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Abstract: Modern facial motion capture systems employ a two-pronged approach for capturing and
rendering facial motion. Visual data (2D) is used for tracking the facial features and predicting facial
expression, whereas Depth (3D) data is used to build a series of expressions on 3D face models.
An issue with modern research approaches is the use of a single data stream that provides little
indication of the 3D facial structure. We compare and analyse the performance of Convolutional
Neural Networks (CNN) using visual, Depth and merged data to identify facial features in real-time
using a Depth sensor. First, we review the facial landmarking algorithms and its datasets for Depth
data. We address the limitation of the current datasets by introducing the Kinect One Expression
Dataset (KOED). Then, we propose the use of CNNs for the single data stream and merged data
streams for facial landmark detection. We contribute to existing work by performing a full evaluation
on which streams are the most effective for the field of facial landmarking. Furthermore, we improve
upon the existing work by extending neural networks to predict into 3D landmarks in real-time with
additional observations on the impact of using 2D landmarks as auxiliary information. We evaluate
the performance by using Mean Square Error (MSE) and Mean Average Error (MAE). We observe that
the single data stream predicts accurate facial landmarks on Depth data when auxiliary information
is used to train the network. The codes and dataset used in this paper will be made available.

Keywords: deep learning; RGB; depth; facial landmarking; merging networks

1. Introduction

Motion capture using visual cameras is a common practice in high-end facial animation
production. Commercial companies have a preference towards optical marker based systems, such as
Vicon [1] as they allow for a large quantity of tracked landmarks with high accuracy. Additionally, with
optical markers the addition of multiple cameras allows Depth information to be predicted. However,
the set up time of the tracking markers is lengthy and prone to human error. A solution to this is to
implement marker-less tracking, which uses visual cameras, computer vision techniques and machine
learning to label facial features [2,3]. Marker-less tracking, currently, cannot track as accurately or as
many points as optical marker systems. Similarly, to optical markers, additional cameras allow capture
of Depth information. However, with technology advancements, the prices of Depth sensors have
decreased, while they have significant performance improvements, making them suitable for consumer
based production. Additionally, with the availability of RGB with Depth (RGBD) sensors, the potential
to increase accuracy is possible by merging the data streams within a neural network. Merging RGB
and Depth allows a marker-less system to predict Depth without the requirement of multiple cameras
with high accuracy. The Depth information assists greatly in identifying facial feature movement
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and synthesising to 3D models. Furthermore, in object recognition Greyscale (Gs) outperforms RGB
data significantly [4]. Thus we also compare against Gs image and merged Greyscale with Depth
(GsD). This study improves upon current work, as the literature is split between networks that use full
RGB [2,3] and networks that run Gs [5,6] without justification, and focuses solely on 2D landmarks
prediction. 3D landmarks are important for face recognition in the presence of expressions [7] and
real-time facial animation [8]. To do this, we extend the existing work to predict 3D landmarks and
investigate the impact on 2D and 3D data if they are used as auxiliary information.

As with many fields of research, the implementation of deep learning has shown significant
improvements in facial landmarking [9], when compared to traditional machine learning [10]. In this
work, we focus on the use of CNNs, like the literature in this area. To perform the experimentation, we
develop near identical networks to reduce the deviation between results. Our main contributions are:

• We introduce a new Kinect One [11] dataset, namely KOED to overcome data deficiency in
this domain.

• We propose a novel and automated real-time 3D facial landmarks detection method.
• We conduct a complete investigation on the effect of different data streams, such as Gs, RGB, GsD,

RGBD in 2D and 3D facial landmarks detection.

By performing this investigation, we can determine the best solution for automated real-time 3D
landmarks detection.

2. Related Work

The related work is divided into three sections. Firstly, we give an overview of the current
state-of-the-art deep learning to predict facial landmarks. We demonstrate the key aspects of the
networks functionality and the features used to localise landmark regions. The second section evaluates
merging Gs/RGB and Depth information in a neural network and the current implementation methods.
Lastly, we present a review of existing 3D datasets and their limitations.

2.1. Facial Landmarking with Neural Networks

Facial landmarking in deep learning is well established, with state of the art showing both
real-time and high accuracy results. Neural networks have solved a wide range of problems, such as
facial landmarking, age identification and gender classification. Due to the adaptability of neural
networks, previous literature has evolved to use multi-output networks [12,13]. Multi-output networks
perform an array of predictions simultaneously, such as age and gender. For our review, we focus
on both single and multi-output networks, such as landmark and gender [3] and landmarking only
networks. We discuss multiple output networks as they can outperform landmarking only networks
as research shows that auxiliary features have a positive effect on network performance [14]. Auxiliary
features boost network performance by adding key pieces of information. For example, in age
prediction, if gender is used as an auxiliary feature, it aids the network as it learns how the make-up
and facial hair affect age prediction. Auxiliary information is predicted by the network in addition to
other outputs; the input to the networks is still a single or merged stream of data. Our experiment seeks
to observe the effect of different streams of data on a neural network; the area of facial landmarking
using auxiliary features, such as age and gender, would be an aspect of future work.

We first evaluate networks that focus solely on the prediction of landmarks. In 2013, Sun et al. [15]
proposed an end-to-end network that takes a facial image through a series of convolutions,
max-pooling, and fully connected layers, to predict five facial landmarks with reasonable accuracy.
Zhou et al. [5] expanded on the work, by proposing a series of detectors to identify facial regions
and process them by small neural networks. They also use a refinement approach that aligns the
facial features before landmark prediction. Lia et al. [16] proposed a complex network for landmark
detection where they implemented a two-stage network, the first stage is a series of convolution
and deconvolution layers to process the image given into a high-value feature set. The features
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were then processed by a series of LSTM [17] layers to identify and refine the landmark position.
Recently, Liu et al. [18] used a multitude of facial feature detectors to identify regions, such as eyes,
nose, and mouth. The authors processed these regions with small sized neural networks that identify
the landmarks on each of the features. This method achieves high accuracy results, as the network
and detectors specialise in different aspects of the face, instead of trying to generalise to all the unique
features. However, unlike Zhou et al. [5], they did not align the features.

We now review the work that uses multiple output networks. Zhang et al. [12] experimented
in the use of auxiliary features to increase a network understanding of facial structure and features.
They created multiple networks with the structure remaining the same except for the outputs changing
by adding key pieces of information such as facial direction, age, and gender. By incorporating auxiliary
features, networks learned facial features in more Depth. The authors observed a significant increase in
accuracy when asking the network to determine these extra features, even when training the network
to perform normally difficult tasks, such as facial direction. More recently, Zhang et al. [14] extended
their work on facial alignment. Jourabloo et al. [6] used a similar method to predict landmarks by
having a series of networks refine the positions. However, they focused on using the landmarks to
refine the appearance of a 3D model. Even though Zhang et al. [14] and Jourabloo et al. [6] provide
high accuracy networks, the networks require pre-processing to crop faces out of the image.

Finally, we review all-in-one networks, where no pre-processing is required before network
prediction. The most recent research for facial landmarking focused on end-to-end networks based
upon Recurrent Neural Networks (RNN) [19]. Zhang et al. [2] presented an all-in-one neural network
to identify and landmark faces in an image. They used three interlinked networks to refine the
landmarking approach. The result of the network is five facial landmarks and bounding box for every
face in an image. On the other hand, Ranjan et al. [3] produced their all-in-one network to retrieve the
face bounding box, landmark, facial direction and gender with high accuracy. The network included a
separate classifier to check if the first section of the network returned a true face.

The networks, when trained on the separate streams of data, give high-end accuracy results
starting from the small-scale one output networks to complex multi-model methods. However,
the work is limited as it only considers single RGB or Gs images to predict 2D landmarks. Whereas state
of art uses multiple cameras or Depth data to estimate the desired 3D landmarks. Additionally,
the literature does not give justification for the use of either RGB or Gs. As neural networks are
adaptable, we want to investigate how the different streams of data affect a neural network’s ability to
predict both 2D and 3D landmarks. Furthermore, we extend this by analysing the effect of merging
multiple data streams for accurate facial landmark prediction, such as integrating both RGB or Gs
with Depth. We also extend on Zhou et al.’s [5] work by analysing the effect of using UV and XYZ
as auxiliary features, compared to using UV or XYZ only to train a model that understands facial
structure in detail.

Investigation of the use of Depth information to predict facial landmarking has been
performed [20]. However, much of the focus is on using surface curvature analysis. Curvature
analysis does give reasonable results on low noise models, but it is a slow process and can only track a
few points in areas of high curvature change. Another method of predicting 3D facial landmarks is
shown by Nair et al. [21], who impressively have predicted a total of 49 landmarks on the face, but
they avoid the mouth area. However, this method required a generated 3D model, as point distributed
model is used to deform a template face with landmarks assigned to the new mesh. This is an intense
and computationally expensive task. Both methods required pre-generated models that are difficult at
real-time on a consumer base; our focus is the sole use of images to accurately infer the landmarks.

2.2. Merging Visual and Depth

A multi-model network [22] for the merging of data, such as Gs and Depth, usually implements
three separate networks that work together. The first two networks take input from the separate
streams of data; then they can be processed the same way as a traditional CNNs. The network uses
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these convolutions to extract the unique features in each of the data streams. After the processing,
the inputs for unique features the outputs are fed into the third neural network and the data merged
using basic matrix operations. The third network, similar to the first two networks, functions as a
traditional convolution network.

Merging separate streams of data is, in some areas, a common practice, such as in action
recognition [23]. Park et al. [23] showed by merging an RGB stream with its optical flow counterpart
in a neural network, significantly improves the networks accuracy, by segmenting out the motion in
action recognition.

Merging different data streams has also shown increased accuracy in object recognition [25].
Socher et al. [24] use a single layer convolutional neural network to retrieve RGB and Depth images to
extract low-level features. The output of these networks is fed into separate RNNs. The results of both
RNNs is fed into a softmax classifier. By combing the data, they showed significant improvement in
object recognition. The research in this field are inspired by [23,24] on merging data streams to increase
the accuracy of detection and recognition systems.

For our experiment, we solve a different type of problem where the detection and recognition
system use classification; landmarking is a regression-based problem. Applying classification to a
landmarking problem would mean assigning a true or false value for every pixel in an image, which
would be too processor intense for real-time performance. Whereas regression allows a single output
to be a wide range of values, significantly reducing the processing requirements.

2.3. Existing Datasets

As the experiment required visual and Depth data from the same synchronous capture for both the
merging networks and to prevent bias between the RGB only, Gs and Depth only networks, a review
of the available datasets was performed. As the result of the neural network is to predict landmark
locations in 2D and 3D, the Depth data should be captured from a similar position and angle to the
RGB, for near identical recording. As a result of requiring the features to match, datasets that use
devices like the Kinect are required, as they use forward facing sensors that are only a few millimetres
apart, resulting in similar data view outputs. The available datasets are summarised as follows:

• Face Warehouse [26]: is a large-scale dataset containing 150 participants with an age range of
7–80. The dataset contains RGB images (640× 480), Depth maps (320× 240) and 3D models
with 74 UV landmarks. The dataset focuses solely on posed expressions giving one model and
image when the participant displays the expression. Furthermore, for capture they use the Kinect
version 1 [27]. The dataset is captured under different lighting and in different places. As only the
expressions peak is captured, there is not a significant amount of data for training deep learning
and it is at a low resolution compared to modern cameras. Overall, the Face Warehouse is a good
3D face dataset providing a wide assortment of expressions with landmark annotations, but with
no onset or offset of the expression.

• Biwi Kinect Head Pose [28]: is a small-scale Kinect version 1 dataset containing 20 participants,
four of the participants were recorded twice. During the recording, keeping a neutral face,
the participants would look around the room only moving their heads. The recordings are
different lengths. The Depth data has been pre-processed to remove the background of all no face
sections. The recording contains no facial landmarks, but the centre of the head and rotation is
noted per frame. Although the recording was done in the same environment, the participants can
be positioned in different sections of the room changing the background; the lighting remains
consistent. Overall, the Biwi Kinect dataset was not suitable for the experiment as it contained no
facial expressions and was recorded using the Kinect version 1.

• Eurocom Kinect [29]: is a medium-sized dataset containing 52 participants, each participant
was recorded twice with around two weeks in between. Participants were recorded by having
single images of them performing nine different expressions. The images were taken using the
Kinect version 1 and images were pre-processed to segment the heads. The coordinates for the
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cropping are given as well as six facial landmarks. The Eurocom dataset contains few images
for a deep learning network and is recorded with the Kinect version 1, making it unsuitable for
the experiment.

• VAP face database [30]: is a small size dataset containing 31 participants. The dataset was
recorded using an updated Kinect version 1 for Windows, this version gives a bigger RGB
image (1280 × 1024) and larger Depth map (640× 480), but at the cost of reduced frame rates.
The recording was also done using the Kinects ‘near-mode’ which allows for the increased
resolution described. Each participant has 51 images of the face taken at different head angles
performing a neutral face and some frontal face with expressions. The recordings were done in the
same place with consistent lighting. As the dataset contains single images and few participants
performing facial expressions, it is unsuitable for the experiment, but for head pose estimation it
would be appropriate.

• 3D Mask Attack [31]: is a small to medium scale dataset containing 17 participants, but a large
collection of recordings. The participant is recorded in three different sessions; in each session
the participant is recorded five times for 300 frames per recording, holding a neutral expression.
The recording uses the Kinect version 1. The eyes are annotated every 60 frames with interpolation
for the other frames. The recordings were done under consistent lighting and background. The 3D
Mask Attack dataset contains a vast number of frames, but all use the neutral expression, face the
camera and use the older Kinect making it unsuitable for the experiment.

The existing datasets do not meet the following requirements:

• Deep learning requires large-scale datasets containing many thousands of training examples.
• Facial expression is key for robust landmarking systems, including the onset and offset

of expressions.
• Facial Landmarks, in both 2D and 3D.
• As facial movement can be subtle, high-resolution images are required, which is why Kinect

version 2 with both higher accuracy and resolution is needed.
• Real-time frame rates, as most systems target 30 Frames Per Second (FPS).

3. Proposed Method

3.1. Kinect One Expression Dataset (KOED)

As currently available datasets did not meet the requirements of the project, we created an
in-house dataset. All networks were trained using the in-house dataset.

3.1.1. Experimental Protocol

The experiment comprised of replicating seven universal expressions. Participants were instructed
to begin with a neutral face, perform the expression and then return to the neutral face. We also record
a full clip of the participant performing a neutral expression. The expressions performed are as follow:

• Happy
• Sad
• Surprise
• Anger
• Fear
• Contempt
• Disgust

All participants volunteered for the experiment with no monetary reward. To obtain a wide range
of diversity, anyone over the age of 18 was able to join the experiment. The dataset has 35 participants,
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with a wide range of ages. The majority of the clips are female with a majority of white British, but it
does include participants from Saudi Arabia, India and Malaysia.

3.1.2. Emotional Replication Training

During each recording, a trained individual was present to advise the participants on facial
expressions, providing some prior training. However, during the recording the trainer would not give
any advice to prevent distraction.

3.1.3. Ethics

Ethics was reviewed and approved by the Manchester Metropolitan University ethics committee
(SE151621).

3.1.4. Equipment and Experimental Set up

The experiment was set up in the same room for each participant to ensure each recording was
done similarly. We used a green screen recording room for each of the recordings; this allowed a
consistent background and lighting. The participant sat in the centre of the room, where the lights
could be placed at even distances to ensure consistent coverage. The studio has six lights that were
evenly spaced around the participant, in a backward C shape; we used a series of back-lights to ensure
the background was also lit up. The Kinect was placed one meter away from the participants, at their
head height while they sat down. Steps were taken to ensure consistent lighting, but to ensure ground
truth colour was available we use a colour checker placed to the left of the participants. The participant
was required to remain still during the recording. As recording both RGB and Depth requires a large
quantity of data to be stored, we used a SSD fitted laptop. An example of the experimental set up is
shown in Figure 1.

Figure 1. An example of the data capture set up.
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3.1.5. Camera

The camera used was the Kinect for Xbox One, which gives synchronous streams of both RGB
and Depth data at 30 fps. As the Kinect performs better after reaching working temperature, we turn
the sensor on 25 min prior to any recording to ensure high quality data capture.

3.1.6. Lighting

We use six ARRI L5-c LED directional lights focusing on the individual participant. The lights are
set to emit white light only to prevent any discoloring of the participants faces. The backlighting is
done with a series of photo beard tungsten fluorescent tubes.

3.1.7. Frame Rate and Storage

We record at the Kinect’s maximum capabilities, RGB (1920× 1080) and Depth (512× 424) at
30 fps, for speed we save both files in binary format. The images stored are unmodified from the ones
received from the Kinect, no lossy compression is implemented. As the data is stored in raw binary
format the dataset requires, at the time of writing, over 675 GB of storage for the full dataset.

3.2. Methodology

We implement multiple near-identical networks that function by pre-processing the image with
convolutions with Rectified Linear Unit (ReLU) activations and then a series of fully connected layers
to determine the final output. We illustrate the base networks in Figure 2. The base networks take a
single stream of data, Gs, RGB or Depth and process through a series of convolutions to extract facial
features. We use max-pooling to focus on high level features, and decrease processing requirements,
but take into consideration that this can negatively impact accuracy [32]. The network utilises ReLU as
an activation function after each convolutional layer as it does not normalise data. The resulting feature
maps are then processed by fully connected layers to predict the facial landmarks. For the second
stage, we examine the effectiveness of merging data streams, RGBD and GsD, we have a multiple
input model, shown in Figure 3. The merge network used two CNNs: one to take the RGB/ Gs image;
and another to take the Depth image. The two networks then use a series of convolutions to extract
unique features from each of the inputs. The results of the two CNNs are combined and used as input
to a third network. The third network further convolutes over the images giving a high value feature
set for the fully connected layer.

Figure 2. A visualisation of the basic network used for this experiment.
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Figure 3. A visualisation of the merged network used for this experiment.

As auxiliary features do affect how the network learns and XYZ points are desired, but not
commonly predicted, we repeat the experiments not just with different data streams, but alternative
outputs. The different outputs aid in showing how the networks can understand and learn both the
features and facial structure, in different spaces. The three types of outputs and their metrics that we
train the networks to predict are:

• The UV coordinates, in pixels
• The XYZ coordinates, in meters
• The UVXYZ coordinates

Where the UV points are the 2D image landmark coordinates and the XYZ points are the 3D
location of the landmarks in camera space. As the outputs are in non-compatible metrics, they cannot
be predicted in the same fully connect layer. To overcome this, we propose a multi-model output,
where the final convolutional outputs are fed into different output models. This means, for UV
and XYZ, there will be one model of fully connected layers for the convolution to be passed into.
However, the UVXYZ network will have the convolutions output into two different models, one for
UV calculation and one for XYZ. Traditionally with the Kinect, we require the 2D landmarks and use
them to reconstruct the 3D points with a Depth map. Furthermore, by asking a network to infer UV
and XYZ points, it could adopt the similar methodology, thus improving performance.

The networks are trained with a batch size of 240 using a stride of one over 100 epochs, using
tensor-flow [33] with the Keras [34] API. We used the KOED dataset with 10-fold cross-validation; this
ensures the network is trained, validated and tested on multiple participants, illustrating reliability.
The cross-validation split was performed semi-randomly, with 70% training, 20% validation and 10%
testing, ensuring no participant existed in multiple sets. We use MSE as our loss function, shown in
Equation (??), using Adam [35] as the optimiser. MSE has more emphasises on large numbers allowing
for large outliers to be resolved during training. However, we also calculate the MAE, as shown in
Equation (??). MAE gives equal weight to all the errors illustrating the overall error. By using these
error functions, we can determine the number of errors the networks produce and the size of errors.
We use MSE for training as it is traditional in regression-based deep learning.

MSE =
n

∑
i=0

(
yi − y′i

)
n

(1)

where:

• n is the number of samples in the training batches.
• yi is the ground truth for the training image.
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• y′i is the predicted output for the training image.

MAE =
n

∑
i=0

|yi − y′i|
n

(2)

where:

• n is the number of samples in the training batches.
• yi is the ground truth for the training image.
• y′i is the predicted output for the training image.

4. Results

To compare the networks, we first show the validation during training and examine the
performance of each stream. For each of the results we start with the UV (2D), then XYZ (3D)
and finally, the UV XYZ (All) results. After this, we show an evaluation of the networks on testing
data and the feature maps produced by the networks. Finally, we examine the results of the testing set
with both MSE and MAE scores.

Figure 4 illustrates that for the prediction of UV landmarks, both RGB and Gs converge at similar
epochs, 40. In addition, they both share many similar traits, such as that they both start with a
significantly lower loss and have more stable learning than input streams that incorporate Depth.
Overall, RGB performs the best in both MSE and MAE. The networks that merge visual and Depth
data converge much later than RGB and Gs, but their results of MSE are close to the RGB and Gs
scores. RGBD and GsD have unstable learning curves and encounter hidden gradients that cause loss
to increase rapidly. The single channel GsD converges earlier than RGBD, indicating that a single clean
frame learns faster on how to smooth a noisy Depth map than a three channel RGB image. The single
channel Depth encounters the most unstable learning and converges at a much later stage, showing
without a visual stream to assist the Depth data cannot easily locate UV landmarks. Furthermore, this
is illustrated by Depth performing the worst when evaluated on MSE and MAE.

Figure 4. The MSE of the UV Only networks validation over 100 epochs.

Figure 5 illustrates the MSE of the XYZ only network, like UV, RGB and Gs start with a low loss
and converge the quickest at around epoch 30. However, the learning is unstable, indicating retrieving
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accurate 3D landmarks from visual images is a difficult task, although in the final epoch RGB has the
lowest MSE. The input streams that incorporate Depth converge sooner than in the UV prediction
networks. Furthermore, their learning rate is more stable than the RGB and Gs stream, but hidden
gradients are still an issue. In addition, they converge at a similar location slightly higher than RGB
and Gs, although at some point they score lower loss than the RGB and Gs networks. This convergence
also occurs after a hidden gradient, indicating there is a shared local minimum caused by the inclusion
of Depth data, the most prominent of these is GsD, which consistently has the lowest loss over epochs
until it reaches a hidden gradient, to which it then becomes the worst performing stream.

Figure 6 illustrates the MSE of the UVXYZ networks, where RGB and Gs begin with the lowest
loss, but RGB has a significantly lower loss than Gs. The learning rates of RGB and Gs are stable and
converge quickly around epoch 43, with Gs performing the best. The input streams that incorporate
Depth data also converge quickly, with Depth and GsD having stable learning rates, unlike RGBD.
Furthermore, hidden gradients are still an issue. However, unlike in UV and XYZ only networks,
the UVXYZ quickly recovers. This demonstrates how auxiliary information is benefiting the networks
ability to learn from the different data streams by overcoming issues, such as the local minimum seen
in Figure 5.

Figure 5. The MSE of the XYZ Only networks validation over 100 epochs.
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Figure 6. The MSE of the UVXYZ networks validation over 100 epochs.

Figure 7 visually compares the results in both 2D and 3D. We summarise the observations:

• In the UV only prediction, the results are visually similar, but there is some deviation between
each of the networks. When using Depth as the input stream, the predictions of both the right
eye and lip corners are predicted less precise than the other input streams; this could be directly
affected by the noise in the Depth maps, as when merged with a visual stream, performance
is improved.

• For UVXYZ, there is no noticeable difference between the UV results.
• For the XYZ only predictions we see much larger discriminations in the predicted facial landmarks.

Some of the major changes are:

- From the frontal view there is a variation in the mouth width, with Gs being the smallest
and Depth being the widest.

- Nose landmarks shifts in GsD were the nose tip and right nostril are predicted close to
each other.

- Eye shape changes between networks, Gs and RGBD produce round smooth eyes. Whereas
others are more jagged and uneven.

- From the side view, we see the profile of the face change with the forehead and nose shape
varying greatly between networks.

• In contrast to the UV results in the UVXYZ network, with the addition of auxiliary information
the resulting geometric landmarks on the mouth, nose, eye and eyebrows, become more precise
and consistent. In most of the cases the eyes are smoother, the eyebrows are more evenly spaced,
the nose irregularity in GsD no longer occurs and the mouth width consistency has improved
greatly. These results show that, as UV is easier for the networks to learn as all streams manage
similar results, when used as auxiliary information, they aid to standardise the 3D locations as
well. However, there are still some variations in the profile of the nose and in RGB the right eye is
predicted to be shut.



Symmetry 2018, 10, 230 12 of 18

Figure 7. A visual comparison of the results from the trained networks.

As shown in Table 1, for UV landmarks RGB has the lowest MSE, with Gs not far behind. It also
shows that for predicting landmarks in 3D only, that having both a visual and Depth data allows for
the highest precision results, with RGBD and GsD scoring the lowest with marginal differences in score.
For the MAE and MSE of the UVXYZ networks, we show the separate stages of the loss calculation:

• Combined loss, which is the sum of UV and XYZ layers loss.
• UV loss, the loss of the UV layers alone.
• XYZ loss, the loss of the XYZ layers alone.

The combined loss shows the overall network performance, but the UV and XYZ alone show the
networks’ performance on the individual outputs. By comparing the loss of the UV and XYZ alone,
we illustrate how the auxiliary information is affecting network performance, compared to networks
predicting UV only or XYZ only landmarks. When trying to predict UVXYZ data, Gs performs the
best overall. We show that by introducing the 3D landmarks, we reduce the overall loss significantly
to UV alone in both RGB, Gs and GsD networks. Furthermore, the prediction of XYZ is improved in
the same networks. We see similar results in the MAE, shown in Table 2, where networks reduce the
loss below the UV alone networks. However, RGB sees the least MAE for UV. For overall combined
loss and XYZ loss, Gs scores the lowest in MSE and MAE.

Table 1. Table of the testing set evaluation on MSE. Bold highlights the lowest error.

Input Data UV MSE XYZ MSE UVXYZ MSE (Combined) UVXYZ MSE (UV) UVXYZ MSE (XYZ)

Gs 1.8192 0.0023 1.3695 1.3676 0.0019
Depth 6.4672 0.0023 6.6509 6.6482 0.0027

Gs Depth 2.1845 0.0022 1.8933 1.8911 0.0022
RGB Depth 2.1561 0.0022 2.8744 2.8752 0.0022

RGB 1.7488 0.0023 1.5612 1.5592 0.0019
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Table 2. Table of the testing set evaluation on MAE. Bold highlights the lowest error.

Input Data UV MAE XYZ MAE UVXYZ MAE (Combined) UVXYZ MAE (UV) UVXYZ MAE (XYZ)

Gs 1.0052 0.0341 0.9127 0.8797 0.0330
Depth 1.9150 0.0361 1.9705 1.9322 0.0382

Gs Depth 1.1210 0.0379 1.0617 1.0246 0.0371
RGB Depth 1.0848 0.0367 1.3056 1.2685 0.0371

RGB 0.9553 0.0346 0.9685 0.9388 0.0297

The key differences in single task networks and multi-task networks in predicting facial landmarks
were observed in the feature maps of the networks, illustrated in Figure 8. The network kernels learned
the spatial information from UV prediction. Therefore, the feature maps shown in the UV prediction
demonstrate the activation of appearance-based facial features. On the other hand, when predicting
the geometry coordinate of XYZ, we observed that the feature maps of the convolutional layers had
point-based (facial landmarks) activation. This is due to the Z component which makes the facial
landmarks more separable. The UVXYZ column depicts the features maps in UVXYZ prediction.
We observed it has better pattern representation with both appearance based and point/landmarks
information. The Gs network performs the best with the feature maps demonstrating the networks
can process the input stream to focus on the specific landmark regions of the face. Further advantages
occur when auxiliary information is added: the kernels become refined and are able to detect features
with high intensity, as the network is forced to learn how the structure appears in both 2D and 3D.
It also means the network can process the data more efficiently as the input is a single stream. However,
a disadvantage of this system is that the image must be pre-processed from RGB to Gs.

To demonstrate the effectiveness of the network, we visualise the predicted landmarks of the Gs
network on a 3D model, shown in Figure 9 (see Supplementary Materials). With Gs as input data
stream, our proposed method predicts accurate 3D facial landmarks on raw Depth data using auxiliary
information. Furthermore, this illustrates the accuracy of the network, even with raw Depth data, our
proposed method manages to estimate accurate 3D facial landmarks after pre-processing to crop and
resize Depth images for the network, where a human would be incapable of without full-size Depth
images [36]. However, due to the noise from the raw data, the limitation of our proposed method is
not able to locate the Z position precisely in some cases.
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Figure 8. A comparison of the output of the final convolutional filter for each type of network prediction
on the RGB Images. The third column illustrates the feature maps for UVXYZ prediction, the best
performance with auxiliary information.

Figure 9. The result of the Gs UVXYZ trained network and the appropriate model from the same input
Depth map. The model is transparent to show geometry coordinates of the facial landmarks.

5. Discussion and Conclusions

In this work we have shown and illustrated the effect of different data streams within neural
networks, to identify which streams are ideal for current research topics, as current literature uses a
mixture. We also extended the work by the prediction of points in the camera (XYZ) space as this is
a valuable resource in facial expression recognition and animation synthesis, but current literature



Symmetry 2018, 10, 230 15 of 18

focuses on image (UV) space coordinate systems. Unique insights into each stream of data were
obtained, demonstrating the pros and cons of each stream. To prevent bias, an in-house dataset was
used, showing that each network could reliably track facial features and expressions in both 2D and 3D.
The networks showed that the existing data-streams could accurately predict 2D and 3D landmarks.

Comparing the results and feature maps of the networks demonstrates the ability of the networks
to process and understand the different forms of data and if they are beneficial to the network.
Full RGB performed the most effectively on UV with the least amount of errors and the lowest scale
of errors. While Depth shows its effectiveness at predicting landmarks, the noise it presents requires
additional streams, such as RGB to smooth out and retrieve reliable results. In the final experiment,
for predicting UVXYZ, we show that although for UV alone RGB is the most efficient, Gs outperformed
it, illustrating that more generalizable single frames are more effective when predicting a wide range
of values. While Depth has shown to be difficult for the networks to learn from, with limitations such
as exploding gradients, even after merging with cleaner streams it has been shown to be effective even
when cropped and resized for the prediction of landmarks, where traditional methods require full-size
Depth images.

This work focused exclusively on the use of neural networks to predict facial landmarks without
the aid of physical markers, sensors, or reference points placed on the individuals. There have been
many incremental studies into the use of neural networks to predict the image (UV) space landmarks
successfully. However, the results all use different streams of data with little consensus on why the
stream is used, except for dataset or memory limitations. In addition, XYZ coordinates are not being
predicted by neural networks in current systems. For networks, many industries desire the use of 3D
landmarks in real-time.

There are several limitations in this study, mostly related to the data used to train the network and
the difficulty of 3D landmarks. Firstly, due to the context issue of cropping, a Depth map recording
was done in a controlled environment, so the network must only learn a manageable part of the 3D
viewing frustum. This, regarding animation, has an advantage as it normalises the facial position,
while still tracking 3D facial movement. However, for full 3D prediction full Depth maps would still
be required. Future work should seek out new technologies, such as the Intel real-sense [37], which
could resolve the noise issue of the Kinect as it provides both higher resolution and cleaner Depth
maps as shown by Carfagni et al. [38], which would aid the networks’ ability to learn from the data.
Other aspects would be to further the work with a larger dataset to test the reliability of no Depth
streams with a wider demographic of faces.

We have shown and analysed how the input data stream can affect a deep neural network
framework, for the analysis of facial features, which can have an impact on facial recognition,
reconstruction, animation, and security, by providing how the networks interact with the different data
streams. The stream shows different levels of accuracy and reliability which can positively affect future
work. Future work will include increasing the number of participants and increasing the amount of
reliably tracked landmarks without marker 3D reference points on the face, as current literature is
limited in this area.

6. Materials and Methods

We provide access to all codes used to build and train models on GitHub. We also provide
demo codes to enable the real-time use of the trained models, with the use of a Kinect. All scripts are
provided in python. The in-house KOED dataset will be made publicly available. However, in its raw
form, the dataset requires over 675 GB to store at the time of writing, without any annotations.

Supplementary Materials: We provide multiple videos representing our results. Firstly, we provide a video of
the model and points shown in Figure 9, rotating between ±90 degrees, as it is a raw Depth map model there is
no back, thus 360 provides no additional information. Finally, we provide videos demonstrating the feature maps
of the networks to illustrate which features in the images the network deems most valuable to the prediction.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
LSTM Long Short-Term Memory
RNN Recurrent Neural Network
ReLU Rectified Linear Unit
RGB Red Blue Green
RGBD Red Blue Green Depth
Gs Greyscale
GsD Greyscale Depth
D Depth
2D Two Dimensional
3D Three Dimensional
KOED Kinect One Expressional Dataset
HD High Definition
MSE Mean Squared Error
MAE Mean Absolute Error
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