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Abstract: The target of this paper is to study the relevant factors affecting the victories away from
home of football teams in order to fit the probability of winning an away match. The paper addressed
the following research issues: (a) Is the identification of the significant variables underlying the results
plausible? (b) Can information of these factors increase the probability of winning away from home
and assist coaches in their decisions? Empirically, it is shown that there are more home victories and
draws than away victories in the professional football leagues in Europe and this fact has to be taken
into account. Thus, the classical logistic and Bayesian regression models do not seem to be adequate
in this case and an asymmetric logistic regression model is therefore considered. This paper analyses
380 games played in the First Division of the Spanish Football League during the 2013–2014 season.
Asymmetric logistic regression from a Bayesian point of view is chosen as the best model. This model
detects new relevant factors undetected by standard logistic regressions. In view of the paper’s
findings, various practical recommendations were made in order to improve decision-making in this
field. The Asymmetric logit link is a helpful device that can assist coaches in their game strategies.

Keywords: asymmetric link; bayesian estimation; football; logistic regression; models selection

1. Introduction

In the middle of the 1990s, most of the European football leagues replaced the old point score
system (two points for a victory and one point for a draw) with a new one (three points for a victory
and one point for a draw). The English Premier League was the first one to adopt this system in 1981
(see [1,2] for details). The new system of points was not only applied in the first division, but also
in the rest of the categories of football competitions in all countries. The new rule was introduced in
the World Cup and the European qualifying in 1994 and one year later in Spain and the Champions
League. In the words of [3], the motivation behind the change was to avoid boring draws.

Some works related with the effects caused by the transition from the 2–1–0 to the 3–1–0 award
system in football have been published in the last few decades. See, for example [4–7], among others.
The consequences of the new point score system are not clear, but, at least in Spain, most teams play in
order to get the victory not only in their home location, but also in away games. In this sense, in the
past, teams playing a football match in an away place were satisfied with getting a draw, at least in
Spain and Italy. These days, most teams are only focusing on getting three points from the match
because the difference between getting a victory and a draw is two points instead of one point, as it
was in the past. In the long term, a large number of draws would lead the team to the lowest position
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in the classification, and, therefore, the probability of avoiding the relegation decreases. Figure 1
shows the away victories in four of the most important European football leagues (Premier League,
Bundesliga, Italy Football League and Spanish Football League) from 1993–1994 to 2015–2016 seasons.
It can be seen that there is a growing trend in the away victories from 1993. Therefore, it seems that it
is important to play to get the victory, instead of playing to get a draw, even when the football teams
play as visitors.
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Figure 1. Away victories in four of the most important European football leagues from 1993–1994 to
2015–2016 seasons.

However, the target of this paper is to study the relevant factors affecting the away victories of
football teams in order to fit the probability of winning an away match. In this way, in our experience,
no preceding studies have supposed the situation in which the matches have many more home
victories and draws than away victories. A classical logit model can be used to analyse the factors that
determine sporting achievement, but sometimes the individual results are more clearly related to one
category than to the another. This is the case shown in this paper, in which there are more drawing and
winning matches as a local team in the final results of the games, therefore, the asymmetric logit model
can improve the estimations. In this context, [8] applied a Bayesian procedure applying a skewed link
in their analysis of binary response data when one response is much more frequent than the other.
Similarly, [9] used a skewed logit link for estimating the fraudulent conduct reflected in a Spanish
database of insurance claims. [10] applied the asymmetric logit model to analyse infection rates in
a General and Digestive Surgery hospital department. [11] studied the risk variables underlying
automobile insurance claims taking into account the asymmetry of the database.

The formal aspects of the different logistic regression models considered in this work are
developed in Section 2. The description of the database is shown in Section 3. Section 4 discusses the
results, and conclusions and future lines of research connected with this work are presented in the
last Section.

2. Logit Specifications

2.1. Frequentist Estimation

When research deals with binary outcomes, the logit and probit models are the highest popular
models in regards to this case. A binary response model is a regression model in which the dependent
variable y is a binary random variable that takes only the values zero and one. In our case, the variable
y = 1 if a match ends with an away victory while y = 0 otherwise, that is, the match ends with the
visiting team getting a draw or a defeat. In this article, we use the logit model in order to estimate the
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probability of an away victory in football competition given a set of characteristics of the event; that is,
given the predictor X, we estimate Pr(1|X = x), i.e., the conditional probability that y = 1 given the
value of the predictor. As is known, the logit specification is a particular instance of a generalized linear
model (see [12], chapter 12, for details). On the other hand, the logistic link function is a moderately
not confusing alteration of the prediction curve and also yields odds ratios. Both characteristics make
it well-received among researchers in front of the probit regression. The standard logistic distribution
has a closed form expression and a shape notably similar to the normal distribution. Logit models have
been used widely in several fields, including medicine, biology, psychology, economics, insurance,
politics, etc. Recent applications of the linear logit specification in statistics in sports are [13,14] in
basketball, [15,16] for football, among others.

Specifically, the logit is defined as follows. For observation t in a sample of size n, let yt,
t = 1, 2, . . . , n, a binary variable taking the value of 1 with probability

pt =
1

1 + exp(−x′tβ)
=

exp(x′tβ)
1 + exp(x′tβ)

, (1)

and 0 with probability 1− pt, where β = (β1, · · · , βk)
′ is a k× 1 vector of regression coefficients, which

represents the effect of each variable in the model and it should be estimated. Finally, xt = (xt1, ..., xtk)
′

is a vector (explanatory variables) of known constants, including an intercept, the vector of covariates
for the match t in our case. The regression is therefore modelled by assuming that pt = F(x′tβ), where
F is the inverse of the standard logistic cumulative function (link function). Recall that the probability
density function of the standard logistic distribution is symmetric about 0. In summary, the logit
specification adopts the following form:

Lt(β) = log
(

pt

1− pt

)
= x′tβ, t = 1, 2, . . . , n.

Thus, the likelihood is given by

`(y|x, β) =
n

∏
t=1

[F(x′tβ)]
yt [1− F(x′tβ)]

1−yt , (2)

where F(s) = 1/(1+ e−s), −∞ < s < ∞ is a symmetric function with respect to zero. The β parameters
are usually estimated by the maximum likelihood method. In this way, the model gives the probability
of each visiting team winning. The next step is to take into consideration a cut-off for determining
whether a match will end with an away victory or not. The classical logit (frequentist approach) model
is implemented in most of the standard statistical packages as Mathematica (Champaign, IL, USA),
STATA (Texas, TX, USA) and R (Vienna, Austria), among others. We have estimated the basic logit
model using STATA 14.1 econometric software.

2.2. Bayesian Estimation

In contrast to the frequentist approach, the Bayesian approach has gained a lot of popularity in
the last decades. In the past, the main motivation for using the standard logit regression model was
basically by computational effort. Software for implementing other methodologies became widely
available in the last few decades due to the advances in computational sciences. From the pioneering
work of [17] (first published in 1971), the applications of Bayesian methodology in econometrics theory
have increased considerably.

In the Bayesian approach, the β parameters are considered to be random variables assuming
non-informative and centered normal prior distributions, making the comparisons with classical
results easy. The Bayesian methods use the data and the prior knowledge to obtain the estimations
and these results usually are more accurate than those derived under classical methods.
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Bayesian inference for logit studies satisfies the standard mechanism in Bayesian analysis
consisting of the likelihood function of the data, the prior distribution over the unknown parameters
and the use of the Bayes theorem to compute the posterior distribution of the parameters.

The set of unknown parameters is represented by the vector β = (β1, . . . , βk). Thus, the logit
Bayesian model can be specified as follows:

Lt(β) = log
(

pt

1− pt

)
= x′tβ, (3)

β ∼ π(β), (4)

where π(·) is the prior distribution of β. The selection of the prior distribution can involve informative
prior distributions if the researcher knows something about the parameters, or non-informative prior if
there is little information about these coefficients. A problem arises when informative prior distributions
are chosen: the information must be given on the logit scale, i.e., on the β parameters directly.

We suppose as it is usual that the parameters of the logit models follows a normal distribution,
β j ∼ N(µj, σ2

j ), j = 1, . . . , k, where µ is zero, and σ is usually chosen to be large enough to be considered
as non-informative.

By combining the prior assumption with the likelihood in (2), we obtain the posterior distribution
for the parameters β, which is proportional to

π(β|y, x) ∝ `(y|x, β)π(β)

=

{
n

∏
t=1

∫ ∞

0
[F(x′tβ)]

yt [1− F(x′tβ)]
1−yt

}
k

∏
j=1

1
σj
√

2π
exp

(
−

β2
j

2σ2
j

)
.

Multiple integration for calculating the marginal distribution is required because it does not
have a closed-form expression. The literature at this respect uses a Gibbs sampler as implemented
by WinBUGS to obtain approximately the properties of the marginal posterior distributions for each
parameter. WinBUGS (1.4, Cambridge, UK), the MS Windows operating system version of BUGS:
Bayesian Analysis Using Gibbs Sampling, is a flexible software program that carries out Markov chain
Monte Carlo (MCMC) simulations for a broad diversity of Bayesian models (WinBUGS was developed
jointly by the Medical Research Council Biostatistics Unit (University of Cambridge, UK) and the
Imperial College School of Medicine at St. Mary’s, London; see [18]).

2.3. Bayesian Asymmetric Estimation

The use of a symmetric link function as developed in the frequentist and Bayesian logit
specification models above is recommended for binary response data in which the frequency of
both responses are similar. If one response is much more frequent than the other, an asymmetric link
is preferable.

Figure 2 shows the home victories and draws versus the away victories in the four most
important European football leagues from the 2012–2013 to 2015–2016 seasons. It can be seen
that the 0 (home victory and draw) response is much more frequent than the 1 (away victory) and
therefore an asymmetric link function is preferable in order to explain the conditional probability
Pr(1|X = x). In this case, application of the above classical models can lead to model misspecification,
a misinterpretation of the marginal effects and unidentified predictors.
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Figure 2. Home victories and draws versus away victories in four of the most important European football leagues from the 2012–2013 to 2015–2016 seasons.
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A commonly adopted asymmetric link function is the complementary loglog link function, which
has a fixed negative skewness and therefore does not have the possibility to incorporate positive
skewness. Several attempts to overcome this problem appear in the statistical literature. Some of them
are [8,19,20], among others.

The model proposed by [20] includes the complementary log–log link and the probit models.
However, Stukel’s models yield improper posterior distributions under an improper uniform prior for
β (see [8] for details). From the asymmetric point of view, [8,21] considered a procedure based on data
augmentation supposing that

yt =

{
1, wt ≥ 0,
0, wt < 0,

(5)

where wt = x′tβ + δzt + εt, zt ∼ G, εi ∼ F. The parameter δ ∈ (−∞, ∞) is the skewness coefficient
and so the asymmetry of the logistic model is estimated by δzt. If δ > 0, the probability of pt = 1,
the probability that the tth match ends with an away victory, increases. On the other hand, if δ < 0,
the probability of ending with a draw or a defeat of the visiting team increases.

The new Bayesian asymmetric logit model can be written as follows:

Lt(β, δ) = log
(

pt

1− pt

)
= xtβ + δzt, (6)

(β, δ) ∼ π(β, δ), (7)

where π(β, δ) is a bivariate prior distribution for (β, δ). The symmetric logistic model (3)–(4) is just a
particular case of model (6)–(7) when there is no skewness (δ = 0).

We assume that zt and εt are independent and that F and G are the standard logistic and
half-standard normal cumulative distribution functions, respectively. The last one is given by
g(z) =

√
2/π exp(−z2/2), z > 0.

Likelihood function is given by

`(y|x, β, δ) =
n

∏
t=1

∫ ∞

0
[F(x′tβ + δzt)]

yt [1− F(x′tβ + δzt)]
1−yt g(zt) dzt. (8)

Again, we assume that the prior distribution of the parameters is normal and non-informative.
Thus, β j ∼ N(0, σ2

j ), ∀j = 1, ..., k, and δ ∼ N(0, σ2
δ ), supposing σj > 0, ∀j = 1, ..., k, and σδ > 0

are sufficiently large, pointing out the absence of prior knowledge about the parameters of interest
and facilitating the comparison with the classical model. The values of the variances considered are
σ2

j = 108, ∀j = 1, ..., k, and σ2
δ = 108.

The posterior distribution for the β and δ parameters is proportional to

π(β, δ|y, x) ∝

{
n

∏
t=1

∫ ∞

0
ϕ(x′t, yt, zt, β, δ)g(zt) dzt

}
π(β, δ),

where

ϕ(x′t, yt, zt, β, δ) = [F(x′tβ + δzt)]
yt [1− F(x′tβ + δzt)]

1−yt .

Again, we use WinBUGS to solve in an approximate way the properties of the marginal posterior
distributions for each parameter.

3. Description of Database

This paper analyses 380 matches played in the First Division of the Spanish Football League,
La Liga, during the season 2013–2014 in order to analyse the factors that might have affected the
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probability of winning an away match. We consider four sets of variables: those related to the game
statistics (HS, AS, AF, HC, AC, HY, AY, HR and AR), a game variable we term DERBY, non-sports
variables (BUDH and BUDA) and those associated with the referee (INTERNATIONAL and ACIENT).
This dataset and others may be downloaded from [22]. These variables were chosen by applying the
Bayesian model averaging (BMA) tool from 262,144 competing models and after testing the absence of
collinearity under the variance inflation factor (VIF) criterion.

The variables included in the game statistics category were HS and AS, the total shots of the
home and visiting teams, respectively; AF, representing the fouls committed by the visiting team;
HC and AC, the number of corners for each team; and, finally, yellow or red cards shown to the home
or visiting teams, HY, AY, HR and AR. There is one game variable, DERBY, which takes the value
1 when the match is played between teams from the same region or city, or between the strongest
teams in the competition, and 0 otherwise. The non-sports variables, BUDH and BUDA, represent the
budgets of the home and visiting teams. Finally, the variables related to the referee: the international
experience, INTERNATIONAL, which was scored as 1 if he had such experience, and 0, otherwise;
and the number of years of experience in the first division, ACIENT.

A brief description of these variables is shown in Table 1.

Table 1. Variables used in the study.

Variable Name Description

Game statistics
HS Home team shots.
AS Away team shots.
AF Fouls committed by the away team.
HC Corners in favour of the home team.
AC Corners in favour of the away team.
HY Yellow cards shown to the home team.
AY Yellow cards shown to the away team.
HR Red cards shown to the home team.
AR Red cards shown to the away team.

Game variable
DERBY Match played between teams from the same city or region

or between the strongest teams in the league.

Extra games
BUDH Home team budget
BUDA Away team budget

Referee
INTERNATIONAL International experience
ACIENT Years of experience in the first division

4. Empirical Results

In this section, we check that the non-informative Bayesian symmetric and the frequentist
estimations of the logistic model provide similar results in terms of fit and coefficient estimates.
Then, we compare these estimations with those obtained by the Bayesian asymmetric logistic model
and we observe that this last model improves the overall fitting and detects new relevant variables.
To evaluate the quality of fitting, we propose three different measures: (i) the percentage of correct
fittings calculated by considering the estimates probabilities; (ii) the Akaike information criterion
(AIC) defined as AIC = 2(k− log(`(y|x, β̂))); and (iii) the deviance information criterion (DIC), given
by DIC = −2 log(`(y|x, β̂)). Here, β̂ are the estimated parameters obtained usually by maximum
likelihood estimation. Both statistics measure the relative quality of statistical models for a given set of
data. The idea is that models with smaller AIC and DIC should be preferred to models with larger
AIC and DIC. See [23,24] for details.
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We estimate the above-mentioned probability for match t as

log
(

pt

1− pt

)
= β0 + β1 ·HSt + β2 ·ASt + β3 ·AFt + β4 ·HCt + β5 ·ACt

+β6 ·HYt + β7 ·AYt + β8 ·HRt + β9 ·AR + β10 ·DERBYt

+β11 · BUDHt + β12 · BUDAt + β13 · INTERNATIONALt

+β14 ·ACIENTt + εt, t = 1, 2, . . . , n,

for the Bayesian symmetric and the frequentist logistic models, and

log
(

pt

1− pt

)
= β0 + β1 ·HSt + β2 ·ASt + β3 ·AFt + β4 ·HCt + β5 ·ACt

+β6 ·HYt + β7 ·AYt + β8 ·HRt + β9 ·AR + β10 ·DERBYt

+β11 · BUDHt + β12 · BUDAt + β13 · INTERNATIONALt

+β14 ·ACIENTt + δzt + εt, t = 1, 2, . . . , n,

for the Bayesian asymmetric logistic model.
The posterior distributions for Bayesian models were simulated using WinBUGS. A total of

500,000 iterations were carried out (after a burn-in period of 100,000 simulations). Three different
chains were carried out and the convergence was evaluated for all parameters using tests provided
within the WinBUGS Convergence Diagnostics and Output Analysis (CODA) software. The source
codes of Bayesian estimations are available upon request from the authors.

The results of estimating the frequentist and the non-informative symmetric Bayesian models
are shown in Table 2. In the light of these results, the following significant variables regarding the
game statistics and non-sports variables were obtained: shots of the visiting team and red cards shown
to the home team, AS and HR; and the home and away budgets, BUDH and BUDA. In relation
to the signs of the coefficients, they were positive except for the BUDH, which means that the
expectation of winning an away match decreases with the home team’s budget. It seems coherent
under the idea that the higher the budget of the local team, the lower the probability of victory for
the visitor. The high level of significance that the red cards shown to the home team have in the
victory of the visiting team should be noted. The results are similar for both models because the prior
information is non-informative in the Bayesian estimation. However, using the Bayesian approach,
a new variable arises, INTERNATIONAL, which implies that, if the referee has international experience,
the expectation of the victory of the visiting team increases, i.e., non international referees decrease the
probability of winning for visiting teams.

The results for estimating the Bayesian asymmetric logit model are also shown in Table 2.
We observe that the estimated coefficients differ considerably from those of the previous models,
although the signs remain the same. This difference is further accentuated in the estimation of the
constant. In the symmetric models, the estimated constant may contain part of the asymmetry effect
made apparent in the asymmetric model. It may be seen that the new estimation, using the asymmetric
Bayesian approach, improves the results, which is strengthened with the values of the AIC and DIC.
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Table 2. Frequentist, Bayesian and asymmetric Bayesian logit estimation results in the full models.

Variables
Frequentist Bayesian Asymmetric Bayesian

β̂ Robust Sd p -Value β̂ Sd MC Error β̂ Sd MC Error

Intercept –2.417 *** 0.929 0.009 –1.313 *** 0.504 0.000 12.58 *** 1.343 0.009
HS 0.006 0.031 0.836 0.006 0.031 0.000 0.020 1.343 0.0009
AS 0.051 * 0.030 0.100 0.052 * 0.030 0.000 0.592 *** 1.532 0.014
AF 0.025 0.033 0.450 0.026 0.033 0.000 0.256 1.187 0.008
HC 0.055 0.054 0.306 0.058 0.056 0.000 0.284 1.075 0.007
AC –0.047 0.052 0.364 -0.050 0.055 0.000 –0.200 1.215 0.009
HY 0.034 0.098 0.730 0.034 0.098 0.000 0.417 1.135 0.007
AY –0.032 0.097 0.738 –0.034 0.103 0.000 0.306 1.054 0.007
HR 1.390 *** 0.326 0.000 1.460 *** 0.342 0.000 15.417 *** 1.765 0.020
AR –0.418 0.439 0.341 –0.459 0.482 0.000 –0.981 0.912 0.005
DERBY -0.026 0.324 0.936 –0.035 0.354 0.000 –0.206 3.246 0.024
BUDH –0.004 ** 0.001 0.012 –0.004 ** 0.001 0.000 –0.024 *** 1.353 0.012
BUDA 0.003 *** 0.0009 0.001 0.003 *** 0.0009 0.000 0.035 *** 1.897 0.020
INTERNATIONAL 0.369 0.276 0.182 0.389 * 0.282 0.000 3.139 * 2.345 0.024
ACIENT 0.001 0.031 0.968 0.001 0.031 0.000 0.042 1.294 0.009

δ –35.03 *** 6.488 0.1034

AIC 433.553 449.000 82.56
DIC 403.553 434.096 99.95
% Correct Fitting 73.68 71.58 100
∗∗∗ indicates 1% significance or relevance level
∗∗ indicates 5% significance or relevance level
∗ indicates 10% significance or relevance level

The percentage of correct fittings and the results of the AIC and DIC criteria appear at the bottom
of Table 2. For our database, we obtained an AIC of 433.553 and a DIC of 403.553 for the frequentist
logit model, an AIC of 449.0 and a DIC of 434.096 for the symmetric Bayesian logit model and an AIC
of 82.56 and a DIC of 99.95 for the asymmetric Bayesian logit model. This table also shows that the
accuracy, i.e., the proportions of victories and non-victories (defaults or draws) that were correctly
classified by the models, is around 73.68% for the frequentist model (corresponding to 40 away victories
and 240 away defeats or draws) and 71.58% for the symmetric Bayesian model (corresponding to 72
away victories and 200 away defeats or draws). The threshold probabilities used to fit an away victory
was the sample frequency of victories, 0.302. As we can observe, the Bayesian symmetric model fits
the away victories better but the away draws and defeats worse. Nevertheless, the best result is taken
from the asymmetric Bayesian logit estimation, which fits 100% of the away victories. Obviously,
these results are explained by the increase in the probability of fitting the yi = 0 cases induced by the
asymmetric model, since δ was negative. Figure 3 shows the receiver operating characteristic (ROC)
curve for the frequentist, symmetric and asymmetric Bayesian models. The c-statistics are 0.725 for the
frequentist model, 0.722 for the symmetric Bayesian model and 1 for the asymmetric Bayesian model.

Table 3 shows the results obtained by the restricted models, i.e., the models including only the
significant variables obtained in the previous estimations. These results remark the robustness of
the estimations obtained in Table 2. The signs, significant levels and percentages of correct fitting
remain stable.
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Figure 3. ROC curves for the models considered.

Table 3. Frequentist, Bayesian and asymmetric Bayesian logit estimation results in the restricted models.

Variables
Frequentist Bayesian Asymmetric Bayesian

β̂ Robust Sd p -Value β̂ Sd MC Error β̂ Sd MC Error

Intercept –0.985 *** 0.131 0.000 –1.231 *** 0.225 0.000 11.55 *** 2.859 0.131
AS 0.158 0.131 0.227 0.156 0.135 0.000 2.63 *** 1.381 0.039
HR 0.494 *** 0.115 0.000 0.517 *** 0.115 0.000 5.542 *** 1.763 0.063
BUDH –0.578 ** 0.228 0.011 –0.641 *** 0.23 0.000 –3.119 *** 0.992 0.030
BUDA 0.409 *** 0.127 0.001 0.423 *** 0.126 0.000 4.571 *** 1.79 0.057
INTERNATIONAL 0.327 0.262 0.000 2.715 * 2.13 0.06

δ –33.19 *** 7.125 0.335

AIC 420.119 426.7 67.43
DIC 410.119 420.75 108.105
% Correct Fitting 72.89 70 100
∗∗∗ indicates 1% significance or relevance level
∗∗ indicates 5% significance or relevance level
∗ indicates 10% significance or relevance level

5. Conclusions

In this paper, we use a novel econometric methodology to increase the available quantitative
mechanisms, the asymmetric logistic regression. In binary response data, the application of a skewed
link function is suggested when one category is much more recurrent than the other, as it is usually
the case in football datasets, where the away victories response is much less frequent than the home
victories and draws responses.

Specifically, we present the asymmetric logistic regression to study the impact of the main factors
on the probability of winning an away match. To our knowledge, this tool has not been applied in
football studies. Through this new methodology, the model detects new relevant factors to explain the
away victories of the football teams that have not been detected by the standard methodologies. In this
way, the team staff would have a potential tool to replicate matches more efficiently considering these
important factors and estimating the probability of winning. The results lead to the consideration of
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practical recommendations on coach’s decision-making such as, for instance, playing strategically as
visitors or taking the initiative in attacking what favours shouting on goal, or forcing the rivals playing
hard to be issued with red cards. It seems clear that if coaches want to improve teams’ performances,
they should behave in such a way whereby the management of the available resources allows them to
maximize the winning probability of their teams by paying special attention to these key factors.

Taking all of these results into account, it is clear that the asymmetry has to be included into the
logit model. As future research lines, panel data including random effects for a database of several
seasons can be used, keeping in mind the asymmetric link. Future studies might also be addressed to
predict the probability of the away victories in the next period (season), considering the asymmetric
information to improve the quality of this prediction.
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