B2

(X) ⇔

x ∈∼ OCαβγ
B1+B2

(X).

In summary, OCαβγ
B1+B2

(∼ X) =∼ OCαβγ
B1+B2

(X).

If OCαβγ
B1+B2

(∼ X) =∼ OCαβγ
B1+B2

(X), then OCαβγ
B1+B2

(X) =∼ OCαβγ
B1+B2

(∼ X). So OCαβγ
B1+B2

(∼ X) =∼

OCαβγ
B1+B2

(X).

(3) It can be got from property (1) of this theorem that OCαβγ
B1+B2

(∅) ⊆ ∅, moreover, it is clear that

∅ ⊆ OCαβγ
B1+B2

(∅), so OCαβγ
B1+B2

(∅) = ∅.

Suppose that OCαβγ
B1+B2

(∅) 6= ∅, then there must be exists x ∈ OCαβγ
B1+B2

(∅), s.t. [x]
Rαβγ

B1

∩∅ 6= ∅

and [x]
Rαβγ

B2

∩∅ 6= ∅, which is a contradiction. Hence OCαβγ
B1+B2

(∅) = ∅.

From the proof of (2) of this theorem we can see

OCαβγ
B1+B2

(U) =∼ OCαβγ
B1+B2

(∼ U) =∼ OCαβγ
B1+B2

(∅) =∼ ∅ = U.

OCαβγ
B1+B2

(U) =∼ OCαβγ
B1+B2

(∼ U) =∼ OCαβγ
B1+B2

(∅) =∼ ∅ = U.

(4) For ∀x ∈ OCαβγ
B1+B2

(X ∩ Y), as defined by Definition 7 (Equation (11)), [x]
Rαβγ

B1

⊆ X ∩ Y or

[x]
Rαβγ

B2

⊆ X ∩Y, thus [x]
Rαβγ

B1

⊆ X and [x]
Rαβγ

B1

⊆ Y hold simultaneously or [x]
Rαβγ

B2

⊆ X and [x]
Rαβγ

B2

⊆ Y

hold simultaneously. In other words, not only [x]
Rαβγ

B1

⊆ X or [x]
Rαβγ

B2

⊆ X hold, but also [x]
Rαβγ

B1

⊆ Y or
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[x]
Rαβγ

B2

⊆ Y hold. Therefore, x ∈ OCαβγ
B1+B2

(X) and x ∈ OCαβγ
B1+B2

(Y), i.e., x ∈ OCαβγ
B1+B2

(X)∩OCαβγ
B1+B2

(Y).

Hence, OCαβγ
B1+B2

(X ∩Y) ⊆ OCαβγ
B1+B2

(X)∩OCαβγ
B1+B2

(Y).

For ∀x ∈ OCαβγ
B1+B2

(X) ∪OCαβγ
B1+B2

(Y), as defined by Definition 7 (Equation (11)), [x]
Rαβγ

B1

∩ X 6= ∅

and [x]
Rαβγ

B2

∩ X 6= ∅ hold simultaneously or [x]
Rαβγ

B1

∩Y 6= ∅ and [x]
Rαβγ

B2

∩Y 6= ∅ hold simultaneously.

That is, not only [x]
Rαβγ

B1

∩ (X ∪ Y) 6= ∅ hold, but also [x]
Rαβγ

B2

∩ (X ∪ Y) 6= ∅ hold. Therefore, x ∈

OCαβγ
B1+B2

(X ∪Y). Hence, OCαβγ
B1+B2

(X) ∪OCαβγ
B1+B2

(Y) ⊆ OCαβγ
B1+B2

(X ∪Y).

(5) Since X ⊆ Y, so OCαβγ
B1+B2

(X ∩ Y) = OCαβγ
B1+B2

(X). Besides, under the property (4) of this

theorem, OCαβγ
B1+B2

(X ∩ Y) ⊆ OCαβγ
B1+B2

(X) ∩ OCαβγ
B1+B2

(Y). Namely, OCαβγ
B1+B2

(X) ⊆ Rαβγ
OC1+B2

(X) ∩

OCαβγ
B1+B2

(Y). Therefore, OCαβγ
B1+B2

(X) ⊆ Rαβγ
OC1+B2

(Y).

Since X ⊆ Y, so OCαβγ
B1+B2

(X ∪ Y) = OCαβγ
B1+B2

(Y). In addition, under the property (4) of this

theorem, OCαβγ
B1+B2

(X) ∪OCαβγ
B1+B2

(Y) ⊆ OCαβγ
B1+B2

(X ∪ Y). Therefore, OCαβγ
B1+B2

(X) ∪OCαβγ
B1+B2

(Y) ⊆

OCαβγ
B1+B2

(Y). That is to say, OCαβγ
B1+B2

(X) ⊆ OCαβγ
B1+B2

(Y).
(6) For X ⊆ X ∪Y, Y ⊆ X ∪Y. On the grounds of the property (5) of this theorem, we can get
OCαβγ

B1+B2
(X) ⊆ OCαβγ

B1+B2
(X ∪Y), OCαβγ

B1+B2
(Y) ⊆ OCαβγ

B1+B2
(X ∪Y).

So OCαβγ
B1+B2

(X) ∪OCαβγ
B1+B2

(Y) ⊆ OCαβγ
B1+B2

(X ∪Y).

For X ∩Y ⊆ X, X ∩Y ⊆ Y. According to the property (5) of this theorem, we can obtain

OCαβγ
B1+B2

(X ∩Y) ⊆ OCαβγ
B1+B2

(X), OCαβγ
B1+B2

(X ∩Y) ⊆ OCαβγ
B1+B2

(Y).

So OCαβγ
B1+B2

(X ∩Y) ⊆ OCαβγ
B1+B2

(X) ∩OCαβγ
B1+B2

(Y).
To sum up, the proof process only needs to repeat the proof of Theorem 2 step by step when the

number of granularity increases from two to t. For convenience, we consider only the situation of two
granularities in the following proofs.

3.2. The Pessimistic Multi-Granulation Rough Set in IIVDIS

This section is going to discuss the approximation problem of pessimistic multi-granulation on
the basis of the multi-threshold tolerance relation in IIVDIS.

Definition 8. In the I IVDIS = (U, C ∪ {d}, V, f ), B1, B2, · · · , Bt ⊆ C(t ≤ 2|C|), X ⊆ P(U). Then the

following will define two operators PCαβγ

∑t
i=1 Bi

and PCαβγ

∑t
i=1 Bi

on P(U):

PCαβγ

∑t
i=1 Bi

(X) = {x ∈ U| ∧t
i=1 [x]Rαβγ

Bi

⊆ X};

PCαβγ

∑t
i=1 Bi

(X) = {x ∈ U| ∨t
i=1 [x]Rαβγ

Bi

∩ X 6= ∅}.
(13)

PCαβγ

∑t
i=1 Bi

(X) and PCαβγ

∑t
i=1 Bi

(X) are known as lower approximation and upper approximation concerning

pessimistic multi-granulation of X in the IIVDIS, respectively.

If PCαβγ

∑t
i=1 Bi

(X) = PCαβγ

∑t
i=1 Bi

(X), we call X is the pessimistic exact set in the IIVDIS. Otherwise, X is

referred ro the pessimistic rough set.
According to the above definition, in the IIVDIS, the boundary region of pessimistic rough set can be defined as

BnPC
∑t

i=1 Bi
(X) = PCαβγ

∑t
i=1 Bi

(X)− PCαβγ

∑t
i=1 Bi

(X). (14)
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Analogously, the boundary region of pessimistic rough set denotes the distinction both approximations in
the IIVDIS. When BnPC

∑t
i=1 Bi

(X) = 0, X is the pessimistic exact set. If not, X is the pessimistic rough set.

Theorem 3. In the I IVDIS = (U, C ∪ {d}, V, f ), B1, B2, · · · , Bt ⊆ C(t ≤ 2|C|), X, Y ⊆ P(U). Then the
pessimistic multi-granulation approximation sets satisfy the following properties:

(1) PCαβγ

∑t
i=1 Bi

(X) ⊆ X ⊆ PCαβγ

∑t
i=1 Bi

(X). (Pessimistic boundedness)

(2) PCαβγ

∑t
i=1 Bi

(∼ X) =∼ PCαβγ

∑t
i=1 Bi

(X), PCαβγ

∑t
i=1 Bi

(∼ X) =∼ PCαβγ

∑t
i=1 Bi

(X). (Pessimistic duality)

(3) PCαβγ

∑t
i=1 Bi

(∅) = PCαβγ

∑t
i=1 Bi

(∅) = ∅, PCαβγ

∑t
i=1 Bi

(U) = PCαβγ

∑t
i=1 Bi

(U) = U. (Pessimistic normality)

(4) PCαβγ

∑t
i=1 Bi

(X ∩Y) = PCαβγ

∑t
i=1 Bi

(X) ∩ PCαβγ

∑t
i=1 Bi

(Y),

PCαβγ

∑t
i=1 Bi

(X ∪Y) = PCαβγ

∑t
i=1 Bi

(X) ∪ PCαβγ

∑t
i=1 Bi

(Y). (Pessimistic equality)

(5) If X ⊆ Y, then PCαβγ

∑t
i=1 Bi

(X) ⊆ PCαβγ

∑t
i=1 Bi

(Y), PCαβγ

∑t
i=1 Bi

(X) ⊆ PCαβγ

∑t
i=1 Bi

(Y). (Pessimistic monotonicity)

(6) PCαβγ

∑t
i=1 Bi

(X ∪Y) ⊇ PCαβγ

∑t
i=1 Bi

(X) ∪ PCαβγ

∑t
i=1 Bi

(Y),

PCαβγ

∑t
i=1 Bi

(X ∩Y) ⊆ PCαβγ

∑t
i=1 Bi

(X) ∩ PCαβγ

∑t
i=1 Bi

(Y). (Pessimistic inclusion)

Proof. Its proving process is similar with Theorem 2.
(1) For ∀x ∈ PCαβγ

B1+B2
(X), [x]

Rαβγ
B1

⊆ X and [x]
Rαβγ

B2

⊆ X hold. In addition, because multi-threshold

tolerance relation satisfies reflexivity, thus x ∈ [x]
Rαβγ

B1

and x ∈ [x]
Rαβγ

B2

. So it can be obtained that x ∈ X.

From the above can be seen PCαβγ
B1+B2

(X) ⊆ X.

For ∀x ∈ X, evidently, x ∈ [x]
Rαβγ

B1

and x ∈ [x]
Rαβγ

B2

. So [x]
Rαβγ

B1

∩X 6= ∅ and [x]
Rαβγ

B2

∩X 6= ∅. In the

light of Definition 8 (Equation (13)), x ∈ PCαβγ
B1+B2

(X). Therefore, X ⊆ PCαβγ
B1+B2

(X).

From the above, we can prove that PCαβγ
B1+B2

(X) ⊆ X ⊆ PCαβγ
B1+B2

(X).

(2) For ∀x ∈ PCαβγ
B1+B2

(∼ X), have

[x]
Rαβγ

B1

⊆∼ X and [x]
Rαβγ

B2

⊆∼ X ⇔ [x]
Rαβγ

B1

∩ X = ∅ and [x]
Rαβγ

B2

∩ X = ∅⇔ x /∈ PCαβγ
B1+B2

(X)⇔

x ∈∼ PCαβγ
B1+B2

(X).

In summary, PCαβγ
B1+B2

(∼ X) =∼ PCαβγ
B1+B2

(X).

It is obvious that PCαβγ
B1+B2

(∼ X) =∼ PCαβγ
B1+B2

(X), then PCαβγ
B1+B2

(X) =∼ PCαβγ
B1+B2

(∼ X),

so PCαβγ
B1+B2

(∼ X) =∼ PCαβγ
B1+B2

(X).

(3) It can be got from property (1) of this theorem that PCαβγ
B1+B2

(∅) ⊆ ∅, moreover, it is clear that

∅ ⊆ PCαβγ
B1+B2

(∅), so PCαβγ
B1+B2

(∅) = ∅.

Suppose that PCαβγ
B1+B2

(∅) 6= ∅, then there must be exists x ∈ PCαβγ
B1+B2

(∅), s.t. [x]
Rαβγ

B1

∩∅ 6= ∅ or

[x]
Rαβγ

B2

∩∅ 6= ∅, which is a contradiction. Hence PCαβγ
B1+B2

(∅) = ∅.

From the proof of (2) of this theorem we can see

PCαβγ
B1+B2

(U) =∼ PCαβγ
B1+B2

(∼ U) =∼ PCαβγ
B1+B2

(∅) =∼ ∅ = U.

PCαβγ
B1+B2

(U) =∼ PCαβγ
B1+B2

(∼ U) =∼ PCαβγ
B1+B2

(∅) =∼ ∅ = U.
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(4) For ∀x ∈ PCαβγ
B1+B2

(X ∩Y), as defined by Definition 8 (Equation (13)),

x ∈ PCαβγ
B1+B2

(X ∩Y)

⇔ [x]
Rαβγ

B1

⊆ X ∩Y and [x]
Rαβγ

B2

⊆ X ∩Y

⇔ [x]
Rαβγ

B1

⊆ X and [x]
Rαβγ

B1

⊆ Y, [x]
Rαβγ

B2

⊆ X and [x]
Rαβγ

B2

⊆ Y

⇔ [x]
Rαβγ

B1

⊆ X and [x]
Rαβγ

B2

⊆ X, [x]
Rαβγ

B1

⊆ Y and [x]
Rαβγ

B2

⊆ Y

⇔ x ∈ PCαβγ
B1+B2

(X) and x ∈ PCαβγ
B1+B2

(Y)

⇔ x ∈ PCαβγ
B1+B2

(X) ∩ PCαβγ
B1+B2

(Y)

Hence, PCαβγ
B1+B2

(X ∩Y) = PCαβγ
B1+B2

(X) ∩ PCαβγ
B1+B2

(Y).

For ∀x ∈ PCαβγ
B1+B2

(X ∪Y),

x ∈ PCαβγ
B1+B2

(X ∪Y)
⇔ [x]

Rαβγ
B1

∩ (X ∪Y) 6= ∅ or [x]
Rαβγ

B2

∩ (X ∪Y) 6= ∅

⇔ [x]
Rαβγ

B1

∩ X 6= ∅ or [x]
Rαβγ

B1

∩Y 6= ∅ or [x]
Rαβγ

B2

∩ X 6= ∅ or [x]
Rαβγ

B2

∩Y 6= ∅

⇔ [x]
Rαβγ

B1

∩ X 6= ∅ or [x]
Rαβγ

B2

∩ X 6= ∅, or [x]
Rαβγ

B1

∩Y 6= ∅ or [x]
Rαβγ

B2

∩Y 6= ∅

⇔ x ∈ PCαβγ
B1+B2

(X) or x ∈ PCαβγ
B1+B2

(Y)

⇔ x ∈ PCαβγ
B1+B2

(X) ∪ PCαβγ
B1+B2

(Y)

Hence, PCαβγ
B1+B2

(X ∪Y) = PCαβγ
B1+B2

(X) ∪ PCαβγ
B1+B2

(Y).

(5) Since X ⊆ Y, so PCαβγ
B1+B2

(X ∩Y) = PCαβγ
B1+B2

(X). Besides, under the property (4) of this theorem,

PCαβγ
B1+B2

(X ∩ Y) = PCαβγ
B1+B2

(X) ∩ PCαβγ
B1+B2

(Y). Therefore, PCαβγ
B1+B2

(X) = Rαβγ
PC1+B2

(X) ∩ PCαβγ
B1+B2

(Y).

That is, PCαβγ
B1+B2

(X) ⊆ Rαβγ
PC1+B2

(Y).

Since X ⊆ Y, so PCαβγ
B1+B2

(X ∪Y) = PCαβγ
B1+B2

(Y). In addition, under the property (4) of this theorem,

PCαβγ
B1+B2

(X) ∪ PCαβγ
B1+B2

(Y) = PCαβγ
B1+B2

(X ∪ Y). Therefore, PCαβγ
B1+B2

(X) ∪ PCαβγ
B1+B2

(Y) = PCαβγ
B1+B2

(Y).

That is to say, PCαβγ
B1+B2

(X) ⊆ PCαβγ
B1+B2

(Y).
(6) For X ⊆ X ∪Y, Y ⊆ X ∪Y. In the light of the property (5) of this theorem, we can get
PCαβγ

B1+B2
(X) ⊆ PCαβγ

B1+B2
(X ∪Y), PCαβγ

B1+B2
(Y) ⊆ PCαβγ

B1+B2
(X ∪Y).

So PCαβγ
B1+B2

(X) ∪ PCαβγ
B1+B2

(Y) ⊆ PCαβγ
B1+B2

(X ∪Y).

For X ∩Y ⊆ X, X ∩Y ⊆ Y. According to the property (5) of this theorem, we can obtain

PCαβγ
B1+B2

(X ∩Y) ⊆ PCαβγ
B1+B2

(X), PCαβγ
B1+B2

(X ∩Y) ⊆ PCαβγ
B1+B2

(Y).

So PCαβγ
B1+B2

(X ∩Y) ⊆ PCαβγ
B1+B2

(X) ∩ PCαβγ
B1+B2

(Y),

4. The Uncertainty Measure of MGRS in IIVDIS

Section 3 presents the concepts and properties of the optimistic and pessimistic multi-granulation
rough set in IIVDIS, which are studied based on single granularity rough set. Then, this section will
mainly explore tools for measuring uncertainty of MGRS. Firstly, we study the relationship between
single granularity and multi-granulation rough set in IIVDIS.

Theorem 4. In the I IVDIS = (U, C ∪ {d}, V, f ), B1, B2, · · · , Bt ⊆ C(t ≤ 2|C|), X ⊆ U. There have:

(1) OCαβγ

∑t
i=1 Bi

(X) = ∪t
i=1Rαβγ

Bi
(X), (2) OCαβγ

∑t
i=1 Bi

(X) = ∩t
i=1Rαβγ

Bi
(X).
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Proof. (1) For ∀x ∈ OCαβγ
B1+B2

(X), then [x]
Rαβγ

B1

⊆ X or [x]
Rαβγ

B2

⊆ X⇔ x ∈ Rαβγ
B1

(X) or x ∈ Rαβγ
B2

(X)⇔

x ∈ Rαβγ
B1

(X) ∪ Rαβγ
B2

(X). Therefore, OCαβγ

∑2
i=1 Bi

(X) = ∪2
i=1Rαβγ

Bi
(X).

(2) For ∀x ∈ OCαβγ
B1+B2

(X), then [x]
Rαβγ

B1

∩ X 6= ∅ and [x]
Rαβγ

B2

∩ X 6= ∅ ⇔ x ∈ Rαβγ
B1

(X) and

x ∈ Rαβγ
B2

(X)⇔ x ∈ Rαβγ
B1

(X) ∩ Rαβγ
B2

(X). Therefore, OCαβγ

∑2
i=1 Bi

(X) = ∩2
i=1Rαβγ

Bi
(X).

Theorem 5. In the I IVDIS = (U, C ∪ {d}, V, f ), B1, B2, · · · , Bt ⊆ C(t ≤ 2|C|), X ⊆ U. There have:

(1) PCαβγ

∑t
i=1 Bi

(X) = ∩t
i=1Rαβγ

Bi
(X), (2) PCαβγ

∑t
i=1 Bi

(X) = ∪t
i=1Rαβγ

Bi
(X).

Proof. (1) For ∀x ∈ PCαβγ
B1+B2

(X), then [x]
Rαβγ

B1

⊆ X and [x]
Rαβγ

B2

⊆ X⇔ x ∈ Rαβγ
B1

(X) and x ∈ Rαβγ
B2

(X)

⇔ x ∈ Rαβγ
B1

(X) ∩ Rαβγ
B2

(X). Therefore, PCαβγ

∑2
i=1 Bi

(X) = ∩2
i=1Rαβγ

Bi
(X),

(2) For ∀x ∈ PCαβγ
B1+B2

(X), then [x]
Rαβγ

B1

∩ X 6= ∅ or [x]
Rαβγ

B2

∩ X 6= ∅ ⇔ x ∈ Rαβγ
B1

(X) or x ∈

Rαβγ
B2

(X)⇔ x ∈ Rαβγ
B1

(X) ∪ Rαβγ
B2

(X). Therefore, PCαβγ

∑2
i=1 Bi

(X) = ∪2
i=1Rαβγ

Bi
(X).

Theorem 6. In the I IVDIS = (U, C ∪ {d}, V, f ), B1, B2, · · · , Bt ⊆ C(t ≤ 2|C|), X, Y ⊆ U. Then:

(1) OCαβγ

∑t
i=1 Bi

(X ∩Y) = ∪t
i=1(Rαβγ

Bi
(X) ∩ Rαβγ

Bi
(Y)), (2) OCαβγ

∑t
i=1 Bi

(X ∪Y) = ∩t
i=1(Rαβγ

Bi
(X) ∪ Rαβγ

Bi
(Y)).

Proof. These two formulas is effortless to demonstrate owing to the Theorem 4 and the Theorem 1 (4).

Theorem 7. In the I IVDIS = (U, C ∪ {d}, V, f ), B1, B2, · · · , Bt ⊆ C(t ≤ 2|C|), X, Y ⊆ U. Then:

(1) PCαβγ

∑t
i=1 Bi

(X ∩Y) = ∩t
i=1(Rαβγ

Bi
(X) ∩ Rαβγ

Bi
(Y)), (2) PCαβγ

∑t
i=1 Bi

(X ∪Y) = ∪t
i=1(Rαβγ

Bi
(X) ∪ Rαβγ

Bi
(Y)).

Proof. These two formulas is effortless to demonstrate owing to the Theorem 5 and the Theorem 1 (4).

Theorem 8. In the I IVDIS = (U, C ∪ {d}, V, f ), B1, B2, · · · , Bt ⊆ C(t ≤ 2|C|), X ⊆ U. Then:

(1) PCαβγ

∑t
i=1 Bi

(X) ⊆ Rαβγ
Bi

(X) ⊆ OCαβγ

∑t
i=1 Bi

(X), (2) OCαβγ

∑t
i=1 Bi

(X) ⊆ Rαβγ
Bi

(X) ⊆ PCαβγ

∑t
i=1 Bi

(X).

Proof. These two formulas is effortless to demonstrate owing to the Theorem 4 and the Theorem 5.

In the following, we will investigate the roughness and the degree of dependence of MGRS and
their properties in IIVDIS as well as classical single granularity rough set.

Definition 9. In the I IVDIS = (U, C ∪ {d}, V, f ), B1, B2, · · · , Bt ⊆ C(t ≤ 2|C|), X ⊆ U. The optimistic
roughness of X can be defined as

ρ
αβγ
OC (X,

t

∑
i=1

Bi) = 1−
|OCαβγ

∑t
i=1 Bi

(X)|

|OCαβγ

∑t
i=1 Bi

(X)|
. (15)

where X 6= ∅. In particularly, if OCαβγ

∑t
i=1 Bi

(X) = ∅, then we can say ρ
αβγ
OC (X, ∑t

i=1 Bi) = 1.

Definition 10. In the I IVDIS = (U, C ∪ {d}, V, f ), B1, B2, · · · , Bt ⊆ C(t ≤ 2|C|), X ⊆ U. The pessimistic
roughness of X is
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ρ
αβγ
PC (X,

t

∑
i=1

Bi) = 1−
|PCαβγ

∑t
i=1 Bi

(X)|

|PCαβγ

∑t
i=1 Bi

(X)|
. (16)

where X 6= ∅. In particularly, if PCαβγ

∑t
i=1 Bi

(X) = ∅, then we can say ρ
αβγ
PC (X, ∑t

i=1 Bi) = 1.

Theorem 9. In the I IVDIS = (U, C ∪ {d}, V, f ), B1, B2, · · · , Bt ⊆ C(t ≤ 2|C|), X ⊆ U.
Then ρ

αβγ
PC (X, ∑t

i=1 Bi) ≥ ρ
αβγ
Bi

(X) ≥ ρ
αβγ
OC (X, ∑t

i=1 Bi).

Proof. It can be obtained by the Theorem 8 that

PCαβγ

∑t
i=1 Bi

(X) ⊆ Rαβγ
Bi

(X) ⊆ OCαβγ

∑t
i=1 Bi

(X),

OCαβγ

∑t
i=1 Bi

(X) ⊆ Rαβγ
Bi

(X) ⊆ PCαβγ

∑t
i=1 Bi

(X).

So

|PCαβγ

∑t
i=1 Bi

(X)|

|PCαβγ

∑t
i=1 Bi

(X)|
≤
|Rαβγ

Bi
(X)|

|Rαβγ
Bi

(X)|
≤
|OCαβγ

∑t
i=1 Bi

(X)|

|OCαβγ

∑t
i=1 Bi

(X)|
.

Moreover, in the light of Equations (9), (15) and (16), we can acquire

ρ
αβγ
PC (X,

t

∑
i=1

Bi) ≥ ρ
αβγ
Bi

(X) ≥ ρ
αβγ
OC (X,

t

∑
i=1

Bi).

Let Dj(j = 1, 2, · · · , q) is decision class that is induced by decision attribute d. When all objects
are classified by attribute set, we mainly study the degree of dependence in IIVDIS, which represents
the percentage of objects that can be exactly classified into Dj optimistically/pessimistically.

Definition 11. In the I IVDIS = (U, C∪{d}, V, f ), B1, B2, · · · , Bt ⊆ C(t ≤ 2|C|). Then decided by ∑t
i=1 Bi,

the optimistic degree of dependence of d is

δOC(
t

∑
i=1

Bi, d) =
1
|U| ·

q

∑
j=1

(|OCαβγ

∑t
i=1 Bi

(Dj)|). (17)

Definition 12. In the I IVDIS = (U, C∪{d}, V, f ), B1, B2, · · · , Bt ⊆ C(t ≤ 2|C|). Then decided by ∑t
i=1 Bi,

the pessimistic degree of dependence of d is

δPC(
t

∑
i=1

Bi, d) =
1
|U| ·

q

∑
j=1

(|PCαβγ

∑t
i=1 Bi

(Dj)|). (18)

Theorem 10. In the I IVDIS = (U, C ∪ {d}, V, f ), B1, B2, · · · , Bt ⊆ C(t ≤ 2|C|). Then δPC(∑t
i=1 Bi, d) ≤

δ(Bi, d) ≤ δOC(∑t
i=1 Bi, d).

Proof. For all Dj(j = 1, 2, · · · , q), Dj ⊆ U. From the Theorem 8, we will obtain that

PCαβγ

∑t
i=1 Bi

(Dj) ⊆ Rαβγ
Bi

(Dj) ⊆ OCαβγ

∑t
i=1 Bi

(Dj).
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Therefore, |PCαβγ

∑t
i=1 Bi

(Dj)| ≤ |Rαβγ
Bi

(Dj)| ≤ |OCαβγ

∑t
i=1 Bi

(Dj)|. Besides, according to the

Equations (10), (17) and (18), we will prove

δPC(
t

∑
i=1

Bi, d) ≤ δ(Bi, d) ≤ δOC(
t

∑
i=1

Bi, d).

Example 1. Just as revealed in Table 1, which is an incomplete interval-valued decision information system.
It represents situation of treating wart of 20 people, which is selected from Immunotherapy data set in Section 6.
Here, I IVDIS = (U, C ∪ {d}, V, f ). Where universe U = {x1, x2, · · · , x20}, xi represent the ith people
(i = 1, 2, · · · , 20). C = {a1, a2, · · · , a7}, ai(i = 1, 2, · · · , 7) represent sex, age, time, number of warts, type,
area, induration diameter, respectively. d shows the result of treatment. f (x, d) ∈ {0, 1}. In this example, let
λ = 0.5, α = 0.6, β = 0.4, γ = 0.2.

It is easy to know decision attribute divides discourse into two parts, U/d = {D1, D2}. Where D1 ∪D2 =

U, D1 ∩D2 = ∅. Assume that D1 = {x5, x10, x13, x14, x15}, then D2 = U−D1. Let B1, B2 ⊆ C, B1 = {a3},
B2 = {a7}. It can be obtained by Equations (11) and (13):

OCαβγ
B1+B2

(D1) = {x10, x13, x14, x15}, OCαβγ
B1+B2

(D1) = {x5, x10, x13, x14, x15}.

PCαβγ
B1+B2

(D1) = {x14, x15}, PCαβγ
B1+B2

(D1) = {x1, x2, x4, x5, x9, x10, x11, x13, x14, x15, x19}.
In what follows, the approximation sets of D1 based on single multi-threshold tolerance relation are

displayed by Equation (8):
Rαβγ

B1
(D1) = {x10, x13, x14, x15}, Rαβγ

B2
(D1) = {x14, x15},

Rαβγ
B1

(D1) = {x5, x10, x13, x14, x15, x19}, Rαβγ
B2

(D1) = {x1, x2, x4, x5, x9, x10, x11, x13, x14, x15},

Rαβγ
B1∪B2

(D1) = {x5, x10, x13, x14, x15}, Rαβγ
B1∪B2

(D1) = {x5, x10, x13, x14, x15}.
Apparently, the following properties hold:

Rαβγ
B1

(D1) ∪ Rαβγ
B2

(D1) = OCαβγ
B1+B2

(D1), Rαβγ
B1

(D1) ∩ Rαβγ
B2

(D1) = OCαβγ
B1+B2

(D1).

Rαβγ
B1

(D1) ∩ Rαβγ
B2

(D1) = PCαβγ
B1+B2

(D1), Rαβγ
B1

(D1) ∪ Rαβγ
B2

(D1) = PCαβγ
B1+B2

(D1).
Then it also can be acquired that:

PCαβγ
B1+B2

(D1) ⊆ OCαβγ
B1+B2

(D1) ⊆ D1 ⊆ OCαβγ
B1+B2

(D1) ⊆ PCαβγ
B1+B2

(D1).

In addition, by Equations (9), (15) and (16):

ρ
αβγ
B1

(D1) = 1−
|Rαβγ

B1
(D1)|

|Rαβγ
B1

(D1)|
= 1− 4

6
=

1
3

,

ρ
αβγ
B2

(D1) = 1−
|Rαβγ

B2
(D1)|

|Rαβγ
B2

(D1)|
= 1− 2

10
=

4
5

,

ρ
αβγ
OC (D1, B1 + B2) = 1−

|OCαβγ
B1+B2

(D1)|

|OCαβγ
B1+B2

(D1)|
= 1− 4

5
=

1
5

,

ρ
αβγ
PC (D1, B1 + B2) = 1−

|PCαβγ
a1+a2

(D1)|

|PCαβγ
B1+B2

(D1)|
= 1− 2

11
=

9
11

.

Clearly,
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ρ
αβγ
PC (D1, B1 + B2) ≥ ρ

αβγ
B1

(D1) ≥ ρ
αβγ
OC (D1, B1 + B2),

ρ
αβγ
PC (D1, B1 + B2) ≥ ρ

αβγ
B2

(D1) ≥ ρ
αβγ
OC (D1, B1 + B2).

Analogously, by Equations (8), (11) and (13), we can gain:
Rαβγ

B1
(D2) = U − {x5, x10, x13, x14, x15, x19},

Rαβγ
B2

(D2) = {x3, x6, x7, x8, x12, x16, x17, x18, x19, x20},

OCαβγ
B1+B2

(D2) = U − {x5, x10, x13, x14, x15},

PCαβγ
B1+B2

(D2) = {x3, x6, x7, x8, x12, x16, x17, x18, x20}.
So

δ(B1, d) =
1
|U| · (|R

αβγ
B1

(D1)|+ |R
αβγ
B1

(D2)|) =
9

10
,

δ(B2, d) =
1
|U| · (|R

αβγ
B2

(D1)|+ |R
αβγ
B2

(D2)|) =
3
5

,

δOC(B1 + B2, d) =
1
|U| · (|OCαβγ

B1+B2
(D1)|+ |OCαβγ

B1+B2
(D2)| =

19
20

,

δPC(B1 + B2, d) =
1
|U| · (|PCαβγ

B1+B2
(D1)|+ |PCαβγ

B1+B2
(D2)| =

11
20

.

Therefore,

δPC(B1 + B2, d) ≤ δ(B1, d) ≤ δOC(B1 + B2, d).

and

δPC(B1 + B2, d) ≤ δ(B2, d) ≤ δOC(B1 + B2, d).

Table 1. An Incomplete Interval-valued Decision Information System.

U a1 a2 a3 a4 a5 a6 a7 d

x1 [1.90, 2.10] [31.35, 34.65] * * * * [23.75, 26.25] 1
x2 [0.95, 1.05] [23.75, 26.25] [5.4625, 6.0375] [1.90, 2.10] [0.95, 1.05] [285, 315] [6.65, 7.35] 1
x3 [1.90, 2.10] * * * [0.95, 1.05] [28.50, 31.50] [2.85, 3.15] 1
x4 [1.90, 2.10] [45.60, 50.40] [9.7375, 10.7625] [6.65, 7.35] * [47.50, 52.50] [23.75, 26.25] 1
x5 [0.95, 1.05] [31.35, 34.65] [1.6625, 1.8375] [6.65, 7.35] [1.90, 2.10] [360.05, 397.95] [6.65, 7.35] 0
x6 [1.90, 2.10] [36.10, 39.90] [2.3750, 2.6250] [0.95, 1.05] * [40.85, 45.15] [47.50, 52.50] 1
x7 [0.95, 1.05] * [9.500, 10.5000] * * * * 1
x8 * [22.80, 25.20] [4.0375, 4.4625] [0.95, 1.05] [0.95, 1.05] * [28.50, 31.50] 1
x9 [0.95, 1.05] [18.05, 19.95] [7.3625, 8.1375] * [0.95, 1.05] * [6.65, 7.35] 1
x10 [0.95, 1.05] [32.30, 35.70] * [6.65, 7.35] * [60.80, 67.20] [6.65, 7.35] 0
x11 [0.95, 1.05] [27.55, 30.45] [4.7500, 5.2500] [11.40, 12.60] [2.85, 3.15] [71.25, 78.75] [6.65, 7.35] 1
x12 [0.95, 1.05] * [2.1375, 2.3625] * [2.85, 3.15] [48.45, 53.55] * 1
x13 [0.95, 1.05] [43.70, 48.30] * [3.80, 4.20] * [86.45, 95.55] [23.75, 26.25] 0
x14 * * * * * [82.65, 91.35] [5.70, 6.30] 0
x15 [0.95, 1.05] * [10.6875, 11.8125] * [0.95, 1.05] [68.40, 75.60] * 0
x16 * [16.15, 17.85] [8.0750, 8.9250] [1.90, 2.10] * * [7.60, 8.40] 1
x17 * * [4.7500, 5.2500] [1.90, 2.10] [0.95, 1.05] * [4.75, 5.25] 1
x18 [1.90, 2.10] [21.85, 24.15] [6.4125, 7.0875] [5.70, 6.30] [0.95, 1.05]] * [1.90, 2.10] 1
x19 * [34.20, 37.80] [1.6625, 1.8375] * [2.85, 3.15] [42.75, 47.25] [2.85, 3.15] 1
x20 [0.95, 1.05] [36.10, 39.90] [7.1250, 7.8750] [7.60, 8.40] [1.90, 2.10] [53.20, 58.80] [42.75, 47.25] 1

5. Algorithms for Computing the Roughness and the Degree of Dependence in IIVDIS

Based on the introduction of foregoing sections, this section designs two algorithms for computing
the roughness and the degree of dependence in IIVDIS. Where Algorithm 1 describes how to acquire
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the roughness and the degree of dependence of single granularity rough set in IIVDIS. First of all, we
input a testing system IIVDIS = (U, C ∪ {d}, V, f ). Under the situation of a granularity Bi, where step 2
computes all decision classes U/d = {D1, D2, · · · , Dq}. The steps 4–6 calculate multi-threshold tolerance
class for every x. In the steps 7–10, lower approximations and upper approximations are initialized as the
∅. In the following, the steps 11–21 can obtain lower and upper approximation sets and the roughness
according to Equations (8) and (9). The degree of dependence is initialized as ∅ and achieved in the light
of Equation (10) in the steps 22–25. At last, we gain the roughness and the degree of dependence of single
granularity rough set in IIVDIS.

Algorithm 1: The algorithm for computing the roughness and the degree of dependence of
single granularity rough set in IIVDIS.

Input :a testing system I IVDIS = (U, C ∪ {d}, V, f ), where Bi ⊆ C.
Output : the roughness and the degree of dependence of single granularity rough set in IIVDIS.

1 begin
2 compute U/d = {D1, D2, · · · , Dq}; /* compute decision classes Dj */
3 for i=1:t do
4 for every x ∈ U do
5 compute [x]Rαβγ

Bi

;

6 end
7 for j=1:q do
8 let Rαβγ

Bi
(Dj) = ∅;

9 Rαβγ
Bi

(Dj) = ∅; /* the initialization of lower and upper approximations */

10 end
11 for j=1:q do
12 for every x ∈ U do
13 if [x]Rαβγ

Bi

⊆ Dj then

14 Rαβγ
Bi

(Dj) = Rαβγ
Bi

(Dj) ∪ {x};
15 end
16 if x ∈ Dj then

17 Rαβγ
Bi

(Dj) = Rαβγ
Bi

(Dj) ∪ [x]Rαβγ
B

; /* calculate the lower/upper approximation

of Dj by Equation (8) */
18 end
19 end

20 ρ
αβγ
Bi

(Dj) = 1−
|Rαβγ

Bi
(Dj)|

|Rαβγ
Bi

(Dj)|
; /* compute the degree of dependence by Equation (9) */

21 end
22 δ(Bi, d) = ∅;
23 for j=1:q do

24 δ(Bk, d) = δ(Bi, d) +
|Rαβγ

Bi
(Dj)|
|U| ; /* compute the degree of dependence by Equation (10)

*/
25 end

return : ρ
αβγ
Bi

(Dj), δ(Bi, d).

26 end
27 end

The exhibited Algorithm 2 is an algorithm that can get the roughness and the degree of dependence
of MGRS in IIVDIS. Initially, we introduce a testing system I IVDIS = (U, C ∪ {d}, V, f ) and quotient
set U/d = {D1, D2, · · · , Dq}. In addition, lower and upper approximation sets can be directly
obtained by Algorithm 1 considering each granularity Bi(i = 1, 2, · · · , t). Now, we totally discuss
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two cases from optimistic and pessimistic perspective. Steps 3–4 initialize the lower approximations
and upper approximations of optimistic/pessimistic multi-granulation of Dj in IIVDIS, which become
∅ or U according to logic connection words “∨” or “∧” in Equations (11) and (13). Steps 5–10 count
the lower approximations and upper approximations of optimistic/pessimistic multi-granulation of Dj.
The steps 11–12 calculate the optimistic roughness and the pessimistic roughness in the light of
Equations (15) and (16). Next, the optimistic degree of dependence and the pessimistic degree of
dependence are initialized as ∅ and acquired by Equations (17) and (18) in the steps 14–17. Finally, we
gain the roughness and the degree of dependence of MGRS in IIVDIS.

Algorithm 2: The algorithm for computing the roughness and the degree of dependence of
MGRS in IIVDIS.

Input : (1) a testing system I IVDIS = (U, C ∪ {d}, V, f ), where Bi ⊆ C(i = 1, 2, · · · , t).
(2) the quotient set U/d = {D1, D2, · · · , Dq}, lower and upper approximations of Dj:

Rαβγ
Bi

(Dj), Rαβγ
Bi

(Dj)(i = 1, 2, · · · , t.j = 1, 2, · · · , q).
Output : the roughness and the degree of dependence of MGRS in IIVDIS:

ρ
αβγ
OC (Dj, ∑t

i=1 Bi)), ρ
αβγ
PC (Dj, ∑t

i=1 Bi), δOC(∑t
i=1 Bi, d), δPC(∑t

i=1 Bi, d).
1 begin
2 for j=1:q do
3 OCαβγ

∑t
i=1 Bi

(Dj) = ∅; PCαβγ

∑t
i=1 Bi

(Dj) = U;

4 OCαβγ

∑t
i=1 Bi

(Dj) = U; PCαβγ

∑t
i=1 Bi

(Dj) = ∅; /* the initialization of optimistic/pessimistic

lower and upper approximations */
5 for i=1:t do
6 OCαβγ

∑t
i=1 Bi

(Dj) = OCαβγ

∑t
i=1 Bi

(Dj) ∪ Rαβγ
Bi

(Dj);

7 PCαβγ

∑t
i=1 Bi

(Dj) = PCαβγ

∑t
i=1 Bi

(Dj) ∩ Rαβγ
Bi

(Dj);

8 OCαβγ

∑t
i=1 Bi

(Dj) = OCαβγ

∑t
i=1 Bi

(Dj) ∩ Rαβγ
Bi

(Dj);

9 PCαβγ

∑t
i=1 Bi

(Dj) = PCαβγ

∑t
i=1 Bi

(Dj) ∪ Rαβγ
Bi

(Dj); /* calculate optimistic/pessimistic lower

and upper approximations by Equation (11) and 13 */
10 end

11 ρ
αβγ
OC (Dj, ∑t

i=1 Bi) = 1−
|OCαβγ

∑t
i=1 Bi

(Dj)|

|OCαβγ

∑t
i=1 Bi

(Dj)|
;

12 ρ
αβγ
PC (Dj, ∑t

i=1 Bi) = 1−
|PCαβγ

∑t
i=1 Bi

(Dj)|

|PCαβγ

∑t
i=1 Bi

(Dj)|
; /* compute optimistic/pessimistic roughness in

the light of Equations (15) and (16) */
13 end
14 δOC(∑t

i=1 Bi, d) = ∅;
15 δPC(∑t

i=1 Bi, d) = ∅;
16 for j=1:q do

17 δOC(∑t
i=1 Bi, d) = δOC(∑t

i=1 Bi, d) ∪
|OCαβγ

∑t
i=1 Bi

(Dj)|

|U| ;

δPC(∑t
i=1 Bi, d) = δOC(∑t

i=1 Bi, d) ∪
|PCαβγ

∑t
i=1 Bi

(Dj)|

|U| ; /* compute optimistic/pessimistic

degree of dependence by Equations (17) and (18) */
18 end

return : ρ
αβγ
OC (Dj, ∑t

i=1 Bi), ρ
αβγ
PC (Dj, ∑t

i=1 Bi), δOC(∑t
i=1 Bi, d), δPC(∑t

i=1 Bi, d).
19 end



Symmetry 2018, 10, 208 18 of 22

6. Experimental Section

We download six data sets from UCI database (http://archive.ics.uci.edu/ml/datasets.html) in this
section. Namely, “Immunotherapy”, “User Knowledge Modeling”, “Blood Transfusion Service Center”,
“Wine Quality-Red”, “Letter Recognition (randomly selecting 3400 objects)” and “Wine Quality-White”,
which are outlined in Table 2. The testing results are running on personal computer with processor (2.5 GHz
Intel Core i5) and memory (4 GB, 2133 MHz). The platform of algorithms is Matlab2014a.

Table 2. The testing data sets.

Data Sets Abbreviation Object Attribute Decision Class

Immunotherapy IMY 90 8 2
User Knowledge Modeling UKM 403 6 4

Blood Transfusion Service Center BTSC 748 5 2
Wine Quality-Red WQR 1599 12 6
Letter Recognition LR 3400 16 26

Wine Quality-White WQW 4898 12 7

In fact, the downloaded data sets are real numbers. However, what we are investigating is IIVDIS.
So we need utilizing error precision ξ and missing rate π to process the data and change the data from
real numbers to incomplete interval numbers. Let IS = (U, C ∪ {d}, V, f ) be a decision information
system. Where C = {a1, a2, · · · , a|U|}. All attribute values are single-valued. For any xi ∈ U, aj ∈ C,
the attribute value of xi under the attribute aj can be written as t = f (xi, aj). Firstly, we randomly
choose bπ × |U| × |C|c(b·c is the meaning of taking an integer down) attribute values and turn them
into missing values in order to construct an incomplete information system. These missing values
are written as *. However, the attribute value of xi under the decision attribute d remains unchanged.
Secondly, the interval number can be obtained by formula t′ = [(1− ξ)× t, (1 + ξ)× t]. In summary,
an IIVDIS is gained by this way.

Because attribute set C have 2|C| attribute subsets, so we only select two subsets as granularities
and a decision class for facilitating comparison of experimental results in IIVDIS, which are denoted as
B1 and B2, B1 = {a1, a2, · · · , ab |U|2 c

} and B2 = C− B1. In all experiments, we discuss three rough set

models, which are the single granularity rough set (it can be written as Single Granularity RS) model,
the OMGRS model and PMGRS model. In the following, OMGRS and PMGRS consider granularities
B1 and B2 while single granularity rough set discusses a granularity B1 in IIVDIS. In addition, we
respectively select a decision value from six data sets when the roughness is calculated. There are 0,
1, 0, 3, 1, 3. The computation results both Algorithms 1 and 2 are displayed in Table 3. Here we set
allowable error scope is 0.0001.

Table 3. The computation results both Algorithms 1 and 2 in IIVDIS.

Data Sets
The Roughness The Degree of Dependence

OMGRS Single Granularity RS PMGRS PMGRS Single Granularity RS OMGRS

IMY 0.0001 0.3750 0.5000 0.8444 0.9000 1.0000
UKM 0.0001 0.1481 0.1818 0.8859 0.9007 0.9926
BTSC 0.0888 0.2935 0.4344 0.6016 0.7687 0.9278
WQR 0.0001 0.2500 0.7273 0.6567 0.8462 0.9581

LR 0.0001 0.2013 0.2485 0.8071 0.8885 0.9894
WQW 0.1000 0.1739 0.7647 0.4504 0.6819 0.8887

We can draw a histogram Figure 1 based on the results of the roughness in Table 3. As illustrated
in Figure 1, the roughness of three rough set models is increasing in each data set according to the
order of OMGRS, Single Granularity RS, and PMGRS. Where the roughness in OMGRS is the smallest,
the roughness in PMGRS is the largest and the roughness in Single Granularity RS falls in between the

http://archive.ics.uci.edu/ml/datasets.html
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roughness in OMGRS and the roughness in PMGRS in each data set, which show the concept become
increasingly rough in the light of the order of OMGRS, Single Granularity RS, and PMGRS.

Similarly, we plot the histogram Figure 2 by experimental results about the degree of dependence
in Table 3. We can obtain that the degree of dependence of three rough set models is increasing for
every data set considering the order of PMGRS, Single Granularity RS, and OMGRS from Figure 2.
Where the degree of dependence in PMGRS is the smallest, the degree of dependence in OMGRS
is the largest and the degree of dependence in Single Granularity RS falls in between the degree of
dependence in PMGRS and the degree of dependence in OMGRS, which reveal the percentage of
objects that can be definitely divided into decision classes become increasing in accordance with the
order of PMGRS, Single Granularity RS, and OMGRS in every data sets.

Figure 1. The roughness of three rough sets.

Figure 2. The degree of dependence about three rough sets.

7. Conclusions

Multi-granulation rough set has become a hot spot in recent years. In this paper, we define a
new relation in the IIVDIS by means of set pair analysis theory, which is the multi-threshold tolerance
relation. In this context, we establish single granularity rough set model and two multi-granulation
rough set models: the optimistic multi-granulation rough set and the pessimistic multi-granulation
rough set. A series of experiments are conducted based on Algorithms 1 and 2 for computing
the roughness and the degree of dependence to measure uncertainty of rough set. The results of
experiments show the effectiveness and validity of the proposed Theorems. In addition, we can obtain
conclusion from Figures 1 and 2:

(1) The same concept in the PMGRS model is rougher than in the Single Granularity RS. The same
concept in the Single Granularity RS model is rougher than in the OMGRS model.
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(2) The degree of dependence represents the percentage of objects, which can definitely divided into
decision classes. The percentage in in the OMGRS model is lager than in the Single Granularity
RS. The percentage in the Single Granularity RS model is lager than in the PMGRS model.

In the later study, we will mainly analyze other uncertainty measure methods and some reductions
based on the MGRS in IIVDIS.
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