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Abstract: We represent the generating function of w-torsion Fubini polynomials by means of a
fermionic p-adic integral on Zp. Then we investigate a quotient of such p-adic integrals on Zp,
representing generating functions of three w-torsion Fubini polynomials and derive some new
symmetric identities for the w-torsion Fubini and two variable w-torsion Fubini polynomials.

Keywords: Fubini polynomials; w-torsion Fubini polynomials; fermionic p-adic integrals;
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1. Introduction and Preliminaries

In recent years, various p-adic integrals on Zp have been used in order to find many interesting
symmetric identities related to some special polynomials and numbers. The relevant p-adic integrals
are the Volkenborn, fermionic, q-Volkenborn, and q-fermionic integrals of which the last three were
discovered by the first author T. Kim (see [1–3]). They have been used by a good number of researchers
in various contexts and especially in unfolding new interesting symmetric identities. This verifies
the usefulness of such p-adic integrals. Moreover, we can expect that people will find some further
applications of these p-adic integrals in the years to come. The present paper is an effort in this
direction. Assume that p is any fixed odd prime number. Throughout our discussion, we will use the
standard notations Zp, Qp, and Cp to denote the ring of p-adic integers, the field of p-adic rational
numbers and the completion of the algebraic closure of Qp, respectively. The p-adic norm | · |p is
normalized as |p|p = 1

p . Assume that f (x) is a continuous function on Zp. Then the fermionic p-adic
integral of f (x) on Zp was introduced by Kim (see [2]) as

∫
Zp

f (x)dµ−1(x) = lim
N→∞

pN−1

∑
x=0

f (x)(−1)x, (1)

where µ−1(x + pNZp) = (−1)x.
We can easily deduce from (1) that (see [2,3])∫

Zp
f (x + 1)dµ−1(x) +

∫
Zp

f (x)dµ−1(x) = 2 f (0). (2)

By invoking (2), we easily get (see [2,4])

∫
Zp

e(x+y)tdµ−1(y) =
2

et + 1
ext =

∞

∑
n=0

En(x)
tn

n!
, (3)

Symmetry 2018, 10, 219; doi:10.3390/sym10060219 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/10/6/219?type=check_update&version=1
http://dx.doi.org/10.3390/sym10060219
http://www.mdpi.com/journal/symmetry


Symmetry 2018, 10, 219 2 of 7

where En(x) are the usual Euler polynomials.
As is known, the two variable Fubini polynomials are defined by means of the following (see [5,6])

∞

∑
n=0

Fn(x, y)
tn

n!
=

1
1− y(et − 1)

ext. (4)

When x = 0, Fn(y) = Fn(0, y), (n ≥ 0), are called Fubini polynomials. Further, if y = 1,
then Obn = Fn(0, 1) are the ordered Bell numbers (also called Frobenius numbers). They first
appeared in Cayley’s work on a combinatorial counting problem in 1859 and have many different
combinatorial interpretations. For example, the ordered Bell numbers count the possible outcomes
of a multi-candidate election. From (3) and (4), we note that Fn(x,−1/2) = En(x), (n ≥ 0). By (4),
we easily get (see [6]),

Fn(y) =
n

∑
k=0

S2(n, k)k!yk, (n ≥ 0), (5)

where S2(n, k) are the Stirling numbers of the second kind.
For w ∈ N, we define the two variable w-torsion Fubini polynomials given by

1
1− yw(et − 1)w ext =

∞

∑
n=0

Fn,w(x, y)
tn

n!
. (6)

In particular, for x = 0, Fn,w(y) = Fn,w(0, y) are called the w-torsion Fubini polynomials. It is
obvious that Fn,1(x, y) = Fn(x, y).

We represent the generating function of w-torsion Fubini polynomials by means of a fermionic
p-adic integral on Zp. Then we investigate a quotient of such p-adic integrals on Zp, representing
generating functions of three w-torsion Fubini polynomials and derive some new symmetric identities
for the w-torsion Fubini and two variable w-torsion Fubini polynomials. Recently, a number of
researchers have studied symmetric identities for some special polynomials. The reader may refer
to [7–11] as an introduction to this active area of research. Some symmetric identities for q-special
polynomials and numbers were treated in [12–15], including q-Bernoulli, q-Euler, and q-Genocchi
numbers and polynomials. While some identities of symmetry for degenerate special polynomials
were discussed in the more recent papers [6,16,17]. Finally, interested readers may want to have a
glance at [18,19] as general references on polynomials.

2. Symmetric Identities for w-torsion Fubini and Two Variable w-torsion Fubini Polynomials

From (2), we note that

∫
Zp
(−1)x(y(et − 1))xdµ−1(x) =

2
1− y(et − 1)

= 2
∞

∑
n=0

Fn(y)
tn

n!
, (7)

and

ext
∫
Zp
(−1)z(y(et − 1))zdµ−1(z) =

2
1− y(et − 1)

ext = 2
∞

∑
n=0

Fn(x, y)
tn

n!
. (8)
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From (7) and (8), we note that(
∞

∑
l=0

xl tl

l!

)(
∞

∑
m=0

2Fm(y)
tm

m!

)
= ext

∫
Zp
(−1)z(y(et − 1))zdµ−1(z)

=
∞

∑
n=0

2Fn(x, y)
tn

n!
.

(9)

Thus, by (9), we easily get

n

∑
l=0

(
n
l

)
xl Fn−l(y) = Fn(x, y), (n ≥ 0). (10)

Now, we observe that

1− yk(et − 1)k

1− y(et − 1)
=

k−1

∑
i=0

yi(et − 1)i =
k−1

∑
i=0

i

∑
l=0

(
i
l

)
(−1)i−lyielt

=
∞

∑
n=0

(
k−1

∑
i=0

i

∑
l=0

(
i
l

)
(−1)i−lyiln

)
tn

n!

=
∞

∑
n=0

(
k−1

∑
i=0

yi∆i0n

)
tn

n!
,

(11)

where ∆ f (x) = f (x + 1)− f (x).
For w ∈ N, the w-torsion Fubini polynomials are represented by means of the following fermionic

p-adic integral on Zp:

∫
Zp
(−yw(et − 1)w)xdµ−1(x) =

2
1− yw(et − 1)w =

∞

∑
n=0

2Fn,w(y)
tn

n!
, (12)

From (7) and (12), we have∫
Zp
(−y(et − 1))xdµ−1(x)∫

Zp
(−yw1(et − 1)w1)xdµ−1(x)

=
1− yw1(et − 1)w1

1− y(et − 1)
=

w1−1

∑
i=0

yi(et − 1)i

=
∞

∑
n=0

(
w1−1

∑
i=0

yi∆i0n

)
tn

n!
, (w1 ∈ N).

(13)

For w1, w2 ∈ N, we let

I =

∫
Zp
(−yw1(et − 1)w1)x1 dµ−1(x1)

∫
Zp
(−yw2(et − 1)w2)x2 dµ−1(x2)∫

Zp
(−yw1w2(et − 1)w1w2)xdµ−1(x)

. (14)

Here it is important to observe that (14) has the built-in symmetry. Namely, it is invariant under
the interchange of w1 and w2.

Then, by (14), we get

I =
(∫

Zp
(−yw1(et − 1)w1)xdµ−1(x)

)
×
( ∫

Zp
(−yw2(et − 1)w2)xdµ−1(x)∫

Zp
(−yw1w2(et − 1)w1w2)xdµ−1(x)

)
. (15)
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First, we observe that∫
Zp
(−yw2(et − 1)w2)xdµ−1(x)∫

Zp
(−yw1w2(et − 1)w1w2)xdµ−1(x)

=
1− yw1w2(et − 1)w1w2

1− yw2(et − 1)w2
=

w1−1

∑
i=0

yw2i(et − 1)w2i

=
w1−1

∑
i=0

yw2i
w2i

∑
l=0

(
w2i

l

)
(−1)w2i−lelt

=
∞

∑
n=0

(
w1−1

∑
i=0

yw2i∆w2i0n

)
tn

n!
.

(16)

From (15) and (16), we can derive the following equation.

I =
(∫

Zp
(−yw1(et − 1)w1)xdµ−1(x)

)
×
( ∫

Zp
(−yw2(et − 1)w2)xdµ−1(x)∫

Zp
(−yw1w2(et − 1)w1w2)xdµ−1(x)

)

=

(
∞

∑
m=0

2Fm,w1(y)
tm

m!

)
×
(

∞

∑
k=0

(
w1−1

∑
i=0

yw2i∆w2i0k

)
tk

k!

=
∞

∑
n=0

(
2

n

∑
k=0

w1−1

∑
i=0

yw2i∆w2i0kFn−k,w1(y)
(

n
k

))
tn

n!
.

(17)

Interchanging the roles of w1 and w2, by (14), we get

I =
(∫

Zp
(−yw2(et − 1)w2)xdµ−1(x)

)
×
( ∫

Zp
(−yw1(et − 1)w1)xdµ−1(x)∫

Zp
(−yw1w2(et − 1)w1w2)xdµ−1(x)

)
. (18)

We note that∫
Zp
(−yw1(et − 1)w1)xdµ−1(x)∫

Zp
(−yw1w2(et − 1)w1w2)xdµ−1(x)

=
1− yw1w2(et − 1)w1w2

1− yw1(et − 1)w1
=

w2−1

∑
i=0

yw1i(et − 1)w1i

=
∞

∑
n=0

(
w2−1

∑
i=0

yw1i∆w1i0n

)
tn

n!
.

(19)

Thus, by (18) and (19), we get

I =
(∫

Zp
(−yw2(et − 1)w2)xdµ−1(x)

)
×
( ∫

Zp
(−yw1(et − 1)w1)xdµ−1(x)∫

Zp
(−yw1w2(et − 1)w1w2)xdµ−1(x)

)

=

(
∞

∑
m=0

2Fm,w2(y)
tm

m!

)
×
(

∞

∑
k=0

(
w2−1

∑
i=0

yw1i∆w1i0k

)
tk

k!

=
∞

∑
n=0

(
2

n

∑
k=0

w2−1

∑
i=0

yw1i∆w1i0kFn−k,w2(y)
(

n
k

))
tn

n!
.

(20)

The following theorem is now obtained by Equations (17) and (20).

Theorem 1. For w1, w2 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2), n ≥ 0, we have

n

∑
k=0

w1−1

∑
i=0

(
n
k

)
Fn−k,w1(y)y

w2i∆w2i0k =
n

∑
k=0

w2−1

∑
i=0

(
n
k

)
Fn−k,w2(y)y

w1i∆w1i0k. (21)
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Remark 1. In particular, for w1 = 1, we have

Fn(y) =
n

∑
k=0

w2−1

∑
i=0

(
n
k

)
Fn−k,w2(y)y

i∆i0k. (22)

By expressing I in a different way, we have

I =
(∫

Zp
(−yw1(et − 1)w1)xdµ−1(x)

)
×
( ∫

Zp
(−yw2(et − 1)w2)xdµ−1(x)∫

Zp
(−yw1w2(et − 1)w1w2)xdµ−1(x)

)

=

(∫
Zp
(−yw1(et − 1)w1)xdµ−1(x)

)
×
(

1− yw1w2(et − 1)w1w2

1− yw2(et − 1)w2

)
=

(
w1−1

∑
i=0

yw2i(et − 1)w2i

)
×
(

2
1− yw1(et − 1)w1

)

=
w1−1

∑
i=0

w2i

∑
l=0

(
w2i

l

)
yw2i(−1)l 2

1− yw1(et − 1)w1
e(w2i−l)t

= 2
∞

∑
n=0

(
w1−1

∑
i=0

w2i

∑
l=0

(
w2i

l

)
yw2i(−1)l Fn,w1(w2i− l, y)

)
tn

n!
.

(23)

Interchanging the roles of w1 and w2, by (14), we get

I =
(∫

Zp
(−yw2(et − 1)w2)xdµ−1(x)

)
×
( ∫

Zp
(−yw1(et − 1)w1)xdµ−1(x)∫

Zp
(−yw1w2(et − 1)w1w2)xdµ−1(x)

)

=

(∫
Zp
(−yw2(et − 1)w2)xdµ−1(x)

)
×
(

1− yw1w2(et − 1)w1w2

1− yw1(et − 1)w1

)
=

(
w2−1

∑
i=0

yw1i(et − 1)w1i

)
×
(

2
1− yw2(et − 1)w2

)

=
w2−1

∑
i=0

w1i

∑
l=0

yw1i
(

w1i
l

)
(−1)l 2

1− yw2(et − 1)w2
e(w1i−l)t

= 2
∞

∑
n=0

(
w2−1

∑
i=0

w1i

∑
l=0

yw1i
(

w1i
l

)
(−1)l Fn,w2(w1i− l, y)

)
tn

n!
.

(24)

Hence, by Equations (23) and (24), we obtain the following theorem.

Theorem 2. For w1, w2 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2), n ≥ 0, we have

w1−1

∑
i=0

w2i

∑
l=0

yw2i
(

w2i
l

)
(−1)l Fn,w1(w2i− l, y) =

w2−1

∑
i=0

w1i

∑
l=0

yw1i
(

w1i
l

)
(−1)l Fn,w2(w1i− l, y). (25)

Remark 2. Especially, if we take w1 = 1, then by Theorem 2, we get

Fn(y) =
w2−1

∑
i=0

i

∑
l=0

(
i
l

)
yi(−1)l Fn,w2(i− l, y). (26)
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3. Conclusions

In this paper, we introduced w-torsion Fubini polynomials as a generalization of Fubini
polynomials and expressed the generating function of w-torsion Fubini polynomials by means of a
fermionic p-adic integral on Zp. Then we derived some new symmetric identities for the w-torsion
Fubini and two variable w-torsion Fubini polynomials by investigating a quotient of such p-adic
integrals on Zp, representing generating functions of three w-torsion Fubini polynomials. It seems
that they are the first double symmetric identities on Fubini polynomials. As was done, for example
in [4,20,21], we expect that this result can be extended to the case of triple symmetric identities. That is
one of our next projects.
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