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Abstract: We represent the generating function of w-torsion Fubini polynomials by means of a
fermionic p-adic integral on Z,. Then we investigate a quotient of such p-adic integrals on Z,,
representing generating functions of three w-torsion Fubini polynomials and derive some new
symmetric identities for the w-torsion Fubini and two variable w-torsion Fubini polynomials.
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1. Introduction and Preliminaries

In recent years, various p-adic integrals on Z, have been used in order to find many interesting
symmetric identities related to some special polynomials and numbers. The relevant p-adic integrals
are the Volkenborn, fermionic, g-Volkenborn, and g-fermionic integrals of which the last three were
discovered by the first author T. Kim (see [1-3]). They have been used by a good number of researchers
in various contexts and especially in unfolding new interesting symmetric identities. This verifies
the usefulness of such p-adic integrals. Moreover, we can expect that people will find some further
applications of these p-adic integrals in the years to come. The present paper is an effort in this
direction. Assume that p is any fixed odd prime number. Throughout our discussion, we will use the
standard notations Z,, Q, and C, to denote the ring of p-adic integers, the field of p-adic rational
numbers and the completion of the algebraic closure of Qp, respectively. The p-adic norm | - |, is
normalized as |p|, = % Assume that f(x) is a continuous function on Z,. Then the fermionic p-adic
integral of f(x) on Z, was introduced by Kim (see [2]) as

pN-1
[ f@duax) = Jim ¥ f (-1, 0
Zy N—oo x=0
where j_1(x + pNZp) = (-1)*.
We can easily deduce from (1) that (see [2,3])
Jo S D)+ [ () = 26(0) @
By invoking (2), we easily get (see [2,4])
X 2 X oo tn
J e ) = et = B @)
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where E,(x) are the usual Euler polynomials.
As is known, the two variable Fubini polynomials are defined by means of the following (see [5,6])

ad tn _ 1 Xt
Y;)Fn(x,y)m—me . (4)

When x = 0, F,(y) = F.(0,y), (n > 0), are called Fubini polynomials. Further, if y = 1,
then Ob, = F,(0,1) are the ordered Bell numbers (also called Frobenius numbers). They first
appeared in Cayley’s work on a combinatorial counting problem in 1859 and have many different
combinatorial interpretations. For example, the ordered Bell numbers count the possible outcomes
of a multi-candidate election. From (3) and (4), we note that F,(x, —1/2) = E,(x), (n > 0). By (4),
we easily get (see [6]),

n
Fa(y) = ) Sa(n k)kly¥, (n>0), ®)
k=0

where Sy (n, k) are the Stirling numbers of the second kind.
For w € N, we define the two variable w-torsion Fubini polynomials given by

1 n
. ©)

xt _ - r
T—yo(ef —1)° ,;F”'w(x’y)n

In particular, for x = 0, F,»(y) = F.,»(0,y) are called the w-torsion Fubini polynomials. It is
obvious that F,, 1 (x,y) = Fu(x,y).

We represent the generating function of w-torsion Fubini polynomials by means of a fermionic
p-adic integral on Z,. Then we investigate a quotient of such p-adic integrals on Z,, representing
generating functions of three w-torsion Fubini polynomials and derive some new symmetric identities
for the w-torsion Fubini and two variable w-torsion Fubini polynomials. Recently, a number of
researchers have studied symmetric identities for some special polynomials. The reader may refer
to [7-11] as an introduction to this active area of research. Some symmetric identities for g-special
polynomials and numbers were treated in [12-15], including g-Bernoulli, g-Euler, and g-Genocchi
numbers and polynomials. While some identities of symmetry for degenerate special polynomials
were discussed in the more recent papers [6,16,17]. Finally, interested readers may want to have a
glance at [18,19] as general references on polynomials.

2. Symmetric Identities for w-torsion Fubini and Two Variable w-torsion Fubini Polynomials

From (2), we note that

f, M a0 = T io Rl "
and
X z z _ 2 Xt s h
et /Z,,(‘” (! 1)) = Ty =2 L Ry ®)
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From (7) and (8), we note that
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Thus, by (9), we easily get
n n l
Y () ) Ei) = Fa(xy), (n 2 0). (10)
1=0
Now, we observe that
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where Af(x) = f(x+1) — f(x).
For w € N, the w-torsion Fubini polynomials are represented by means of the following fermionic
p-adic integral on Z:

2 0 n
/ZP(—yw(et = 1)) dp_1(x) = Ty —1e ng)zpn,w(y);!r (12)

From (7) and (12), we have

pr(—y(et—l))xd‘u_l(x) 1,yw1(et71)w1 wy—1 i i
fzp(,ywl(et,1)wl)xdy_l(x) T iyl —1) ; vt —1)

(13)

For wq, w, € N, we let

[ Jz, (=yer(ef = 1) ) dp 1 (x1) [ (—y*2(e" = 1)"2)"2dp 1 (x2) y
- pr wlwz et 1)w1w2)xd]/l,1(x) . ( )

Here it is important to observe that (14) has the built-in symmetry. Namely, it is invariant under
the interchange of w; and wy.
Then, by (14), we get

J, (= 1)2)%dp 1 (x)
— W1 et_ w1\ X ‘
I= </Zp( Y ( 1) ) d,ufl( > (pr wlwz 1)w1w2)"dy_1(x)> (15)
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First, we observe that

pr(_ywz (et — ])wz)xd‘u71 (x) 1— ywlwz( et 1)wlw2 w1 —1

40f7

— _ wai (ot wyi
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From (15) and (16), we can derive the following equation.
Jz, (=y2(e" = 1)*2) dp 4 (x)
A B e
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Interchanging the roles of w; and wy, by (14), we get
Jz, (= ywl(et 1)*1)%dp—1(x)
1= ([ e =0 ) (- N
2, T,y (e — e (x)
We note that
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Thus, by (18) and (19), we get
(—y™ (¢ — 1) Yy (x)
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The following theorem is now obtained by Equations (17) and (20).
Theorem 1. For wy,w, € N withwy =1 (mod 2), wy, = 1 (mod 2), n > 0, we have
n wip— n wy—1 ) )
Z 2 ( > ko y wzlszlOk Z Z < > . sz y)ywlewllOk. (21)
k=0 i=0
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Remark 1. In particular, for wq = 1, we have

n wy— o
-r r ( ) oy ()Y AIOF,
k=0 i=0

By expressing I in a different way, we have
Sz, (=y*2(eh = 1)) *dp 4 (x) )
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Interchanging the roles of wy and wy, by (14), we get
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Hence, by Equations (23) and (24), we obtain the following theorem.
Theorem 2. For wy,w, € Nwithwy; =1 (mod 2), wy, = 1 (mod 2), n > 0, we have
wy—1 wyi wy—1 wqi
i=0 1 i=0 1
Remark 2. Especially, if we take w1 = 1, then by Theorem 2, we get

0=F F (Wi 10

i=0 [=0

L L () 0 R =) = £ 3y () (1) s ).

50f7

(22)

(23)

(24)

(25)

(26)



Symmetry 2018, 10, 219 60f7

3. Conclusions

In this paper, we introduced w-torsion Fubini polynomials as a generalization of Fubini
polynomials and expressed the generating function of w-torsion Fubini polynomials by means of a
fermionic p-adic integral on Z,. Then we derived some new symmetric identities for the w-torsion
Fubini and two variable w-torsion Fubini polynomials by investigating a quotient of such p-adic
integrals on Zj, representing generating functions of three w-torsion Fubini polynomials. It seems
that they are the first double symmetric identities on Fubini polynomials. As was done, for example
in [4,20,21], we expect that this result can be extended to the case of triple symmetric identities. That is
one of our next projects.

Author Contributions: TK. and D.S.K. conceived the framework and structured the whole paper; T.K. wrote the
paper; G.-WJ. and J.K. checked the results of the paper; D.S.K. and ].K. completed the revision of the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

Kim, T. g-Volkenborn integration. Russ. ]. Math. Phys. 2002, 9, 288-299.
Kim, T. Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on Z,.
Russ. ]. Math. Phys. 2009, 16, 93-96. [CrossRef]

3. Kim, T. A study on the g-Euler numbers and the fermionic g-integral of the product of several type g-Bernstein
polynomials on Z,. Adv. Stud. Contemp. Math. 2013, 23, 5-11.

4. Kim, D.S; Park, K.H. Identities of symmetry for Bernoulli polynomials arising from quotients of Volkenborn
integrals invariant under S3. Appl. Math. Comput. 2013, 219, 5096-5104. [CrossRef]

5. Kilar, N.; Simsek, Y. A new family of Fubini type numbers and polynomials associated with Apostol-Bernoulli
numbers and polynomials. J. Korean Math. Soc. 2017, 54, 1605-1621.

6. Kim, T,; Kim, D.S,; Jang, G.-W. A note on degenerate Fubini polynomials. Proc. Jangjeon Math. Soc. 2017, 20,
521-531.

7. Kim, Y.-H.; Hwang, K.-H. Symmery of power sum and twisted Bernoulli polynomials. Adv. Stud. Contemp.
Math. (Kyungshang) 2009, 18, 127-133.

8. Lee, J.G.,; Kwon, J; Jang, G.-W.; Jang, L.-C. Some identities of A-Daehee polynomials. J. Nonlinear Sci. Appl.
2017, 10, 4137-4142. [CrossRef]

9. Rim, S--H,; Jeong, J.-H.; Lee, S.-J.; Moon, E.-J; Jin, ].-H. On the symmetric properties for the generalized
twisted Genocchi polynomials. ARS Comb. 2012, 105, 267-272.

10. Rim, S.-H.; Moon, E.-J; Jin, J.-H.; Lee, S.-J. On the symmetric properties for the generalized Genocchi
polynomials. J. Comput. Anal. Appl. 2011, 13, 1240-1245.

11. Seo, ].J.; Kim, T. Some identities of symmetry for Daehee polynomials arising from p-adic invariant integral
on Zy. Proc. Jangjeon Math. Soc. 2016, 19, 285-292.

12. Agyiiz, E.; Acikgoz, M.; Araci, S. A symmetric identity on the g-Genocchi polynomials of higher-order under
third dihedral group Dj. Proc. Jangjeon Math. Soc. 2015, 18, 177-187.

13. He, Y. Symmetric identities for Calitz’s g-Bernoulli numbers and polynomials. Adv. Differ. Equ. 2013,
2013, 246. [CrossRef]

14. Moon, E.-J; Rim, S.-H.; Jin, J.-H.; Lee, S.-J. On the symmetric properties of higher-order twisted g-Euler
numbers and polynoamials. Adv. Differ. Equ. 2010, 2010, 765259. [CrossRef]

15. Ryoo, C.S. An identity of the symmetry for the second kind g-Euler polynomials. J. Comput. Anal. Appl. 2013,
15,294-299.

16. Kim, T.; Kim, D.S. An identity of symmetry for the degenerate Frobenius-Euler polynomials. Math. Slovaca
2018, 68, 239-243. [CrossRef]

17. Kim, T.; Kim, D.S. Identities of symmetry for degenerate Euler polynomials and alternating generalized
falling factorial sums. Iran J. Sci. Technol. Trans. A Sci. 2017, 41, 939-949. [CrossRef]

18. Carlitz, L. Eulerian numbers and polynomials. Math. Mag. 1959, 32, 247-260. [CrossRef]

19. Milovanovi¢, G.V,; Mitrinovi¢, D.S.; Rassias, T.M. Topics in Polynomials: Extremal Problems, Inequalities, Zeros;
World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 1994.


http://dx.doi.org/10.1134/S1061920809010063
http://dx.doi.org/10.1016/j.amc.2012.11.061
http://dx.doi.org/10.22436/jnsa.010.08.09
http://dx.doi.org/10.1186/1687-1847-2013-246
http://dx.doi.org/10.1186/1687-1847-2010-765259
http://dx.doi.org/10.1515/ms-2017-0096
http://dx.doi.org/10.1007/s40995-017-0326-6
http://dx.doi.org/10.2307/3029225

Symmetry 2018, 10, 219 7of7

20. Kim, D.S,; Kim, T. Triple symmetric identities for w-Catalan polynomials. J. Korean Math. Soc. 2017, 54,
1243-1264.

21. Kim, D.S.; Lee, N; Na, J.; Park, K.H. Identities of symmetry for higher-order Euler polynomials in the three
varibles (I). Adv. Stud. Contemp. Math. (Kyungshang) 2012, 22, 51-74.

@ (© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).



http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction and Preliminaries
	Symmetric Identities for w-torsion Fubini and Two Variable w-torsion Fubini Polynomials
	Conclusions
	References

