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Abstract: Topological indices are numbers related to sub-atomic graphs to allow quantitative
structure-movement/property/danger connections. These topological indices correspond to some
specific physico-concoction properties such as breaking point, security, strain vitality of chemical
compounds. The idea of topological indices were set up in compound graph hypothesis in view
of vertex degrees. These indices are valuable in the investigation of mitigating exercises of specific
Nanotubes and compound systems. In this paper, we discuss Zagreb types of indices and Zagreb
polynomials for a few Nanotubes covered by cycles.

Keywords: first multiple Zagreb index; second multiple Zagreb index, hyper-Zagreb index; Zagreb
polynomials; Nanotubes

1. Introduction

Mathematical chemistry becomes an interesting branch of science in which we talk about and
foresee the concoction structure by utilizing numerical apparatuses and does not really allude to the
quantum mechanics. As a branch of numerical science where we apply devices of graph hypothesis,
chemical graph theory was introduced and extensively studied to show the compound wonder
scientifically. This is more imperative to state that the hydrogen particles are regularly overlooked in
any sub-atomic graph. Topological indices are really a numeric measures related to the constitution
synthetic material implying for relationship of concoction structure with numerous physio-substance
features, compound responsiveness or biological activity. Motivated by the wide applications of
topological indices, the topological indices of graphs are studied extensively [1–3].

A nano structure is a question of middle size among both molecular and microscopic structures.
Such a material is determined through designing at atomic scale, which is something that has
a physical measurement littler than one hundred nanometers, running from bunches of particles
to many dimensional layers. Carbon Nanotubes (CNTs) with allotropes of carbon whose shapes are
usually hollow and round possess some kinds of nanostructure.

For a graph G, the degree of a vertex w is the cardinality of edges incident to w and denoted
by dgr(s). A molecular graph is a basic limited graph in which vertices mean the atoms and edges
indicate the compound bonds in fundamental substance structures.

For a graph G, a topological index Tp(G) is a value which can be obtained by a computing method
from G. Moreover, if graphs G and F are isomorphic, then the result Tp(F) = Tp(G) holds. Wiener
[4] initially figured out an idea for a topological index in the early years, and at that time, he took a
shot at breaking point of paraffin. He defined this record to be the way number. Afterwards, such a
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concept was renamed the Wiener index. As we know, the Wiener record is the first posed index and it
is one of the most attractive indices, from not only a hypothetical perspective but applications, and
characterized as the total of separations among vertices in G, see for subtle elements [5].

The first Zagreb index, a very old topological index, was initiated in 1972 [6] and later many
variations of Zagreb index were proposed, e.g., Shirdel et al. [7] in 2013 described a novel index under
the name of “hyper-Zagreb index” and it was defined to be

HM(G) = ∑
sr∈E(G)

[
dgr(s) + dgr(r)

]2 (1)

in [8], two new versions of Zagreb indices were put forward, which are the first multiple Zagreb
index PM1(G) and the second multiple Zagreb index PM2(G). More precisely, they are formulated
as follows.

PM1(G) = ∏
sr∈E(G)

[dgr(s) + dgr(r)] (2)

PM2(G) = ∏
sr∈E(G)

[dgr(s)× dgr(r)] (3)

Some properties of the indices PM1(G), PM2(G) of specific chemical structures were investigated
in [9].

To investigate more interesting properties of PM1(G), PM2(G) of a graph G, the first Zagreb
Polynomial M1(G, x) and the second Zagreb Polynomial M2(G, x) are proposed [10,11] and put
forward as

M1(G, x) = ∑
sr∈E(G)

x[dgr(s)+dgr(r)] (4)

M2(G, x) = ∑
sr∈E(G)

x[dgr(s)×dgr(r)] (5)

2. Applications of Nanostructure and Topological Indices

In the past few decades, graph theory was widely applied as a tool to study physical and chemical
properties of materials. More and more people are interested in this field and as a result chemical graph
theory was introduces, and later various topological indices were studied and defined. Moreover,
as a combination of chemistry, mathematics and nano science, nanotechnology was also studied by
means of chemical graph theory. Among these, quantitative structure–activity relationship (QSAR)
and quantitative structure-property relationship (QSPR) are analyzed to predict the properties of
nanostructure and biological activities. To study QSAR and QSPR, hyper-Zagreb index, first multiple
Zagreb index, second multiple Zagreb index and Zagreb polynomials are applied to predict the
bioactivity of nanostructures [12–15].

The Zagreb index is defined to be a topological descriptor which is related to substantial synthetic
qualities of the atoms [16]. The particle bond network hyper Zagreb index gives a decent connection
to the security of direct dendrimers and also the stretched pharmacies and for processing the strain
vitality of cyclo alkanes [17–21]. To relate with some physico-concoction properties, multiple Zagreb
index bears much preferred prescient control over the prescient energy of the dendrimers [22–24].
The first and second Zagreb indices were revealed to be used to research the π-electron energy of
various microscopic particles [25–27].

3. H AC5C7[p, q] Nanotube

The HAC5C7[p, q] Nanotube can be studied as a C5C7 net and it consists of C5s and C7s with the
trivalent decorations. An example is presented in Figure 1, which can be decorated in a cylindrical
or toroidal manner. The 2-dimensional lattice of HAC5C7[p, q] were ever been discussed in [28], in
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which p and q are the cardinalites of heptagons in one row and periods in whole lattice, respectively.
As an example, such a Nanotube with three rows is presented in Figure 2.

Figure 1. HAC5C7[p, q] Nanotube with p = 4 and q = 2.

Figure 2. The mth period of HAC5C7[p, q] Nanotube.

3.1. Methodology of HAC5C7[p, q] Nanotube Formulas

In the Nanotube HAC5C7[p, q], (p, q ≥ 1), we have that V(HAC5C7[p, q]) = 8pq + p and
E(HAC5C7[p, q]) = 12pq − p. The cardinality of vertices of degree two and three are 2p + 2 and
8pq− p− 2, respectively. According to their sum the the degree over its neighbors of each vertex,
the edge set can be partitioned to six disjoint sets as follows.

E1
(

HAC5C7[p, q]
)
=

{
sr ∈ E

(
HAC5C7[p, q]

)
| dgr(s) = 6, dgr(r) = 7

}
E2

(
HAC5C7[p, q]

)
=

{
sr ∈ E

(
HAC5C7[p, q]

)
| dgr(s) = 6, dgr(r) = 8

}
E3

(
HAC5C7[p, q]

)
=

{
sr ∈ E

(
HAC5C7[p, q]

)
| dgr(s) = 7, dgr(r) = 9

}
E4

(
HAC5C7[p, q]

)
=

{
sr ∈ E

(
HAC5C7[p, q]

)
| dgr(s) = 8, dgr(r) = 8

}
E5

(
HAC5C7[p, q]

)
=

{
sr ∈ E

(
HAC5C7[p, q]

)
| dgr(s) = 8, dgr(r) = 9

}
E6

(
HAC5C7[p, q]

)
=

{
sr ∈ E

(
HAC5C7[p, q]

)
| dgr(s) = 9, dgr(r) = 9

}
The cardinality of edges in E1

(
HAC5C7[p, q]

)
, E2

(
HAC5C7[p, q]

)
and E5

(
HAC5C7[p, q]

)
are

2p. The cardinality of edges in E3
(

HAC5C7[p, q]
)

and E4
(

HAC5C7[p, q]
)

are p. The cardinality of
edges in E6

(
HAC5C7[p, q]

)
is 12pq− 9p. Such a partition is shown in Figure 1 in which red, green,

blue, yellow, brown and black edges are the edges belong to E1
(

HAC5C7[p, q]
)
, E2

(
HAC5C7[p, q]

)
,

E3
(

HAC5C7[p, q]
)
, E4

(
HAC5C7[p, q]

)
, E5

(
HAC5C7[p, q]

)
and E6

(
HAC5C7[p, q]

)
respectively.

3.2. Main Results for HAC5C7[p, q] Nanotube

In this section, we will obtain hyper-Zagreb index HM(G), first multiple Zagreb index
PM1(G), second multiple Zagreb index PM2(G), Zagreb polynomials M1(G, x), M2(G, x) for
HAC5C7[p, q], (p, q ≥ 1) Nanotube.
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• Hyper Zagreb index of H AC5C7[p, q] Nanotube

Let G be the HAC5C7[p, q] Nanotube. Then by Equations (1), we have

HM(G) = ∑
sr∈E(G)

[
dgr(s) + dgr(r)

]2

HM
(
G
)

= ∑
sr∈E1

[
dgr(s) + dgr(r)

]2
+ ∑

sr∈E2

[
dgr(s) + dgr(r)

]2
+ ∑

sr∈E3

[
dgr(s) + dgr(r)

]2

+ ∑
sr∈E4

[
dgr(s) + dgr(r)

]2
+ ∑

sr∈E5

[
dgr(s) + dgr(r)

]2
+ ∑

sr∈E6

[
dgr(s) + dgr(r)

]2

= 132|E1|+ 142|E2|+ 162|E3|+ 162|E4|+ 172|E5|+ 182|E6|

= 169(2p) + 196(2p) + 256p + 256p + 289(2p) + 324(12pq− 9p) = 3888pq− 1092p

• Multiple Zagreb indices of H AC5C7[p, q] Nanotube

Let G be the HAC5C7[p, q] Nanotube. Then by Equations (2) and (3), we have

PM1(G) = ∏
sr∈E(G)

[dgr(s) + dgr(r)]

PM1
(
G
)

= ∏
sr∈E1

[
dgr(s) + dgr(r)

]
× ∏

sr∈E2

[
dgr(s) + dgr(r)

]
× ∏

sr∈E3

[
dgr(s) + dgr(r)

]
× ∏

sr∈E4

[
dgr(s) + dgr(r)

]
× ∏

sr∈E5

[
dgr(s) + dgr(r)

]
× ∏

sr∈E6

[
dgr(s) + dgr(r)

]
= 13|E1| × 14|E2| × 16|E3| × 16|E4| × 17|E5| × 18|E6|

= 132p × 142p × 16p × 16p × 172p × 18(12pq−9p)

PM2(G) = ∏
sr∈E(G)

[dgr(s)× dgr(r)]

PM2
(
G
)

= ∏
sr∈E1

[
dgr(s)× dgr(r)

]
× ∏

sr∈E2

[
dgr(s)× dgr(r)

]
× ∏

sr∈E3

[
dgr(s)× dgr(r)

]
× ∏

sr∈E4

[
dgr(s)× dgr(r)

]
× ∏

sr∈E5

[
dgr(s)× dgr(r)

]
× ∏

sr∈E6

[
dgr(s)× dgr(r)

]
= 42|E1| × 48|E2| × 63|E3| × 64|E4| × 72|E5| × 81|E6|

= 422p × 482p × 63p × 64p × 722p × 81(12pq−9p)

• Zagreb Polynomials of H AC5C7[p, q] Nanotube

Let G be the HAC5C7[p, q] Nanotube. Then by Equations (4) and (5), we have

M1(G, x) = ∑
sr∈E(G)

x[dgr(s)+dgr(r)]

M1(G, x) = ∑
sr∈E1

x[dgr(s)+dgr(r)] + ∑
sr∈E2

x[dgr(s)+dgr(r)] + ∑
sr∈E3

x[dgr(s)+dgr(r)]

+ ∑
sr∈E4

x[dgr(s)+dgr(r)] + ∑
sr∈E5

x[dgr(s)+dgr(r)] + ∑
sr∈E6

x[dgr(s)+dgr(r)]

= ∑
sr∈E1

x13 + ∑
sr∈E2

x14 + ∑
sr∈E3

x16 + ∑
sr∈E4

x16 + ∑
sr∈E5

x17 + ∑
sr∈E6

x18

= |E1|x13 + |E2|x14 + |E3|x16 + |E4|x16 + |E5|x17 + |E6|x18

= 2px13 + 2px14 + px16 + px16 + 2px17 + (12pq− 9p)x18
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M2(G, x) = ∑
sr∈E(G)

x[dgr(s)×dgr(r)]

M2(G, x) = ∑
sr∈E1

x[dgr(s)×dgr(r)] + ∑
sr∈E2

x[dgr(s)×dgr(r)] + ∑
sr∈E3

x[dgr(s)×dgr(r)]

+ ∑
sr∈E4

x[dgr(s)×dgr(r)] + ∑
sr∈E5

x[dgr(s)×dgr(r)] + ∑
sr∈E6

x[dgr(s)×dgr(r)]

= ∑
sr∈E1

x42 + ∑
sr∈E2

x48 + ∑
sr∈E3

x63 + ∑
sr∈E4

x64 + ∑
sr∈E5

x72 + ∑
sr∈E6

x81

= |E1|x42 + |E2|x48 + |E3|x63 + |E4|x64 + |E5|x72 + |E6|x81

= 2px42 + 2px48 + px63 + px64 + 2px72 + (12pq− 9p)x81

4. H AC5C6C7[p, q] Nanotube

The HAC5C6C7[p, q] Nanotube is a C5C6C7 net and constructed by using C5s, C6s and C7s
alternately with the trivalent decorations as demonstrated in Figure 3. These tessellations of C5s, C6s
and C7s are usually decorated in a cylindrical or a torodial manner. The 2-dimensional lattice of
HAC5C6C7[p, q] is obtained by repeating pentagons for q rows and p columns. The construction of
this Nanotube can be found in [29]. As an example, a Nanotube with three rows is shown in Figure 4.

Figure 3. HAC5C6C7[p, q] Nanotube with p = 4 and q = 2.

Figure 4. The mth period of HAC5C6C7[p, q] Nanotube.

4.1. Methodology of Carbon Graphite HAC5C6C7[p, q] Formulas

For the Nanotube HAC5C6C7[p, q], (p, q ≥ 1) (see Figure 2), we have V(HAC5C6C7[p, q]) =

8pq + p and E(HAC5C6C7[p, q]) = 12pq− p, and its edge set can be partitioned as follows.
E1

(
HAC5C6C7[p, q]

)
=

{
sr ∈ E

(
HAC5C6C7[p, q]

)
| dgr(s) = 6, dgr(r) = 7

}
E2

(
HAC5C6C7[p, q]

)
=

{
sr ∈ E

(
HAC5C6C7[p, q]

)
| dgr(s) = 6, dgr(r) = 8

}
E3

(
HAC5C6C7[p, q]

)
=

{
sr ∈ E

(
HAC5C6C7[p, q]

)
| dgr(s) = 7, dgr(r) = 8

}
E4

(
HAC5C6C7[p, q]

)
=

{
sr ∈ E

(
HAC5C6C7[p, q]

)
| dgr(s) = 8, dgr(r) = 8

}
E5

(
HAC5C6C7[p, q]

)
=

{
sr ∈ E

(
HAC5C6C7[p, q]

)
| dgr(s) = 8, dgr(r) = 9

}
E6

(
HAC5C6C7[p, q]

)
=

{
sr ∈ E

(
HAC5C6C7[p, q]

)
| dgr(s) = 9, dgr(r) = 9

}
The cardinality of edges in E1

(
HAC5C6C7[p, q]

)
, E2

(
HAC5C6C7[p, q]

)
and E5

(
HAC5C6C7[p, q]

)
are 4p, the cardinality of edges in E3

(
HAC5C6C7[p, q]

)
and E4

(
HAC5C6C7[p, q]

)
are 2p while the
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cardinality of edges in E6
(

HAC5C6C7[p, q]
)

are 24pq− 18p. The representatives of these partitioned
edge set are demonstrated in Figure 3, in which the edge set with color green, red, brown, blue, yellow
and black are E1

(
HAC5C6C7[p, q]

)
, E2

(
HAC5C6C7[p, q]

)
, E3

(
HAC5C6C7[p, q]

)
, E4

(
HAC5C6C7[p, q]

)
,

E5
(

HAC5C6C7[p, q]
)

and E6
(

HAC5C6C7[p, q]
)

respectively.

4.2. Main Results for HAC5C6C7[p, q] Nanotube

In this section, we derive hyper-Zagreb index HM, first multiple Zagreb index PM1, second
multiple Zagreb index PM2 and Zagreb polynomials for HAC5C6C7[p, q] Nanotube.

• Hyper Zagreb index of H AC5C6C7[p, q] Nanotube

Let G be the HAC5C6C7[p, q] Nanotube. Then by Equation (1), we have

HM(G) = ∑
sr∈E(G)

[
dgr(s) + dgr(r)

]2

HM
(
G
)

= ∑
sr∈E1

[
dgr(s) + dgr(r)

]2
+ ∑

sr∈E2

[
dgr(s) + dgr(r)

]2
+ ∑

sr∈E3

[
dgr(s) + dgr(r)

]2

+ ∑
sr∈E4

[
dgr(s) + dgr(r)

]2
+ ∑

sr∈E5

[
dgr(s) + dgr(r)

]2
+ ∑

sr∈E6

[
dgr(s) + dgr(r)

]2

= 132|E1|+ 142|E2|+ 152|E3|+ 162|E4|+ 172|E5|+ 182|E6|
= 169(4p) + 196(4p) + 225(2p) + 256(2p) + 289(4p) + 324(24pq− 18p)

= 7776pq− 2254p

• Multiple Zagreb indices of H AC5C6C7[p, q] Nanotube

Let G be the HAC5C6C7[p, q] Nanotube. Then by Equations (2) and (3), we have

PM1(G) = ∏
sr∈E(G)

[dgr(s) + dgr(r)]

PM1
(
G
)

= ∏
sr∈E1

[
dgr(s) + dgr(r)

]
× ∏

sr∈E2

[
dgr(s) + dgr(r)

]
× ∏

sr∈E3

[
dgr(s) + dgr(r)

]
× ∏

sr∈E4

[
dgr(s) + dgr(r)

]
× ∏

sr∈E5

[
dgr(s) + dgr(r)

]
× ∏

sr∈E6

[
dgr(s) + dgr(r)

]
= 13|E1| × 14|E2| × 15|E3| × 16|E4| × 17|E5| × 18|E6|

= 134p × 144p × 152p × 162p × 174p × 18(24pq−18p)

PM2(G) = ∏
sr∈E(G)

[dgr(s)× dgr(r)]

PM2
(
G
)

= ∏
sr∈E1

[
dgr(s)× dgr(r)

]
× ∏

sr∈E2

[
dgr(s)× dgr(r)

]
× ∏

sr∈E3

[
dgr(s)× dgr(r)

]
× ∏

sr∈E4

[
dgr(s)× dgr(r)

]
× ∏

sr∈E5

[
dgr(s)× dgr(r)

]
+ ∏

sr∈E6

[
dgr(s)× dgr(r)

]
= 42|E1| × 48|E2| × 56|E3| × 64|E4| × 72|E5| × 81|E6|

= 424p × 484p × 562p × 642p × 724p × 81(24pq−18p)
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• Zagreb polynomials of H AC5C6C7[p, q] Nanotube

Let G be the graph of HAC5C6C7[p, q] Nanotube. Then by Equations (4) and (5), we have

M1(G, x) = ∑
sr∈E(G)

x[dgr(s)+dgr(r)]

M1(G, x) = ∑
sr∈E1

x[dgr(s)+dgr(r)] + ∑
sr∈E2

x[dgr(s)+dgr(r)] + ∑
sr∈E3

x[dgr(s)+dgr(r)]

+ ∑
sr∈E4

x[dgr(s)+dgr(r)] + ∑
sr∈E5

x[dgr(s)+dgr(r)] + ∑
sr∈E6

x[dgr(s)+dgr(r)]

= ∑
sr∈E1

x13 + ∑
sr∈E2

x14 + ∑
sr∈E3

x16 + ∑
sr∈E4

x16 + ∑
sr∈E5

x17 + ∑
sr∈E6

x18

= |E1|x13 + |E2|x14 + |E3|x15 + |E4|x16 + |E5|x17 + |E6|x18

= 4px13 + 4px14 + 2px15 + 2px16 + 4px17 + (24pq− 18p)x18

M2(G, x) = ∑
sr∈E(G)

x[dgr(s)×dgr(r)]

M2(G, x) = ∑
sr∈E1

x[dgr(s)×dgr(r)] + ∑
sr∈E2

x[dgr(s)×dgr(r)] + ∑
sr∈E3

x[dgr(s)×dgr(r)]

+ ∑
sr∈E4

x[dgr(s)×dgr(r)] + ∑
sr∈E5

x[dgr(s)×dgr(r)] + ∑
sr∈E6

x[dgr(s)×dgr(r)]

= ∑
sr∈E1

x42 + ∑
sr∈E2

x48 + ∑
sr∈E3

x56 + ∑
sr∈E4

x64 + ∑
sr∈E5

x72 + ∑
sr∈E6

x81

= |E1|x42 + |E2|x48 + |E3|x56 + |E4|x64 + |E5|x72 + |E6|x81

= 4px42 + 4px48 + 2px56 + 2px64 + 4px72 + (24pq− 18p)x81

5. TUC4C8[p, q] Nanotube and Nanotorus

We will use the notations and notions of Diudea and Graovac, and the 2D lattice of TUC4C8[p, q]
Nanotorus is denoted by KTUC[p, q] (see Figure 5) and the TUC4C8[p, q] Nanotube is denoted by
GTUC[p, q] (see Figure 6). A TUC4C8[p, q] Nanotube is constructed in such a way that the total
cardinality of octagons in each row equalsp p and the total cardinality of octagons in each column
equals q. An example is presented in Figure 6. In TUC4C8[p, q] Nanotube, the total cardinality of
octagons and squares are the same as those in each row, and in TUC4C8[p, q] Nanotorus the total
cardinality of octagons and squares are the same as those in each row and column. In 2D lattice of
TUC4C8[p, q] Nanotorus, the total cardinality of squares in rows and columns are (p + 1) and (q + 1),
respectively (cf. [30,31]).

The cardinalities of the vertex and edge set of KTUC[p, q] and GTUC[p, q] are presented in the
following Table 1.

Table 1. Order and size of Nanotorus KTUC[p, q] and Nanotube GTUC[p, q].

TUC4C8[p, q] KTUC[p, q] GTUC[p, q]

|V| (4p2 + 4p)(q + 1) 4pq + 4p
|E| 6pq + 5p + 5q + 4 6pq + 5p
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Figure 5. 2D-lattice of TUC4C8(R)[p, q] Nanotorus with p = 5 and q = 3.

5.1. Methodology of KTUC[p, q], (p, q ≥ 1) Nanotorus Formulas

For the Nanotorus KTUC[p, q], (p, q ≥ 1), we have that the number of vertices in KTUC[p, q] is
4p(p + 1)(q + 1) and the number of edges is 6pq + 5(p + q) + 4. The edge set can be partitioned into
the following six disjoint sets:

E1
(
KTUC[p, q]

)
=

{
sr ∈ E

(
KTUC[p, q]

)
| dgr(s) = 5, dgr(r) = 5

}
E2

(
KTUC[p, q]

)
=

{
sr ∈ E

(
KTUC[p, q]

)
| dgr(s) = 5, dgr(r) = 8

}
E3

(
KTUC[p, q]

)
=

{
sr ∈ E

(
KTUC[p, q]

)
| dgr(s) = 6, dgr(r) = 8

}
E4

(
KTUC[p, q]

)
=

{
sr ∈ E

(
KTUC[p, q]

)
| dgr(s) = 8, dgr(r) = 8

}
E5

(
KTUC[p, q]

)
=

{
sr ∈ E

(
KTUC[p, q]

)
| dgr(s) = 8, dgr(r) = 9

}
E6

(
KTUC[p, q]

)
=

{
sr ∈ E

(
KTUC[p, q]

)
| dgr(s) = 9, dgr(r) = 9

}
We can obtain that |E1

(
KTUC[p, q]

)
| = 4, |E2

(
KTUC[p, q]

)
| = 8, |E3

(
KTUC[p, q]

)
| = 4(p +

q− 2), |E4
(
KTUC[p, q]

)
| = 2(p + q + 2), |E5

(
KTUC[p, q]

)
| = 4(p + q− 2) and |E6

(
KTUC[p, q]

)
| =

6pq− 5p− 5q + 4, and the representatives of these partitioned edge set are demonstrated in Figure 5,
in which the edge set with color red, green, blue, yellow, brown and black are E1

(
KTUC[p, q]

)
,

E2
(
KTUC[p, q]

)
, E3

(
KTUC[p, q]

)
, E4

(
KTUC[p, q]

)
, E5

(
KTUC[p, q]

)
and E6

(
KTUC[p, q]

)
respectively.

5.2. Main Results for KTUC[p, q], (p, q ≥ 1) Nanotorus

• Hyper Zagreb index of KTUC[p, q], (p, q ≥ 1) Nanotorus

Let G = KTUC[p, q]. Now using Equation (1), we have

HM(G) = ∑
sr∈E(G)

[
dgr(s) + dgr(r)

]2

HM
(
K
)

= ∑
sr∈E1

[
dgr(s) + dgr(r)

]2
+ ∑

sr∈E2

[
dgr(s) + dgr(r)

]2
+ ∑

sr∈E3

[
dgr(s) + dgr(r)

]2

+ ∑
sr∈E4

[
dgr(s) + dgr(r)

]2
+ ∑

sr∈E5

[
dgr(s) + dgr(r)

]2
+ ∑

sr∈E6

[
dgr(s) + dgr(r)

]2

= 102|E1|+ 132|E2|+ 142|E3|+ 162|E4|+ 172|E5|+ 182|E6|
= 100(4) + 169(8) + 196(4p + 4q− 8) + 256(2p + 2q + 4)

+ 289(4p + 4q− 8) + 324(6pq− 5p− 5q + 4)

= 1944pq + 832(p + q) + 192
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• Multiple Zagreb indices of KTUC[p, q], (p, q ≥ 1) Nanotorus

Let G = KTUC[p, q]. Now using Equations (2) and (3) we have

PM1(G) = ∏
sr∈E(G)

[dgr(s) + dgr(r)]

PM1
(
K
)

= ∏
sr∈E1

[
dgr(s) + dgr(r)

]
× ∏

sr∈E2

[
dgr(s) + dgr(r)

]
× ∏

sr∈E3

[
dgr(s) + dgr(r)

]
× ∏

sr∈E4

[
dgr(s) + dgr(r)

]
× ∏

sr∈E5

[
dgr(s) + dgr(r)

]
× ∏

sr∈E6

[
dgr(s) + dgr(r)

]
= 10|E1 | × 13|E2 | × 14|E3 | × 16|E4 | × 17|E5 | × 18|E6 |

= 104 × 138 × 14(4p+4q−8) × 16(2p+2q+4) × 17(4p+4q−8) × 18(6pq−5p−5q+4)

PM2(G) = ∏
sr∈E(G)

[dgr(s)× dgr(r)]

PM2
(
K
)

= ∏
sr∈E1

[
dgr(s)× dgr(r)

]
× ∏

sr∈E2

[
dgr(s)× dgr(r)

]
× ∏

sr∈E3

[
dgr(s)× dgr(r)

]
× ∏

sr∈E4

[
dgr(s)× dgr(r)

]
× ∏

sr∈E5

[
dgr(s)× dgr(r)

]
× ∏

sr∈E6

[
dgr(s)× dgr(r)

]
= 25|E1 | × 40|E2 | × 48|E3 | × 64|E4 | × 72|E5 | × 81|E6 |

= 254 × 408 × 48(4p+4q−8) × 64(2p+2q+4) × 72(4p+4q−8) × 81(6pq−5p−5q+4)

• Zagreb polynomials of KTUC[p, q], (p, q ≥ 1) Nanotorus

Let G = KTUC[p, q]. Now using Equations (4) and (5) we have

M1(G, x) = ∑
sr∈E(G)

x[dgr(s)+dgr(r)]

M1(K, x) = ∑
sr∈E1

x[dgr(s)+dgr(r)] + ∑
sr∈E2

x[dgr(s)+dgr(r)] + ∑
sr∈E3

x[dgr(s)+dgr(r)]

+ ∑
sr∈E4

x[dgr(s)+dgr(r)] + ∑
sr∈E5

x[dgr(s)+dgr(r)] + ∑
sr∈E6

x[dgr(s)+dgr(r)]

M1(K, x) = ∑
sr∈E1

x10 + ∑
sr∈E2

x13 + ∑
sr∈E3

x14 + ∑
sr∈E4

x16 + ∑
sr∈E5

x17 + ∑
sr∈E6

x18

= |E1|x10 + |E2|x13 + |E3|x14 + |E4|x16 + |E5|x17 + |E6|x18

= 4x10 + 8x13 + (4p + 4q− 8)x14 + (2p + 2q + 4)x16

+ (4p + 4q− 8)x17 + (6pq− 5p− 5q + 4)x18

M2(G, x) = ∑
sr∈E(G)

x[dgr(s)×dgr(r)]

M2(K, x) = ∑
sr∈E1

x[dgr(s)×dgr(r)] + ∑
sr∈E2

x[dgr(s)×dgr(r)] + ∑
sr∈E3

x[dgr(s)×dgr(r)]

+ ∑
sr∈E4

x[dgr(s)×dgr(r)] + ∑
sr∈E5

x[dgr(s)×dgr(r)] + ∑
sr∈E6

x[dgr(s)×dgr(r)]

= ∑
sr∈E1

x25 + ∑
sr∈E2

x40 + ∑
sr∈E3

x48 + ∑
sr∈E4

x64 + ∑
sr∈E5

x72 + ∑
sr∈E6

x81

= |E1|x25 + |E2|x40 + |E3|x48 + |E4|x64 + |E5|x72 + |E6|x81

= 4x25 + 8x40 + (4p + 4q− 8)x48 + (2p + 2q + 4)x64

+ (4p + 4q− 8)x72 + (6pq− 5p− 5q + 4)x81
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5.3. Methodology and Results of GTUC[p, q], (p, q ≥ 1) Nanotube Formulas

For the Nanotube GTUC[p, q], (p, q ≥ 1), we know that the number of vertices in GTUC[p, q] are
4p(q + 1) and the number of edges are 6pq + 5p. The edge set can be partitioned into the following
four disjoint sets:

E1
(
GTUC[p, q]

)
=

{
sr ∈ E

(
GTUC[p, q]

)
| dgr(s) = 6, dgr(r) = 8

}
E2

(
GTUC[p, q]

)
=

{
sr ∈ E

(
GTUC[p, q]

)
| dgr(s) = 8, dgr(r) = 8

}
E3

(
GTUC[p, q]

)
=

{
sr ∈ E

(
GTUC[p, q]

)
| dgr(s) = 8, dgr(r) = 9

}
E4

(
GTUC[p, q]

)
=

{
sr ∈ E

(
GTUC[p, q]

)
| dgr(s) = 9, dgr(r) = 9

}
The cardinality of edges in E1

(
GTUC[p, q]

)
are 4p, in E2

(
GTUC[p, q]

)
are 2p, in E3

(
GTUC[p, q]

)
are 4p and in E4

(
GTUC[p, q]

)
are 6pq − 5p. The representatives of these edge set partitions are

shown in Figure 6 in which red, green, blue and black edges are the edges belong to E1
(
GTUC[p, q]

)
,

E2
(
GTUC[p, q]

)
, E3

(
GTUC[p, q]

)
and E4

(
GTUC[p, q]

)
respectively. Now using Equations (1)–(5),

we have

Figure 6. Nanotube TUC4C8(R)[p, q] Nanotube with p = 5 and q = 4.

• Hyper Zagreb index of GTUC[p, q], (p, q ≥ 1) Nanotube

Let G = GTUC[p, q]. Now using Equation (1), we have

HM(G) = ∑
sr∈E(G)

[
dgr(s) + dgr(r)

]2

HM
(
G
)

= ∑
sr∈E1

[
dgr(s) + dgr(r)

]2
+ ∑

sr∈E2

[
dgr(s) + dgr(r)

]2

+ ∑
sr∈E3

[
dgr(s) + dgr(r)

]2
+ ∑

sr∈E4

[
dgr(s) + dgr(r)

]2

= 142|E1|+ 162|E2|+ 172|E3|+ 182|E4|
= 196(4p) + 256(2p) + 289(4p) + 324(6pq− 5p)

= 1944pq + 832p
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• Multiple Zagreb indices of GTUC[p, q], (p, q ≥ 1) Nanotube

Let G = GTUC[p, q]. Now using Equations (2) and (3) we have

PM1(G) = ∏
sr∈E(G)

[dgr(s) + dgr(r)]

PM1
(
G
)

= ∏
sr∈E1

[
dgr(s) + dgr(r)

]
× ∏

sr∈E2

[
dgr(s) + dgr(r)

]
× ∏

sr∈E3

[
dgr(s) + dgr(r)

]
× ∏

sr∈E4

[
dgr(s) + dgr(r)

]
= 14|E1| × 16|E2| × 17|E3| × 18|E4|

= 14(4p) × 16(2p) × 17(4p) × 18(6pq−5p)

PM2(G) = ∏
sr∈E(G)

[dgr(s)× dgr(r)]

PM2
(
G
)

= ∏
sr∈E1

[
dgr(s)× dgr(r)

]
× ∏

sr∈E2

[
dgr(s)× dgr(r)

]
× ∏

sr∈E3

[
dgr(s)× dgr(r)

]
× ∏

sr∈E4

[
dgr(s)× dgr(r)

]
= 48|E1| × 64|E2| × 72|E3| × 81|E4|

= 48(4p) × 64(2p) × 72(4p) × 81(6pq−5p)

• Zagreb polynomials of GTUC[p, q], (p, q ≥ 1) Nanotube

Let G = GTUC[p, q]. Now using Equations (4) and (5) we have

M1(G, x) = ∑
sr∈E(G)

x[dgr(s)+dgr(r)]

M1(G, x) = ∑
sr∈E1

x[dgr(s)+dgr(r)] + ∑
sr∈E2

x[dgr(s)+dgr(r)]

+ ∑
sr∈E3

x[dgr(s)+dgr(r)] + ∑
sr∈E4

x[dgr(s)+dgr(r)]

= ∑
sr∈E1

x14 + ∑
sr∈E2

x16 + ∑
sr∈E3

x17 + ∑
sr∈E4

x18

M1(G, x) = |E1|x14 + |E2|x16 + |E3|x17 + |E4|x18

= (4p)x14 + (2p)x16 + (4p)x17 + (6pq− 5p)x18

M2(G, x) = ∑
sr∈E(G)

x[dgr(s)×dgr(r)]

M2(G, x) = ∑
sr∈E1

x[dgr(s)×dgr(r)] + ∑
sr∈E2

x[dgr(s)×dgr(r)]

+ ∑
sr∈E3

x[dgr(s)×dgr(r)] + ∑
sr∈E4

x[dgr(s)×dgr(r)]

= ∑
sr∈E1

x48 + ∑
sr∈E2

x64 + ∑
sr∈E3

x72 + ∑
sr∈E4

x81

= |E1|x48 + |E2|x64 + |E3|x72 + |E4|x81

= (4p)x48 + (2p)x64 + (4p)x72 + (6pq− 5p)x81



Symmetry 2018, 10, 244 12 of 16

6. Comparisons and Discussion

• Firstly, we have obtained some indices of HAC5C7[p, q] Nanotube for any p and q. Now from
Table 2, it can be seen that all indices are in increasing order as the values of p, q increase. Finally,
we depicted the the graphical representation of HAC5C7[p, q] Nanotube for hyper Zagreb index,
first and second multiple Zagreb index in Figure 7 and for first and second Zagreb polynomial in
Figure 8.

Table 2. Comparison of all indices for HAC5C7[p, q] Nanotube.

[p, q] HM(G) PM1(G) PM2(G)

[1, 1] 2796 2.11× 1011 3.4× 1015

[2, 2] 13, 368 3.31× 1025 4.5× 1028

[3, 3] 31, 716 4.21× 1055 6.61× 1062

[4, 4] 57, 840 6.57× 1095 8.72× 1098

(a) (b) (c)

Figure 7. (a) Hyper Zagreb index; (b) First multiple Zagreb index; (c) Second multiple Zagreb index.

(a) (b)

Figure 8. (a) First Zagreb polynomial; (b) Second multiple Zagreb polynomial.

• Secondly, we have worked out many indices of HAC5C6C7[p, q] Nanotube for each p and q.
Now from Table 3, we can easily see that all indices are in increasing order as the values of p, q
increase. Finally, we gave the the graphical representation of HAC5C6C7[p, q] Nanotube for hyper
Zagreb index, first and second multiple Zagreb index in Figure 9 and for first and second Zagreb
polynomial in Figure 10.
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Table 3. Comparison of all indices for HAC5C6C7[p, q] Nanotube.

[p, q] HM(G) PM1(G) PM2(G)

[1, 1] 5522 3.4× 1013 4.5× 1016

[2, 2] 26, 596 5.3× 1026 6.5× 1031

[3, 3] 63, 222 6.31× 1065 7.62× 1072

[4, 4] 115, 400 7.57× 1098 9.82× 1099

(a) (c)(b)

Figure 9. (a) Hyper Zagreb index; (b) First multiple Zagreb index; (c) Second multiple Zagreb index.

(a) (b)

Figure 10. (a) First Zagreb polynomial; (b) Second multiple Zagreb polynomial.

• Now, we have worked out various indices of KTUC[p, q], (p, q ≥ 1) Nanotorus with different p
and q. Now from Table 4, we have that each index increases with the values of p, q increasing.
Finally, we depicted the the graphical representation of KTUC[p, q], (p, q ≥ 1) Nanotorus for
hyper Zagreb index, first and second multiple Zagreb index in Figure 11 and for first and second
Zagreb polynomial in Figure 12.

Table 4. Comparison of all indices for KTUC[p, q], (p, q ≥ 1) Nanotorus.

[p, q] HM(G) PM1(G) PM2(G)

[1, 1] 2996 3.2× 1012 4.5× 1018

[2, 2] 11, 296 4.6× 1027 5.7× 1030

[3, 3] 22, 680 6.8× 1058 6.21× 1061

[4, 4] 37, 952 8.7× 1096 7.8× 1097
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(a)
(c)(b)

Figure 11. (a) Hyper Zagreb index; (b) First multiple Zagreb index; (c) Second multiple Zagreb index.

(a)
(b)

Figure 12. (a) First Zagreb polynomial; (b) Second multiple Zagreb polynomial.

• At the end of this section, we have computed substantial indices of GTUC[p, q], (p, q ≥ 1)
Nanotube for different values of p, q. Now from Table 5, it can be seen that all indices are in
increasing order as the values of p, q increase. We also provided the the graphical representation
of GTUC[p, q], (p, q ≥ 1) Nanotube for hyper Zagreb index, first and second multiple Zagreb
index in Figure 13 and for first and second Zagreb polynomial in Figure 14.

Table 5. Comparison of all indices for GTUC[p, q], (p, q ≥ 1) Nanotube.

[p, q] HM(G) PM1(G) PM2(G)

[1, 1] 2776 1.2× 1014 2.3× 1015

[2, 2] 9440 3.6× 1021 4.5× 1025

[3, 3] 19, 992 5.8× 1053 5.23× 1051

[4, 4] 34, 432 7.7× 1095 6.7× 1096

(a)
(c)(b)

Figure 13. (a) Hyper Zagreb index; (b) First multiple Zagreb index; (c) Second multiple Zagreb index.
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(a)
(b)

Figure 14. (a) First Zagreb polynomial; (b) Second multiple Zagreb polynomial.

7. Conclusions

In this paper, we computed various topological indices of Nanotubes. More precisely,
we determined second multiple Zagreb index PM2(G), hyper-Zagreb index HM(G), first multiple
Zagreb index PM1(G), and Zagreb polynomials M1(G, x), M2(G, x) for certain Nanotubes.
We conclude that the the Zagreb indices are in increasing order as the values of p, q increase. In addition,
the hyper Zagreb index gives a decent connection to the security of nonstructural objects and the
stretched pharmacies, and for processing the strain vitality of Nanotubes. The first and second Zagreb
polynomials are helpful to find the features of π-electron energy of the microscopic particles in the
inner part of Nanostructural objects.
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