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Abstract: Making predictions according to historical values has long been regarded as common
practice by many researchers. However, forecasting solely based on historical values could lead
to inevitable over-complexity and uncertainty due to the uncertainties inside, and the random
influence outside, of the data. Consequently, finding the inherent rules and patterns of a time
series by eliminating disturbances without losing important details has long been a research hotspot.
In this paper, we propose a novel forecasting model based on multi-valued neutrosophic sets to
find fluctuation rules and patterns of a time series. The contributions of the proposed model are:
(1) using a multi-valued neutrosophic set (MVNS) to describe the fluctuation patterns of a time
series, the model could represent the fluctuation trend of up, equal, and down with degrees of truth,
indeterminacy, and falsity which significantly preserve details of the historical values; (2) measuring
the similarities of different fluctuation patterns by the Hamming distance could avoid the confusion
caused by incomplete information from limited samples; and (3) introducing another related time
series as a secondary factor to avoid warp and deviation in inferring inherent rules of historical values,
which could lead to more comprehensive rules for further forecasting. To evaluate the performance
of the model, we explored the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX)
as the major factor we forecast, and the Dow Jones Index as the secondary factor to facilitate the
predicting of the TAIEX. To show the universality of the model, we applied the proposed model to
forecast the Shanghai Stock Exchange Composite Index (SHSECI) as well.

Keywords: fuzzy time series; forecasting; two-factor fuzzy logical relationship; multi-valued
neutrosophic set; Hamming distance

1. Introduction

Financial forecasting problems are one of the most complex problems in the modern economic
environment. It is well known that there is a statistical long-range dependency between the current
values and historical values in different times of certain time series [1]. With this understanding,
as well as the development of statistics and probability, former researchers designed exponential
smoothing (ES), autoregressive and moving average (ARMA), autoregressive integrated moving
average (ARIMA), and seasonal ARIMA to forecast time series [2,3]. However, because the historical
values contain considerable amounts of noise and randomness, a model solely based on real historical
values could not fully convey the inherent rules.

To find the general rules of time series, Song and Chissom [4] introduced fuzzy set theory into
time series and proposed the concepts of fuzzy time series (FTS). They used historical data and
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max-min composition operations to establish a fuzzy time series model to predict the enrollment at
the University of Alabama [5]. To conceive a more general and representative method of prediction,
a vast number of fuzzy time series models combined with autoregressive (AR) models and moving
average (MA) models [6,7] based on fuzzy lagged variables of time series were proposed which
helped the refinement of prediction with large degree. Those models can successfully convey the
general rules of the time series; however, the composition operation is complicated and sometimes the
designed algorithms could not fully represent the inherent problems. Later, Chen [8] improved the
model by using simplified arithmetic operations. After that, the model is extended to a high-order
FTS model to reflect more details of history to improve the prediction performance of university
enrollment [9]. On this basis, more researchers proposed novel models by combining high-order FTS
with other algorithms to improve the performance. For example, Chen and Chung [10] combined
genetic algorithms with fuzzy time series. Aladag et al. [11] and Chen [12] presented a high-order
fuzzy time series forecasting model based on adaptive expectations and artificial neural networks, etc.
Zhang et al. [13,14] proposed a visibility graph prediction model with the revision of fuzzy logic to
improve the precision of the forecasting result. These models always need other facilitating methods
to help with the improvement in accuracy.

In fact, the fluctuations of different stock markets have a certain correlation. Therefore, some
researchers began to introduce other time series into their forecasting model to improve their
forecasting performance. For example, Chen and Hwang [15] presented a two-factor fuzzy time
series forecasting model. Later, Lee et al. [16] and Guan et al. [17] presented a two-factor high-order
fuzzy time series model. Wang and Chen [18] presented a comprehensive method based on automatic
clustering techniques and two-factor high-order fuzzy time series. Singh et al. [19] proposed a model
based on two-factor high-order fuzzy time series and artificial neural networks, etc. Obviously, the
consideration of other time series improved the performance of the traditional forecasting model.
However, more datasets involved more complex and inconsistent information to be described. Thus,
some new theories are needed to express the information in this context.

With the increasing need to depict imprecise and inconsistent information, intuitionistic fuzzy
set (IFS) [6] theory is among the effective extensions of fuzzy set theory to deal with the vagueness
and randomness within the data. To solve the decision-making problems even more effectively and
successfully, Smarandache [20] proposed neutrosophic sets (NSs) from the philosophical thinking
which consisted of three degrees of truth, indeterminacy, and falsity. Up to this point, the various
extensions of NSs have been studied by many researchers to solve multi-criteria decision-making
(MCDM) problems [21–38]. For example, Wang et al. [21,22] and Garg [32] defined single-valued
neutrosophic sets (SVNSs) and interval neutrosophic sets (INSs) which are characterized by three
real numbers and intervals, respectively. Ye [23] proposed the similarity measures between INSs
which are used between each alternative and the ideal alternative to rank the alternatives. Garg [33]
also proposed a linguistic single-valued neutrosophic set (LSVNS) to present a decision-making
approach. Researchers also found SVNS theory could incorporate with measure theory and be adopted
in many real-life situations with great randomness and uncertainty, such as pattern recognition
and medical diagnosis by entropy measures [29], similarity measures [34–36] and biparametric
distance measures [37]. However, due to the ambiguity and intricacy of some real-life situations,
the truth-membership degree, indeterminacy-membership degree, and falsity membership degree
may be represented by several possible values. These above extensions cannot properly solve the
problems. Under these circumstances, Wang [25] introduced multi-valued neutrosophic sets (MVNSs)
to express the information and improve the operations and comparison methods of MVNSs. MVNSs
are characterized by truth-membership, indeterminacy-membership, and false-membership functions
that have a set of crisp values in the range [0, 1]. In recent years, MVNSs have been applied to complex
practical problems. For example, Ji [28] applied MVNSs to describe information on personnel selection.
Furthermore, some scholars have applied SVNSs to the financial field to solve the problem of stock
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market prediction [38]. With the consideration of the complexity and uncertainty in the financial field,
in this paper, we explore the utility of MVNSs in our proposed method.

In this paper, we propose a novel forecasting model based on MVNSs and two-factor third-order
fuzzy logical relationships to forecast the stock market. The major contributions are: (1) using a
MVNS to describe the fluctuation pattern of time series, the model could represent the fluctuation
of up, equal, and down with degrees of truth, indeterminacy, and falsity introduced by the MVNS,
which significantly preserved details of the historical values; (2) measuring the similarities of different
fluctuation patterns of different time series by the Hamming distance could avoid the confusion caused
by incomplete information from samples; and (3) due to the existence of likeness among similar types
of historical values, in this model, we introduce another related time series as a secondary factor to
avoid warp and deviation in inferring inherent rules of historical values, which could lead to more
comprehensive rules for further forecasting. To illustrate the steps, first, we convert the historical
training data of the main factor and the secondary factor, respectively, from the original time series to
fluctuation time series by comparing with each data and that of the previous day. Then, we fuzzify the
historical training data to form two-factor third-order fuzzy logical relationships based on MVNSs.
Next, MVNSs, which represent the two-factor fuzzy logical relationships, can show the possibility of
three trends. Finally, the Hamming distance measurement is used to find the most suitable logical rules
to predict its future through the previously obtained multi-valued neutrosophic logical relationship
and historical data.

The remainder of this paper is organized as follows: in the next section, we review and define
some concepts of fuzzy-fluctuation time series and MVNSs. In the third section, a novel approach
for forecasting is described based on MVNS theory and hamming distance. In the fourth section, the
experimental results of the proposed method are compared with the existing methods and we also
use the proposed model to forecast the Taiwan Stock Exchange Capitalization Weighted Stock Index
(TAIEX) from 1998 to 2006 and the Shanghai Stock Exchange Composite Index (SHSECI) from 2004 to
2015. The conclusions are discussed in Section 5.

2. Preliminaries

In this part, the general definitions of a fuzzy fluctuation time series in the model based on MVNSs
are outlined.

Definition 1. Let L =
{

l1, l2, . . . , lg
}

be a linguistic set in the universe of discourse U; it can be
defined by its membership function, µL : U → [0,1], where µL(ui) denotes the grade of membership of ui,
U = {u1, u2, . . . ui . . . , ul}.

The fluctuation trends of a stock market can be expressed by a linguistic set L = {l1, l2, l3, l4, l5} =
{down, slightly down, equal, slightly up, up}. The element li and its subscript i is strictly monotonically
increasing [28], so the function can be defined as follows: f : li = f (i).

Definition 2. Let F(t)(t = 1, 2, . . . T) be a time series of real numbers, where T is the number of the time
series. G(t) is defined as a fluctuation time series, where G(t) = F(t)− F(t− 1). Each element of G(t) can be
represented by a fuzzy set S(t)(t = 2, 3, . . . T) as defined in Definition 1. Then we call time series G(t) to be
fuzzified into a fuzzy-fluctuation time series (FFTS) S(t).

Definition 3. Let S(t) (t = n + 1, n + 2, . . . , T, n ≥ 1) be a FFTS. If S(t) is determined by
S(t− 1), S(t− 2), . . . S(t− n), then the fuzzy-fluctuation logical relationship is represented by:

S(t− 1), S(t− 2), . . . , S(t− n)→ S(t). (1)

In the same way, let S(t) (t = n + 1, n + 2, . . . , T, n ≥ 1) be a two-factor FFTS. If the next status of S(t) is
caused by the current status of S1(t) and S2(t), the two-factor nth-order fuzzy-fluctuation is represented by:
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S1(t− 1), S1(t− 2), . . . S1(t− n), S2(t− 1), S2(t− 2), . . . , S2(t− n)→ S(t) (2)

and it is called the two-factor nth-order fuzzy-fluctuation logical relationship (FFLR) of the fuzzy-fluctuation
time series, where Si(t− n), . . . , Si(t− 2), Si(t− 1)(i = 1, 2) is called the left-hand side (LHS) and S(t) is
called the right-hand side (RHS) of the FFLR, and Si(k) ∈ L(k = t, t− 1, t− 2, . . . t− n).

Definition 4. Let X be a space of objects with a generic element in X denoted by x. A neutrosophic set A in X
is characterized by a truth-membership function TA(x), an indeterminacy-membership function IA(x), and a
falsity-membership function FA(x). If a neutrosophic set A consists of TA(x), IA(x), FA(x), they can be defined
by their membership function, while TA(x), IA(x), FA(x) are subsets of [0, 1], and A can be represented by [18]:

A = {〈TA(x), IA(x), FA(x)〉|x ∈ X} . (3)

Definition 5. Let Nk
A(t)(k = 1, 2, 3) be the truth-membership, indeterminacy-membership and

falsity-membership of a neutrosophic set A(t), respectively. The LHS of an nth-order FFLR
S(t− n), . . . , S(t− 2), S(t− 1) can be generated by:

Nk
A(t) =

∑i=1...5,j=1...n
(
wi,j ∗ ci,k

)
n

i = 1, 2, 3, 4, 5; j = 1, 2, . . . n; k = 1, 2, 3, (4)

where wi,j = 1 if S(t − j) = i and 0, otherwise, ci,k represents the corresponding relationship between
element li(li ∈ L) and the kth membership of a neutrosophic set A(t). Thus, the LHS of a nth-order FFLR
S(t− n), . . . , S(t− 2), S(t− 1) can be converted into a neutrosophic set

(
N1

A(t), N2
A(t), N3

A(t)

)
.

Definition 6. For S(t) (t = n + 1, n + 2, . . . , T, n ≥ 1) be a FFTS and A(t) be the LHS of a multi-valued
neutrosophic logical relationship (MNLR), the FFLRs with the corresponding A(t) can be grouped into a
fuzzy-fluctuation logical relationship group (FFLRG) by putting all their RHSs together as on the RHS of the
FFLRG. Then, count the RHSs according to their linguistic values. The RHS of the FFLRG can also be converted
into a neutrosophic set according to Definition 5.

For example, there is a FFLR S(3), S(2), . . . , S(1)→ S(4) , the corresponding FFLRG
are (5, 1, 1)→ 3, (5, 1, 1)→ 1 , and the corresponding relationship between a linguistic set
li(li ∈ L, i = 1, 2, . . . 5) and a neutrosophic set are (1,0,0), (0.5,0.5,0), (0,1,0), (0,0.5,0.5), (0,0,1),
respectively. Then the FFLRG can be converted to a MNLR (0.33, 0, 0.67)→ (0, 0.5, 0.5) .

Definition 7. Let A = 〈TA, IA, FA〉, B = 〈TB, IB, FB〉 be, respectively, MVNS, so the Hamming distance
between A and B can be defined by [19]:

d(A, B) =
1
2

 1

T̃A
∑

T̃a
A∈T̃A

min
T̃b

B∈T̃B

∣∣∣T̃a
A − T̃b

B

∣∣∣+ 1

T̃B
∑

T̃b
B∈T̃B

min
T̃a

A∈T̃A

∣∣∣T̃b
B − T̃a

A

∣∣∣ + 1

T̃A
∑

T̃a
A∈T̃A

min
T̃b

B∈T̃B

∣∣∣T̃a
A − T̃b

B

∣∣∣
+

1

T̃B
∑

T̃b
B∈T̃B

min
T̃a

A∈T̃A

∣∣∣T̃b
B − T̃a

A

∣∣∣+ 1

F̃A
∑

F̃a
A∈F̃A

min
F̃b

B∈F̃B

∣∣∣F̃a
A − F̃b

B

∣∣∣+ 1

F̃B
∑

F̃b
B∈F̃B

min
F̃a

A∈F̃A

∣∣∣F̃b
B − F̃a

A

∣∣∣
.

(6)

In this way, let A = {(0.5,0.6), (0.4,0.4), (0.2,0.2)} and B = {(0.5,0.5), (0.5,0.5), (0.1,0.3)} be two MVNSs.
Then the following can be true:

d(A, B) =
1
2

[
1
2
(0 + 0.1) +

1
2
(0.1 + 0.1) +

1
2
(0.1 + 0.1) +

1
2
(0 + 0) +

1
2
(0 + 0) +

1
2
(0.1 + 0.1)

]
= 0.225.



Symmetry 2018, 10, 245 5 of 18

Definition 8. Let A = 〈TA, IA, FA〉 be, respectively, MVNSs, so the expected value of A can be defined by [19]:

E(A) =
1

lT̃A
× l ĨA

× lF̃A

∑
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1

TÃ
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TB
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|TA
ã − TB

b̃|TA
ã∈TÃ

+
1

TB̃
∑ min

TA
ã∈TÃ

|TB
b̃ − TA

ã|
TB

b̃∈TB̃
+

1

TÃ
∑ min

TB
b̃∈TB̃

|TA
ã −TA

ã∈TÃ

TB
b̃| +

1

TB̃
∑ min

TA
ã∈TÃ

|TB
b̃ − TA

ã| +
1

FÃ
∑ min

FB
b̃∈FB̃

|FA
ã − FB

b̃|FA
ã∈FÃ

+
1

FB̃
∑ min

FA
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|FB
b̃ − FA

ã |
FB
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]

TB
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TB
b̃| +

1

TB̃
∑ min

TA
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ã |
FB

b̃∈FB̃
]

TB
b̃∈TB̃

. 

(6) 

In this way, let A = {(0.5,0.6), (0.4,0.4), (0.2,0.2)} and B = {(0.5,0.5), (0.5,0.5), (0.1,0.3)} be two 

MVNSs. Then the following can be true: 

d(A, B) =
1

2
[
1

2
(0 + 0.1) +

1

2
(0.1 + 0.1) +

1

2
(0.1 + 0.1) +

1

2
(0 + 0) +

1

2
(0 + 0)

+
1

2
(0.1 + 0.1)] = 0.225. 

 

Definition 8. Let 𝐴 = 〈𝑇A, 𝐼A, 𝐹A〉 be, respectively, MVNSs, so the expected value of A can be defined by [19]: 

𝐸(𝐴) =
1

𝑙TÃ
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, 𝑙IÃ
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ã∈TÃ
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× 𝑙IÃ
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3. A Novel Forecasting Model Based on Multi-Valued Neutrosophic Logical Relationships 

+ 1− ηj + 1−

Symmetry 2018, 10, x FOR PEER REVIEW  4 of 18 

and it is called the two-factor nth-order fuzzy-fluctuation logical relationship (FFLR) of the fuzzy-

fluctuation time series, where 𝑆i(𝑡 − 𝑛), . . . , 𝑆i(𝑡 − 2), 𝑆i(𝑡 − 1)(𝑖 = 1,2) is called the left-hand side 

(LHS) and 𝑆(𝑡)  is called the right-hand side (RHS) of the FFLR, and 𝑆i(𝑘) ∈ 𝐿(𝑘 = 𝑡, 𝑡 − 1, 𝑡 −

2, . . . 𝑡 − 𝑛). 

Definition 4. Let X be a space of objects with a generic element in X denoted by x. A neutrosophic set A in X 

is characterized by a truth-membership function 𝑇A(𝑥), an indeterminacy-membership function 𝐼A(𝑥), and a 

falsity-membership function 𝐹A(𝑥). If a neutrosophic set A consists of 𝑇A(𝑥), 𝐼A(𝑥), 𝐹A(𝑥), they can be defined 

by their membership function, while 𝑇A(𝑥), 𝐼A(𝑥), 𝐹A(𝑥) are subsets of [0, 1], and A can be represented by 

[18]: 

𝐴 = {〈𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉|𝑥 ∈ 𝑋}.
 

(3) 

Definition 5. Let 𝑁𝐴(𝑡)
𝑘 (𝑘 = 1,2,3)  be the truth-membership, indeterminacy-membership and falsity-

membership of a neutrosophic set A(t), respectively. The LHS of an nth-order FFLR 𝑆(𝑡 − 𝑛), . . . , 𝑆(𝑡 −

2), 𝑆(𝑡 − 1) can be generated by: 

𝑁𝐴(𝑡)
𝑘 =

∑ (𝑤𝑖,𝑗 ∗ 𝑐𝑖,𝑘)𝑖=1..5,𝑗=1..𝑛

𝑛
 𝑖 = 1,2,3,4,5; 𝑗 = 1,2, … 𝑛; 𝑘 = 1,2,3, (4) 

where 𝑤i,j = 1 if S(t − j) = i and 0, otherwise, ,i kc  represents the corresponding relationship between 

element  𝑙i(𝑙i ∈ 𝐿) and the kth membership of a neutrosophic set A(t). Thus, the LHS of a nth-order 

FFLR 𝑆(𝑡 − 𝑛), . . . , 𝑆(𝑡 − 2), 𝑆(𝑡 − 1) can be converted into a neutrosophic set (𝑁𝐴(𝑡)
1 , 𝑁𝐴(𝑡)

2 , 𝑁𝐴(𝑡)
3 ). 

Definition 6. For S(t) (t = n + 1, n + 2, …, T, n ≥ 1) be a FFTS and A(t) be the LHS of a multi-valued 

neutrosophic logical relationship (MNLR), the FFLRs with the corresponding A(t) can be grouped into a fuzzy-

fluctuation logical relationship group (FFLRG) by putting all their RHSs together as on the RHS of the FFLRG. 

Then, count the RHSs according to their linguistic values. The RHS of the FFLRG can also be converted into 

a neutrosophic set according to Definition 5. 

For example, there is a FFLR 𝑆(3), 𝑆(2), . . . , 𝑆(1) → 𝑆(4), the corresponding FFLRG are (5,1,1) →

3, (5,1,1) → 1, and the corresponding relationship between a linguistic set  𝑙i(𝑙i ∈ 𝐿, 𝑖 = 1,2, … 5) and 

a neutrosophic set are (1,0,0), (0.5,0.5,0), (0,1,0), (0,0.5,0.5), (0,0,1), respectively. Then the FFLRG can 

be converted to a MNLR (0.33,0,0.67) → (0,0.5,0.5). 

Definition 7. Let 𝐴 = 〈𝑇A, 𝐼A, 𝐹A〉 , 𝐵 = 〈𝑇B, 𝐼B, 𝐹B〉  be, respectively, MVNS, so the Hamming distance 

between A and B can be defined by [19]: 

d(A,B)=
1

2
[

1

TÃ
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× 𝑙FÃ
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, (7)

where lT̃A
, l ĨA

, lF̃A
respectively represent the number of elements in T̃A, ĨA, F̃A.

3. A Novel Forecasting Model Based on Multi-Valued Neutrosophic Logical Relationships

In this section, we present a novel fuzzy forecasting method based on multi-valued neutrosophic
logical relationships and the Hamming distance. The data from January to October in one year are
used as the training time series and the data from November to December are used as the testing
dataset. The proposed model is now presented as follows and the basic steps of that areshown in
Figure 1.
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Step 1: Construct FFTS from the training data of two historical factors. For each element
Fi(t)(t = 2, 3, . . . T, i = 1, 2) in the historical time series of the two factors, its fluctuation trend is
defined by Gi(t) = Fi(t)− Fi(t− 1)(t = 2, 3, . . . T, i = 1, 2). G(t)(t = 2, 3, . . . T) which can be fuzzified
into a linguistic set {down, equal, up} depending on its range and orientation of the fluctuations. Thus,
in the same way, we can also divide it into five ranges, such as {down, slightly down, equal, slightly up,
up}, u1 =

(
−∞,− 3l1

2

)
, u2 =

(
− 3l1

2 ,− l1
2

)
, u3 =

(
− l1

2 , l1
2

)
u4 =

(
l1
2 , 3l1

2

)
, u5 =

(
3l1
2 ,+∞

)
, similarly,

G2(t) can also be divided into five parts, l1 and l2 are, respectively, defined as the whole mean of all
elements in the fluctuation time series G1(t)(t = 2, 3, . . . T) and G2(t)(t = 2, 3, . . . T).

Step 2: Determine the two-factor fuzzy fluctuation time series according to Definition 3. Each
Si(t)(t > n) can be represented by its previous n days’ fuzzy fluctuation numbers, which can be used
to establish nth-order FFLRs.

Step 3: According to Definition 4 and Definition 5, we use the MVNS A(t) to express the LHS
of each FFLR. Each ui defined in step 1 represents a different magnitude of increase or decrease, so
the MVNSs can be obtained by assigning weights to different states. Then, we can generate the RHSs
BA(t) for different LHSs, respectively, which are described in Definition 6. Thus, FFLRs of the historical
training dataset can convert to MNLRs.

The nth-order fuzzy-fluctuation trends of each point F(i) in the test dataset can be represented by
a MVNS A(i). For each A(i), compare A(i) with A(t), respectively, and find the most similar one by
using the Hamming distance method described in Definition 7.

Step 4: Choose the corresponding BA(t) as the forecasting rule to forecast the fluctuation value
G′(i + 1) of the next point according to Definition 8. Finally, obtain the forecasting value by F′(i + 1) =
F(i) + G′(i + 1).

4. Empirical Analysis

4.1. Forecasting the Taiwan Stock Exchange Capitalization Weighted Stock Index

In this section, we take TAIEX2004 as an example to illustrate the process of forecasting the
TAIEX with the proposed method. The TAIEX2004 and the Dow Jones from January to October are
respectively used as the training time series of two factors and the data from November to December
are used as the testing dataset [39,40].

Step 1: First, we used the historical training data in TAIEX2004 and Dow Jones2004 to calculate
the fluctuation trend. The whole mean of the fluctuation numbers of the two training datasets can be
calculated to define the intervals. Then, the fluctuation time series of the two factors can be converted
into FFTS, respectively. For example, the whole means of the historical dataset of TAIEX2004 and
Dow Jones from January to October are 67 and 54. That is to say, l1 = 67 and l2 = 54. For example,
F1(1) = 6041.56 and F1(2) = 6125.42, G1(2) =F1(2) − F1(1) = 83.86, S1(2) = 4, and F2(1) = 10,409.85,
F2(2) = 10,544.07, G2(2) = F2(2)− F2(1) = 134.22, S2(2) = 5. In this way, the two-factor fuzzified
fluctuation dataset can be shown in the Appendix A (Tables A1 and A2, respectively).

Step 2: Considering the impact of the previous three days’ historical data on future forecasting,
we choose the previous three days to establish FFLRs. The third-order FFLRs for the two-factor fuzzy
fluctuation time series forecasting model are established based on the FFTS from 2 January 2004 to 30
October 2004, as shown in Tables A1 and A2.

Step 3: To convert the LHSs of the FFLRs in Tables A1 and A2 to MVNSs. Due to the different
degree of expression for each Si(t), we assumed that the each pre-defined Si(t) in step 1 corresponds
to the different neutrosophic sets, such as {0, 0, 1}, {0, 0.5, 0.5}, {0, 1, 0}, {0.5, 0.5, 0}, and {1, 0, 0}.
Then, we group the RHSs of the FFLRs and convert the FFLR to MNLR according to Definitions
5–7. For example, the LHS of FFLR 2,4,4→4 and 2,4,3→3 can be represented by a MVNS {(0.33,0.17),
(0.5,0.67), (0.17,0.17)}. Then, the Hamming distance can be used to obtain the most suitable MVNSs.
The detailed grouping and converting processes are shown in Figure 2.
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Weighted Stock Index.

In this way, the FFLR 2,4,4→4 and 2,4,3→3 is converted into a MNLR {(0.33,0.17), (0.5,0.67),
(0.17,0.17)}→(0.25,0.41,0.33). Therefore, the FFLRs of test dataset can be converted into MNLRs, as
shown in Table A3.

Step 4: Based on the MNLRs obtained in Step 3, we forecast the test dataset from 1 November to
31 December 2004. For example, from Table 1 the forecasting value of the TAIEX on 1 November 2004
is calculated as follows.

The MVNSs on 1 November 2004 is {(0.17,0.33), (0.83,0.67), (0,0)}, then we can find the best rule
{(0.17,0.33), (0.83,0.67), (0,0)}→(0,1,0) to forecast its future according to Table A3. Respectively, we
calculate the expected number of the MNLR according to Definition 8, the expected value:

E(i + 1) =
1
8
× 1

3
× (0 + 1− 1 + 1− 0) = 0.0417.

The fluctuation from current value to next value can be obtained for forecasting by defuzzifying
the fluctuation fuzzy number, shown as follows:

G′(i + 1) = E(i + 1) + l1 = 0.0417× 67 = 2.79.

Finally, the forecasted value can be obtained by the current value and the fluctuation value:

F′(i + 1) = F(i) + G′(i + 1) = 5705.93 + 2.79 = 5708.72.

The results of the forecasting model are shown in Table 1 and Figure 3.
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Table 1. Forecasting results from 1 November 2004 to 30 December 2004.

Date
(YYYY/MM/DD) Actual Forecast (Forecast −

Actual)2
Date

(YYYY/MM/DD) Actual Forecast (Forecast −
Actual)2

2004/11/1 5656.17 5708.72 2761.50 2004/12/2 5867.95 5798.62 4806.65
2004/11/2 5759.61 5678.51 6576.48 2004/12/3 5893.27 5867.95 641.10
2004/11/3 5862.85 5781.95 9575.93 2004/12/6 5919.17 5926.79 58.01
2004/11/4 5860.73 5862.85 10,658.50 2004/12/7 5925.28 5908.00 298.68
2004/11/5 5931.31 5860.73 4981.54 2004/12/8 5892.51 5925.28 1073.87
2004/11/8 5937.46 5908.97 811.94 2004/12/9 5913.97 5896.98 288.70
2004/11/9 5945.2 5959.80 213.29 2004/12/10 5911.63 5880.45 971.99

2004/11/10 5948.49 5945.20 10.82 2004/12/13 5878.89 5933.97 3034.30
2004/11/11 5874.52 5970.83 0.25 2004/12/14 5909.65 5901.23 70.82
2004/11/12 5917.16 5874.52 1818.17 2004/12/15 6002.58 5931.99 4982.31
2004/11/15 5906.69 5917.16 109.62 2004/12/16 6019.23 6024.92 32.43
2004/11/16 5910.85 5906.69 17.31 2004/12/17 6009.32 6019.23 98.21
2004/11/17 6028.68 5902.36 15,956.97 2004/12/20 5985.94 5998.15 149.03
2004/11/18 6049.49 6062.20 161.46 2004/12/21 5987.85 6008.28 417.57
2004/11/19 6026.55 6083.01 3187.36 2004/12/22 6001.52 6010.19 13.49
2004/11/22 5838.42 6004.21 27,484.83 2004/12/23 5997.67 6023.86 686.15
2004/11/23 5851.1 5844.01 50.32 2004/12/24 6019.42 6020.01 0.35
2004/11/24 5911.31 5856.69 2983.77 2004/12/27 5985.94 6019.42 1120.91
2004/11/25 5855.24 5888.97 1137.41 2004/12/28 6000.57 6008.28 59.51
2004/11/26 5778.65 5846.75 4637.49 2004/12/29 6088.49 6022.91 4300.15
2004/11/29 5785.26. 5771.05 201.84 2004/12/30 6100.86 6080.00 435.18
2004/11/30 5844.76 5776.88 4607.58 2004/12/31 6139.69 6092.37 2239.27
2004/12/1 5798.62 5850.35 2675.59 RMSE 53.01

RMSE: root of the mean squared error.

To confirm the performance of the proposed method, we compare the difference between the
forecasted values and the actual values. The performance can be evaluated using the mean squared
error (MSE), root of the mean squared error (RMSE), mean absolute error (MAE), mean percentage
error (MPE), etc. These indicators are defined by Equations (8)–(11):

MSE =
∑n

t=1( f orecast(t)− actual(t))2

n
, (8)

RMSE =

√
∑n

t=1( f orecast(t)− actual(t))2

n
, (9)

MAE =
∑n

t=1| f orecast(t)− actual(t)|
n

, (10)

MPE =
∑n

t=1| f orecast(t)− actual(t)|/actual(t)
n

, (11)

where n denotes the number of values to be forecasted, and forecast(t) and actual(t) denote the predicted
value and actual value at time t, respectively. From Table 1, we can calculate the MSE, RMSE, MAE,
and MPE are 2809.94, 53.01, 38.58, and 0.0066, respectively.

Let the order of n be 1, 3, 5, 7, 9, from Table 2; we can see that third-order forecasting model is
relatively accurate compared to the others.

Table 2. Comparison of forecasting errors for different nth-orders.

n 1 3 5 7 9

RMSE 54.65 53.01 55.60 55.06 54.43

To prove the validity of the proposed method, the TAIEX from 1998 to 2006 is employed to forecast
in the same way. The forecasting results and errors are shown in Figure 4 and Table 3.
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Figure 4. The stock market fluctuation for TAIEX test dataset (1998–2006).

Table 3. RMSEs of forecast errors for TAIEX 1998 to 2006.

Year 1998 1999 2000 2001 2002 2003 2004 2005 2006

RMSE 115.45 105.49 129.11 113.69 67.12 53.6 53.01 53.49 51.90

In Table 4, we can verify the model availability by comparing with the RMSEs of different methods
for forecasting the TAIEX2004. The advantages of the proposed method are that it does not need to
determine the boundary of discourse and the interaction of two factors. The method proposed is
simple and suitable for practical application.

Table 4. A comparison of RMSEs for different methods for forecasting the TAIEX2004.

Methods RMSE

Huarng et al.’s method [41] 73.57
Chen and Kao’s method [42] 58.17

Cheng et al.’s method [43] 54.24
Chen et al.’s method [44] 56.16

Chen and Chang’s method [45] 60.48
Chen and Chen’s method [46] 61.94
Yu and Huarng’s method [47] 55.91

The proposed method 53.01
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4.2. Forecasting the Shanghai Stock Exchange Composite Index

We applied the method to forecast SHSECI, which occupies an important position in China [48].
The Dow Jones was chosen as a secondary factor to build the model. For each year, we used the data
from January to October to be the training data, and then we forecast SHSECI from November to
December. The RMSE of forecast errors are shown in Table 5.

Table 5. RMSEs of forecast errors for the Shanghai Stock Exchange Composite Index (SHSECI) from
2004 to 2015.

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

RMSE 13.54 9.03 37.68 108.17 50.88 50.22 46.08 28.1 25.36 20.19 52.79 55.80

As is shown in Table 5, forecasting the SHSECI stock market obtains great results by using the
proposed method.

5. Conclusions

In this paper, we propose a novel forecasting model for financial forecasting problems based on
multi-valued neutrosophic logical relationships and Hamming distance. The major contributions are
the usage of a multi-valued neutrosophic set (MVNS). Due to its ability in reflecting the up, equal, and
down fluctuation trends, it can efficiently represent the inherent rules of the stock market. Meanwhile,
Hamming distances of different MVNS could measure the similarity between different fluctuation
patterns. We also applied another related time series as a secondary factor to help with qualifying the
prediction of the main stock market. The empirical analysis showed that our model could perform well
in forecasting different stock markets in different years. In fact, there are many other factors inside the
stock market which can influence the fluctuation patterns. For example, volume fluctuation may also
be considered as another facilitating factor. We would also consider applying the model in forecasting
other time series, such as university enrollment, power consumption, etc.
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Appendix A

Table A1. Historical training data and fuzzified fluctuation data of Taiwan Stock Exchange Capitalization Weighted Stock (TAIEX) 2004.

Date
(YYYY/MM/DD) TAIEX Fluctuation Fuzzified Date

(YYYY/MM/DD) TAIEX Fluctuation Fuzzified Date
(YYYY/MM/DD) TAIEX Fluctuation Fuzzified

2004/1/2 6041.56 - - 2004/4/16 6818.2 81.41 4 2004/7/23 5373.85 -14.11 3
2004/1/5 6125.42 83.86 4 2004/4/19 6779.18 −39.02 2 2004/7/26 5331.71 −42.14 2
2004/1/6 6144.01 18.59 3 2004/4/20 6799.97 20.79 3 2004/7/27 5398.61 66.9 4
2004/1/7 6141.25 −2.76 3 2004/4/21 6810.25 10.28 3 2004/7/28 5383.57 −15.04 3
2004/1/8 6169.17 27.92 3 2004/4/22 6732.09 −78.16 2 2004/7/29 5349.66 −33.91 2
2004/1/9 6226.98 57.81 4 2004/4/23 6748.1 16.01 3 2004/7/30 5420.57 70.91 4

2004/1/12 6219.71 −7.27 3 2004/4/26 6710.7 −37.4 2 2004/8/2 5350.4 −70.17 2
2004/1/13 6210.22 −9.49 3 2004/4/27 6646.8 −63.9 2 2004/8/3 5367.22 16.82 3
2004/1/14 6274.97 64.75 4 2004/4/28 6574.75 −72.05 2 2004/8/4 5316.87 −50.35 2
2004/1/15 6264.37 −10.6 3 2004/4/29 6402.21 −172.54 1 2004/8/5 5427.61 110.74 5
2004/1/16 6269.71 5.34 3 2004/4/30 6117.81 −284.4 1 2004/8/6 5399.16 −28.45 3
2004/1/27 6384.63 114.92 5 2004/5/3 6029.77 −88.04 2 2004/8/9 5399.45 0.29 3
2004/1/28 6386.25 1.62 3 2004/5/4 6188.15 158.38 5 2004/8/10 5393.73 −5.72 3
2004/1/29 6312.65 −73.6 2 2004/5/5 5854.23 −333.92 1 2004/8/11 5367.34 −26.39 3
2004/1/30 6375.38 62.73 4 2004/5/6 5909.79 55.56 4 2004/8/12 5368.02 0.68 3
2004/2/2 6319.96 −55.42 2 2004/5/7 6040.26 130.47 5 2004/8/13 5389.93 21.91 3
2004/2/3 6252.23 −67.73 2 2004/5/10 5825.05 −215.21 1 2004/8/16 5352.01 −37.92 2
2004/2/4 6241.39 −10.84 3 2004/5/11 5886.36 61.31 4 2004/8/17 5342.49 −9.52 3
2004/2/5 6268.14 26.75 3 2004/5/12 5958.79 72.43 4 2004/8/18 5427.75 85.26 4
2004/2/6 6353.35 85.21 4 2004/5/13 5918.09 −40.7 2 2004/8/19 5602.99 175.24 5
2004/2/9 6463.09 109.74 5 2004/5/14 5777.32 -140.77 1 2004/8/20 5622.86 19.87 3

2004/2/10 6488.34 25.25 3 2004/5/17 5482.96 -294.36 1 2004/8/23 5660.97 38.11 4
2004/2/11 6454.39 −33.95 2 2004/5/18 5557.68 74.72 4 2004/8/26 5813.39 152.42 5
2004/2/12 6436.95 −17.44 3 2004/5/19 5860.58 302.9 5 2004/8/27 5797.71 −15.68 3
2004/2/13 6549.18 112.23 5 2004/5/20 5815.33 −45.25 2 2004/8/30 5788.94 −8.77 3
2004/2/16 6565.37 16.19 3 2004/5/21 5964.94 149.61 5 2004/8/31 5765.54 −23.4 3
2004/2/17 6600.47 35.1 4 2004/5/24 5942.08 −22.86 3 2004/9/1 5858.14 92.6 4
2004/2/18 6605.85 5.38 3 2004/5/25 5958.38 16.3 3 2004/9/2 5852.85 −5.29 3
2004/2/19 6681.52 75.67 4 2004/5/26 6027.27 68.89 4 2004/9/3 5761.14 −91.71 2
2004/2/20 6665.54 −15.98 3 2004/5/27 6033.05 5.78 3 2004/9/6 5775.99 14.85 3
2004/2/23 6665.89 0.35 3 2004/5/28 6137.26 104.21 5 2004/9/7 5846.83 70.84 4
2004/2/24 6589.23 −76.66 2 2004/5/31 5977.84 −159.42 1 2004/9/8 5846.02 −0.81 3
2004/2/25 6644.28 55.05 4 2004/6/1 5986.2 8.36 3 2004/9/9 5842.93 −3.09 3
2004/2/26 6693.25 48.97 4 2004/6/2 5875.67 −110.53 1 2004/9/10 5846.19 3.26 3
2004/2/27 6750.54 57.29 4 2004/6/3 5671.45 −204.22 1 2004/9/13 5928.22 82.03 4
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Table A1. Cont.

Date
(YYYY/MM/DD) TAIEX Fluctuation Fuzzified Date

(YYYY/MM/DD) TAIEX Fluctuation Fuzzified Date
(YYYY/MM/DD) TAIEX Fluctuation Fuzzified

2004/3/1 6888.43 137.89 5 2004/6/4 5724.89 53.44 4 2004/9/14 5919.77 −8.45 3
2004/3/2 6975.26 86.83 4 2004/6/7 5935.82 210.93 5 2004/9/15 5871.07 −48.7 2
2004/3/3 6932.17 −43.09 2 2004/6/8 5986.76 50.94 4 2004/9/16 5891.05 19.98 3
2004/3/4 7034.1 101.93 5 2004/6/9 5965.7 −21.06 3 2004/9/17 5818.39 −72.66 2
2004/3/5 6943.68 −90.42 2 2004/6/10 5867.51 −98.19 2 2004/9/20 5864.54 46.15 4
2004/3/8 6901.48 −42.2 2 2004/6/14 5735.07 −132.44 1 2004/9/21 5949.26 84.72 4
2004/3/9 6973.9 72.42 4 2004/6/15 5574.08 −160.99 1 2004/9/22 5970.18 20.92 3

2004/3/10 6874.91 −98.99 2 2004/6/16 5646.49 72.41 4 2004/9/23 5937.25 −32.93 3
2004/3/11 6879.11 4.2 3 2004/6/17 5560.16 −86.33 2 2004/9/24 5892.21 −45.04 2
2004/3/12 6800.24 −78.87 2 2004/6/18 5664.35 104.19 5 2004/9/27 5849.22 −42.99 2
2004/3/15 6635.98 −164.26 1 2004/6/21 5569.29 −95.06 2 2004/9/29 5809.75 −39.47 2
2004/3/16 6589.72 −46.26 2 2004/6/22 5556.54 −12.75 3 2004/9/30 5845.69 35.94 4
2004/3/17 6577.98 −11.74 3 2004/6/23 5729.3 172.76 5 2004/10/1 5945.35 99.66 4
2004/3/18 6787.03 209.05 5 2004/6/24 5779.09 49.79 4 2004/10/4 6077.96 132.61 5
2004/3/19 6815.09 28.06 3 2004/6/25 5802.55 23.46 3 2004/10/5 6081.01 3.05 3
2004/3/22 6359.92 −455.17 1 2004/6/28 5709.84 −92.71 2 2004/10/6 6060.61 −20.4 3
2004/3/23 6172.89 −187.03 1 2004/6/29 5741.52 31.68 3 2004/10/7 6103 42.39 4
2004/3/24 6213.56 40.67 4 2004/6/30 5839.44 97.92 4 2004/10/8 6102.16 −0.84 3
2004/3/25 6156.73 −56.83 2 2004/7/1 5836.91 −2.53 3 2004/10/11 6089.28 −12.88 3
2004/3/26 6132.62 −24.11 3 2004/7/2 5746.7 −90.21 2 2004/10/12 5979.56 −109.72 1
2004/3/29 6474.11 341.49 5 2004/7/5 5659.78 −86.92 2 2004/10/13 5963.07 −16.49 3
2004/3/30 6494.71 20.6 3 2004/7/6 5733.57 73.79 4 2004/10/14 5831.07 −132 1
2004/3/31 6522.19 27.48 3 2004/7/7 5727.78 −5.79 3 2004/10/15 5820.82 −10.25 3
2004/4/1 6523.49 1.3 3 2004/7/8 5713.39 −14.39 3 2004/10/18 5772.12 −48.7 2
2004/4/2 6545.54 22.05 3 2004/7/9 5777.72 64.33 4 2004/10/19 5807.79 35.67 4
2004/4/5 6682.73 137.19 5 2004/7/12 5758.74 −18.98 3 2004/10/20 5788.34 −19.45 3
2004/4/6 6635.54 −47.19 2 2004/7/13 5685.57 −73.17 2 2004/10/21 5797.24 8.9 3
2004/4/7 6646.74 11.2 3 2004/7/14 5623.65 −61.92 2 2004/10/22 5774.67 −22.57 3
2004/4/8 6672.86 26.12 3 2004/7/15 5542.8 −80.85 2 2004/10/26 5662.88 −111.79 1
2004/4/9 6620.36 −52.5 2 2004/7/16 5502.14 −40.66 2 2004/10/27 5650.97 −11.91 3

2004/4/12 6777.78 157.42 5 2004/7/19 5489.1 −13.04 3 2004/10/28 5695.56 44.59 4
2004/4/13 6794.33 16.55 3 2004/7/20 5325.68 −163.42 1 2004/10/29 5705.93 10.37 3
2004/4/14 6880.18 85.85 4 2004/7/21 5409.13 83.45 4
2004/4/15 6736.79 −143.39 1 2004/7/22 5387.96 −21.17 3
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Table A2. Historical training data and fuzzified fluctuation data of Dow Jones 2004.

Date
(YYYY/MM/DD) Dow Jones Fluctuation Fuzzified Date

(YYYY/MM/DD) Dow Jones Fluctuation Fuzzified Date
(YYYY/MM/DD) Dow Jones Fluctuation Fuzzified

2004/1/2 10,409.85 - - 2004/4/19 10,437.85 −14.12 3 2004/7/27 10,085.14 123.22 5
2004/1/5 10,544.07 134.22 5 2004/4/20 10,314.5 −123.35 1 2004/7/28 10,117.07 31.93 4
2004/1/6 10,538.66 −5.41 3 2004/4/21 10,317.27 2.77 3 2004/7/29 10,129.24 12.17 3
2004/1/7 10,529.03 −9.63 3 2004/4/22 10,461.2 143.93 5 2004/7/30 10,139.71 10.47 3
2004/1/8 10,592.44 63.41 4 2004/4/23 10,472.84 11.64 3 2004/8/2 10,179.16 39.45 4
2004/1/9 10,458.89 −133.55 1 2004/4/26 10,444.73 −28.11 2 2004/8/3 10,120.24 −58.92 2

2004/1/12 10,485.18 26.29 3 2004/4/27 10,478.16 33.43 4 2004/8/4 10,126.51 6.27 3
2004/1/13 10,427.18 −58 2 2004/4/28 10,342.6 −135.56 1 2004/8/5 9963.03 −163.48 1
2004/1/14 10,538.37 111.19 5 2004/4/29 10,272.27 −70.33 2 2004/8/6 9815.33 −147.7 1
2004/1/15 10,553.85 15.48 3 2004/4/30 10,225.57 −46.7 2 2004/8/9 9814.66 −0.67 3
2004/1/16 10,600.51 46.66 4 2004/5/3 10,314 88.43 5 2004/8/10 9944.67 130.01 5
2004/1/27 10,609.92 9.41 3 2004/5/4 10,317.2 3.2 3 2004/8/11 9938.32 −6.35 3
2004/1/28 10,468.37 −141.55 1 2004/5/5 10,310.95 −6.25 3 2004/8/12 9814.59 −123.73 1
2004/1/29 10,510.29 41.92 4 2004/5/6 10,241.26 −69.69 2 2004/8/13 9825.35 10.76 3
2004/1/30 10,488.07 −22.22 3 2004/5/7 10,117.34 −123.92 1 2004/8/16 9954.55 129.2 5
2004/2/2 10,499.18 11.11 3 2004/5/10 9990.02 −127.32 1 2004/8/17 9972.83 18.28 3
2004/2/3 10,505.18 6 3 2004/5/11 10,019.47 29.45 4 2004/8/18 10,083.15 110.32 5
2004/2/4 10,470.74 −34.44 2 2004/5/12 10,045.16 25.69 3 2004/8/19 10,040.82 −42.33 2
2004/2/5 10,495.55 24.81 3 2004/5/13 10,010.74 −34.42 2 2004/8/20 10,110.14 69.32 4
2004/2/6 10,593.03 97.48 5 2004/5/14 10,012.87 2.13 3 2004/8/23 10,073.05 −37.09 2
2004/2/9 10,579.03 −14 3 2004/5/17 9906.91 −105.96 1 2004/8/26 10,173.41 100.36 5

2004/2/10 10,613.85 34.82 4 2004/5/18 9968.51 61.6 4 2004/8/27 10,195.01 21.6 3
2004/2/11 10,737.7 123.85 5 2004/5/19 9937.71 −30.8 2 2004/8/30 10,122.52 −72.49 2
2004/2/12 10,694.07 −43.63 2 2004/5/20 9937.64 −0.07 3 2004/8/31 10,173.92 51.4 4
2004/2/13 10,627.85 −66.22 2 2004/5/21 9966.74 29.1 4 2004/9/1 10,168.46 −5.46 3
2004/2/16 10,627.85 0 3 2004/5/24 9958.43 −8.31 3 2004/9/2 10,290.28 121.82 5
2004/2/17 10,714.88 87.03 5 2004/5/25 10,117.62 159.19 5 2004/9/3 10,260.2 −30.08 2
2004/2/18 10,671.99 −42.89 2 2004/5/26 10,109.89 −7.73 3 2004/9/6 10,260.2 0 3
2004/2/19 10,664.73 −7.26 3 2004/5/27 10,205.2 95.31 5 2004/9/7 10,341.16 80.96 4
2004/2/20 10,619.03 −45.7 2 2004/5/28 10,188.45 −16.75 3 2004/9/8 10,313.36 −27.8 2
2004/2/23 10,609.62 −9.41 3 2004/5/31 10,188.45 0 3 2004/9/9 10,289.1 −24.26 3
2004/2/24 10,566.37 −43.25 2 2004/6/1 10,202.65 14.2 3 2004/9/10 10,313.07 23.97 3
2004/2/25 10,601.62 35.25 4 2004/6/2 10,262.97 60.32 4 2004/9/13 10,314.76 1.69 3
2004/2/26 10,580.14 −21.48 3 2004/6/3 10,195.91 −67.06 2 2004/9/14 10,318.16 3.4 3
2004/2/27 10,583.92 3.78 3 2004/6/4 10,242.82 46.91 4 2004/9/15 10,231.36 −86.8 1
2004/3/1 10,678.14 94.22 5 2004/6/7 10,391.08 148.26 5 2004/9/16 10,244.49 13.13 3
2004/3/2 10,591.48 −86.66 1 2004/6/8 10,432.52 41.44 4 2004/9/17 10,284.46 39.97 4
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Table A2. Cont.

Date
(YYYY/MM/DD) Dow Jones Fluctuation Fuzzified Date

(YYYY/MM/DD) Dow Jones Fluctuation Fuzzified Date
(YYYY/MM/DD) Dow Jones Fluctuation Fuzzified

2004/3/3 10,593.11 1.63 3 2004/6/9 10,368.44 −64.08 2 2004/9/20 10,204.89 −79.57 2
2004/3/4 10,588 −5.11 3 2004/6/10 10,410.1 41.66 4 2004/9/21 10,244.93 40.04 4
2004/3/5 10,595.55 7.55 3 2004/6/14 10,334.73 −75.37 2 2004/9/22 10,109.18 −135.75 1
2004/3/8 10,529.48 −66.07 2 2004/6/15 10,380.43 45.7 4 2004/9/23 10,038.9 −70.28 2
2004/3/9 10,456.96 −72.52 2 2004/6/16 10,379.58 −0.85 3 2004/9/24 10,047.24 8.34 3

2004/3/10 10,296.89 −160.07 1 2004/6/17 10,377.52 −2.06 3 2004/9/27 9988.54 −58.7 2
2004/3/11 10,128.38 −168.51 1 2004/6/18 10,416.41 38.89 4 2004/9/29 10,136.24 147.7 5
2004/3/12 10,240.08 111.7 5 2004/6/21 10,371.47 −44.94 2 2004/9/30 10,080.27 −55.97 2
2004/3/15 10,102.89 −137.19 1 2004/6/22 10,395.07 23.6 3 2004/10/1 10,192.65 112.38 5
2004/3/16 10,184.67 81.78 5 2004/6/23 10,479.57 84.5 5 2004/10/4 10,216.54 23.89 3
2004/3/17 10,300.3 115.63 5 2004/6/24 10,443.81 −35.76 2 2004/10/5 10,177.68 −38.86 2
2004/3/18 10,295.78 −4.52 3 2004/6/25 10,371.84 −71.97 2 2004/10/6 10,239.92 62.24 4
2004/3/19 10,186.6 −109.18 1 2004/6/28 10,357.09 −14.75 3 2004/10/7 10,125.4 −114.52 1
2004/3/22 10,064.75 −121.85 1 2004/6/29 10,413.43 56.34 4 2004/10/8 10,055.2 −70.2 2
2004/3/23 10,063.64 −1.11 3 2004/6/30 10,435.48 22.05 3 2004/10/11 10,081.97 26.77 3
2004/3/24 10,048.23 −15.41 3 2004/7/1 10,334.16 −101.32 1 2004/10/12 10,077.18 −4.79 3
2004/3/25 10,218.82 170.59 5 2004/7/2 10,282.83 −51.33 2 2004/10/13 10,002.33 −74.85 2
2004/3/26 10,212.97 −5.85 3 2004/7/5 10,282.83 0 3 2004/10/14 9894.45 −107.88 1
2004/3/29 10,329.63 116.66 5 2004/7/6 10,219.34 −63.49 2 2004/10/15 9933.38 38.93 4
2004/3/30 10,381.7 52.07 4 2004/7/7 10,240.29 20.95 3 2004/10/18 9956.32 22.94 3
2004/3/31 10,357.7 −24 3 2004/7/8 10,171.56 −68.73 2 2004/10/19 9897.62 −58.7 2
2004/4/1 10,373.33 15.63 3 2004/7/9 10,213.22 41.66 4 2004/10/20 9886.93 −10.69 3
2004/4/2 10,470.59 97.26 5 2004/7/12 10,238.22 25 3 2004/10/21 9865.76 −21.17 3
2004/4/5 10,558.37 87.78 5 2004/7/13 10,247.59 9.37 3 2004/10/22 9757.81 −107.95 1
2004/4/6 10,570.81 12.44 3 2004/7/14 10,208.8 −38.79 2 2004/10/26 9888.48 130.67 5
2004/4/7 10,480.15 −90.66 1 2004/7/15 10,163.16 −45.64 2 2004/10/27 10,002.03 113.55 5
2004/4/8 10,442.03 −38.12 2 2004/7/16 10,139.78 −23.38 3 2004/10/28 10,004.54 2.51 3
2004/4/9 10,442.03 0 3 2004/7/19 10,094.06 −45.72 2 2004/10/29 10,027.47 22.93 3

2004/4/12 10,515.56 73.53 4 2004/7/20 10,149.07 55.01 4
2004/4/13 10,381.28 −134.28 1 2004/7/21 10,046.13 −102.94 1
2004/4/14 10,377.95 −3.33 3 2004/7/22 10,050.33 4.2 3
2004/4/15 10,397.46 19.51 3 2004/7/23 9962.22 −88.11 1
2004/4/16 10,451.97 54.51 4 2004/7/26 9961.92 −0.3 3



Symmetry 2018, 10, 245 15 of 18

Table A3. Multi-valued neutrosophic logical relationships (MNLRs) for testing data of TAIEX 2004.

MNLRs MNLRs MNLRs

{(0.00,0.33), (0.50,0.00), (0.50,0.67)}→ (0,0.5,0.5) {(0.00,0.33), (0.83,0.33), (0.17,0.33)}→ (0,1,0) {(0.17,0.00), (0.83,0.67), (0.00,0.33)}→ (0.25,0.75,0)
{(0.00,0.00), (0.17,0.33), (0.83,0.67)}→ (0,0.5,0.5) {(0.17,0.17), (0.67,0.50), (0.17,0.33)}→ (0,0.75,0.25) {(0.17,0.00), (0.67,0.83), (0.17,0.17)}→ (0.17,0.83,0)
{(0.50,0.00), (0.17,0.17), (0.33,0.83)}→ (0.5,0.5,0) {(0.17,0.17), (0.33,0.83), (0.50,0.00)}→ (0.2,0.7,0.1) {(0.33,0.00), (0.67,0.67), (0.00,0.33)}→ (0.5,0.5,0)
{(0.00,0.00), (0.17,0.50), (0.83,0.50)}→ (0.5,0.5,0) {(0.33,0.17), (0.50,0.50), (0.17,0.33)}→ (0.5,0.5,0) {(0.00,0.33), (0.83,0.50), (0.17,0.17)}→ (0.5,0.5,0)

{(0.00,0.00), (0.33,0.50), (0.67,0.50)}→ (0,1,0) {(0.17,0.33), (0.33,0.67), (0.50,0.00)}→ (0,1,0) {(0.17,0.17), (0.67,0.67), (0.17,0.17)}→ (0.2,0.7,0.1)
{(0.00,0.00), (0.33,0.33), (0.67,0.67)}→ (0.5,0.5,0) {(0.50,0.00), (0.33,0.67), (0.17,0.33)}→ (0,0.5,0.5) {(0.00,0.50), (0.83,0.33), (0.17,0.17)}→ (1,0,0)

{(0.33,0.00), (0.33,0.33), (0.33,0.67)}→ (0,0,1) {(0.50,0.00), (0.17,0.83), (0.33,0.17)}→ (1,0,0) {(0.33,0.17), (0.50,0.67), (0.17,0.17)}→ (0.25,0.41,0.33)
{(0.17,0.00), (0.17,0.67), (0.67,0.33)}→ (0,0.5,0.5) {(0.17,0.33), (0.67,0.33), (0.17,0.33)}→ (0,1,0) {(0.50,0.17), (0.33,0.67), (0.17,0.17)}→ (1,0,0)
{(0.50,0.17), (0.17,0.17), (0.33,0.67)}→ (0.5,0.5,0) {(0.33,0.33), (0.50,0.33), (0.17,0.33)}→ (0,1,0) {(0.50,0.17), (0.50,0.50), (0.00,0.33)}→ (1,0,0)

{(0.17,0.17), (0.17,0.50), (0.67,0.33)}→ (1,0,0) {(0.33,0.33), (0.17,0.67), (0.50,0.00)}→ (0.5,0.5,0) {(0.67,0.17), (0.17,0.67), (0.17,0.17)}→ (0,1,0)
{(0.00,0.17), (0.33,0.33), (0.67,0.50)}→ (0,0,1) {(0.50,0.33), (0.33,0.33), (0.17,0.33)}→ (1,0,0) {(0.50,0.33), (0.50,0.33), (0.00,0.33)}→ (0,0.5,0.5)
{(0.00,0.33), (0.17,0.33), (0.83,0.33)}→ (1,0,0) {(0.50,0.50), (0.17,0.33), (0.33,0.17)}→ (0.5,0.5,0) {(0.17,0.50), (0.67,0.50), (0.17,0.00)}→ (0.25,0.5,0.25)

{(0.17,0.00), (0.67,0.17), (0.17,0.83)}→ (0,0.5,0.5) {(0.33,0.17), (0.67,0.33), (0.00,0.50)}→ (0,1,0) {(0.33,0.50), (0.50,0.50), (0.17,0.00)}→ (0,1,0)
{(0.00,0.33), (0.67,0.00), (0.33,0.67)}→ (0,0,1) {(0.00,0.00), (1.00,0.67), (0.00,0.33)}→ (0,0.25,0.75) {(0.17,0.67), (0.67,0.33), (0.17,0.00)}→ (1,0,0)
{(0.00,0.67), (0.33,0.00), (0.67,0.33)}→ (0,1,0) {(0.33,0.00), (0.33,1.00), (0.33,0.00)}→ (0,0.25,0.75) {(0.33,0.67), (0.50,0.33), (0.17,0.00)}→ (0,1,0)

{(0.00,0.33), (0.17,0.50), (0.83,0.17)}→ (0.5,0.5,0) {(0.17,0.17), (0.83,0.50), (0.00,0.33)}→ (0,0.83,0.17) {(0.50,0.50), (0.50,0.33), (0.00,0.17)}→ (0.17,0.67,0.17)
{(0.00,0.17), (0.33,0.67), (0.67,0.17)}→ (0.5,0.5,0) {(0.33,0.17), (0.67,0.50), (0.00,0.33)}→ (0,0.5,0.5) {(0.67,0.33), (0.33,0.50), (0.00,0.17)}→ (0,1,0)
{(0.00,0.17), (0.67,0.33), (0.33,0.50)}→ (0,0.5,0.5) {(0.33,0.33), (0.67,0.33), (0.00,0.33)}→ (0,0.5,0.5) {(0.00,0.17), (1.00,0.83), (0.00,0.00)}→ (0.125,0.75,0.125)
{(0.00,0.17), (0.50,0.50), (0.50,0.33)}→ (0.5,0.5,0) {(0.50,0.17), (0.50,0.50), (0.00,0.33)}→ (0,0,1) {(0.00,0.33), (1.00,0.67), (0.00,0.00)}→ (0.5,0.5,0)

{(0.33,0.00), (0.50,0.33), (0.17,0.67)}→ (0,1,0) {(0.33,0.17), (0.33,0.83), (0.33,0.00)}→ (0,0.5,0.5) {(0.17,0.33), (0.83,0.67), (0.00,0.00)}→ (0,1,0)
{(0.00,0.67), (0.50,0.00), (0.50,0.33)}→ (1,0,0) {(0.17,0.67), (0.50,0.33), (0.33,0.00)}→ (0,1,0) {(0.17,0.50), (0.83,0.50), (0.00,0.00)}→ (0.67,0.17,0.17)
{(0.50,0.00), (0.17,0.50), (0.33,0.50)}→ (0,0,1) {(0.67,0.33), (0.33,0.33), (0.00,0.33)}→ (0,0.5,0.5) {(0.50,0.50), (0.50,0.50), (0.00,0.00)}→ (0,0.5,0.5)

{(0.17,0.17), (0.17,0.67), (0.67,0.17)}→ (0,0.5,0.5) {(0.00,0.00), (0.67,0.67), (0.33,0.33)}→ (0,0.25,0.75) {(0.67,0.67), (0.33,0.33), (0.00,0.00)}→ (0,1,0)
{(0.17,0.17), (0.50,0.33), (0.33,0.50)}→ (0,1,0) {(0.00,0.33), (0.50,0.50), (0.50,0.17)}→ (0.5,0.5,0) {(0.00,0.67), (0.67,0.00), (0.33,0.33)}→ (0.5,0.5,0)
{(0.17,0.33), (0.17,0.50), (0.67,0.17)}→ (1,0,0) {(0.33,0.00), (0.33,0.83), (0.33,0.17)}→ (0.5,0.5,0) {(0.17,0.00), (0.50,0.33), (0.33,0.67)}→ (0,1,0)

{(0.17,0.00), (0.50,0.67), (0.33,0.33)}→ (0.25,0.625,0.125) {(0.00,0.33), (0.67,0.50), (0.33,0.17)}→ (0,0.5,0.5) {(0.00,0.17), (0.50,0.33), (0.50,0.50)}→ (0,0,1)
{(0.00,0.17), (0.33,0.83), (0.67,0.00)}→ (0,0.25,0.75) {(0.00,0.17), (0.67,0.67), (0.33,0.17)}→ (0.25,0.625,0.125) {(0.00,0.17), (0.50,0.50), (0.50,0.33)}→ (0,0,1)

{(0.33,0.00), (0.67,0.33), (0.00,0.67)}→ (0,1,0) {(0.33,0.33), (0.50,0.33), (0.17,0.33)}→ (0,1,0) {(0.00,0.00), (0.67,0.50), (0.33,0.50)}→ (0.5,0.5,0)
{(0.00,0.33), (0.67,0.33), (0.33,0.33)}→ (0,1,0) {(0.00,0.00), (0.83,0.83), (0.17,0.17)}→ (0.5,0.5,0) {(0.00,0.00), (0.83,0.50), (0.17,0.50)}→ (0.33,0.33,0.33)
{(0.17,0.17), (0.50,0.50), (0.33,0.33)}→ (0,1,0) {(0.33,0.33), (0.50,0.50), (0.17,0.17)}→ (0,1,0) {(0.17,0.00), (0.33,0.83), (0.50,0.17)}→ (0,0,1)

{(0.00,0.67), (0.67,0.00), (0.33,0.33)}→ (0.5,0.5,0) {(0.33,0.67), (0.50,0.17), (0.17,0.17)}→ (1,0,0) {(0.17,0.00), (0.67,0.50), (0.17,0.50)}→ (0.25,0.5,0.25)
{(0.33,0.17), (0.33,0.50), (0.33,0.33)}→ (0,0.5,0.5) {(0.17,0.00), (0.50,1.00), (0.33,0.00)}→ (0,1,0) {(0.33,0.00), (0.50,0.50), (0.17,0.50)}→ (0,1,0)

{(0.17,0.00), (0.50,0.33), (0.33,0.67)}→ (0,1,0) {(0.17,0.00), (0.83,0.67), (0.00,0.33)}→ (0.25,0.75,0) {(0.33,0.33), (0.17,0.50), (0.50,0.17)}→ (0,0,1)
{(0.00,0.17), (0.50,0.33), (0.50,0.50)}→ (0,0,1) {(0.17,0.00), (0.67,0.83), (0.17,0.17)}→ (0.17,0.83,0) {(0.00,0.00), (0.83,0.67), (0.17,0.33)}→ (0.125,0.5625,0.3125)
{(0.00,0.17), (0.50,0.50), (0.50,0.33)}→ (0,0,1) {(0.33,0.00), (0.67,0.67), (0.00,0.33)}→ (0.5,0.5,0) {(0.17,0.00), (0.83,0.50), (0.00,0.50)}→ (0.25,0.25,0.5)

{(0.00,0.00), (0.67,0.50), (0.33,0.50)}→ (0.5,0.5,0) {(0.00,0.33), (0.83,0.50), (0.17,0.17)}→ (0.5,0.5,0) {(0.00,0.00), (1.00,0.83), (0.00,0.17)}→ (0.5,0.5,0)
{(0.00,0.00), (0.83,0.50), (0.17,0.50)}→ (0.33,0.33,0.33) {(0.17,0.17), (0.67,0.67), (0.17,0.17)}→ (0.2,0.7,0.1) {(0.17,0.00), (0.83,0.83), (0.00,0.17)}→ (0,0.75,0.25)
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Table A3. Cont.

MNLRs MNLRs MNLRs

{(0.17,0.00), (0.33,0.83), (0.50,0.17)}→ (0,0,1) {(0.00,0.50), (0.83,0.33), (0.17,0.17)}→ (1,0,0) {(0.00,0.17), (1.00,0.67), (0.00,0.17)}→ (0.5,0.5,0)
{(0.17,0.00), (0.67,0.50), (0.17,0.50)}→ (0.25,0.5,0.25) {(0.33,0.17), (0.50,0.67), (0.17,0.17)}→ (0.25,0.41,0.33) {(0.00,0.33), (0.83,0.67), (0.17,0.00)}→ (0.25,0.5,0.25)

{(0.33,0.00), (0.50,0.50), (0.17,0.50)}→ (0,1,0) {(0.50,0.17), (0.33,0.67), (0.17,0.17)}→ (1,0,0) {(0.17,0.17), (0.67,0.83), (0.17,0.00)}→ (0,0.81,0.19)
{(0.33,0.33), (0.17,0.50), (0.50,0.17)}→ (0,0,1) {(0.50,0.17), (0.50,0.50), (0.00,0.33)}→ (1,0,0) {(0.17,0.33), (0.83,0.50), (0.00,0.17)}→ (0.375,0.625,0)

{(0.00,0.00), (0.83,0.67), (0.17,0.33)}→ (0.125,0.5625,0.3125) {(0.67,0.17), (0.17,0.67), (0.17,0.17)}→ (0,1,0) {(0.33,0.17), (0.50,0.83), (0.17,0.00)}→ (0,1,0)
{(0.17,0.00), (0.83,0.50), (0.00,0.50)}→ (0.25,0.25,0.5) {(0.50,0.33), (0.50,0.33), (0.00,0.33)}→ (0,0.5,0.5) {(0.33,0.17), (0.67,0.67), (0.00,0.17)}→ (0.75,0.25,0)

{(0.00,0.33), (0.50,0.00), (0.50,0.67)}→ (0,0.5,0.5) {(0.00,0.33), (0.83,0.33), (0.17,0.33)}→ (0,1,0) {(0.33,0.33), (0.67,0.50), (0.00,0.17)}→ (0,1,0)
{(0.00,0.00), (0.17,0.33), (0.83,0.67)}→ (0,0.5,0.5) {(0.17,0.17), (0.67,0.50), (0.17,0.33)}→ (0,0.75,0.25) {(0.50,0.17), (0.33,0.83), (0.17,0.00)}→ (0,0.5,0.5)
{(0.50,0.00), (0.17,0.17), (0.33,0.83)}→ (0.5,0.5,0) {(0.17,0.17), (0.33,0.83), (0.50,0.00)}→ (0.2,0.7,0.1) {(0.50,0.33), (0.50,0.67), (0.00,0.00)}→ (0.1,0.7,0.2)
{(0.00,0.00), (0.17,0.50), (0.83,0.50)}→ (0.5,0.5,0) {(0.33,0.17), (0.50,0.50), (0.17,0.33)}→ (0.5,0.5,0) {(0.17,0.67), (0.83,0.33), (0.00,0.00)}→ (1,0,0)

{(0.00,0.00), (0.33,0.50), (0.67,0.50)}→ (0,1,0) {(0.17,0.33), (0.33,0.67), (0.50,0.00)}→ (0,1,0) {(0.33,0.67), (0.67,0.33), (0.00,0.00)}→ (0,0.5,0.5)
{(0.33,0.00), (0.33,0.33), (0.33,0.67)}→ (0,0,1) {(0.50,0.00), (0.17,0.83), (0.33,0.17)}→ (1,0,0) {(0.17,0.00), (0.50,1.00), (0.33,0.00)}→ (0,1,0)

{(0.17,0.00), (0.17,0.67), (0.67,0.33)}→ (0,0.5,0.5) {(0.17,0.33), (0.67,0.33), (0.17,0.33)}→ (0,1,0) {(0.50,0.17), (0.17,0.33), (0.33,0.50)}→ (0,0.5,0.5)
{(0.50,0.17), (0.17,0.17), (0.33,0.67)}→ (0.5,0.5,0) {(0.33,0.33), (0.50,0.33), (0.17,0.33)}→ (0,1,0) {(0.17,0.33), (0.50,0.33), (0.33,0.33)}→ (0.5,0.5,0)

{(0.17,0.17), (0.17,0.50), (0.67,0.33)}→ (1,0,0) {(0.33,0.33), (0.17,0.67), (0.50,0.00)}→ (0.5,0.5,0) {(0.33,0.17), (0.33,0.50), (0.33,0.33)}→ (0,0.5,0.5)
{(0.00,0.17), (0.33,0.33), (0.67,0.50)}→ (0,0,1) {(0.50,0.33), (0.33,0.33), (0.17,0.33)}→ (1,0,0) {(0.00,0.00), (0.33,0.33), (0.67,0.67)}→ (0.5,0.5,0)
{(0.00,0.33), (0.17,0.33), (0.83,0.33)}→ (1,0,0) {(0.50,0.50), (0.17,0.33), (0.33,0.17)}→ (0.5,0.5,0) {(0.50,0.00), (0.33,0.67), (0.17,0.33)}→ (0,0.5,0.5)

{(0.17,0.00), (0.67,0.17), (0.17,0.83)}→ (0,0.5,0.5) {(0.33,0.17), (0.67,0.33), (0.00,0.50)}→ (0,1,0) {(0.33,0.67), (0.50,0.17), (0.17,0.17)}→ (1,0,0)
{(0.00,0.33), (0.67,0.00), (0.33,0.67)}→ (0,0,1) {(0.00,0.00), (1.00,0.67), (0.00,0.33)}→ (0,0.25,0.75)
{(0.00,0.67), (0.33,0.00), (0.67,0.33)}→ (0,1,0) {(0.33,0.00), (0.33,1.00), (0.33,0.00)}→ (0,0.25,0.75)

{(0.00,0.33), (0.17,0.50), (0.83,0.17)}→ (0.5,0.5,0) {(0.17,0.17), (0.83,0.50), (0.00,0.33)}→ (0,0.83,0.17)
{(0.00,0.17), (0.33,0.67), (0.67,0.17)}→ (0.5,0.5,0) {(0.33,0.17), (0.67,0.50), (0.00,0.33)}→ (0,0.5,0.5)
{(0.00,0.17), (0.67,0.33), (0.33,0.50)}→ (0,0.5,0.5) {(0.33,0.33), (0.67,0.33), (0.00,0.33)}→ (0,0.5,0.5)
{(0.00,0.17), (0.50,0.50), (0.50,0.33)}→ (0.5,0.5,0) {(0.50,0.17), (0.50,0.50), (0.00,0.33)}→ (0,0,1)

{(0.33,0.00), (0.50,0.33), (0.17,0.67)}→ (0,1,0) {(0.33,0.17), (0.33,0.83), (0.33,0.00)}→ (0,0.5,0.5)
{(0.00,0.67), (0.50,0.00), (0.50,0.33)}→ (1,0,0) {(0.17,0.67), (0.50,0.33), (0.33,0.00)}→ (0,1,0)
{(0.50,0.00), (0.17,0.50), (0.33,0.50)}→ (0,0,1) {(0.67,0.33), (0.33,0.33), (0.00,0.33)}→ (0,0.5,0.5)

{(0.17,0.17), (0.17,0.67), (0.67,0.17)}→ (0,0.5,0.5) {(0.00,0.00), (0.67,0.67), (0.33,0.33)}→ (0,0.25,0.75)
{(0.17,0.17), (0.50,0.33), (0.33,0.50)}→ (0,1,0) {(0.00,0.33), (0.50,0.50), (0.50,0.17)}→ (0.5,0.5,0)

{(0.50,0.17), (0.17,0.33), (0.33,0.50)}→ (0,0.5,0.5) {(0.17,0.33), (0.50,0.33), (0.33,0.33)}→ (0.5,0.5,0)
{(0.17,0.33), (0.17,0.50), (0.67,0.17)}→ (1,0,0) {(0.33,0.00), (0.33,0.83), (0.33,0.17)}→ (0.5,0.5,0)

{(0.17,0.00), (0.50,0.67), (0.33,0.33)}→ (0.25,0.625,0.125) {(0.00,0.33), (0.67,0.50), (0.33,0.17)}→ (0,0.5,0.5)
{(0.00,0.17), (0.33,0.83), (0.67,0.00)}→ (0,0.25,0.75) {(0.00,0.17), (0.67,0.67), (0.33,0.17)}→ (0.25,0.625,0.125)

{(0.33,0.00), (0.67,0.33), (0.00,0.67)}→ (0,1,0) {(0.33,0.33), (0.50,0.33), (0.17,0.33)}→ (0,1,0)
{(0.00,0.33), (0.67,0.33), (0.33,0.33)}→ (0,1,0) {(0.00,0.00), (0.83,0.83), (0.17,0.17)}→ (0.5,0.5,0)
{(0.17,0.17), (0.50,0.50), (0.33,0.33)}→ (0,1,0) {(0.33,0.33), (0.50,0.50), (0.17,0.17)}→ (0,1,0)
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