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Abstract: The purpose of the current article is to present a brief albeit accurate presentation of
the main tools used in the study of symmetries of Lagrange equations for holonomic systems and
subsequently to show how these tools are applied in the major models of modern cosmology in
order to derive exact solutions and deal with the problem of dark matter/energy. The key role in
this approach are the first integrals of the field equations. We start with the Lie point symmetries
and the first integrals defined by them, that is, the Hojman integrals. Subsequently, we discuss the
Noether point symmetries and the well-known method for deriving the Noether integrals. By means
of the Inverse Noether Theorem, we show that, to every Hojman quadratic first integral, it is possible
to associate a Noether symmetry whose Noether integral is the original Hojman integral. It is
emphasized that the point transformation generating this Noether symmetry need not coincide with
the point transformation defining the Lie symmetry which produces the Hojman integral. We discuss
the close connection between the Lie point and the Noether point symmetries with the collineations
of the metric defined by the kinetic energy of the Lagrangian. In particular, the generators of Noether
point symmetries are elements of the homothetic algebra of that metric. The key point in the current
study of cosmological models is the introduction of the mini superspace, which is the space that
is defined by the physical variables of the model, which is not the spacetime where the model
evolves. The metric in the mini superspace is found from the kinematic part of the Lagrangian and
we call it the kinetic metric. The rest part of the Lagrangian is the effective potential. We consider
coordinate transformations of the original mini superspace metric in order to bring it to a form where
we know its collineations, that is, the Killing vectors, the homothetic vector, etc. Then, we write
the field equations of the cosmological model and we use the connection of these equations with
the collineations of the mini superspace metric to compute the first integrals and subsequently to
obtain analytic solutions for various allowable potentials and finally draw conclusions about the
problem of dark energy. We consider the ΛCDM cosmological model, the scalar field cosmology,
the Brans–Dicke cosmology, the f (R) gravity, the two scalar fields cosmology with interacting scalar
fields and the Galilean cosmology. In each case, we present the relevant results in the form of tables
for easy reference. Finally, we discuss briefly the higher order symmetries (the contact symmetries)
and show how they are applied in the cases of scalar field cosmology and in the f (R) gravity.
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1. Introduction

In order to understand properly the role of symmetries in Cosmology, we have to make a short
detour into General Relativity and the relativistic models in general. General Relativity associates the
gravitational field with the geometry of spacetime as this is specified by the metric of the Riemannian
structure. Concerning the matter, this is described in terms of various dynamical fields which are
related to the mater via Einstein equations Gab = Tab. Einstein equations are not equations, in the
sense that they equate known quantities in terms of unknown ones, that is there is no point to look
for a “solution” of them in this form. These equations are rather generators of equations which result
after one introduces certain assumptions according to the model required. These assumptions are of
two kinds: (a) geometric assumptions; and (b) other non-geometric assumptions among the physical
fields which we call equations of state. The first specifies the metric to a certain degree and are
called collineations [1] (or “symmetries” which is in common use and is possible to create confusion
in our discussion of symmetries in Cosmology). The collineations are the familiar Killing vectors
(KV), the conformal Killing vectors (CKV), etc. The collineations affect the Einstein tensor, which is
expressed in terms of the metric. For example, for a KV X, one has LX gab = LXGab = 0.

Through Einstein field equations collineations pass over to Tab and restrict its possible forms,
therefore the types of matter that can be described in the given geometry-model. For example, if one
considers the symmetries of the Friedmann–Robertson–Walker (FRW) model, which we shall discussed
in the following, then the collineations restrict the Tab to be of the form

Tab = ρuaub + phab, (1)

where ρ, p are two dynamical scalar fields the density and the isotropic pressure, ua are the comoving
observers ua (uaua = −1) and hab = gab + uaub is the spatial projection operator. An equation of state
is a relation between the dynamical variables ρ, p.

Once one specifies the metric by the considered collineations (and perhaps some additional
requirements of geometric nature) of the model and consequently the dynamical fields in the energy
momentum tensor, then Einstein equations provide a set of differential equations which describe
the defined relativistic model. What remains is the solution of these equations and the consequent
determination of the physics of the model. At this point, one introduces the equations of state which
simplify further the resulting field equations.

When one has the final form of the field equations considers a second use of the concept of
”symmetry” which is the main objective of the current work. Let us refer briefly some history.

In the late 19th century, Sophus Lie, in a series of works [2–4] with the title “Theory of
transformation groups” introduced a new method for the solution for differential equations via
the concept of ”symmetry”. In particular, Lie defined the concept of symmetry of a differential
equation by the requirement of the point transformation to leave invariant the set of solution curves of
the equation, that is, under the action of the transformation, a point form one solution curve is mapped
to a point on another solution curve. Subsequently, Lie introduced a simple algebraic algorithm for the
determination of these types of symmetries and consequently on the solution of differential equations.
Since then, symmetries of differential equations is one of the main methods which is used for the
determination of solutions for differential equations. Some important works which established the
importance of symmetries in the scientific society are those of Ovsiannikov [5], Bluman and Kumei [6],
Ibragimov [7], Olver [8], Crampin [9], Kalotas [10] and many others; for instance, see [11–20].

As it is well known, an important fact in the solution of a differential equation are the first
integrals. Inspired by the work of Lie in the early years of the 20th century, Emmy Noether required
another definition of symmetry, which is known as Noether symmetry. This symmetry concerns
Lagrangian dynamical systems and it is defined by the requirement that the action integral under the
action of the point transformation changes up to a total derivative so that the Lagrange equation(s)
remain the same [21]. She established a connection between a Noether symmetry and the existence of
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a first integral which she expressed by a simple mathematical formula. In addition, Noether’s work
except for its simplicity had a second novelty by alloying the continuous transformation to depend
also on the derivatives of the dependent function, which was the first generalization of the context of
symmetry from point transformations to higher-order transformations. Since then, symmetries play an
important role in various theories of physics, from analytical mechanics [22], to particle physics [23,24],
and gravitational physics [1,25].

In the following, we shall present briefly the approach of Lie and Noether symmetries and will
show how the symmetries of differential equations are related to the collineations of the metric in
the mini superspace. We shall develop an algorithm which indicates how one should work in order
to get the analytical solution of a cosmological model. The various examples will demonstrate the
application of this algorithm.

In conclusion, by symmetries in Cosmology, we mean the work of Lie and Noether applied to the
solution of the field equations of a given cosmological model scenario.

2. Point Transformations

On a manifold M with coordinates (t, qa), one defines the jet space Jm(M) of order m over M to
be a manifold with coordinates t, qa, dqa

dt , ..., dmqa

dtm . Let X = ξ
(

t, q, ..., q[m]
)

∂
∂t + ηa[A]

(
t, q, ..., q[m]

)
∂[A]

∂qa[A]

where A = 1, ..., m be a vector field on Jm(M) which generates the infinitesimal point transformation

t′ = t + εξ + O2 (ε2)+ · · · ,
qa′ = qa + εηa[1] + O2 (ε2)+ · · · ,

...
qa′ [m] = qa[m] + εηa[m] + O

(
ε2)+ · · · .

(2)

Well behaved infinitesimal point transformations form a group under the operation of composition
of transformations. If the infinitesimal point transformation depends on many parameters, that is,

q′i = q′i
(

qi, qi(m), E
)

, (3)

where E = εβ∂β, is a vector field in Rκ , β = 1...κ with the same properties as in the case of
the one parameter infinitesimal point transformations, then the point transformation is called a
multi-parameter point transformation. These transformations are generated by κ−vector fields which
form a (finite or infinite dimensional) Lie algebra. That is, if the vector fields X, Y are generators of a
multi-parameter point transformation, so is the commutator Z = [X, Y] .

2.1. Prolongation of Point Transformations

A differential equation H
(

t, q, q′, ..., q(m)
)
= 0 where qi(t) and qi(m) = dmqi

dtm may be considered as
a function on the jet space Jm(M). In order to study the effect of a point transformation in the base
manifold M(t, q) to the differential equation, one has to prolong the transformation to the space Jm(M).
To do that, we consider in Jm(M) the induced point transformation

t̄ = t + εξ , ȳ = x + εη,

q̄i(1) = qi(1) + εX[1] , ....,

...

q̄i(n) = qi(n) + εX[n],

where X[k] k = 1, 2, ..., m are the components of a vector field

W = ξ∂x + η∂y + X[1]∂y(1) + ... + X[m]∂y[m] , (4)
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in Jm(M) called the lift of the vector field X = ξ(t, q) ∂
∂xi + ηi(t, q) ∂

∂qi of M.
There are many ways to lift a vector field from the base manifold to a vector field in the bundle

space Jm(M) depending on the geometric properties one wants to preserve.
One type of lift, the complete lift or prolongation, is defined by the requirement that the tangent

to the vector field X in M goes over to the tangent of the vector field W in Jm(M) at the corresponding
lifted point. Equivalently, one may define the prolongation by the requirement that under the action of
the point transformation the variation of the variables equals the difference of the derivatives before
and after the action of the one parameter transformation. For example, for η[1], we have

η[1] ≡ lim
ε→0

[
1
ε

(
q̄(1) − q(1)

)]
=

dη

dt
− qi(1) dξ

dqi . (5)

For the k− th prolongation, η[k] follows from the recursive formula:

η[k](t, qi, qi(1), ..., qi(m)) =
dηk−1

dt
− qi(k) dξ

dqi =
dk

dqik

(
η − qi(1)ξ

)
+ qi(k+1)ξ. (6)

Two important observations for the prolongation η[n] are, (a) η[n] is linear in qi(n), and (b) η[n] is a
polynomial in the derivatives qi(1), ..., qi(n) whose coefficients are linear homogeneous in the functions
ξ (x, y) , η (x, y) up to nth order partial derivatives.

Concerning the general vector W on Jm(M), one defines its components by the requirement

X[m](t, qi, qi(1), ..., qi(m)) = η[k](t, qi, qi(1), ..., qi(m)) + φm,

where φm(t, qi, qi(1), ..., qi(m)) are some functions on Jm(M) that will be defined by additional
requirements. For example, the complete lift (prolongation) is defined by the requirement φi = 0.

In the case that we have a manifold with n independent variables
{

xi : i = 1..., n
}

and m
dependent variables

{
uA : A = 1..., m

}
, we consider the one parameter point transformation in the jet

space {xi, uA} of the form

x̄i = Ξi
(

xi, uA, ε
)

, ūA = ΦA
(

xi, uA, ε
)

.

The infinitesimal generator is

X = ξ i
(

xk, uA
)

∂i + ηA
(

xk, uA
)

∂A, (7)

where

ξ i
(

xk, uA
)
=

∂Ξi (xi, uA, ε
)

∂ε
|ε→0 , ηA

(
xk, uA

)
=

∂Φ
(

xi, uA, ε
)

∂ε
|ε→0.

In a similar way, the prolongation vector is calculated to be

X[n] = X + ηA
i ∂ui + ... + ηA

ij..in ∂uij..in
,

where now
ηA

i = Diη
A − uA

,j Diξ
j, (8)

ηA
ij..in = Din ηA

ij..in−1
− uij..kDin ξk, (9)

and the operator Di is defined as follows:

Di =
∂

∂xi + uA
i

∂

∂uA + uA
ij

∂

∂uA
j
+ ... + uA

ij..in
∂

∂uA
jk..in

. (10)



Symmetry 2018, 10, 233 5 of 42

In terms of the partial derivatives of the components ξ i
(

xk, uA
)

, ηA
(

xk, uA
)

of the generator (7),
the first and the second extension of the symmetry vector are given by the relations

X[1] = X +
(

ηA
,i + uB

,i ηA
,B − ξ

j
,iu

A
,j − uA

,i uB
,j ξ

j
,B

)
∂uA

i
, (11)

X[2] = X[1] +

 ηA
,ij + 2ηA

,B(iu
B
,j) − ξk

,iju
A
,k + ηA

,BCuB
,i uC

,j − 2ξk
,(i|B|u

B
j)u

A
,k+

−ξk
,BCuB

,i uA
,j uA

,k + ηA
,BuB

,ij − 2ξk
,(ju

A
,i)k +−ξk

,B

(
uA

,k uB
,ij + 2uB

(,ju
A
,i)k

)  ∂uij . (12)

Similar expressions can be obtained for the general vector field in the jet space {xi, uA}.

2.2. Invariance of Functions

A differentiable function F
(

qi, qi(m)
)

on Jm(M) is said to be invariant under the action of X iff

X (F) = 0, (13)

or, equivalently, iff there exists a function λ such that

X (F) = λF , modF = 0. (14)

In order to determine the invariant functions of a given infinitesimal point generator X one has to
solve the associated Lagrange system

dt
ξ

=
dqi

ηi = ... =
dqi(m)

ηi(m)
. (15)

The characteristic function or zero order invariant w of the vector X is defined as follows:

dw =
dt
ξ
− dqi

ηi . (16)

The zero order invariant is indeed invariant under the action of X, that is X (w) = 0. Therefore,
any function of the form F = F (w) satisfies condition (13) and it is invariant under the action of X.
The higher order invariants v(m) are given by the expression

v(m) =
dt
ξ
− dqi(m)

ηi(m)
. (17)

3. Symmetries of Differential Equations

Consider an mth order system of differential equations defined on Jm(M) of the form
qa[m] = F(t, q, ..., q[m]). We say that the point transformation (2) in Jm(M) generated by the vector
field X = ξ ∂

∂t + ηa[A] ∂[A]

∂qa[A] is a symmetry of the system of equations if it leaves the set of solutions

of the system the same. Equivalently, if we consider the function G = qa[m] − F(t, q, ..., q[m]) = 0 on
Jm(M), then a symmetry of the differential equation is a vector field leaving G invariant.

The main reason for studying the symmetries of a system of differential equations is to
find first integrals and/or invariant solutions. Both of these items facilitate the solution and the
geometric/physical interpretation of the system of equations.

In the following, we shall be interested in systems of second order differential equations (SODE)
of the form q̈a − Ka(t, q, q̇) = 0, therefore we shall work on the jet space J1(M) which is essentially the
space R× TM. In this case, the infinitesimal point transformation (2) is written
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t′ = t + εξ + O2 (ε2)+ · · · ,
qi′ = qi + εηi + O2 (ε2)+ · · · ,
q̇i′ = q̇i + ε

(
η̇i − ξ̇ q̇i + φi)+ O

(
ε2)+ · · · ,

(18)

and it is generated by the vector field

XW = X[1] + φi ∂

∂q̇i , (19)

where φi(t, q, q̇) are some general (smooth) functions and X[1] is the prolonged vector field:

X[1] = ξ(t, q, q̇)
∂

∂t
+ ηa(t, q, q̇)

∂

∂qa + X[1]a ∂

∂q̇i , (20)

where
X[1]a =

dηa

dt
− q̇a dξ

dt
. (21)

If ξ(t, q), ηi(t, q), then X = ξ ∂
∂t + ηa ∂

∂qa is defined on the base manifold M and X[1] is called the
first prolongation of X in TM.

4. The Conservative Holonomic Dynamical System

Consider the conservative holonomic system (CHS) with Lagrangian L = 1
2 γij q̇i q̇j − V(t, q),

where V(t, q) is the potential of all conservative forces, whose equations of motion are

d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi = 0. (22)

These are written
Ei(L) = 0, (23)

where Ei is the Euler vector field in the jet space J1(M)

Ei =
d
dt

∂

∂q̇i −
∂

∂qi .

Replacing the Lagrangian in Equation (22), we find

q̈i = ωi, (24)

where
ωi(t, q, q̇) = −V,i − Γi

jk q̇j q̇k. (25)

The CHS defines two important geometric quantities in the jet space J1(M)

a. The kinetic metric (We assume the Lagrangian to be regular, that is det ∂2L
∂qi∂qj 6= 0 so that the

kinetic metric is non-degenerate) γij =
∂2L

∂qi∂qj , which is essentially the kinetic energy of the dynamical
system. This metric is different from the metric of the space where motion occurs. It is a positive
definite metric of dimension equal to the degrees of freedom of the dynamical system.

b. The Hamiltonian vector field Γ

Γ =
d
dt

=
∂

∂t
+

∂

∂qi q̇i + ωi ∂

∂q̇i . (26)

The Hamiltonian vector field is characteristic of the dynamical Equation (24) and can be defined
in all cases irrespective of the Lagrangian function.
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In the following, we shall restrict our considerations to the symmetries of second order differential
equations of the form (24).

5. Types of Symmetries

There are various types of multi parameter point transformations in J1(M) which generate a
symmetry of a system of second order differential equations (SODE). In cosmology—at least at the
current status—it appears that two of them are of importance, that is, the Lie symmetries and the
Noether symmetries. Both type of symmetries lead to first integrals hence providing ways to solve the
considered cosmological equations and shall be discussed in the following. In case the components
ξ, ηa of the generators are functions of t, qa, only the symmetries are called point symmetries.

The requirements for each type of symmetry lead to a set of conditions which when solved give
the generators of the corresponding point transformation and consequently the way to determine first
integrals. As it has been shown, the generators of these symmetries for autonomous conservative
holonomic systems are related to the collineations of the kinetic metric. Specifically, it has been
shown [26] that the Lie point symmetries are elements of the special projective algebra and the Noether
point symmetries elements of the homothetic subalgebra [27]. Concerning the partial differential
equations, the generators are related to the conformal group of the kinetic metric [28,29].

5.1. Lie Symmetries

Definition 1. The vector field Xw on the jet space J1(M) is a (dynamical) Lie symmetry of the Equation (24) if
it is a symmetry of the Hamiltonian vector field; that is, if the following condition is satisfied,

LXW Γ = λΓ, (27)

where λ(t, q, q̇) is a function to be defined.

Geometrically, a Lie symmetry preserves the set of solutions of the Equation (24), in the sense
that, under the action of the point transformation generated by XW , a point of a solution curve is
transformed to a point of another solution curve of Equation (24).

The symmetry condition (27) gives:[
XW , Γ

]
= −Γ (ξ)

∂

∂t
+
(

XW (q̇a)− Γ (ηa)
) ∂

∂qa +
(

XW (Fa)− Γ (Xa + φa)
) ∂

∂q̇a = λΓ. (28)

Condition (28) is equivalent to the following system of equations:

−Γ (ξ) = λ,
Γ (ηa)− Γ (ξ) q̇a − φa = X[1]a,

(29)

ξ
∂ωa

∂t
+ ηb ∂ωa

∂qb +
(

X[1]b + φb
) ∂ωa

∂q̇b + Γ (ξ) Fa = Γ
(

X[1]a + φa
)

, (30)

where X[1]a is given by (20). The second condition gives φa = 0 so that XW = X[1], where

X[1] = ξ
(

t, qk, q̇k
)

∂t + ηa
(

t, qk, q̇k
)

∂a + [Γ (ηa)− Γ (ξ) q̇a]
∂

∂q̇a .

Then, the third condition (30) becomes

ξ
∂ωa

∂t
+ ηb ∂ωa

∂qb + (Γ (ηa)− Γ (ξ) q̇a)
∂ωa

∂q̇b + Γ (ξ)ωa = Γ (Γ (ηa)− Γ (ξ) q̇a)
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and can be written more compactly as

X[1](ωa) + Γ (ξ)ωa = Γ (Γ (ηa)− Γ (ξ) q̇a) . (31)

We note that the functions φa do not take part into the conditions of Lie symmetries and can be
omitted. The exact form of the Lie symmetry conditions depends on the functional dependence of
the functions ξ(t, q, q̇), ηa(t, q, q̇) and of course on the form of the Hamiltonian field. In the following,
we consider two important cases of Lie symmetries.

5.2. Lie Point Symmetries

In case ξ(t, q), ηa(t, q), the Lie symmetry is called a Lie point symmetry. For the special class of
differential equations of the form

q̈ + Γi
jk q̇j q̇k + V,i

(
t, qk

)
= 0, (32)

the Lie symmetry condition (30) leads to the following system of covariant conditions [30]

LηV;a + ηa
,tt + 2V;aξ,t + ξV;a

,t = 0, (33)

2ηa
;b|t − δa

bξ,tt + (2δa
c ξ;b + δa

bξ;c)V;c = 0, (34)

LηΓa
bc = 2δa

(bξ,c)t, (35)

δa
(dξ;bc) = 0. (36)

The use of an algebraic computing program does not reveal directly the Lie symmetry conditions
in this geometric form. Equation (36) implies that ξ,a is a gradient KV of the kinetic metric. Equation (35)
means that ηi is a special projective collineation of the metric with projective function ξ,t. The remaining
two Equations (33) and (34) are constraint conditions, which relate the components ξ, ni of the Lie
point symmetry vector with the potential function V(t, q).

Conditions (33)–(36) can be obtained as special cases from known results. Indeed, in [30], it has
been shown that the conditions for a point Lie symmetry of the dynamical equations

q̈a + Γi
jk q̇j q̇k + Pi

(
t, qk

)
= 0 (37)

are the following:

Lη Pi + 2ξ,t Pi + ξPi,t +ηi,tt = 0, (38)(
ξ,k δi

j + 2ξ,j δi
k

)
Pk + 2ηi,t|j−ξ,tt δi

j = 0, (39)

LηΓi
jk − 2ξ,t(j δi

k) = 0, (40)

ξ(,j|kδi
d) = 0. (41)

In order for one to obtain conditions, (33)–(36) simply replaces in (38)–(41) Pi = V,i
(

t, qk
)

.

5.3. Lie Point Symmetries and First Integrals

It is possible that a Lie point symmetry leads to a first integral. These integrals have been called
Hojman integrals and belong to the class of non-Noetherian first integrals [31]. As shall be discussed
below by means of the Inverse Noether Theorem, one is able to associate a Noether symmetry to
a given quadratic first integral. In this sense, as far as the first integrals are concerned, Noether
symmetries are the prevailing ones. Concerning the Hojman symmetries, we have the following [31].
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Proposition 1. i. Necessary and sufficient condition that the point transformation qi′ = qi + εηi
(

t, qk, q̇k
)

is

a Lie point symmetry of the (SODE) q̈j −ω j (t, qi, q̇i) = 0 is that the generator ηi satisfies the conditions

Γ(Γηi)− η[1]
(

ω j
)

= 0 or

η̈ j − η[1](ω j) = 0, (42)

where η̈ j = Γ(Γ(η j) and η[1] = ηi ∂
∂qi + η̇i ∂

∂q̇i .
ii. The scalar

I2 =
1
γ

∂

∂qj

(
γη j
)
+

∂η̇ j

∂q̇j

is a first integral of the ODE q̈i = ωi iff
a. The vector ηi is a Lie symmetry of the SODE q̈i = ωi

b. The function γ(t, q, q̇) is defined by the condition

Trace
(

∂ωi

∂q̇j

)
=

∂ω j

∂q̇j = − d
dt

ln γ
(

qk
)

.

One solution for all ηi is ω j = a q̇j + ω j(t, qi), where a =const. For this solution, we have that the SODE
has the generic form:

q̈j − aq̇j = ω j(t, qi),

which is the equation for forced motion with with linear dumping a.

5.4. Noether Point Symmetries

Noether point symmetries concern Lagrangian dynamical systems and are defined as follows:

Definition 2. Suppose that A
(
qi q̇i) is the functional (the action integral)

A
(

qi, q̇i
)
=
∫ t2

t1

L
(

t, qi, q̇i
)

dt. (43)

The vector field XW = X[1] + φi ∂
∂q̇i in the jet space J1(M) generating the point transformation (18) is said

to be a Noether symmetry of the dynamical system with Lagrangian L if
a. The action integral under the action of the point transformation transforms as follows

A′
(

qi′ , q̇i′
)
= A

(
qi, q̇i

)
+ ε

∫ t2

t1

d f (t, qi, q̇i)

dt
dt, (44)

where f (t, ε) is a smooth function.
b. The infinitesimal transformation causes a zero end point variation (i.e., the end points of the integral

remain fixed).
Noether symmetries use the fact that when we add a perfect differential to a Lagrangian the equations of

motion do not change. Hence, the set of solutions remains the same. This is another view of the “invariance” of
the dynamical Equation (24).

The condition for a Noether symmetry under the action of the point transformation (18) is

X[1] (L) + φi ∂L
∂q̇i + L

(
t, qi, q̇i

)
ξ̇ = ḟ . (45)

Equation (45) is called the weak Noether condition and it is also known as the First Noether theorem.
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5.5. First Integral Defined by a Noether Symmetry

Next, we determine the conditions which a Noether symmetry must satisfy in order to lead
to a first integral of Lagrange equations. Expanding the Noether condition (45) and making use of
Lagrange Equation (24), we find

φi ∂L
∂q̇i =

d
dt

(
f − Lξ − ∂L

∂q̇i

(
ηi − ξ q̇i

))
. (46)

This leads to what is known as the Second Noether Theorem.

Proposition 2. The quantity

I = f − Lξ − ∂L
∂q̇i

(
ηi − ξ q̇i

)
(47)

is a first integral for the conservative holonomic system defined by (22) provided the functions φi

(i.e., the variations along the fibers) vanish. In this case, the weak Noether condition (45) becomes

X[1] (L) + L
(

t, qi, q̇i
)

ξ̇ = ḟ (48)

and the Noether symmetry reduces to a special Lie symmetry (that is a Lie symmetry which in addition satisfies
the Noether condition). The function f is called the Noether or the gauge function.

We remark that, contrary to what is generally believed, a Noether point symmetry for a
conservative holonomic system does not lead necessarily to a first integral of the equations of
motion. Indeed, the weak Noether symmetry condition (45) is more general than the standard
Noether condition (48) because it holds for general φa, whereas the latter holds only for φa = 0.

In the following, by a Noether symmetry, we shall mean a Noether symmetry, which leads to
a first integral, that is, the quantities φa = 0. These Noether symmetries are special Lie symmetries
which satisfy condition (48). As has been already mentioned, the Lie point symmetries are the elements
of the special projective collineations of the kinetic metric and the Lie point symmetries which are
Noether point symmetries are elements of the homothetic subalgebra [27].

6. Generalized Killing Equations

We decompose the Noether condition along the vector d
dt and normal to it. In order to do that,

we expand the overdot terms and assume that q̈i are independent variables. The right hand side
(rhs) is:

L
(

∂ξ

∂t
+ q̇i ∂ξ

∂qi + q̈i ∂ξ

∂q̇i

)
+ ξ

∂L
∂t

+ ηi ∂L
∂qi

+

(
∂ηi

∂t
+ q̇j ∂ηi

∂qj + q̈j ∂ηi

∂q̇j − q̇i ∂ξ

∂t
− q̇i q̇j ∂ξ

∂qj − q̇i q̈j ∂ξ

∂q̇j

)
∂L
∂q̇i

= L
(

∂ξ

∂t
+ q̇i ∂ξ

∂qi

)
+ ξ

∂L
∂t

+ ηi ∂L
∂qi +

(
∂ηi

∂t
+ q̇j ∂ηi

∂qj − q̇i ∂ξ

∂t
− q̇i q̇j ∂ξ

∂qj

)
∂L
∂q̇i

+q̈j
(

∂ξ

∂q̇j L +

(
∂ηi

∂q̇j − q̇i ∂ξ

∂q̇j

)
∂L
∂q̇i

)
,

while the rhs gives:
d f
dt

=
∂ f
∂t

+ q̇i ∂ f
∂qi + q̈i ∂ f

∂q̇i .
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Therefore, we obtain the following equivalent system of equations:

L
(

∂ξ

∂t
+ q̇i ∂ξ

∂qi

)
+ ξ

∂L
∂t

+ ηi ∂L
∂qi +

(
∂ηi

∂t
+ q̇j ∂ηi

∂qj − q̇i ∂ξ

∂t
− q̇i q̇j ∂ξ

∂qj

)
∂L
∂q̇i =

∂ f
∂t

+ q̇i ∂ f
∂qi , (49)

∂ξ

∂q̇j L +

(
∂ηi

∂q̇j − q̇i ∂ξ

∂q̇j

)
∂L
∂q̇i =

∂ f
∂q̇j . (50)

These equations have been called the generalized Killing equations (see Equations (17) and (18) of
Djukic in [32]).

We note that the generalized Killing equations have 2n + 2 unknowns (the ξ, ηi, f , φi) and are
only n + 1 equations. Therefore, there is not a unique solution XW and we are free to fix n + 1 variables
in order to get a solution. However, this is not a problem because all these solutions admit the same
first integral I of the dynamical equations (because all satisfy the Noether condition (48)).

6.1. How to Solve the Generalized Killing Equations

Suppose that, by some method, we have determined a quadratic first integral I of the dynamical
equations. Our purpose is to determine a gauged Noether symmetry which will admit the given
quadratic first integral. Assume the n + 1 gauge conditions ξ = 0, φi = 0. Suppose L(t, qi, q̇i) is the
Lagrangian part of the dynamical equations ( Actually, we only need the kinetic energy which will
define the kinetic metric). Let XW = ηi(t, qi, q̇i) ∂

∂qi + η̇i ∂
∂q̇i be the vector field generating a Noether

symmetry which admits the first integral I = f −
(
ηi − ξ q̇i) ∂L

∂q̇i − Lξ, where f (t, qi, q̇i) is the Noether
gauge function. We compute

∂I
∂q̇i =

∂ f
∂q̇i −

∂η j

∂q̇i
∂L
∂q̇j + γijη

j,

where γij =
∂2L

∂q̇i∂q̇j is the kinetic metric determined by the Lagrangian L. Then, the second Equation (50)

gives that ∂ f
∂q̇i −

∂η j

∂q̇i
∂L
∂q̇j = 0 and we find eventually the expression

ηi = γij ∂I
∂q̇i . (51)

The vector XW = ηi ∂
∂qi +η̇i ∂

∂q̇i we have determined is not the only one possible. For example, one

may specify the gauge function f and assume a form for ξ(t, q) (while maintain the gauge φi = 0)
and then use Equation (50) to determine the solution XW (see example below). However, in all cases,
the first integral I is the same.

The first integral of a Noether point symmetry XW = X[1] is in addition an invariant of the
Noether generator, that is,

X[1](I) = 0. (52)

The result (52) means that a Noether point symmetry results in a twofold reduction of the order
of Lagrange equations. This is done as follows. The first integral I(t, qi, q̇i) can be used to replace one
of the second order equations by the first order ODE I(t, qi, q̇i) = I0, where I0 is a constant fixed by the
initial (or boundary) conditions. Property (52) says that this new equation admits the Lie symmetry
XW (because XW(I − I0) = 0); therefore, it can be used to integrate the equation once more, according
to well-known methods.

Noether symmetries are mainly applied to construct first integrals which are important to
determine the solution of a given dynamical system. It is possible that there exist different
(i.e., not differing by a perfect differential) Lagrangians describing the same dynamical equations.
These Lagrangians have different Noether symmetries (see, for example, [33–35]). Therefore, it is clear
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that, when we refer to a Noether symmetry of a given dynamical system, we should always mention
the Lagrangian function assumed.

Let us discuss the above scenario in a practical case.
Consider the Emden–Fauler equation

tq̈ + 2q̇ + atνq2ν+3 = 0,

where a, ν are arbitrary constants. This equation defines a conservative holonomic dynamical system
with Lagrangian

L =
1
2

(
t2q̇2 − a

ν + 2
tν+1q2ν+4

)
.

Assume now that the function f (t, q, q̇) = −AtL, where A is some constant and assume further
that ξ(t, q). Equation (50) gives

∂η

∂q̇
∂L
∂q̇

= −At
∂L
∂q̇
⇒ η = −Atq̇ + F(t, q),

where F is an arbitrary function of its arguments. Replacing this in (49), we find

L
(

∂ξ

∂t
+ q̇

∂ξ

∂q

)
+ η

∂L
∂q

+ ξ
∂L
∂t

+

(
∂η

∂t
+ q̇

∂η

∂q
− q̇

∂ξ

∂t
− q̇2 ∂ξ

∂q

)
∂L
∂q̇

= −∂ f
∂t

+ q̇
∂ f
∂q

,

which provides the following system

ξ = ξ (t) ,(
ξ

t
− 1

2
ξ,t

)
+ F,q = −1

2
A,

F = F (q) ,
1

2 (ν + 2)

(
ξ,t +

ξ

t
(ν + 1)

)
+

F
q

= −1
2

A.

The solution of the latter system is

ξ = − (2c0 + A) t , η = −Atq̇ + c0q. (53)

Still, we do not know the parameters A, c0. In order to compute them, we turn to the first integral
I = f −

(
ηi − ξ q̇i) ∂L

∂q̇i − Lξ. Replacing this, we have:

I = − 1
2 A
(
t2q̇2 − a

ν+2 tν+1q2ν+4) t− (−Atq̇ + c0q + (2c0 + A) tq̇) t2q̇ + 1
2
(
t2q̇2 − a

ν+2 tν+1q2ν+4) (2c0 + A) t

= −c0

(
t2qq̇ + t3q̇2 + a

ν+2 tν+2q2(ν+2)
)

Hence:
I = t3q̇2 + t2qq̇ +

a
2 + ν

tν+2q2(ν+2) = const.

Having computed I, we compute ηi from the relation ηi = γij ∂I
∂q̇i . γij = t2 hence γij = 1

t2 . Then,

η = 1
t2 (2t3q̇ + t2q) = 2tq̇ + q. Comparing this with what we have already found, we get A = −2,

c0 = 1. We note that, for these values of A, c0, the ξ = 0 as it is correct because the relation ηi = γij ∂I
∂q̇i

is valid only under the assumption ξ = 0.

7. The Inverse Noether Theorem

One question which arises concerns the extent to which the first integrals provided by different
types of symmetry of a system of differential equations are independent. In this section, we show that,
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to any quadratic first integral, one may associate a Noether symmetry which provides that integral as
a Noether integral.

Suppose we have a quadratic first integral I of a Lagrangian system with a non-degenerate kinetic
metric. We define a vector ηi(t, q, q̇) and a function f (t, q, q̇) by the requirement

I = f − ηi q̇i.

Because I is assumed to be quadratic in the velocities ηi must be linear in the velocities and f
must be at most quadratic in the velocities. We choose ηi = ai(t, q) + bij(t, q)q̇j and f = 1

2 cij(t, q)q̇i q̇j +

di(t, q)q̇i + ei(t, q). Then, we have

ηi = −
∂I
∂q̇i +

∂ f
∂q̇i = −

∂I
∂q̇i + cij(t, q)q̇j + di(t, q)

and replacing ηi

ai(t, q) + bij(t, q)q̇i = − ∂I
∂q̇i + cij(t, q)q̇j + di(t, q).

Let us assume that I has the general form

I =
1
2

Aij(t, q)q̇i q̇j + Bi(t, q)q̇i + C(t, q).

Then, we have

ai(t, q) + bij(t, q)q̇j = Aij(t, q)q̇j + Bi(t, q) + cij(t, q)q̇j + di(t, q)

from which follows

bij = −Aij + cij,

ai = −Bi + di.

This system has an infinite number of solutions. To pick up one solution, we have to define cij, di.
One choice is cij = −Aij, which gives bij = −2Aij and di = 0, which implies ai = −Bi. Therefore,
one answer is

ηi = 2Aij q̇j + Bi,

f =
1
2

Aij(t, q)q̇i q̇j + ei(t, q).

Then, the vector XW = ηi ∂
∂qi + η[1]i ∂

∂q̇i

XW = ηi ∂

∂qi + η[1]i ∂

∂q̇i

generates a point transformation which is a gauged Noether symmetry (in the gauge ξ = 0, φi = 0) of
the conservative holonomic dynamical system admitting I as a Noether integral.

Obviously, all quadratic first integrals of a SODEs correspond to a Noether symmetry which can
be computed as indicated above.

8. Symmetries of SODEs in Flat Space

Obviously, an area where symmetries of ODEs play an important role is the cases in which
the kinetic metric (not necessarily the spacetime metric) is flat. These cases cover significant part of
Newtonian Physics where the kinetic energy is a positive definite metric with constant coefficients;
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therefore, there is always a coordinate transformation in the configuration space that brings the
metric to the Euclidian metric. Similar remarks apply to Special Relativity and—as we shall
see—to Cosmology.

The basic result in these cases is that the maximum number of Lie point symmetries that a SODE
can have is n(n + 2) and the maximum number of Noether point symmetries n(n+1)

2 + 1. Moreover,
the number of point symmetries which a SODE can possess is exactly one of 0, 1, 2, 3, or 8 [36]. Similar
results exist for higher-order differential equations [37].

Lie has shown [2] the important result that “for all the second order ordinary differential equations which
are invariant under the elements of the sl (3, R), there exists a transformation of variables that brings the equation
to the form x∗′′ = 0 and vice versa”.

In current cosmological models of importance, of interest is the case n = 2, therefore we shall
restrict our attention to two cases

i. The case the of systems which admit the maximum number of Lie point symmetries which for
n = 2 is eight and span the algebra sl(3, R).

ii. The case that the Lie point symmetries span the algebra sl(2, R).

8.1. The Case of sl(3, R) Algebra

The prototype dynamical system which admits the sl(3, R) algebra of eight Lie point symmetries
is the Newtonian free particle moving in one dimension whose dynamical equation is

ẍ = 0, (54)

where x = x (t) and a dot means differentiation with respect to the time parameter t.
Let X = ξ (t, x) ∂t + η (t, x) ∂i be the generator of a Lie point symmetry of (54). The Lie point

symmetries of (54) are given by the special projective vectors of E2 (see condition (35))

X1 = ∂t , X2 = ∂x , X3 = t∂x , X4 = t2∂t + tx∂x , X5 = t∂t,

X6 = x∂x , X7 = tx∂t + x2∂x , X8 = x∂t.

To show the validity of the aforementioned Lie’s result, we consider the harmonic oscillator

ẍ + x = 0, (55)

which also admits the eight Lie point symmetries [38]

X̄1 = ∂t , X̄2 = cos t∂x , X̄3 = sin t∂x , X̄4 = x∂x ,

X̄5 = sin 2t ∂t + x cos 2t ∂x , X̄6 = cos 2t ∂t − x sin 2t ∂x ,

X̄7 = x sin t ∂t + x2 cos t ∂x , X̄8 = x cos t∂t − x2 sin t ∂x,

which form another basis of the Sl (3, R) Lie algebra. The transformation which relates the two different
representations of the Sl (3, R) algebra is

t→ arctan τ , x → y√
1 + τ2

. (56)

It easy to show that under this transformation Equation (55) becomes ÿ = 0, which is Equation (54).
In order to calculate the Noether point symmetries of (54), we have to define a Lagrangian.

We recall that the Noether symmetries depend on the particular Lagrangian we consider. Let us
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assume the classical Lagrangian L1 (t, x, ẋ) = 1
2 ẋ2. Replacing in the Noether condition, we find the

associated Noether conditions

ξ,x = 0 , η,xx − ξ,t = 0, (57)

η,t − f,x = 0 , f,t = 0, (58)

whose solution shows that the Noether point symmetries of (54) for the Lagrangian L1 are the vector
fields X1, X2, X3, X4 and XN = 2X5 + X6, with corresponding non-constant Noether functions the
f3 = x and f4 = 1

2 x2.
Furthermore, from the second theorem of Noether, the corresponding first integrals are calculated

easily. The vector X1 provides the conservation law of energy, X2 the conservation law of momentum,
while X3 gives the Galilean invariance [39]. Finally, the vector fields X4 and XN are also important
because they can be used to construct higher-order conservation laws.

A more intriguing example is the slowly lengthening pendulum whose equation of motion in
the linear approximation is (The time dependence in the ‘spring constant’ is due to the length of the
pendulum’s string increasing slowly [40].),

ẍ + ω2 (t) x = 0, (59)

which also admits eight Lie point symmetries. According to Lie’s result, there is a transformation
which brings (59) to the form (54). In order to find this transformation, one considers the Noether point
symmetries and shows that (59) admits the quadratic first integral [41]

I =
1
2

{
(ρẋ− ρ̇x)2 +

(
x
ρ

)2
}

, (60)

where ρ = ρ (t), is a solution of the second-order differential equation

ρ̈ + ω2 (t) ρ =
1
ρ3 . (61)

The first integral (60) is known as the Lewis invariant.
On the other hand, Equation (61) is the well-known Ermakov–Pinney Equation [42] whose

solution has been given by Pinney [43] and it is

ρ (t) =
√

Aυ2
1 + 2Bυ1υ2 + Cυ2

2, (62)

where A, B, C are constants of which only two are independent, and the functions υ1 (t) , υ2 (t) ,
are two linearly independent solutions of (59).

Finally, the transformation which connects the time dependent linear Equation (59) with (54) is
the following

y =
x
ẋ

, P = ρẋ− ρ̇x , τ =
∫ t

ρ−2 (η) dη, (63)

where ρ (t) is given by (62).

8.2. The Case of the sl (2, R) Algebra

The prototype system in this case is the Ermakov system defined by Equations (59) and (60)
whose Lie point symmetries span the sl(2, R) algebra for arbitrary function ω (t), while any solution
for a specific ω (t) can be transformed to a solution for another ω (t) by a coordinate transformation.
The Ermakov system has numerous applications in diverting areas of Physics (see, for instance [44–46]).
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Let us restrict our considerations to the autonomous case, with ω (t) = µ2 a constant.
Equation (61) becomes

ρ̈ + µ2ρ =
1
ρ3 , (64)

while the elements of the admitted sl (2, R) Lie algebra are

Z1 = ∂t , Z2 = 2t∂t + ρ∂ρ and Z3 = t2∂t + tρ∂ρ, when µ = 0

and
Z1 = ∂t , Z2 =

1
µ

e+2iµt ∂t + e+2iµtρt ∂ρ , Z3 =
1
µ

e−2iµt∂t − e+2iµtρ∂ρ , when µ 6= 0.

Concerning the Noether point symmetries, we consider the Lagrangian

L (t, ρ, ρ̇) =
1
2

ρ̇2 − µ2

2
ρ2 − 1

2
1
ρ2 (65)

and find that the Lie symmetries Z1, Z2, Z3 satisfy the Noether condition, hence they are also Noether
point symmetries, and lead to the quadratic first integral of energy

E =
1
2

ρ̇2 +
µ2

2
ρ2 +

1
2

1
ρ2 (66)

and the time dependent first integrals

I1 = 2tE− ρρ̇, (67)

I2 = t2E− tρρ̇ +
1
2

ρ2, when µ = 0, (68)

or

I+ =
1

2µ
e+2iµtE− e+2iµt ρρ̇ + µe+2iµt ρ2, (69)

I− =
1

2µ
e−2iµtE + e−2iµt ρρ̇ + µe−2iµt ρ2 , when µ 6= 0. (70)

While the first integrals I1, I2 and I+, I− are time-dependent, we can easily construct the
time-independent Lewis invariant [47]. For instance, I+ I− is a time-independent first integral.

The two-dimensional system with Lagrangian

L
(
t, ρ, θ, ρ̇, θ̇

)
=

1
2

ρ̇2 +
1
2

ρ2θ̇ − µ2

2
ρ2 − V (θ)

ρ2 (71)

describes the simplest generalization of the Ermakov–Pinney system in two-dimensions. It can be
shown that the Lie point symmetries Z1, Z2, Z3 are Noether point symmetries of (71) with the same
first integrals. Again with the use of the time dependent Noether integrals I1, I2 and I+, I−, we are
able to construct the autonomous conservation laws [48]

Φ = 4I2E− I2
1 = ρ4φ̇2 + 2V (φ) (72)

and
Φ̄ = E2 − I+ I− = ρ4φ̇2 + 2V (φ) . (73)

As we shall see below, the Ermakov–Pinney system and its generalizations are used in the dark
energy models [47].
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9. Symmetries of SODEs and the Geometry of the Underline Space

As it has been mentioned, the symmetries of a SODE concern the kinetic metric, which is
independent of the metric of the space where motion occurs. On the other hand, one of the basic
principles of General Relativity (and Newtonian Physics) is the Principle of Equivalence according to
which the trajectories of free fall are the geodesics of the space where motion occurs. This means that
the Principle of Relativity locks the Lie point symmetries of the geodesic equations (= free fall) with the
collineations of the geometry (=metric) of space-time where the particle moves. The relation between
the Lie and the Noether point symmetries and the collineations of the space where motion occurs
has been given not only for the case of geodesics, but also for a general autonomous conservative
dynamical system (see [26–29]).

Below, we briefly discuss the collineations of Riemannian manifolds and also the results of [27]
because they are used in the construction of cosmological models.

9.1. Collineations

Consider a Riemannian manifold M of dimension n and metric gij. Let A be a geometric object
(not necessarily a tensor) defined in terms of the metric (This is not necessary, but it is enough for
the cases we consider in this work), X a vector field in F1

0 (M) and B a tensor field on M which has
the same number of indices as A and with the same symmetries of the indices. We say that X is a
collineation of A if the following condition holds:

LXA = B, (74)

where LX denotes the Lie derivative. The collineations of a geometric object form a Lie algebra.
The classification of the possible collineations in a Riemannian space can be found in [49]. The most
important are the collineations given in Table 1.

Table 1. Collineations of the metric and of the connection in a Riemannian space.

Collineation A B

Killing vector (KV) gij 0
Homothetic vector (HV) gij ψgij, ψ,i = 0
Conformal Killing vector (CKV) gij ψgij, ψ,i 6= 0
Affine collineation Γi

jk 0
Projective collineation (PC) Γi

jk 2φ(,jδ
i
k), φ,i 6= 0

Special Projective collineation (SPC) Γi
jk 2φ(,jδ

i
k), φ,i 6= 0 and φ,jk = 0

Some general results concerning collineations of a Riemannian manifold M of dimension n are
the following:

a. M can have at most n(n + 1)/2 KVs and when this is the case M is called a maximally
symmetric space. The curvature tensor of a a maximally symmetric space is given by the expression

Rabcd = R (gacgdb − gadgcb) ,

where R is the curvature scalar, which is a constant. Flat space is a maximally symmetric space for
which R = 0.

b. M can have at most one proper HV.
c. M can have at most (n+1)(n+2)

2 proper CKVs, n (n + 1) proper ACs, and n(n + 2) proper PCs.
A two-dimensional space has infinite CKVs.

d. If the metric admits a SCKV, then it also admits a SPC, a gradient HV and a gradient KV [50]
Other properties of the collineations can be found in [1].
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What shall be important in our discussions are the collineations of the n-dimensional flat space.
These collineations we summarize in Table 2. It is important to note which collineations are gradient.

Table 2. The elements for the projective algebra of the Euclidian space.

Collineation Gradient Non-Gradient

Killing vectors (KV) SI = δi
I∂i XI J = δ

j
[Iδi

j]xj∂i

Homothetic vector (HV) H = xi∂i
Affine Collineation (AC) AI I = xIδi

I∂i AI J = xJδi
I∂i

Special Projective collineation (SPC) PI = SIH.

10. Motion and Symmetries in a Riemannian Space

The equation of motion of a particle moving in a Riemannian space is given by the SODE

ẍi + Γi
jk ẋj ẋk = Fi, (75)

where Γi
jk(xr) are the connection coefficients and the field Fi stands for the forces acting on the particle.

The Lie symmetries of (75) are defined by the system of equations [27]

Lη Fi + 2ξ,t Fi + ξFi
,t + ηi,tt = 0, (76)(

ξ,k δi
j + 2ξ,j δi

k

)
Fk + 2ηi,t|j−ξ,tt δi

j = 0, (77)

LηΓi
(jk) = 2ξ,t(j δi

k), (78)

ξ(,i|jδ
k
r) = 0. (79)

From (78), it follows that the Lie point symmetries of the SODE (75) are generated from the special
projective algebra of the space.

10.1. Lie Point Symmetries of (75)

In the case where the force is autonomous and conservative, that is, Fi = gijV,j

(
xk
)

and V,j is not
a gradient KV of the metric, the general solution of the system of Equations (76)–(79) has been given
in [27] and has the following:

• Case I Lie point symmetries due to the affine algebra. The resulting Lie point symmetries are

X =

(
1
2

d1a1t + d2

)
∂t + a1Yi∂i, (80)

where a1 and d1 are constants, provided the potential satisfies the condition

LYV,i + d1V,i = 0. (81)

• Case IIa The Lie point symmetries are generated by the gradient homothetic algebra and Yi 6= V,i.
The Lie point symmetries are

X = 2ψ
∫

T (t) dt∂t + T (t)Yi∂i, (82)

where the function T (t) is the solution of the equation T,tt = a1T provided the potential V(xi)

satisfies the condition
LYV,i + 4ψV,i + a1Yi = 0. (83)
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• Case IIb The Lie point symmetries are generated by the gradient HV Yi = κV,i, where κ is a
constant. In this case, the potential is the function generating the gradient HV and the Lie
symmetry vectors are

X =

(
−c1

√
ψk cos

(
2
√

ψ
k t
)
+ c2

√
ψk sin

(
2
√

ψ
k t
))

∂t +

(
c1 sin

(
2
√

ψ
k t
)
+ c2 cos

(
2
√

ψ
k t
))

H,i∂i. (84)

• Case IIIa The Lie point symmetries are due to the proper special projective algebra. In this case,
the Lie symmetry vectors are (the index J counts the gradient KVs)

XJ =
(
C (t) SJ + D (t)

)
∂t + T (t)Yi∂i, (85)

where the functions C(t), T(t), D(t) are solutions of the system of the system of equations

D,t =
1
2

d1T , T,tt = a1T , T,t = c2C , D,tt = dcC , C,t = a0T (86)

and, in addition, the potential satisfies the conditions

LYV,i + 2a0SV,i + d1V,i + a1Yi = 0, (87)(
S,kδi

j + 2S,j δi
k

)
V,k +

(
2Yi

; j − a0Sδi
j

)
c2 − dcδi

j = 0. (88)

• Case IIIb Lie point symmetries are due to the proper special projective algebra and Yi
J = λSJV,i,

in which V,i is a gradient HV, and S,i
J is a gradient KV. The Lie point symmetry vectors are

XJ =
(
C (t) SJ + d1

)
∂t + T(t)λSJV,i∂i, (89)

where the functions C (t) and T(t) are computed from the relations

T,tt + 2C,t = λ1T , T,t = λ2C , C,t = a0T (90)

and the potential satisfies the conditions

LYJ V
,i + λ1SJV,i = 0, (91)

C
(

λ1SJδ
i
j + 2SJ ,j V,i

)
+ λ2

(
2λSJ,jV.i +

(
2λSJ − a0SJ

)
δi

j

)
= 0. (92)

The general case for time dependent conservative forces has been given in [51]. In the following,
only the autonomous case will be considered.

10.2. Noether Point Symmetries of (75)

In case the force is autonomous and conservative, the SODE (75) follows from the
regular Lagrangian

L
(

t, xk, ẋk
)
=

1
2

gij

(
xk
)

ẋi ẋj −V
(

xk
)

. (93)

The Noether point symmetries of Lagrangian (93) as well as the corresponding first integrals have
been given in [27] and are generated by the homothetic algebra of the metric gij as follows:

• Case I. The HV satisfies the condition:

V,kYk + 2ψYV + c1 = 0. (94)
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The Noether point symmetry vector is

X = 2ψYt∂t + Yi∂i, f = c1t, (95)

where T (t) = a0 6= 0 and the corresponding first integral is

Φ = 2ψYtE− gijYi ẋj + c1t. (96)

• Case II. The metric admits the gradient KVs SJ , the gradient HV H,i and the potential satisfies
the condition

V,kY,k + 2ψYV = c2Y + d. (97)

In this case, the Noether point symmetry vector and the Noether function are

X = 2ψY

∫
T (t) dt∂t + T (t) S,i

J ∂i , f
(

t, xk
)
= T,tSJ

(
xk
)

+ d
∫

Tdt, (98)

where the functions T(t) and K (t) (T,t 6= 0) are computed from the relations

T,tt = c2T , K,t = d
∫

Tdt + constant, (99)

where c2 is a constant. The Noether integral in this case is

Φ̄ = ψYE
∫

Tdt − TgijHi ẋj + T,tH + d
∫

Tdt. (100)

In addition to the above cases, there is also the Noether point symmetry ∂t whose first integral is
the energy (i.e., the Hamiltonian) E.

From the above results, it is clear that, in order a given dynamical system to admit Lie/Noether
point symmetries, the underlying space must admit collineations. This means that, by studying the
collineations of the underlying geometry, we can infer important information for the existence or not
and also compute the Lie/Noether point symmetries and the associated first integrals. In that respect,
we may say that geometry determines the evolution of the dynamical systems.

10.3. Point Symmetries of Constrained Lagrangians

The previous analysis holds for regular dynamical systems while when the dynamical system is
constrained extra conditions are introduced.

Consider the constrained Lagrangian

L̄
(

t, xk, ẋk, N
)
=

1
2N

gij ẋi ẋj − NV
(

xk
)

, (101)

where N = N (t) is a singular degree of freedom with Euler–Lagrange equation ∂L
∂N = 0. The latter

equation is a constraint of the system. Lagrangian functions of the form of (101) are provided in
cosmological studies.

10.3.1. Lie Point Symmetries of (101)

The generic Lie point symmetry vector for the Euler–Lagrange equations of (101) is [52]

XL = XN − 2a3∂N , (102)

where
XN = α2χ (t) ∂t +

(
2α1τ

(
xk
)
+ α2χ,t (t) N

)
N∂N − α1ηi∂i, (103)
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and where ηi is a CKV of the metric gij with conformal factor τ
(

xk
)

which is related to the potential
by the following condition/constraint:

LηV
(

xk
)
+ 2

(
τ
(

xk
)
+ a3

)
V
(

xk
)
= 0. (104)

We note that the Lie point symmetries of the constrained Lagrangian are generated by the elements
of the conformal algebra, whereas for regular systems these symmetries are generated by the elements
of the special projective algebra. There are also differences in the constraint condition for the potential.

10.3.2. Noether Point Symmetries of (101)

In order to compute the Noether point symmetries of (101), we consider the Noether condition (48).
We find one Noether point symmetry that is again the vector XN [52]; the potential satisfies the
following condition/constraint:

LηV
(

xk
)
+ 2τ

(
xk
)

V
(

xk
)
= 0. (105)

The first integral defined by the Noether point symmetry XN is given by the formula [52]

Φ∗ =
1
N

gijη
i ẋj − χ (t)

(
∂L
∂N

)
' 1

N
gijη

i ẋ. (106)

The function Φ∗ is a “weak” conservation law in the sense that someone has to impose the
constraint condition

(
∂L
∂N

)
= 0, in order dΦ

dt = 0; this is because dΦ
dt = 2 ∂L

∂N . Furthermore, we note
that there is a difference in the Noether point symmetries between the regular and the constrained
Lagrangian. For instance, while the regular Lagrangian L (t, x, ẋ) = 1

2 ẋ2 − 1
2 x2 possesses five Noether

point symmetries [53], for the singular Lagrangian L̄ (t, x, ẋ, N) = 1
2N ẋ2 − 1

2 Nx2, we found only the
XN Noether symmetry.

We note that if a3 = 0 then there is only one Lie point symmetry which is also a Noether
point symmetry.

11. Symmetries in Cosmology

The nature of the source which drives the late-acceleration phase of the universe is an important
problem of modern cosmology. Currently, the late-acceleration phase of the universe is attributed
to a perfect fluid with a negative equation of state parameter, which has been named the dark
energy. The simplest dark energy candidate is the cosmological constant model leading to the ΛCDM
cosmology. In this model, the gravitational field equations can be linearized and one is able to write
the analytic solution in closed-form. However, in spite of its simplicity, the ΛCDM cosmological model
suffers from two major problems: the fine-tuning problem and the coincidence problem [54–56].
In order to overcome these problems, cosmologists introduced dynamical evolving dark energy
models. In these models, the dark energy fluid can be an exotic matter source like the Chaplygin
gas, quintessence, k−essence, tachyons or it can be of a geometric origin provided by a modification
of Einstein’s General Relativity [57–70]. The dark energy components introduce new terms in the
gravitational field equations which are nonlinear or increase the degrees of freedom. Thereafter,
the linearization process applied in the case of the ΛCDM model fails and other mathematical
methods must be applied in the study of integrability of the field equations and the construction
of analytic solutions.

Two different groups, de Ritis et al. [71] and Rosquist et al. [72], applied independently the
symmetries of differential equations in order to construct first integrals in scalar field cosmology.
In particular, they determined the forms of the scalar field potential, which drives the dynamics of the
dark energy, in order for the field equations to admit Noether point symmetries. The classification
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scheme is based on an idea proposed by Ovsiannikov [5]. Since then, the classification scheme
has been applied to various dark energy models and modified theories of gravity. Some of these
classifications are complete while some others lack mathematical completeness leading to incorrect
results. The purpose of the current review is to present the application of symmetries of differential
equations in modern cosmology.

A cosmological model is a relativistic model and therefore requires two assumptions:
a. A specification of the metric, which is achieved mainly by the collineations for the comoving

observers we discussed above and
b. Equations of state which specify the matter of the model universe and are mathematically

compatible with the assumed collineations defining the metric. This is done by the introduction of a
potential function in the action integral from which the field equations follow.

One important class of cosmological models are the ones in which spacetime brakes in 1 + 3 parts,
that is, the cosmic time and the spatial universe, respectively. The latter is realized geometrically
by three-dimensional spacelike hypersurfaces which are generated by the orbits of the KVs of a
three-dimensional Lie algebra. In 1898, Luigi Bianchi [73] classified all possible real three-dimensional
real Lie algebras in nine types. Each Lie algebra leads to a (hypersurface orthogonal) cosmological
model called a Bianchi Spatially homogeneous cosmological model. These nine models have
been studied extensively in the literature over the years and have resulted in many important
cosmological solutions.

The principal advantage of Bianchi cosmological models is that, due to the geometric structure
of spacetime, the physical variables depend only on the time, thus reducing the Einstein and the
other governing equations to ordinary differential equations [74]. However, the gravitational field
equations in General Relativity for the Bianchi cosmologies are ordinary second-order differential
equations, due to the existence of nonlinear terms, exact solutions have been determined only for a few
of them [75–80], while there was a debate a few years ago on the integrability or not of the Mixmaster
universe (Bianchi type IX model) [80–84].

In order to get detailed information on these alternative models, one has to find an analytical
solution of the field equations. This can be a formidable task depending on the form of the potential
function and the free parameters that it has. The standard method to find an analytical solution is to use
Noether point symmetries and compute first integrals of the field equations. Indeed, the application of
symmetries of differential equations in the dark energy models started with the use of the first Noether
theorem in [71] and with the consideration of the second Noether theorem in [72]. Both approaches
are equivalent. Since then, Noether point symmetries have been applied to a plethora of models
for the determination of first integrals, and consequently analytical solutions. We refer the reader to
some of them [85–116]. It is important to note that some of the published results are mathematically
incorrect. For instance, in [117], the authors used the Noether conditions in order to solve the dynamical
equations of the model, and a posteriori, they determined the symmetries of the field equations. This is
not correct because Noether symmetries are imposed by the requirement that they transform the
Action Integral in a certain way and not as extra conditions on the Euler–Lagrange equations.

The difficulty with the above approach is that one has to work in spacetime where the geometry is
not simple and the field equations are rather complex. To bypass that difficulty, a new scenario
has been developed in which one transforms the problem to a minisuperspace defined by the
dynamical variables through a Lagrangian which produces the field equations in that space [118].
Then, one considers the Lagrangian in two parts: the kinematic part which defines the kinetic metric
and the remaining part which defines the effective potential. If one knows the homothetic algebra
of the kinetic metric [27], then the application of the results of Section 10 provide the Noether point
symmetries and the corresponding Noether first integrals of the field equations in mini superspace.
Therefore, the solution of the field equations is made possible, and, by the inverse transformation,
one finds the solution of the original field equations in the original dynamic variables in spacetime.
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This approach brought new results in various dark energy models and modified theories of gravity
[119–122]. Some of these results are discussed in the following.

Before we enter into detailed discussion, it is useful to state the scenario of this method of work in
order to provide a working tool to new cosmologists not experienced in this field.

11.0.1. Method of Work—Scenario

1. Consider the Action Integral of the model in spacetime and produce the field equations.
2. Change variables and give a new set of field equations in the minisuperspace of dynamical

variables in a convenient form.
3. Define a Lagrangian for the field equations in the mini superspace.
4. Read from the Lagrangian the kinetic metric and the effective potential. The new variables must

be such that the kinetic metric will be flat or at least one for which one knows already the homothetic
algebra. This defines the phrase "convenient form " stated in step 2 above.

5. Apply the results of Section 3 to get a classification of Noether point symmetries of the field
equations and compute the corresponding first integrals in the mini superspace.

6. Using the first integrals, solve the field equations for the various cases of the effective potential
and other possible parameters.

7. Apply the inverse transformation and get the solution of the original field equations in terms of
the original dynamical variables in spacetime.

In the sections which follow, we apply this scenario to the major cosmological models proposed
so far and give the detailed results in each case.

11.1. FRW Spacetime and the ΛCDM Cosmological Model

The FRW spacetime is a decomposable 1 + 3 spacetime in which the three-dimensional
hypersurfaces are maximally symmetric spacelike hypersurfaces of constant curvature, which are
normal to the time coordinate. The metric of a FRW spacetime is specified modulo a function of time,
the scale factor a(t). In comoving coordinates {t, x, y, z}, it has the form

ds2 = −dt2 + a2 (t)
(

dx2 + dy2 + dz2
)

. (107)

In the Bianchi classification, it is a Type IX spacetime. This spacetime in classical General Relativity
for comoving observers (non-comoving observers can support all types of matter) ua = ∂

∂t (uaua = −1)
can support matter that is a perfect fluid, that is, the energy momentum tensor, is

Tab = ρuaub + phab,

where ρ, p are the energy density and the isotropic pressure of matter as measured by the comoving
observers. hab = gab + uaub is the tensor projecting normal to the vector ua. This spacetime has been
used in the early steps of relativistic cosmology.

The first cosmological model using this spacetime was the ΛCDM cosmology, which was
a vacuum spatially flat FRW spacetime with matter generated by a non-vanishing cosmological
constant Λ. For this model, Einstein field equations are

− 3aȧ2 + 2a3Λ = 0, (108)

and
ä +

1
2a

ȧ2 − aΛ = 0, (109)

whose solution is the well-known de Sitter solution a (t) = a0e
√

2Λ
3 t that is a maximally symmetric

spacetime (not only the maximally symmetric 3d hypersurfaces). According to earlier comments,
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there exists a coordinate transformation that brings the system to the linear Equation (110) [123].
Indeed, if we introduce the new variable r (t) = a(t)3/2, the field Equation (109) becomes [124]

− 1
2

ṙ2 +
3
2

Λṙ2 = 0 , r̈− 3
2

Λr = 0, (110)

which is the one-dimensional hyperbolic linear oscillator, which admits eight Lie point symmetries.
Let us demonstrate the geometric scenario mentioned above in this simple case. For this, we need

to find the maximum number of Noether point symmetries admitted by the field Equation (109).
We choose the variables {t, a} and have a two-dimensional mini superspace. A Lagrangian for
Equation (109) in the minisuperspace {t, a} is

L (t, a, ȧ) = 3aȧ2 + 2Λa3 (111)

from where we read the kinetic metric s2(t) = 3aȧ2 and the effective potential V(a) = −2Λa3.
The Noether condition (48) for the Lagrangian (111) gives that it admits five Noether point symmetries,
which is the maximum number of Noether symmetries for a two-dimensional space. These Noether
symmetries are

XΛ(1) = ∂a , XΛ(2) =
e
√

6Λ
2 t
√

a
∂a , XΛ(3) =

e−
√

6Λ
2 t
√

a
∂a,

XΛ(4) = e
√

6Λ
2 t
(

3√
Λ

∂t +
√

6a∂a

)
, XΛ(5) = e−

√
6Λ
2 t
(

3√
Λ

∂t −
√

6a∂a

)
.

Having the Noether symmetries, we continue with the first integrals and finally get the solution
we have already found. Note that not all first integrals are independent. This simple application
shows how the geometry of the kinetic metric can be used to recognize the equivalence of well-known
systems of classical mechanics with dark energy models.

11.2. Scalar-Field Cosmology

In the case of classical General Relativity with a minimally coupled scalar field (quintessence or
phantom), the Action Integral in spacetime is considered to be

SM =
∫

dx4√−g
[

R +
1
2

gijφ
;iφ;j −V (φ)

]
. (112)

Assuming a spatially flat FLRW background and comoving observers, the field equations are

− 3aȧ2 +
ε

2
a2φ̇2 + a3V (φ) = 0, (113)

ä +
1
2a

ȧ2 +
ε

4
φ̇2 − 1

2
aV = 0, (114)

φ̈ +
3
a

ȧφ̇ + εV,φ = 0. (115)

We consider the mini superspace defined by the dynamic variables {a, φ}. A point-like Lagrangian
in the mini superspace of the for field Equations (114) and (115) is

L (t, a, ȧ, φ, φ̇) = −3aȧ2 +
ε

2
a2φ̇2 − a3V (φ) . (116)

To bring the Lagrangian in the “convenient form”, we consider the coordinate transformation
{a, φ} to {r, θ}

r =

√
8
3

a3/2 , θ =

√
3ε

8
φ , (117)
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and again {r, θ} to {x, y}, where
x = r cosh θ , y = r sinh θ, (118)

and the new variables have to satisfy the following inequality x ≥ |y|. In the coordinates {x, y}, the
scale factor becomes

a =

[
3(x2 − y2)

8

]1/3

. (119)

Under the coordinate transformation {a, φ} → {x, y} , the point-like Lagrangian takes the
simpler form

L (t, x, ẋ, y, ẏ) =
1
2

(
ẏ2 − ẋ2

)
−Ve f f (x, y) (120)

in which the metric in the coordinates {x, y} is the Lorentzian 2d metric diag(−1, 1), which is the
metric of a flat space while the effective potential is

Ve f f (x, y) =
3
8

(
x2 − y2

)
Ṽ (θ) . (121)

Application of the previous analysis gives the following classification of Noether point symmetries
of the model for various forms of the effective potential [118]:

• For arbitrary potential Ve f f (x, y), Lagrangian (120) admits the Noether point symmetry ∂t with
first integral the constraint Equation (113).

• For constant potential V (θ) = V0, the system admits the extra Noether point symmetry x∂y − y∂x

with first integral the angular momentum r2θ̇ = const.
• For the exponential potential Ve f f (x, y) = r2e−dθ , Lagrangian (120) admits an extra Noether point

symmetry provided by the proper HV of the two-dimensional flat space,

X(φ)1 = 2t∂t +

(
x +

4
d

y
)

∂x +

(
y +

4
d

x
)

∂y,

with first integral

Φ(φ)1 =

(
x +

4
d

y
)

ẋ−
(

y +
4
d

x
)

ẏ (122)

while when d = 2, the Lagrangian admits the additional Noether point symmetry ∂x + ∂y,
with corresponding first integral

Φ(φ)2 = ẋ− ẏ. (123)

• Finally, when Ve f f (x, y) = 1
2
(
ω1x2 −ω2y2), that is, Ṽ(θ) = 1

2

(
ω1 cosh2 (θ)−ω2 sinh2 (θ)

)
,

the dynamical system admits four extra Noether point symmetries

X(φ)2
= sinh (

√
ω1t) ∂x , X(φ)3

= cosh (
√

ω1t) ∂x ,

X(φ)4
= sinh (

√
ω2t) ∂y , X(φ)5

= cosh (
√

ω2t) ∂y ,

with corresponding first integrals

In2 = sinh (
√

ω1t) ẋ−
√

ω1 cosh (
√

ω1t) x,

In3 = cosh (
√

ω1t) ẋ−
√

ω1 sinh (
√

ω1t) x,

In4 = sinh (
√

ω2t) ẏ−
√

ω2 cosh (
√

ω2t) y,

In5 = cosh (
√

ω2t) ẏ−
√

ω2 sinh (
√

ω2t) y.
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The latter dynamical hyperbolic dynamical system reduces to that of the unified dark matter
potential (UDM) when ω1 = 2ω2 [125]. The amount of information one receives by the direct
application of the geometric symmetries of the kinetic metric is noticeable.

To find the solution in the original dynamical variables {a, φ} , we apply the inverse
transformation. The result is

a3 (t) =
3
8
[sinh2 (

√
ω1t + θ1)−

ω1

ω2
sinh2 (

√
ω2t + θ2)], (124)

φ (t) =

√
8
3ε

arctan h
[√

ω1

ω2

sinh (
√

ω2t + θ2)

sinh (
√

ω1t + θ1)

]
. (125)

11.3. Brans–Dicke Cosmology

The Brans–Dicke action is [126]

SNM =
∫

dtdx3√−g
[

F0ψ2R− 1
2

ḡijψ
;iψ;j + V̄ (ψ)

]
, (126)

where F0 is related to the Brans–Dicke parameter.
In the case of the spatially flat FRW background and comoving observers, the point-like

Lagrangian in the mini superspace defined by the variables {a, ψ}, which describes the gravitational
field equations is

L (t, a, ȧ, ψ, ψ̇) = 6F0ψ2aȧ2 − 12F0ψa2 ȧψ̇− 1
2

a3ψ̇2 + a3V (ψ) . (127)

If one performs the coordinate transformation {a, ψ} to {r, θ} by the equations

a ' r
2
3 , θ ' ln ψ, (128)

Lagrangian (127) becomes

L
(
t, r, ṙ, θ, θ̇

)
= ekθ

(
−dr2 + r2dθ2

)
− r2V (θ) (129)

from which we have that the kinetic metric of the minisuperspace is the conformally flat Lorentzian 2d
metric ekθ

(
−dr2 + r2dθ2) whose symmetry algebra depends on the values |k| 6= 1 |k| = 1 while the

effective potential is Ve f f ec. = −r2V (θ) .
We consider cases.

11.3.1. Case |k| 6= 1.

For |k| 6= 1, the homothetic algebra of the minisuperspace consists of the gradient KVs

K1 =
e(1−k)θrk

N2
0

(
−∂r +

1
r

∂θ

)
, (130)

K2 =
e−(1+k)θr−k

N2
0

(
∂r +

1
r

∂θ

)
, (131)

the non-gradient KV

K3 = r∂r −
1
k

∂θ (132)
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and the gradient HV

Hi =
1

N2
0 (k

2 − 1)
(−r∂r + k∂θ) , H (r, θ) =

1
2

r2e2kθ

k2 − 1
. (133)

The symmetry classification provides the following results [121]:

• For arbitrary potential V (θ), the dynamical system admits the Noether point symmetry ∂t.
• For V (θ) = V0e2θ there are two additional Noether point symmetries K1, tK1 with first integrals

I1 =
d
dt

(
r1+ke(1+k)θ

(k + 1)

)
, I2 = t

d
dt

(
r1+ke(1+k)θ

(k + 1)

)
−
(

r1+ke(1+k)θ

(k + 1)

)
. (134)

• For V (θ) = V0e2θ − mN2
0

2(k2−1) e2kθ , there are two additional Noether point symmetries e±
√

mtK1,
with corresponding first integrals

I′± = e±
√

mt

[
d
dt

(
r1+ke(1+k)θ

(k + 1)

)
∓
√

m

(
r1+ke(1+k)θ

(k + 1)

)]
. (135)

• For V (θ) = V0e−2θ , we have the extra Noether point symmetries K2, tK2 with Noether
first integrals

J1 =
d
dt

(
r1−ke−(1−k)θ

k− 1

)
, J2 = t

d
dt

(
r1−ke−(1−k)θ

k− 1

)
− r1−ke−(1−k)θ

k− 1
. (136)

• For V (θ) = V0e−2θ − mN2
0

2(k2−1) e2kθ , we have the extra Noether symmetries e±
√

mtK2 m =constant,
with first integrals

J
′
± = e±

√
mt

(
d
dt

(
r1−ke−(1−k)θ

k− 1

)
∓
√

m
r1−ke−(1−k)θ

k− 1

)
. (137)

• For the potential V (θ) = V0e2kθ , the additional symmetry is the vector field K3 with first integrals

I3 =
re2kθ

k
(
kṙ + rθ̇

)
. (138)

• For V (θ) = V0e−2
(k2−2)

k θ , k2− 2 6= 0, the extra Noether point symmetries are 2t∂t + Hi , t2∂t + tHi

with first integrals

IH1 = − d
dt

(
1
2

r2e2kθ

k2 − 1

)
, IH2 = −t

d
dt

(
1
2

r2e2kθ

k2 − 1

)
+

1
2

r2e2kθ

k2 − 1
. (139)

We note that in this case the system is the Ermakov–Pinney dynamical system (because it admits
the Noether point symmetry algebra the sl(2, R), hence the Lie symmetry algebra is at least
sl(2, R)) .

• For V (θ) = V0e−2
(k2−2)

k θ − N2
0 m

k2−1 e2kθ , k2 − 2 6= 0, we have the Noether point symmetries
2√
m e±

√
mt∂t ± e±

√
mtHi , m = constant with corresponding first integral

I+,− = e±2
√

mt

(
∓ d

dt

(
1
2

r2e2kθ

k2 − 1

)
+ 2
√

m

(
1
2

r2e2kθ

k2 − 1

))
. (140)
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For this potential, the Noether point symmetries form the sl (2, R) Lie algebra, i.e., the dynamical
system is the two-dimensional Kepler–Ermakov system.

• The case V (θ) = 0 corresponds the two-dimensional free particle in flat space and the dynamical
system admits seven additional Noether point symmetries.

11.3.2. Case |k| = 1

We have to consider two cases i.e., k = 1 and k = −1. It is enough to consider the case k = 1,
because the results for k = −1 are obtained directly from those for k = 1 if we make the substitution
θ(k=−1) = −θ̄.

For k = 1, the homothetic algebra of the minisuperspace is given by the vector fields K1,2
k=1

of (130,131) and the vector field

K3
k=1 = −r

(
ln
(

re−θ
)
− 1
)

∂r + ln
(

re−θ
)

∂θ . (141)

Hence, the symmetry classification provides the following cases:

• For arbitrary potential V (θ), the dynamical system admits the Noether point symmetry ∂t.

All the rest of cases admit additional symmetries.
• If V (θ) = V0e2θ , we have the extra Noether point symmetries K1 , tK1 with first integrals (134)

with k = 1.
• If V (θ) = V0e2θ − m

2 θe2θ , we have the Noether point symmetries e±
√

mtK1 with first integrals
the (135) with k = 1.

• Noether point symmetries generated by the KV K2.
• If V (θ) = V0e−2θ , then we have the Noether point symmetries K2 , tK2 with first integrals

I′2 =
d
dt

(θ − ln r) , I′2 = t
[

d
dt

(θ − ln r)
]
− (θ − ln r) .

• If V (θ) = V0e−2θ − 1
4 pe2θ then we have the Noether point symmetries K2 , tK2 with first integrals

I′1 =
d
dt

(θ − ln r)− pt , I′2 = t
[

d
dt

(θ − ln r)
]
− (θ − ln r)− 1

2
pt2.

• If V (θ) = 0, then the system becomes the free particle and admits seven extra Noether
point symmetries.

The exact solutions of the models and their physical properties can be found in [121]. The results
from the classification analysis are presented in Tables 3 and 4. For the notation of the admitted Lie
algebra, we follow the Mubarakzyanov Classification Scheme [127–129].

Table 3. Noether symmetry classification for the Brans–Dicke action in a spatially flat
Friedmann–Lemaître–Robertson–Walker metric FLRW spacetime (I).

|k| Potential # Symmetries Lie Algebra Symmetries

V (θ) 1 A1 ∂t ,
6=1 V0e2θ 3 A1 ⊗s (2A1) ∂t, K1, tK1

6=1 V0e2θ − mN2
0

2(k2−1) e2kθ 3 A1 ⊗s (2A1) ∂t, e±
√

mtK1

6=1 V0e−2θ 3 A1 ⊗s (2A1) ∂t, K2, tK2

6=1 V0e−2θ − mN2
0

2(k2−1) e2kθ 3 A1 ⊗s (2A1) ∂t, e±
√

mtK21

6=1 V0e2kθ 2 2A1 ∂t, K3

6=1 V0e−2 (
k2−2)

k θ , k2 − 2 3 Sl (2, R) ∂t, 2t∂t + Hi , t2∂t + tHi

6=1 V0e−2 (
k2−2)

k θ − N2
0 m

k2−1 e2kθ , k2 − 2 6= 0 3 Sl (2, R) ∂t, 2√
m e±

√
mt∂t ± e±

√
mt Hi
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Table 4. Noether symmetry classification for the Brans–Dicke action in a spatially flat FLRW spacetime (II).

|k| Potential # Symmetries Lie Algebra Symmetries

=1 V0e2θ 3 A1 ⊗s (2A1) ∂t, K1, tK1

=1 V0e2θ − m
2 θe2θ 3 A1 ⊗s (2A1) ∂t, e±

√
mtK1

=1 V0e−2θ 3 A1 ⊗s (2A1) ∂t, K2, tK2

=1 V0e−2θ − 1
4 pe2θ 3 A1 ⊗s (2A1) ∂t, K2, tK2

11.4. f (R)-Gravity

f (R)-gravity (in the metric formalism) is a fourth-order theory where the Action Integral in
spacetime is assumed to be

S =
∫

d4x
√
−g f (R) . (142)

In the case of FRW background and comoving observers, the resulting field equations follow from
the Lagrangian [130]

L
(
t, a, ȧ, R, Ṙ

)
= 6a f

′
ȧ2 + 6a2 f

′′
ȧṘ + a3

(
f
′
R− f

)
− 6Ka f ′, (143)

where K = 0,±1 is the spatial curvature of the FRW spacetime, and a prime denotes derivative with
respect to the dynamical parameter R, that is f ′ (R) = d f (R)

dR . Since f (R) theory can be written as a
special case of Brans–Dicke theory, the so-called O’Hanlon gravity [130], the results will be similar to
that of the previous analysis. However, for completeness, we present them below.

The classification scheme provides the following cases [119]:

• For arbitrary function f (R), there exists the autonomous symmetry ∂t, which derives the
constraint equation.

• For f (R) = R
3
2 , the theory admits the additional Noether point symmetries

K1 = 2t∂t +
4
3

∂a −
9
2

f ′

f ′′
∂R,

K2 =
1
a

∂a −
1
a2

f ′

f ′′
∂R , K∗2 = t

(
1
a

∂a −
1
a2

f ′

f ′′
∂R

)
,

with first integrals

Φ1 = 6a2 ȧ
√

R + 6
a3
√

R
Ṙ, (144)

Φ2 =
d
dt

(
a
√

R
)

, Φ∗2 = t
d
dt

(
a
√

R
)
− a
√

R. (145)

• For f (R) = R
7
8 and K = 0, the theory admits the additional Noether point symmetries

K3 = 2t∂t +
a
2

∂a +
1
2

f ′

f ′′
∂R , K∗3 = t2∂t + t

(
a
2

∂a +
1
2

f ′

f ′′
∂R

)
, (146)

with corresponding first integrals

Φ3 =
d
dt

(
a3R−

1
8

)
, Φ∗3 = t

d
dt

(
a3R−

1
8

)
− a3R−

1
8 . (147)

• The power-law theory f (R) = Rn (with n 6= 0, 1, 3
2 , 7

8 ) and for K = 0, or with K arbitrary and
n = 2, the system admits the extra Noether point symmetry

K∗1 = 2t∂t +

(
4n
3
− 2

3

)
a∂t − 3

f ′

f ′′
∂R,
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with first integral

Φ∗1 = a2Rn−1 ȧ (2− n) +
1
2

a3Rn−2Ṙ (2n− 1) (n− 1) . (148)

• For f (R) = (R− 2Λ)3/2 the extra Noether point symmetries are

K(±)2 = e±
√

mt
(

1
a

∂a −
1
a2

f ′

f ′′
∂R

)
, (149)

with corresponding first integral

Φ(±)2 = e±
√

mt
(

d
dt

(
a
√

R− 2L
)
∓ 9
√

ma
√

R− 2Λ
)

. (150)

• Finally, when f (R) = (R− 2Λ)7/8, the field equations admit the Noether point symmetries

K(±)4 = ± 1√
m

e±2
√

mt∂t + e±2
√

mt
(

a
2

∂a +
1
2

f ′

f ′′
∂R

)
, (151)

with corresponding first integrals

Φ(±)4 =
d
dt

(
a3 (R− 2Λ)−

1
8
)
∓ 1

2
√

ma3 (R− 2Λ)−
1
8 . (152)

In Table 5, we collect the results of the classification scheme for f (R)-gravity.

Table 5. Noether symmetry classification for f (R) in FLRW spacetime.

Sp. Curv. K f (R) # Symmetries Lie Algebra Symmetries

= 0,±1 Arbitrary 1 A1 ∂t ,
= 0,±1 R

3
2 4 (2A1)⊗s (2A1) ∂t, K1, K2, K∗2

= 0 R
7
8 3 Sl (2, R) ∂t, K3, K∗3

= 0 Rn (with n 6= 0, 1, 3
2 , 7

8 ) 2 2A1 ∂t, K∗1
= 1 R2 2 A1 ⊗s (2A1) ∂t, K∗1(n=2)

= 0,±1 (R− 2Λ)3/2 3 A1 ⊗s (2A1) ∂t, K(±)2
= 0 (R− 2Λ)7/8 3 Sl (2, R) ∂t, K(±)4

11.5. Two-Scalar Field Cosmology

We consider now a two-scalar field cosmological model in General Relativity with Action Integral

S =
∫

dx4√−g
(

R− 1
2

gij

(
ΦC
)

ΦA,iΦB,i + V
(

ΦC
))

, (153)

where HAB describes the coupling between the two scalar fields ΦA = (φ, ψ) in the kinematic part.
Moreover, we assume the metric tensor HAB to be a maximally symmetric metric of constant
curvature [122]. In such a scenario, it is not possible to define new fields in order to remove the
coupling in the kinematic part.

Assuming again a spatially flat FRW spacetime and comoving observers the field equations are

−3aȧ2 +
1
2

a3HABΦ̇AΦ̇B + a3V
(

ΦC
)

= 0, (154)

ä +
1
2a

ȧ2 +
a
4

HABΦ̇AΦ̇B − 1
2

aV = 0, (155)

Φ̈A +
3
2a

ȧΦ̇A + Γ̃A
BCΦ̇BΦ̇C + HABV,B = 0, (156)
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where Γ̃A
BC are the connection coefficients for the metric HAB

(
ΦC) .

In the mini superspace defined by the variables {a, Φ}, we introduce the new variables {u, φ} by

the requirements a =
( 3

8
) 1

3 u
2
3 , diag

(
1, e2φ

)
= hABΦ̇AΦ̇B and the field equations become

−1
2

u̇2 +
1
2

u2
(

φ̇2 + e2φ ψ̇2
)
+ u2V (φ, ψ) = 0, (157)

ü + uφ̇2 + ue2φ ψ̇2 − 2uV = 0, (158)

φ̈ +
2
u

u̇φ̇− e2φψ̇2 + V,φ = 0, (159)

ψ̈ +
2
u

u̇ψ̇ + 2φ̇ψ̇ + e−2φV,ψ = 0. (160)

These follow from the point-like Lagrangian

L (t, u, u̇, φ, φ̇, ψ, ψ̇) = −1
2

u̇2 +
1
2

u2
(

φ̇2 + e2φ ψ̇2
)
− u2V (φ, ψ) , (161)

which defines the 3d flat Lorentzian kinetic metric − 1
2 u̇ + 1

2 u2 (φ̇2 + e2φ ψ̇2) and the effective potential
Ve f f . = u2V (φ, ψ) .

The kinetic metric admits a seven-dimensional homothetic algebra consisting of the three gradient
KVs (translations)

K1 = −1
2

(
eφ
(

1 + ψ2
)
+ e−φ

)
∂u +

1
2u

(
eφ
(

1 + ψ2
)
− e−φ

)
∂φ +

1
u

ψe−φ∂ψ,

K2 = −1
2

(
eφ
(

1− ψ2
)
− e−φ

)
∂u +

1
2u

(
eφ
(

1− ψ2
)
+ e−φ

)
∂φ −

1
u

ψe−φ∂ψ,

K3 = −ψeθ∂u +
1
u

ψeφ∂φ +
1
u

e−φ∂ψ,

with corresponding gradient functions S(1−3) given by

S(1) =
1
2

u
(

eφ
(

1 + ψ2
)
+ e−φ

)
,

S(2) =
1
2

u
(

eφ
(

1− ψ2
)
− e−φ

)
,

S(3) = uψeθ ,

the three non-gradient KVs (rotations) which span the SO (3) algebra

X12 = ∂ψ , X23 = ∂φ + ψ∂ψ, X13 = ψ∂φ +
1
2

(
ψ2 − e2φ

)
∂φ

and the gradient proper HV
HV = u∂u , ψHV = 1.

The classification of the Noether symmetries for the various potentials V (φ, ψ) is as follows [122]:

• For arbitrary potential V (φ, ψ), the field equations admit the Noether point symmetry ∂t which
provides the constraint equation of General Relativity.

• For V (φ, ψ) = 0, the dynamical system is maximally symmetric and admits in total twelve
Noether point symmetries.

• For V (φ, ψ) = V (φ), there exists the additional Noether point symmetry, the vector field X12,
with conservation law the angular momentum on the two-dimensional sphere, that is,

Φ12 = e2φψ̇.
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• For VA (φ, ψ) =
ω2

0
2 u2 + µ2

2(1−a2
0)

(
S(µ) + a0S(ν)

)2
− ω2

3
2 S2

(σ) , a0 6= 1, the system admits six

additional Noether point symmetries given by the vector fields

T1 (t)K1 , T2 (t)K2 , T3 (t)K3,

where
TA

,tt = ω
γ
δTδ , ω

γ
δ = diag

(
(ω1)

2 , (ω2)
2 , (ω3)

3
)

and µ, ν, σ = 1, 2, 3. The corresponding Noether integrals are expressed as follows:

Iγ
C = Tγ

d
dt

S(γ) − Tγ,tS(γ). (162)

However, when two constants ωA are equal, for instance, ωµ = ων, then the dynamical system
admits an extra Noether symmetry. That is, it admits the rotation normal to the plane defined by
the axes xµ, xν given by the vector

X = xν∂µ − εxµ∂ν,

where ε = −1 if xν/xµ = x and ε = 1 if xν/xµ 6= 1.

• For the potential being VB (φ, ψ) =
ω2

0
2 u2 + µ2

2(1−a2
0)

(
S(µ) + a0S(ν)

)2
− ω2

3
2 S2

(σ) , a0 6= 1,

the dynamical system admits the extra Noether symmetries

T̄ (t) (Kµ + a0Kν) , T′ (t)Kσ , T∗ (t) (a0Kµ + Kν) ,

where the functions T, T′ and T̄ are given by the linear second-order differential equations

T̄,tt =
(

µ2 + ω2
0

)
T̄ , Tσ,tt =

(
ω2

3 + ω2
0

)
Tσ , T∗,tt = ω2

0 T̄, (163)

and µ, ν, σ = 1, 2, 3. Finally, the corresponding Noether integrals are as follows:

Φ1a2 = T̄
d
dt

(
S(µ) + a0S(ν)

)
− T̄,t

(
S(µ) + a0S(ν)

)
, (164)

Φ3 = Tσ
d
dt

S(σ) − Tσ,tS(σ), (165)

Φa12 = T∗
d
dt

(
a0S(µ) + S(ν)

)
− T∗,t

(
a0S(µ) + S(ν)

)
. (166)

In both of the last cases, from the admitted algebras of Lie symmetries, it is easy to recognize
that the gravitational field equations can be linearized. Indeed, for the potential VA (φ, ψ) under the
coordinate transformation

x =
1
2

u
(

eφ
(

1 + ψ2
)
+ e−φ

)
, (167)

y =
1
2

u
(

eφ
(

1− ψ2
)
− e−φ

)
, (168)

z = uψeφ, (169)

the field equations become

ẍ− (ω1)
2 x = 0, (170)

ÿ− (ω2)
2 y = 0, (171)

z̈− (ω3)
2 z = 0, (172)
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− 1
2

ẋ2 +
1
2

ẏ +
1
2

ż2 +
ω2

1
2

x2 −
ω2

2
2

y2 −
ω2

3
2

z2 = 0, (173)

which is the three-dimensional “unharmonic-oscillator”.
On the other hand, for the potential VB (φ, ψ), we perform the additional transformation

x = (w + v) , y =
1
a0

(w− v) , z = z, (174)

and the field equations are linearized as follows:

ẅ−
(

µ2 + ω2
0

)
w = 0, (175)

v̈ +
a2

0 + 1
a2

0 − 1
µ2w−ω2

0ν = 0, (176)

z̈−
(

ω2
3 + ω2

0

)
z = 0, (177)

0 =
1
2

[(
1
a2

0
− 1

)
ẇ2 −

(
1
a2

0
+ 1

)
dwdv +

(
1
a2

0
− 1

)
dv2 +

1
2

z2

]
+

− 2µ2(
a2

0 − 1
)w2 − 1

2

(
ω2

3 + ω2
0

)
z2 +

ω2
0

2

(
(w + v)2 − 1

a2
0
(w− v)2

)
. (178)

11.6. Galilean Cosmology

The cubic Galilean cosmological model in a spatially flat FRW spacetime with comoving observers
is defined by the Lagrangian [131]

L (a, ȧ, φ, φ̇) = 3 a ȧ2 − 1
2

a3φ̇2 + a3V(φ) + g(φ)a2 ȧ φ̇3 − g′(φ)
6

a3 φ̇4. (179)

From the symmetry condition, we should determine two functions, V (φ) and g (φ) . Indeed,
we find that, when [104]

V(φ) = V0e−λφ and g(φ) = g0eλφ, (180)

Lagrangian (179) admits the Noether point symmetries

X1 = ∂t , X2 = t∂t +
a
3

∂a +
2
λ

∂φ, (181)

which form the 2A1 Lie algebra.
The Noether point symmetry X1 provides as first integral the constraint equation, while X2 gives

the first integral

Φ2 = −
(

2 a2 ȧ− 2
λ

a3φ̇

)
+g0eλφa3φ̇3− 6

λ
g0a2eλφ ȧφ̇2. (182)

Furthermore, the same first integral exists in the limit in which V0 = 0. In addition, we remark
that when the universe is dominated by the potential of the scalar field, then g (φ)→ 0, and the model
reduces to that of a minimally coupled scalar field.

12. Higher-Order Symmetries in Cosmology

In the previous section, we presented classification of cosmological models based on point
symmetries. However, these are not the only cases where first integrals are used. Indeed, it is
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possible for one to extend the classification scheme by applying non-point symmetries, such as the
contact symmetries.

In particular, for Lagrangians of the form (93), it has been found that the vector field
X = Ki

j

(
t, qk

)
ẋi∂i is a contact symmetry for the Action Integral iff the following conditions are

satisfied [10]
K(ij;k) = 0, (183)

Kij,t = 0 , f,t = 0, (184)

KijVj + f,i = 0. (185)

Conditions (183)–(185) follow directly from the application of the weak Noether condition.
From the symmetry condition (184), it follows that Ki

j = Ki
j

(
qk
)

and f = f
(

qk
)

. Furthermore,
the second-theorem of Noether provides the first integral

I = Kij ẋi ẋj − f
(

xi
)

. (186)

Condition (183) means that the second rank tensor Ki
j

(
qk
)

is a Killing tensor of order 2 of

the metric gij. Condition (185) is a constraint relating the potential with the Killing tensor Kij and
the Noether function f . Application of contact symmetries in cosmological studies can be found
in [72,132–135]. In the following, we present the results for the classification of contact symmetries in
scalar-field cosmology and f (R)-gravity.

12.1. Scalar-Field Cosmology from Contact Symmetries

In the polar coordinates (117), the Lagrangian of the field equations in scalar field
cosmology become

L
(
r, θ, ṙ, θ̇

)
= −1

2
ṙ2 +

1
2

r2θ̇2 − r2V (θ) (187)

while the Killing tensors of rank two for a two-dimensional flat space in Cartesian coordinates {x, y} are

Kij =

(
c1y2 + 2c2y + c3 c6 − c1yx− c2x− c4y

c6 − c1yx− c2x− c4y c1x2 + 2c4x + c5

)
. (188)

Thus, condition (185) provides the following cases [132]:
Case A: For the hyperbolic Potential V (θ) = c1 + c2 cosh2 θ, the field equations admit the

contact symmetry

X1 = −
(

cosh2 θṙ +
1
2

r sinh (2θ) θ̇

)
∂r +

1
r

(
1
2

sinh (2θ) ṙ + r sinh θ θ̇

)
∂ṙ (189)

with corresponding Noether Integral

I1 =
(
cosh θṙ + r sinh θ θ̇

)2 − 2r2 (c1 + c2) cosh2 θ. (190)

In the special case where c2 = 3c1, the field equations admit the second contact symmetry

X̄ = −r2 sinh θ θ̇∂r +
(
sinh θṙ + 2r cosh θ θ̇

)
∂θ (191)

with corresponding Noether Integral

Ī1 =
(

r2 sinh θ ṙθ̇ + r3 cosh θ θ̇2
)
+ 2c1r3 cosh θ sinh2 θ. (192)
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Case B: For the potential V (θ) = c1

(
1 + 3 cosh2 θ

)
+ c2

(
3 cosh θ + cosh3 θ

)
, there exists the

contact symmetry

I2 =
(

r2 sinh θ ṙθ̇ + r3 cosh θ θ̇2
)
+ r3 sinh2 θ

(
2c1 cosh θ + c2

(
1 + cosh2 θ

))
(193)

with Noether Integral

I2 =
(

r2 sinh θ ṙθ̇ + r3 cosh θ θ̇2
)
+ r3 sinh2 θ

(
2c1 cosh θ + c2

(
1 + cosh2 θ

))
. (194)

Case C: For potential V (θ) = c1

(
1− 3 sinh2 θ

)
+ c2

(
3 sinh θ − sinh3 θ

)
, the admitted contact

symmetry is
X̄2 = −r2 cosh θ θ̇∂r +

(
cosh θ ṙ + 2r sinh θ θ̇

)
∂θ (195)

with corresponding Noether Integral

Ī2 =
[
cosh θ ṙ + r sinh θ θ̇

)
r2θ̇ − r3 cosh2 θ

(
2c1 sinh θ − c2

(
1− sinh2 θ

)]
. (196)

This potential is equivalent to case B under the transformation θ = θ̄ + i π
2 .

Case D: For V (θ) = c1 + c2e2θ the admitted contact symmetry is

X3 = −e2θ
(
ṙ + rθ̇

)
∂r +

e2θ

r
(
ṙ + rθ̇

)
∂θ (197)

with corresponding Noether Integral

I3 = e2θ
((

ṙ + rθ̇
)2 − 2r2c1

)
. (198)

Moreover, when c1 = 0, the dynamical system admits the additional contact symmetry

X3 = −r2eθ θ̇∂r + eθ
(
ṙ + 2rθ̇

)
∂θ (199)

with corresponding Noether Integral

Ī3 = r2eθ
(

ṙθ̇ + rθ̇2
)
+

2
3

c2r3e3θ . (200)

Case E: Finally, for the potential

V (θ) = c1e2θ + c2e3θ , (201)

the field equations admit the first integral

I3 = r2eθ
(

ṙθ̇ + rθ̇2
)
+ r3e3θ

(
2
3

c1 + c2eθ

)
(202)

generated by the contact symmetry (199). It is important to note that in all cases the results remain the
same under the transformation θ → −θ.

12.2. f (R)-Gravity from Contact Symmetries

Without loss of generality, we define φ = f ′ (R), where now f (R)-gravity can be written in its
equivalent form as a Brans–Dicke scalar field cosmological model. Specifically, the Lagrangian of the
field equations is written equivalently as

L (a, ȧ, φ, φ) = 6aφȧ2 + 6a2 ȧφ̇ + a3V (φ) , (203)
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where
V (φ) =

(
f ′R− f

)
or V

(
f ′ (R)

)
=
(

f ′R− f
)

. (204)

The classification in terms of the contact symmetries provides the following five cases for the
potential V (φ) and the corresponding first integrals.

Case A: For VI (φ) = V1φ + V2φ3, the field equations admit the quadratic first integral

II = 3 (φȧ + aφ̇)
2 −V1 a2φ2. (205)

Case B: For VI I (φ) = V1φ−V2φ−7, the field equations admit the quadratic first integral

II I = 3a4 (φȧ− aφ̇)
2
+ 4V2a6φ−6, (206)

Case C: For VI I I (φ) = V1 −V2φ−
1
2 , the field equations admit the quadratic first integral

II I I = 6a3 ȧ (aφ̇− φȧ)− a5
(

3
5

V1 −V2φ−
1
2

)
. (207)

Case D: For VIV (φ) = V1φ3 + V2φ4, the field equations admit the quadratic first integral

IIV = 12a2
(

a2φ̇2 − φ2 ȧ2
)
+ (aφ)4 (3V1 + 4V2φ) . (208)

Case E: For VV (φ) = V1
(
φ3 + βφ

)
+V2

(
φ4 + 6βφ2 + β2) , the field equations admit the quadratic

first integral

IV = 12a2
[(

β− φ2
)

ȧ2 + a2φ̇2
]
+

− a4
(

β− φ2
) [

V1

(
β + 3φ2

)
+ 4V2

(
3βφ + φ3

)]
. (209)

However, in order to derive the function f (R) , one has to solve the Clairaut Equation (204).
For the above cases, Clairaut equation has a closed-form solution only for some particular forms of
V (φ). The analytic forms of f (R) functions that admit contact symmetries are presented in Table 6.

Table 6. Analytic forms of f (R) theory where the field equations admit contact symmetries.

Potential V (φ) Function f (R)

VI (φ) (R−V1)
3
2

VI I (φ) (R−V1)
7
8 ,

VI I I (φ) R
1
3 −V1

VIV (φ) , V1 = 0 R4

VIV (φ) , V2 = 0 R
3
2

VV (φ) , V1 = ±4V2
√

β ∓
√

βR + R
4
3

13. Conclusions

In this work, we discussed the dark energy problem using the classification of the cosmological
models which are based on the FRW background for comoving observers using the first integrals
provided by the Noether symmetries of the kinetic metric. We discussed the definitions for the Lie
and Noether symmetries (point and generalized) for conservative holonomic dynamical systems.
Moreover, we established the relation of Lie and Noether symmetries with the properties of the
underlying geometry for singular and regular dynamical systems. In particular, for regular dynamical
systems, we found that the generators of Noether symmetries are the elements of the homothetic



Symmetry 2018, 10, 233 37 of 42

algebra of the mini superspace metric, whereas, for the singular systems, the generators of Noether
symmetries are constructed by the CKVs of the mini superspace metric.

These geometric results have been used to develop a geometric scenario based on the admitted
Noether point symmetries of the mini superspace metric which leads to the classification scheme
of the dark energy models. We demonstrated the application of this scenario to the most well
known cosmological models including the modified theories of gravity and derived in many of
them analytical cosmological solutions. This scenario is not limited to the case of cosmological models
and can be applied to other areas of study of dynamical equations, especially in the case of general
holonomic systems.
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