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Abstract: Let G = (V, E) be a connected graph and d(u, v) denote the distance between the vertices u
and v in G. A set of vertices W resolves a graph G if every vertex is uniquely determined by its vector
of distances to the vertices in W. A metric dimension of G is the minimum cardinality of a resolving
set of G and is denoted by dim(G). Let J2n,m be a m-level gear graph obtained by m-level wheel graph
W2n,m ∼= mC2n + k1 by alternatively deleting n spokes of each copy of C2n and J3n be a generalized gear
graph obtained by alternately deleting 2n spokes of the wheel graph W3n. In this paper, the metric
dimension of certain gear graphs J2n,m and J3n generated by wheel has been computed. Also this
study extends the previous result given by Tomescu et al. in 2007.
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1. Introduction and Preliminary Results

In a connected graph G(V, E), where V is the set of vertices and E is the set of edges. The distance
d(u, v) between two vertices u, v ∈ V is the length of the shortest path between them and the
diameter of G denoted by diam(G) is the maximum distance between pairs of vertices u, v ∈ V(G).
Let W = {v1, v2, . . . , vk} be an order set of vertices of G and u be a vertex of G. The representation
r(u|W) of u with respect to W is the k − tuple {d(u, v1), d(u, v2), d(u, v3), . . . , d(u, vk)}, where W is
called a resolving set or locating set if distinct vertices of G have distinct representations with respect
to W. See for more results [1,2].

A resolving set of minimum cardinality is called a metric basis for G and the cardinality of a metric
basis is said the metric dimension of G, denoted by dim(G), see [3]. The motivation for this topic
stems from chemistry [4]. A common but important problem in the study of chemical structures
is to determine ways of representing a set of chemical compounds such that distinct compounds
have distinct representations. Moreover the application of this invariant to the navigation of robots in
networks are discussed in [5]. The application to problems of pattern recognition and image processing,
some of which involve the use of hierarchical data structures are given in [6].
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For a given ordered set of vertices W = {v1, v2, . . . , vk} of a graph G, the ith component of
r(u|W) is 0 if and only if u = vi. Thus, to show that W is a resolving set it suffices to verify that
r(y|W) 6= r(z|W) for each pair of distinct vertices y, z ∈ V(G)\W.

Motivated by the problem of determining uniquely the location of an intruder in a network,
the concept of metric dimension was introduced by Slater in [7] and studied independently by Harary
and Melter in [8].

Let Ω be a family of connected graphs Fm : Ω = (Fm)m≥1 depending on m as follows: ψ(m) =
cardinality of the set of vertices of any member F of Ω and limm→∞ ψ(m) = ∞. If ∀m ≥ 1, ∃C > 0
such that dim(Fm) ≤ C, then we shall say that Ω has bounded metric dimension, otherwise Ω has
unbounded metric dimension. If all graphs in Ω have the same metric dimension then F is called
a family with constant metric dimension [9].

A connected graph G has dim(G) = 1 if and only if G is a path [5], cycle Cn have metric dimension
2 for every n ≥ 3. Other families of graphs with unbounded metric dimension are regular bipartite
graphs [10], wheel graph [11]. The metric dimensions of m-level wheel graphs, convex polytope graphs
and antiweb gear graphs are computed in [12]. The metric dimension of honeycomb networks are
computed in [13] and t he metric dimension of generators of graphs in [14]. In the following section,
some results related to m-level generalized gear graph are given.

2. The Metric Dimension of Double Gear Graph J2n,m

Definition 1. The joining of two graphs G1 and G2 is denoted by G1 + G2 with the following vertex and
edge sets:

V(G1 + G2) = V(G1) ∪V(G2)

E(G1 + G2) = E(G1) ∪ E(G2) ∪ {uv; u ∈ V(G1), v ∈ V(G2)}.

Definition 2. In graph theory, an isomorphism of graphs G1 and G2 is a bijection between the vertex sets of G1

and G2, f : V(G1)→ V(G2) such that any two vertices u and v of G1 are adjacent in G1 if and only if f (u)
and f (v) are adjacent in G2. If an isomorphism exists between two graphs, then the graphs are called isomorphic
and denoted as G1

∼= G2.

Note that the the graph Cn + K1 is isomorphic to wheel graph Wn. In addition, note that 2Cn + K1

mean union of two copies of Cn that are joined with K1.

Definition 3. A double-wheel graph Wn,2 can be obtained as join of 2Cn + k1 and inductively an m-level wheel
graph denoted by Wn,m can be constructed as Wn,m ∼= mCn + k1.

Definition 4. A double gear graph denoted by J2n,2 can be obtained from double-wheel W2n,2 = 2C2n + k1 by
alternatively deleting n spokes of each copy of C2n and inductively an m-level gear graph J2n,m can be constructed
from m-level wheel W2n,m ∼= mC2n + k1 by alternatively deleting n spokes of each C2n (see [15]). A double gear
graph is depicted in Figure 1.

Construction and Observations

A double gear graph J2n,2 (see in Figure 1) is constructed if we consider two even cycles with
n ≥ 2,

C2n,1 : v1
1, v1

2, v1
3, . . . , v1

2n, v1
1 and C2n,2 : v2

1, v2
2, v2

3, . . . , v2
2n, v2

1

Now take a new vertex v adjacent to n vertices of C2n,1:v1
2, v1

4, . . . , v1
2n as well as v is also adjacent

to n vertices of C2n,2:v2
2, v2

4, . . . , v2
2n. Inductively we can construct an m-level gear graph denoted by

J2n,m by taking m even cycles C2n,1, C2n,2, . . . , C2n,m.
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Figure 1. (a) The double gear graph J6,2; (b)The double gear graph J8,2.

The vertices of C2n,i; 1 ≤ i ≤ 2, in the graph J2n,2 are of two kinds namely the vertices of degree 2
and the vertices of degree 3. Vertices of degree 2 and 3 will be considered as minor and major vertices
respectively. One can easily check that:

• When n = 2,
dim(J4,2) = 3 + 2, (central vertex v with one major and minor vertex of each C2n,i, 1 ≤ i ≤ 2
form basis).

• When n = 3,
dim(J6,2) = 3 + 2, (central vertex v with two minor vertices of each C2n,i, 1 ≤ i ≤ 2 form basis).

• When n = 4,
dim(J8,2) = 2 + 3, (two minor vertices u1, w1 such that d(u1, w1) = 2 of C2n,1 with one minor
vertex u2 and two major vertices w2, x2 of C2n,2 such that d(u2, w2) = d(u2, x2) = 3 form basis).

• When n = 5,
dim(J10,2) = 3 + 4,

(
three minor vertices u1, w1, x1 satisfying d(u1, w1) = d(w1, x1) = 2,

d(u1, x1) = 4 of C2n,1 with three minor vertices u2, w2, x2 and one major vertex z2 of C2n,2 satisfying
d(u2, w2) = d(w2, x2) = 2, d(u2, x2) = 4 and d(u2, z2) = d(w2, z2) = d(x2, z2) = 3 form metric
basis of J10,2

)
.

Consider the gear graph J2n,1 in which C2n,1 is an outer cycle of length 2n. If B is a basis of J2n,1

then B contains r ≥ 2 vertices of C2n,1 for n ≥ 6. Suppose B = {vi1 , vi2 , ..., vir} then vertices of B
can be ordered as vi1 < vi2 < ... < vir such that {vit , vit+1} for 1 ≤ t ≤ r− 1 and {vir , vi1} are called
neighboring vertices. Vertices of C2n,1 lying between any two neighboring vertices of B are called gaps
which are denoted by Git for 1 ≤ t ≤ r− 1 and Gir , and their cardinalities are said to be the size of
gaps. One can easily observe that every vertex of B has two neighboring vertices; gaps generated by
these three vertices are called neighboring gaps following a concept already exist in [2] and [17]. A gap
determined by neighboring vertices of basis say vi and vj will be called an α− β with α ≤ β when
deg(vi) = α and deg(vj) = β or when deg(vi) = β and deg(vj) = α. Hence we have three kinds of gaps
namely, 2− 2 gap, 2− 3 gap and 3− 3 gap.

For the graph J2n,2, n ≥ 4 central vertex v does not belong to any basis. Since d(vj
i , v) ≤ 2 ∀,

1 ≤ i ≤ 2n, 1 ≤ j ≤ 2 and diam(J2n,2) = 4, if central vertex v belongs to any metric basis B then
there must exists two distinct vertices ui and uj for 1 ≤ i 6= j ≤ 2n such that r(ui|B) = r(uJ |B).
Consequently, the basis vertices of J2n,2 belong to the cycles induced by C2n,1 and C2n,2. It is shown
in [17] that if B is a basis of J2n,1 then B consist only of the vertices of C2n,1 that satisfy the following
properties.

• If B is a basis of J2n,1, n ≥ 6 then every 2− 2 gap, 2− 3 gap and 3− 3 gap of B contains at most 5,
4 and 3 vertices respectively.

Figure 1. (a) The double gear graph J6,2; (b) The double gear graph J8,2.

The vertices of C2n,i; 1 ≤ i ≤ 2, in the graph J2n,2 are of two kinds namely the vertices of degree 2
and the vertices of degree 3. Vertices of degree 2 and 3 will be considered as minor and major vertices
respectively. One can easily check that:

• When n = 2,

dim(J4,2) = 3 + 2, (central vertex v with one major and minor vertex of each C2n,i, 1 ≤ i ≤ 2
form basis).

• When n = 3,

dim(J6,2) = 3 + 2, (central vertex v with two minor vertices of each C2n,i, 1 ≤ i ≤ 2 form basis).

• When n = 4,

dim(J8,2) = 2 + 3, (two minor vertices u1, w1 such that d
(
u1, w1) = 2 of C2n,1 with one minor

vertex u2 and two major vertices w2, x2 of C2n,2 such that d
(
u2, w2) = d

(
u2, x2) = 3 form basis).

• When n = 5,

dim(J10,2) = 3 + 4, (three minor vertices u1, w1, x1 satisfying d
(
u1, w1) = d

(
w1, x1) = 2,

d
(
u1, x1) = 4 of C2n,1 with three minor vertices u2, w2, x2 and one major vertex z2 of C2n,2 satisfying

d
(
u2, w2) = d

(
w2, x2) = 2, d

(
u2, x2) = 4 and d

(
u2, z2) = d

(
w2, z2) = d

(
x2, z2) = 3 form metric

basis of J10,2 ).

Consider the gear graph J2n,1 in which C2n,1 is an outer cycle of length 2n. If B is a basis of J2n,1

then B contains r ≥ 2 vertices of C2n,1 for n ≥ 6. Suppose B = {vi1 , vi2 , . . . , vir} then vertices of B
can be ordered as vi1 < vi2 < . . . < vir such that {vit , vit+1} for 1 ≤ t ≤ r− 1 and {vir , vi1} are called
neighboring vertices. Vertices of C2n,1 lying between any two neighboring vertices of B are called gaps
which are denoted by Git for 1 ≤ t ≤ r− 1 and Gir , and their cardinalities are said to be the size of
gaps. One can easily observe that every vertex of B has two neighboring vertices; gaps generated by
these three vertices are called neighboring gaps following a concept already exist in [2] and [17]. A gap
determined by neighboring vertices of basis say vi and vj will be called an α− β with α ≤ β when
deg(vi) = α and deg

(
vj
)
= β or when deg(vi) = β and deg

(
vj
)
= α. Hence we have three kinds of

gaps namely, 2− 2 gap, 2− 3 gap and 3− 3 gap.

For the graph J2n,2, n ≥ 4 central vertex v does not belong to any basis. Since d(vj
i , v) ≤ 2∀,

1 ≤ i ≤ 2n, 1 ≤ j ≤ 2 and diam(J2n,2) = 4, if central vertex v belongs to any metric basis B then
there must exists two distinct vertices ui and uj for 1 ≤ i 6= j ≤ 2n such that r(ui|B) = r

(
uJ
∣∣B
)
.

Consequently, the basis vertices of J2n,2 belong to the cycles induced by C2n,1 and C2n,2. It is shown
in [17] that if B is a basis of J2n,1 then B consist only of the vertices of C2n,1 that satisfy the
following properties.
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• If B is a basis of J2n,1, n ≥ 6 then every 2− 2 gap, 2− 3 gap and 3− 3 gap of B contains at most 5,
4 and 3 vertices respectively.

• If B is a basis of J2n,1, n ≥ 6 then it contains at most one major gap.
• If B is a basis of J2n,1, n ≥ 6 then any two neighboring gaps contain together at most six vertices in

which one gap is a major gap.
• If B is a basis of J2n,1, n ≥ 6 then any two minor neighboring gaps contain together at most

four vertices.

Lemma 1. Let B be a basis of J2n,2, n ≥ 6, then every 2− 2 gap, 2− 3 gap and 3− 3 gap of B induced by C2n,1

and C2n,2 contains at most 5, 4 and 3 vertices respectively.

Proof. Suppose the result is false and there exists a 2− 2 gap of size 7 say u1, u2, u3, u4, u5, u6, u7

consisting of consecutive vertices of C2n,1 or C2n,2 with deg(u1) = deg(u7) = 3 then r(u3|B) = r(u5|B)
which is a contradiction. If there exists a 2− 3 gap of size 6 then we have a path u1, u2, u3,u4, u5, u6

consisting of consecutive vertices of C2n,1 or C2n,2 with deg(u1) = 3 and deg(u6) = 2 then
r(u3|B) = r(u5|B) which is again a contradiction. The existence of a 3 − 3 gap of size 5 say
u1, u2, u3, u4, u5 induced by C2n,1 or C2n,2 with deg(u1) = deg(u5) = 2, would imply r(u2|B) = r(u4|B)
a contradiction.

The 2− 2 gap 2− 3 gap and 3− 3 gap containing 5, 4 and 3 vertices respectively will be referred
to as major gaps and the remaining gaps are called minor gaps. In the proof of Lemmas 2–4, the major
vertices will be labeled by a star (*). �

Lemma 2. Let B be a basis of J2n,2, n ≥ 6 then it contains at most one major gap induced by the vertices of
cycles C2n,1 and C2n,2.

Proof. Suppose B contains two distinct major gaps induced by the vertices of cycles C2n,1 or C2n,2.
Case-(i): When both gaps are 3− 3 then we have two distinct paths consisting consecutive vertices

u1, u∗2 , u3 and w1, w∗2 , w3 of C2n,1 and C2n,2 respectively in this case r(u∗3
∣∣B) = r(w∗3

∣∣B); a contradiction.
Case-(ii): When both gaps are 2− 2 then we have two distinct paths consisting of consecutive

vertices u∗1 , u2, u∗3 , u4, u∗5 and w∗1 , w2, w∗3 , w4, w∗5 of C2n,1 and C2n,2 respectively but r(u∗3
∣∣B) = r(w∗3

∣∣B);
a contradiction.

Case-(iii): When both gaps are 2− 3 then we have two distinct paths consisting of consecutive
vertices u∗1 , u2, u∗3 , u4 and w∗1 , w2, w∗3 , w4 of C2n,1 and C2n,2 respectively in this case r(u∗3

∣∣B) = r(w∗3
∣∣B);

a contradiction.
Case-(iv): When one gap is 3− 3 and other is 2− 2 gap then we have two distinct paths u1, u∗2 , u3

and w∗1 , w2, w∗3 , w4, w∗5 induced by C2n,1 and C2n,2 respectively but r(u∗2 |B) = r(w∗3
∣∣B); a contradiction.

Case-(v): When one gap is 3− 3 and other is 2− 3 gap then we have two distinct paths consisting
of consecutive vertices u1, u∗2 , u3 and w∗1 , w2, w∗3 , w4 of C2n,1 and C2n,2 respectively but r(u∗2 |B) =

r(w∗3
∣∣B); a contradiction.
Case-(vi): When one gap is 2− 2 and other is 2− 3 gap then we have two distinct paths consisting

of consecutive vertices u∗1 , u2, u∗3 , u4, u∗5 and w∗1 , w2, w∗3 , w4 of C2n,1 and C2n,2 respectively in this case
r(u∗3

∣∣B) = r(w∗3
∣∣B); a contradiction.

Similarly, if both major gaps are induced by C2n,1 then we get a contradiction and a similar
contradiction arises if C2n,2 induced both major gaps. �

Lemma 3. Let B be a basis of J2n,2, n ≥ 6, then any two neighboring gaps, one of which being a major gap
induced by exactly one of two cycles C2n,1 or C2n,2 contain together at most six vertices.

Proof. If the major gap is 3 − 3 then there is nothing to prove by Lemma 2. Without loss of
any generality we can say that only C2n,1 induced a major gap by Lemma 2. If the major gap is
a 2− 2 gap having five vertices then its neighboring minor gap contains at most one vertex. If this
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statement is false and 2− 2 gap, 2− 3 minor gaps having three and two vertices respectively are
neighboring gaps of 2 − 2 major gap, then we have two paths consisting of consecutive vertices
of C2n,1:u∗1 , u2, u∗3 , u4, u∗5 , u6, u∗7 , u8, u∗9 and w∗1 , w2, w∗3 , w4, w∗5 , w6, w∗7 , w8, where u4, w6 ∈ B induced
by 2 − 2 major, 2 − 2 minor gaps and 2 − 2 major, 2 − 3 minor gaps respectively. In this case
r(u∗3

∣∣B) = r(u∗5
∣∣B) and r(w∗5

∣∣B) = r(w∗7 |B); a contradiction. The existence of 2 − 3 major gap
having four vertices is not possible if its neighboring minor gap is a 2− 2 gap with three vertices.
If this case holds then we consider the following path: u∗1 , u2, u∗3 , u4, u∗5 , u6, u∗7 , u8, where u4 ∈ B then
r
(
u∗4
∣∣B
)
= r(u∗5

∣∣B); a contradiction. �

Lemma 4. Let B be a basis of J2n,2, n ≥ 6, then any two minor neighboring gaps induced by C2n,1 or C2n,2

contain together at most four vertices.

Proof. To prove the statement, it is sufficient to prove two cases.
Case-(i): 2− 2 minor gap with three vertices cannot be neighboring gap of 2− 2 minor gap

having three vertices, otherwise we have a path consisting of consecutive vertices of C2n,1 or
C2n,2:u∗1 , u2, u∗3 , u4, u∗5 , u6, u∗7 , where u4 ∈ B in this case r(u∗3

∣∣B) = r(u∗5
∣∣B).

Case-(ii): 2 − 2 minor gap with three vertices cannot be neighboring gap of 2 − 3 minor
gap having two vertices, otherwise we have a path consisting of consecutive vertices of C2n,1 or
C2n,2:w∗1 , w2, w∗3 , w4, w∗5 , w6 where w4 ∈ B in this case r(w∗3

∣∣B) = r(w∗5
∣∣B); a contradiction. �

Theorem 1. If J2n,2 be a double gear graph for n ≥ 4, then

dim(J2n,2) = dim(J2n,1) +

⌈
2n
3

⌉

Proof. We have seen that dim(J8,2) = 5 = dim(J8,1) +
⌈ 8

3
⌉
, dim(J10,2) = 7 = dim(J10,1) +

⌈
10
3

⌉
and the

central vertex v does not belong to any basis B of J2n,2. Moreover

C2n,1 : v1
1, v1

2, v1
3, . . . , v1

2n, v1
1

and
C2n,2 : v2

1, v2
2, v2

3, . . . , v2
2n, v2

1

be the outer cycles of J2n,2 at level 1 and 2 respectively. First we prove that dim(J2n,2) ≤ dim(J2n,1) +⌈ 2n
3
⌉

by constructing a resolving set W in J2n,2 with dim(J2n,1) +
⌈ 2n

3
⌉

vertices.
We consider three cases according to the residue class modulo 3 to which n belongs.
Case-(i): When n ≡ 0(mod3), then we may write 2n = 3k, where k ≥ 4, is even and dim(J2n,1) +⌈ 2n

3
⌉
= 2k, in this case W can be considered as:

W = {vj
1, vj

2n−1; 1 ≤ j ≤ 2} ∪ {v1
6i+1, v1

6i+3, v2
6i−1, v2

6i+1; 1 ≤ i ≤ k
2
− 1}

Case-(ii): When n ≡ 1(mod3), then we may write 2n = 3k + 2, where k ≥ 4 is even and
dim(J2n,1) +

⌈ 2n
3
⌉
= 2k + 1, in this case W can be considered as:

W = {v1
1, v1

2n−1, v2
1} ∪ {v1

6i+1, v1
6i+3; 1 ≤ i ≤ k

2
− 1} ∪ {v2

6i−1, v2
6i+1; 1 ≤ i ≤ k

2
}

Case-(iii): When n ≡ 2(mod3), then we may write 2n = 3k + 1, where k ≥ 5 is even and
dim(J2n,1) +

⌈ 2n
3
⌉
= 2k + 1, in this case W can be considered as:

W = {v1
1, v2

1, v2
2n−1} ∪ {v1

6i+1, v1
6i+3; 1 ≤ i ≤ k− 1

2
} ∪ {v2

6i−1, v2
6i+1; 1 ≤ i ≤ k− 1

2
}



Symmetry 2018, 10, 209 6 of 11

The set W contains a unique 2− 2 major gap having at most five vertices and all other gaps
are 2− 2 minor gaps which contain at most three vertices. The set W is a resolving set of J2n,2 since
any two major or any two minor vertices respectively lying in different gaps or in the same gap are
separated by at least one vertex in the set of three vertices of W generating these neighboring gaps.
When gaps are not neighboring gaps, then the set of four vertices of W which generate two gaps
make the representation unique of each vertex of these two gaps. Representation of central vertex v is
(2, 2, 2, . . . , 2), which is different from the representation of all other vertices of J2n,2. Hence,

dim(J2n,2) ≤ dim(J2n,1) +

⌈
2n
3

⌉
(1)

Now we show that dim(J2n,2) ≥ dim(J2n,1) +
⌈ 2n

3
⌉
. As the central vertex v does not belong to any

basis of J3n. Let B be a basis of J2n,2 such that |B|= r then we have r gaps. By lemma 2 B contains at
most one major gap, without loss of generality we can say major gap lies on C2n,1. Hence B induces⌊ r

2
⌋

gaps on C2n,1 and
⌈ r

2
⌉

gaps on C2n,2.

We denote the gaps on C2n,1 by G1
1 , G1

2 , G1
3 , . . . , G1

b r
2 c

where G1
i and G1

i+1 are called neighboring

gaps for 1 ≤ i ≤
⌊ r

2
⌋
− 1 as well as G1

b r
2 c

is also neighboring gap of G1
1 and the gaps on C2n,2 will be

denoted by G2
1 , G2

2 , G2
3 , . . . , G2

d r
2 e

where G2
i and G2

i+1 are called neighboring gaps for 1 ≤ i ≤
⌈ r

2
⌉
− 1 as

well as G2
d r

2 e
is also neighboring gap of G2

1 . By Lemma 2, suppose G1
1 is a major gap. By Lemmas 3 and 4,

we can write

|G1
1 + G1

2 |≤ 6, |G1
1 + G1

b r
2 c|≤ 6, ‖G1

i + G1
i+1|≤ 4, f or 2 ≤ i ≤

⌊ r
2

⌋
− 1

and
|G2

1 + G2
2 |≤ 4, ‖G2

1 + G2
d r

2 e|≤ 4, ‖G2
i + G2

i+1|≤ 4, f or 2 ≤ i ≤
⌈ r

2

⌉
− 1

We consider two cases according to the residue class modulo 2 to which r belongs.

Case-(i): When r ≡ 0(mod2): In this case
⌊ r

2
⌋
=
⌈ r

2
⌉
= r

2
By summing the above inequality we have

2(2n− r
2
) = 2

r
2

∑
i=1

∣∣∣G1
i

∣∣∣ ≤ 2r + 4⇒ r
2
≥ 2n− 2

3
⇒ r

2
≥
⌊

2n
3

⌋
(2)

Again

2(2n− r
2
) = 2

r
2

∑
i=1

∣∣∣G1
i

∣∣∣ ≤ 2r ⇒ r
2
≥ 2n

3
⇒ r

2
≥
⌈

2n
3

⌉
(3)

From Equations (2) and (3) we have,

r ≥
⌊

2n
3

⌋
+

⌈
2n
3

⌉
⇒ dim(J2n,2) ≥ dim(J2n,1) +

⌈
2n
3

⌉

Case-(ii): When r ≡ 1(mod2): In this case
⌊ r

2
⌋
= r−1

2 and
⌈ r

2
⌉
= r+1

2
By summing the above inequality we have

2(2n− r− 1
2

) = 2

r−1
2

∑
i=1

∣∣∣G1
i

∣∣∣ ≤ 4 + 4
(

r− 1
2

)
⇒ r− 1

2
≥ 2n− 2

3
⇒ r− 1

2
≥
⌊

2n
3

⌋
(4)

and

2(2n− r + 1
2

) = 2

r+
2

∑
i=1

∣∣∣G2
i

∣∣∣ ≤ 4
(

r + 1
2

)
⇒ r + 1

2
≥ 2n

3
⇒ r + 1

2
≥
⌈

2n
3

⌉
(5)
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From Equations (4) and (5) we have

r ≥
⌊

2n
3

⌋
+

⌈
2n
3

⌉
⇒ dim(J2n,2) ≥ dim(J2n,1) +

⌈
2n
3

⌉
(6)

Now from Equations (1) and (6) we conclude that,

dim(J2n,2) = dim(J2n,1) +

⌈
2n
3

⌉

which complete the proof. �

Theorem 2. If J2n,m be a double gear graph for n ≥ 4, m ≥ 3, then

dim(J2n,m) = dim(J2n,1) + (m− 1)
⌈

2n
3

⌉

Proof. We will prove this result by induction on levels of gear graph denoted by J2n,m.

When m = 1, then dim(J2n,1) =
⌊ 2n

3
⌋

is obtained in [17].

When m = 2, then dim(J2n,2) = dim(J2n,1) +
⌈ 2n

3
⌉

by Theorem 1.

Now we assume that the statement is true for m = k, dim(J2n,k) = dim(J2n,1) + (k− 1)
⌈ 2n

3
⌉
.

we will show the result for m = k + 1, by using concept of Theorem 1 we have dim(J2n,k+1) =

dim(J2n,k) +
⌈ 2n

3
⌉
.

Now dim(J2n,k+1) = dim(J2n,k) +
⌈ 2n

3
⌉
= dim(J2n,1) + (k− 1)

⌈ 2n
3
⌉
+
⌈ 2n

3
⌉
. ⇒ dim(J2n,k+1) =

dim(J2n,1) + k
⌈ 2n

3
⌉
. Hence the result is true for all positive integers m ≥ 3. �

3. The Metric Dimension of Generalized Gear Graph J3n

Definition 5. To define the generalized gear graph J3n: consider a cycle C3n having vertices v1, v2, v3, . . . , v3n, v1

with n ≥ 2, take a new vertex v adjacent to n vertices v3, v6, v9, . . . , v3n of C3n. The generalized gear graph J3n
has order 3n + 1 and size 4n. It can be obtained from wheel graph W3n by alternately deleting 2n spokes.

Construction and Observations

The vertices of C3n in the graph J3n are of two kinds: vertices of degree 2 and 3. Vertices of degree
2 and 3 will be considered as minor and major vertices respectively. The graph J3n is a bipartite graph
in which one bipartition class contains minor vertices together with central vertex v and the second
bipartition class contain major vertices. In the proof of Lemmas 5–9, major vertices will be represented
by a star. One can easily check that:

• When n = 2

dim(J6) = 2, (one minor vertex of C6 together with central vertex v form basis).

• When n = 3

dim(J9) = 2 = dim(J12), (two minor vertices w1 and w2 such that d(w1, w2) = 3 form basis).

• When n = 5

dim(J15) = 3, (three minor vertices w1,w2 and w3 such that d(w1, w2) = d(w2, w3) = d(w3, w4) = 4
form basis).

For the graph J3n, n ≥ 4 central vertex v does not belong to any basis. Since d(vi, v) ≤ 2∀,
1 ≤ i ≤ 3n, and diam(J3n) = 4 if central vertex v belongs to any metric basis B then there must exist
two distinct vertices ui and uj for 1 ≤ i 6= j ≤ 3n such that r(ui|B) = r

(
uj
∣∣B
)
. If B is a basis of J3n and

central vertex v does not belong to B then by using the concept of gap given in Section 2, we have
again three kinds of gaps i.e 2− 2 gpa, 2− 3 gap, and 3− 3 gap.
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Lemma 5. If B is a basis of J3n, n ≥ 6 then every 2− 2 gap, 2− 3 gap and 3− 3 gap of B contains at most 8, 7
and 5 points respectively.

Proof. Suppose the basis set B contains a 2 − 2 gap of nine consecutive vertices u1, u2, u3,
u4, u5, u6, u7, u8, u9 of C3n such that deg(u1) = deg(u9) we have r(u4|B) = r(u6|B) in this case. If 2− 3
gap contains more than 7 vertices then it contains 9 consecutive vertices u1, u2, u3, u4, u5, u6, u7, u8, u9

of C3n such that deg(u1) = 3 and deg(u9) = 2 we have r(u4|B) = r(u7|B), a contradiction in
this case. If a 3 − 3 gap contains more then 5 vertices, then it contains 8 consecutive vertices
u1, u2, u3, u4, u5, u6, u7, u8 such that deg(u1) = deg(u8) = 2 then r(u3|B) = r(u6|B) which is again
a contradiction.

The 2− 2 gap, 2− 3 gap and 3− 3 gap containing 8, 7 and 5 vertices respectively will be referred
to as major gaps and the remaining gaps are called minor gaps. �

Lemma 6. If B is a basis of J3n, n ≥ 6, then it contains at most one major gap.

Proof. Suppose B is basis of J3n and it contains two distinct major gaps.
Case-(i): When both gaps are 3 − 3 then we have two distinct paths u1, u2, u∗3 , u4, u5 and

w1, w2, w∗3 , w4, w5 but r(u∗3
∣∣B) = r(w∗3

∣∣B).
Case-(ii): When both gaps are 2− 2 then we have two distinct paths u1, u∗2 , u3, u4, u∗5 , u6, u7, u∗8

and w1, w∗2 , w3, w4, w∗5 , w6, w7, w∗8 but r(u∗5
∣∣B) = r(w∗5

∣∣B).
Case-(iii): When both gaps are 2− 3 then we have two distinct paths u1, u∗2 , u3, u4, u∗5 , u6, u7 and

w1, w∗2 , w3, w4, w∗5 , w6, w7 but r(u∗5
∣∣B) = r(w∗5

∣∣B).
Case-(iv): When one gap is 3 − 3 and other is 2 − 2 gap then we have two distinct paths

u1, u2, u∗3 , u4, u5 and w1, w∗2 , w3, w4, w∗5 , w6, w7, w∗8 but r(u∗3
∣∣B) = r(w∗5

∣∣B).
Case-(v): When one gap is 3 − 3 and other is 2 − 3 gap then we have two distinct paths

u1, u2, u∗3 , u4, u5 and w1, w∗2 , w3, w4, w∗5 , w6, w7 but r(u∗3
∣∣B) = r(w∗5

∣∣B).
Case-(vi): When one gap is 2 − 2 and other is 2 − 3 gap then we have two distinct paths

u∗1 , u2, u3, u∗4 , u5, u6, u∗7 , u8 and w1, w∗2 , w3, w4, w∗5 , w6, w7 but r
(
u∗4
∣∣B
)
= r(w∗5

∣∣B). �

Lemma 7. If B is a basis of J3n, n ≥ 6, containing one major gap either 2− 2 gap or 2− 3 gap then it does not
contain 2− 2 gap and 2− 3 minor gap having 7 and 6 vertices respectively.

Proof. Case-(i): When one gap is 2 − 2 major gap and the other is 2 − 2 minor gap having 7
vertices, then we have two distinct paths u1, u∗2 , u3, u4, u∗5 , u6, u7, u∗8 and w∗1 , w2, w3, w∗4 , w5, w6, w∗7 but
r(u∗5

∣∣B) = r
(
w∗4
∣∣B
)
.

Case-(ii): When one gap is 2− 2 major gap and the other is 2− 3 minor gap having 6 vertices, then
we have two distinct paths u1, u∗2 , u3, u4, u∗5 , u6, u7, u∗8 and w∗1 , w2, w3, w∗4 , w5, w6 but r(u∗5

∣∣B) = r
(
w∗4
∣∣B
)
.

Case-(iii): When one gap is 2− 3 major gap and the other is 2− 2 minor gap having 7 vertices, then
we have two distinct paths u1, u∗2 , u3, u4, u∗5 , u6, u7 and w∗1 , w2, w3, w∗4 , w5, w6, w∗7 but r(u∗5

∣∣B) = r
(
w∗4
∣∣B
)
.

Case-(iv): When one gap is 2− 3 major gap and the other is 2− 3 minor gap having 6 vertices, then
we have two distinct paths u1, u∗2 , u3, u4, u∗5 , u6, u7 and w∗1 , w2, w3, w∗4 , w5, w6 but r(u∗5

∣∣B) = r
(
w∗4
∣∣B
)
.

�

Lemma 8. If B is a basis of J3n, n ≥ 6 then any two neighboring gaps contain together at most 13 vertices in
which one gap is a major gap.

Proof. To show the statement, it is sufficient to show that a 2 − 2 major gap with 8 vertices has
a neighboring 2 − 2 minor gap in which 6 vertices cannot occur. If it holds then we have the
path u1, u2, u∗3 , u4, u5, u∗6 , u7, u8, u∗9 , u10, u11, u∗12, u13, u14, u∗15, u16, u17 with u1, u10, u17 ∈ B in this case
r(u7|B) = r(w13|B), a contradiction. �
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Lemma 9. If B is a basis of J3n, n ≥ 6, then any two minor neighboring gaps contain together at most
11 vertices.

Proof. To show the statement, it is sufficient to show that a 2− 2 gap with 6 vertices has a neighboring
2− 2 gap with 6 vertices cannot occur. Since gap is 2− 2, both base elements must have degree 2.
For two consecutive 2− 2 gaps having 6 vertices, we have two possible paths. (i) First possible path
is u1, u2, u∗3 , u4, u5, u∗6 , u7, u8, u∗9 , u10, u11, u∗12, u13, u14, u∗15 with u1, u8, u∗15 ∈ B which is not possible as
d(u1) = 2 = d(u8) but d

(
u∗15
)
= 3 6= 2.

(ii) Second possible path is u2, u∗3 , u4, u5, u∗6 , u7, u8, u∗9 , u10, u11, u∗12, u13, u14, u∗15, u16 with
u2, u∗9 , u16 ∈ B which is not possible as d(u2) = 2 = d(u16) but d(u∗9) = 3 6= 2. Hence two minor gap
contain at most 11 vertices. �

Theorem 3. If J3n be the generalized gear graph for n ≥ 6, then dim(J3n) =
⌊ n

2
⌋
.

Proof. First we prove that dim(J3n) ≤
⌊ n

2
⌋

by constructing a resolving set W in J3n with
⌊ n

2
⌋

vertices.
We consider two cases according to the residue class modulo 2 to which n belongs.

Case-(i): When n ≡ 0(mod2) then W can be considered as:

W = {v1, v10, v16} ∪ {v6i+5; 3 ≤ i ≤ n
2
− 1}

Case-(ii): When n ≡ 1(mod2) then W can be considered as:

W = {v1, v10, v16} ∪ {v6i+5; 3 ≤ i ≤ n− 1
2
− 1}

�

The set W contains a unique 2 − 2 major gap and all other gaps are 2 − 2 minor gap which
contain at most five vertices, only one 2− 2 minor gap contains six vertices. The set W is a resolving
set of J3n since any two major or any two minor vertices lying in different gaps or in the same gap
are separated by at least one vertex in the set of three vertices of W generating these neighboring
gaps; when gaps are not neighboring gaps then the set of four vertices of W which generate two gaps
make the representation of each vertex of these two gaps unique. Representation of central vertex is
(2, 2, 2, . . . , 2), which is different from the representation of all other vertices of J3n. Hence

dim(J3n) ≤
⌊n

2

⌋
(7)

Now we show that dim(J3n) ≥
⌊ n

2
⌋
. By Lemma 5 the central vertex v does not belong to any

basis of J3n. Let B be a basis of J3n such that |B|= r . We have r gaps on C3n generated by elements
of B. We denote these gaps by G1, G2, G3, . . . , Gr where Gi and Gi+1 are called neighboring gaps for
1 ≤ i ≤ r− 1 as well as Gr is also a neighboring gap of G1. By Lemma 6 at most one of them say G1 is
a major gap. By Lemmas 6 and 7, we have

|G1 + G2|≤ 13, |G1 + Gr|≤ 13

and by Lemmas 8 and 9, we have,

|G2 + G3|≤ 11, |G3 + G4|≤ 11, |Gi + Gi+1|≤ 10, f or all 4 ≤ i ≤ r− 1
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By summing these inequalities, we get,

2(3n− r) = 2
r

∑
i=1
|Gi| ≤ 8 + 10r ⇒ 6n− 2r ≤ 8 + 10r

⇒ 6n− 8 ≤ 12r ⇒ r ≥ n
2
− 2

3

Hence r =
⌊ n

2
⌋
.

⇒ dim(J3n) ≥
⌊n

2

⌋
(8)

So from Equations (7) and (8), we get

dim(J3n) =
⌊n

2

⌋

which complete the proof.

4. Conclusions

In the foregoing section, m-level gear graph J2n,m and generalized gear graph J3n are constructed.
It is proved that metric dimension of J2n,m is dim(J2n,1) + (m− 1)

⌈ 2n
3
⌉

for every n ≥ 4 and metric
dimension of J3n is

⌊ n
2
⌋

for every n ≥ 6. This section is closed by raising the following open problem.

Open Problem. Determine the metric dimension of m-level generalized gear graph J2n,k,m.
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