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Abstract: A complex fuzzy set is an extension of the traditional fuzzy set, where traditional
[0,1]-valued membership grade is extended to the complex unit disk. The aggregation operator
plays an important role in many fields, and this paper presents several complex fuzzy geometric
aggregation operators. We show that these operators possess the properties of rotational invariance
and reflectional invariance. These operators are also closed on the upper-right quadrant of the
complex unit disk. Based on the relationship between Pythagorean membership grades and complex
numbers, these operators can be applied to the Pythagorean fuzzy environment.

Keywords: complex fuzzy sets; aggregation operator; complex fuzzy geometric operators; rotational
invariance; reflectional invariance

1. Introduction

Ramot et al. [1] introduced the innovative concept of complex fuzzy sets (CFSs), which is an
extension of the traditional fuzzy sets [2] where traditional unit interval [0,1]-valued membership
degrees are extended to the complex unit disk. CFSs are completely distinct from the fuzzy complex
numbers discussed by Buckley [3–5]. The complex-valued membership grade has an amplitude
term with the addition of a phase term. The phase term of complex-valued membership grade is
the key feature which essentially distinguishes complex fuzzy sets from other extensions of fuzzy
sets. Ramot et al. [1,6] then introduced several operators of CFSs and a novel framework for complex
fuzzy reasoning. Hu et al. [7] introduced the orthogonality relation for CFSs. Bi et al. [8] proposed
the parallelity of CFSs and the parallelity-preserving operators. Zhang et al. [9] proposed the
δ-equalities for CFSs. Alkouri and Salleh [10] and Hu et al. [11] defined several distances between
CFSs. Tamir et al. [12] proposed a new interpretation of complex membership degree. They [13]
then proposed complex fuzzy propositional and first-order logics. Dick [14] proposed the concept
of rotational invariance for complex fuzzy operators. Recently, several scholars have developed
extensions of CFSs. Greenfield et.al [15,16] introduced interval-valued complex fuzzy sets. Alkouri
and Saleh [17] proposed complex intuitionistic fuzzy sets. Ali and Smarandache [18] introduced
complex neutrosophic sets. Recently, CFSs and their extensions have been successfully applied in
many fields, such as time series prediction [19–22], decision making [23], signal processing [1,7,9],
and image restoration [24].

Yager and Abbsocv [25] discussed the relationship between CFSs and Pythagorean fuzzy
sets (PFSs), which was developed by Yager [26,27] as an extension of Atanssov’s intuitionistic
fuzzy sets [28]. They showed that Pythagorean fuzzy membership grades can be viewed as
complex numbers on the upper-right quadrant of the complex unit disk, named Π − i numbers.
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Dick, Yager, and Yazdanbahksh [29] then discussed several lattice-theoretic properties of PFSs and
CFSs. Quantum information processing also allows for meaningful aggregation using complex
numbers. Since qubits can be represented by unit vectors in the two-dimensional complex Hilbert
space, geometric information or vector aggregation are used for meaningful clustering [30,31].

The information aggregation operator plays an important role in many fields of decision
making. In the past several decades, many aggregation techniques for decision making have been
developed. The ordered weighted averaging (OWA) operator introduced by Yager [32] is one of the
well-known aggregation operators. Many different aggregation techniques have been applied in many
different fuzzy environments, such as intuitionistic [33–35], Pythagorean [36–38], neutrosophic [39–41],
interval-valued intuitionistic [42–45], and hesitant fuzzy environments [46–48].

As mentioned in [19], CFSs are suitable to represent information with uncertainty and periodicity,
and thus this information aggregation procedure needs to simultaneously process the uncertainty
and periodicity in the data. However, comparatively few aggregation techniques have been made in
the complex fuzzy environment. Ramot et al. [6] defined the complex fuzzy aggregation operations
as vectors aggregation. In particular, the complex weights are used in their definition. Ma et al. [19]
developed a product-sum aggregation operator for multiple periodic factor prediction problems.
They proved the continuity of this operator. However, they did not focus on techniques for complex
fuzzy information aggregation in these two articles.

In this paper, we study aggregation operators in the complex fuzzy environment. Dick’s [14]
concept of rotational invariance is an intuitive and desirable feature for complex fuzzy operators.
This feature is examined for complex fuzzy aggregation operators. This paper proposes a novel
feature for complex fuzzy aggregation operators called reflectional invariance. Moreover, we study the
aggregation operators of complex numbers in the upper-right quadrant of the complex unit disk.

The main contributions of the study include: (1) A concept of reflectional invariance for complex
fuzzy operators. (2) Several complex fuzzy weighted geometric operators; we also show that these
operators can also be used in a Pythagorean fuzzy environment. (3) A target location method which
involves the complex fuzzy aggregation operators.

This paper is organized as follows. In Section 2, we review some basic and fundamental concepts
of CFSs, rotational invariance, reflectional invariance, and Ramot et al.’s [6] complex fuzzy aggregation
operators. In Section 3 we study the complex fuzzy weighted geometric (CFWG) operator on CFSs
and its properties. In Section 4, we develop the complex fuzzy ordered weighted geometric (CFOWG)
operator based on the traditional partial ordering by the modulus of a complex number, and study its
properties. In Section 5, we study these operators in the domain of Π− i numbers which belong to the
upper-right quadrant of the complex unit disk. In Section 6, we present an application example in a
target location. Conclusions are made in Section 7.

2. Preliminaries

In this section, we present some basic material, including the concepts of CFSs [1], rotational
invariance [14], reflectional invariance, and complex fuzzy aggregation operators [1].

2.1. Complex Fuzzy Sets

Ramot et al. [1] defined the concept of CFSs as follows.

Definition 1 ([1]). Let X be a universe, D be the set of complex numbers whose modulus is less than or equal
to 1, i.e.,

D =
{

a ∈ C
∣∣|a| ≤ 1

}
,

a complex fuzzy set A defined on X is a mapping: X → D, which can be denoted as below:

A =
{
< x, tA(x) · ejνA(x) > |x ∈ X

}
, (1)
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where j =
√
−1, the amplitude term tA(x) and the phase term νA(x) are both real-valued, and tA(x) ∈ [0, 1].

For convenience, we only consider the complex numbers on D, called complex fuzzy values
(CFVs). Let a = ta · ejνa be a CFV, then the amplitude of a is denoted by ta and the phase of a is denoted
by νa. They are both real-valued, ta ∈ [0, 1]. The modulus of a is ta, denoted by |a|.

Let a = ta · ejνa and b = tb · ejνb be two CFVs, then we have the following two commonly used
binary operations.

(i) Algebraic product:
a · b = ta · tb · ej(νa+νb). (2)

(ii) Average:
a + b

2
=

ta cos νa + tb cos νb
2

+ j
ta sin νa + tb sin νb

2
. (3)

The partial ordering of CFVs is the traditional partial ordering by the modulus of a complex
number, that is, a ≤ b if and only if |a| ≤ |b|, equivalently, ta ≤ tb.

2.2. Rotational Invariance and Reflectional Invariance

Let a = ta · ejνa be a CFV, then we have the following two commonly used unary operations:

(i) the rotation of a by θ radians, denoted Rotθ(a), is defined as

Rotθ(a) = ta · ej(νa+θ); (4)

(ii) the reflection of a, denoted Re f (a), is defined as

Re f (a) = ta · ej−νa . (5)

Then, based on the rotation operation, Dick [14] introduced the concept of rotational invariance
for complex fuzzy operators.

Definition 2 ([14]). A function f : D2 → D is rotationally invariant if and only if

f
(

Rotθ(a), Rotθ(b)
)
= Rotθ

(
f (a, b)

)
, (6)

for any θ.

We extend the above concept to multivariate operators.

Definition 3. Let f : Dn → D be an n-order function. f is rotationally invariant if and only if

f
(

Rotθ(a1), Rotθ(a2), ..., Rotθ(an)
)
= Rotθ

(
f (a1, a2, ..., an)

)
, (7)

for any θ.

In particular, since the periodicity of complex-valued membership grade, that is, Rot2π(x) = x for
any x ∈ D, we have f

(
Rot2π(a1), Rot2π(a2), ..., Rot2π(an)

)
= f (a1, a2, ..., an) = Rot2π

(
f (a1, a2, ..., an)

)
.

This is a special case of rotational invariance.
Similar to the above definition, we introduce the concept of reflectional invariance for complex

fuzzy operators based on the reflection operation.

Definition 4. Let f : Dn → D be an n-order function. f is reflectionally invariant if and only if

f
(

Re f (a1), Re f (a2), ..., Re f (an)
)
= Re f

(
f (a1, a2, ..., an)

)
. (8)
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Rotational invariance and reflectional invariance are intuitive properties for complex fuzzy
operators. It makes a great deal of sense that a operator is invariant under a rotation or a reflection.
If we rotate two vectors by a common value, rotational invariance states that an aggregation of those
vectors will be rotated by the same value, as shown in Figure 1a. If we reflect two vectors, reflectional
invariance states that an aggregation of those vectors will be reflected as well, as shown in Figure 1b.

A

B

f(A,B)

A’

B’

f(A’,B’)

(a)

A

B

f(A,B)

A’

B’
f(A’,B’)

1

1

2

2

3

3

Real

(b)

Figure 1. (a) Rotational invariance and (b) reflectional invariance.

Reflectional invariance and rotational invariance are two properties which are only concerned
with the phase of CFVs.

These two properties of the algebraic product and average operators were examined, and the
results are given as follows.

Theorem 1 ([14]). The algebraic product is not rotationally invariant.

Theorem 2. The algebraic product is reflectionally invariant.

Proof. For any a, b ∈ D, we have

Re f (a) · Re f (b) = ta · ej−νa · tb · ej−νb = ta · tb · ej(−νa−νb),

Re f (a · b) = Re f
(

ta · tb · ej(νa+νb)
)
= ta · tb · ej(−νa−νb),

then Re f (a) · Re f (b) = Re f (a · b).

Theorem 3. The average operator is reflectionally invariant and rotationally invariant.

Proof. (i) Let a = ra + jωa, b = rb + jωb ∈ D. We have

Re f (a) + Re f (b)
2

=
ra + rb

2
+ j
−ωa −ωb

2
=

ra + rb
2
− j

ωa + ωb
2

= Re f (
a + b

2
).

Then, the average operator is reflectionally invariant.
(ii) For any a, b ∈ D, we have

a · ejθ + b · ejθ

2
=

(a + b) · ejθ

2
=

(a + b)
2

· ejθ .
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Then, the average operator is rotationally invariant.

2.3. Complex Fuzzy Aggregation Operators

Ramot et al. [6] defined the aggregation operation on CFSs as vector aggregation:

Definition 5 ([6]). Let A1, A2, ..., An be CFSs defined on X. Vector aggregation on A1, A2, ..., An is defined
by a function v.

v : Dn → D. (9)

The function v produces an aggregate CFS A by operating on the membership grades of A1, A2, ..., An for
each x ∈ X. For all x ∈ X, v is given by

µA(x) = v
(

tA1 · e
jνA1 , tA2 · e

jνA2 , · · · , tAn · e
jνAn ,

)
=

n

∑
i=1

(
wi · tAi · e

jνAi

)
,

(10)

where wi ∈ D for all i, and ∑n
i=1 |wi| = 1.

The complex weights are used in Ramot et al.’s definition for the purpose of maintaining a
definition that is as general as possible. In this paper, we only discuss the complex fuzzy aggregation
operations with real-valued weights.

We notice that the above definition of Ramot et al’s [6] aggregation operator is a complex fuzzy
weighted arithmetic (CFWA) operator. For convenience, let a1, a2, ..., an be CFVs. The CFWA operator
is given as

CFWA(a1, a2, ..., an) =
n

∑
i=1

(
wi · ai

)
, (11)

where wi ∈ [0, 1] for all i, and ∑n
i=1 wi = 1.

When a1, a2, ..., an ∈ [0, 1], the CFWA operator can reduce to a traditional fuzzy weighted
arithmetic operator.

When wi = 1/n for all i, then the CFWA operator is the arithmetic average of (a1, a2, ..., an),
denoted by the complex fuzzy arithmetic average (CFAA) operator. That is,

CFAA(a1, a2, ..., an) =
1
n
·

n

∑
i=1

ai. (12)

When a1, a2, ..., an ∈ [0, 1] and wi = 1/n for all i, the CFAA operator is the arithmetic mean of
numbers on [0,1].

As a special case of the CFWA operator, note that the average operator on CFVs is reflectionally
invariant and rotationally invariant (see Theorem 3). We show that the CFWA operator also possesses
these two properties.

Theorem 4. The CFWA operator is reflectionally invariant and rotationally invariant.
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Proof. (i) Let a1 = ra1 + jωa1 , a2 = ra2 + jωa2 , · · · , an = ran + jωan be CFVs. We have

Re f
(
CFWA(a1, a2, ..., an)

)
= Re f

( n

∑
i=1

(
wi · rai

)
+ j

n

∑
i=1

(
wi ·ωai

))
=

n

∑
i=1

(
wi · rai

)
− j

n

∑
i=1

(
wi ·ωai

)
=

n

∑
i=1

(
wi · (rai −ωai )

)
=

n

∑
i=1

(
wi · Re f (ai)

)
.

Then, the CFWA operator is reflectionally invariant.
(ii) For any CFVs a1, a2, ..., an, we have

CFWA(a1 · ejθ , a2 · ejθ , ..., an · ejθ) = w1 · a1 · ejθ + w2 · a2 · ejθ + ... + wn · an · ejθ

= (w1 · a1 + w2 · a2 + ... + wn · an) · ejθ

= CFWA(a1, a2, ..., an) · ejθ .

Then, the CFWA operator is rotationally invariant.

3. Complex Fuzzy Weighted Geometric Operators

In this section, we introduce the weighted geometric aggregation operators in a complex fuzzy
environment and discuss their fundamental characteristics.

Definition 6. Let a1, a2, ..., an be CFVs, a complex fuzzy weighted geometric (CFWG) operator is defined as:

CFWG(a1, a2, ..., an) =
n

∏
i=1

awi
i , (13)

where wi ∈ [0, 1] for all i, and ∑n
i=1 wi = 1.

Denoting CFWG(a1, a2, ..., an) = t · ejν, we have a weighted geometric aggregation
(WGA) operator on [0,1], that is, t = ∏n

i=1 twi
ai and a weighted arithmetic aggregation (WAA) operator

on R, that is, ν = ∑n
i=1 wi · νai .

When a1, a2, ..., an ∈ [0, 1], the CFWG operator can reduce to a traditional fuzzy weighted
geometric operator.

When wi = 1/n for all i, then t = n
√

ta1 · ta2 · · · tan is the geometric mean of real numbers on unit
interval [0,1], ν = 1

n ·∑
n
i=1 νai is the arithmetic mean of real numbers on R.

When a1, a2, ..., an ∈ [0, 1] and wi = 1/n for all i, the CFWG operator is the geometric mean of real
numbers on unit interval [0,1].

Theorem 5. Let a1, a2, ..., an be CFVs, then the aggregated value CFWG(a1, a2, ..., an) is also a complex
fuzzy value.

Proof. Since |CFWG(a1, a2, ..., an)| = ∏n
i=1 twi

ai , which is a weighted arithmetic aggregation operator
on unit interval [0,1], we have |CFWG(a1, a2, ..., an)| ≤ 1.

Similar to Theorem 4, the CFWA operator is reflectionally invariant and rotationally invariant.
We show that the CFWG operator also possesses these two properties.

Theorem 6. The CFWG operator is reflectionally invariant and rotationally invariant.
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Proof. (i) For any CFVs a1, a2, ..., an, we have

Re f
(
CFWG(a1, a2, ..., an)

)
= Re f

( n

∏
i=1

twi
ai · e

j ∑n
i=1 wi ·νai

)
=

n

∏
i=1

twi
ai · e

j−∑n
i=1 wi ·νai

=
n

∏
i=1

twi
ai · e

j ∑n
i=1 wi ·(−νai )

=
n

∏
i=1

Re f (ai)
wi

= CFWG
(

Re f (a1), Re f (a2), ..., Re f (an)
)
;

(ii) and

CFWG(a1 · ejθ , a2 · ejθ , ..., an · ejθ) = aw1
1 · e

jw1θ · aw1
2 · e

jw2θ · ... · awn
n · ejwnθ

=
( n

∏
i=1

awi
i

)
· ej(w1·θ+w2·θ+...+wn ·θ)

= CFWG(a1, a2, ..., an) · ejθ .

Idempotency, boundedness, and monotonicity are three important properties of aggregation
operators. The CFWG operator satisfies the following properties.

Theorem 7. Let a1, a2, ..., an, b1, b2, ..., bn be CFVs, CFWG weights are real values, that is, wi ∈ [0, 1] for all i,
and ∑n

i=1 wi = 1. Then, we have the following:

(1) (Idempotency): If a1 = a2 = ... = an then

CFWG(a1, a2, ..., an) = a1.

(2) (Amplitude boundedness): ∣∣CFWG(a1, a2, ..., an)
∣∣ ≤ a,

where a = max
i
|ai|.

(3) (Amplitude monotonicity): If |ai| ≤ |bi| i = 1, 2, ..., n, then

|CFWAA(a1, a2, ..., an)| ≤ |CFWAA(b1, b2, ..., bn)|.

Proof. (1) Trivial form the facts that both WAA operator on [0,1] and WGA operator on R satisfy the
property of idempotency.

(2) Trivial form the facts that |CFWG(a1, a2, ..., an)| = ∏n
i=1 twi

ai and WGA operator on R satisfy
the property of boundedness.

(3) Trivial form the facts that |CFWG(a1, a2, ..., an)| = ∏n
i=1 twi

ai and WGA operator on R satisfy
the property of monotonicity.

In this paper, for complex fuzzy aggregation operators, boundedness and monotonicity are
restricted exclusively to the amplitude of CFVs. They are two properties which are only concerned
with the amplitude of CFVs. Idempotency is a property that is concerned with both the phase and
amplitude of CFVs.

It is easy to prove that the CFWA operator satisfies idempotency and amplitude boundedness,
but it does not satisfy the property of amplitude monotonicity.
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Example 1. Let a1 = 0.4, a2 = 0.4 · ej2π/3, b1 = b2 = 0.3 and weights be w1 = w2 = 0.5. Then,

CFWA(a1, a2) = 0.5 · 0.4 + 0.5 · 0.4 · ej2π/3

= 0.2 · ejπ/3

and CFWA(b1, b2) = 0.3. Then, |a1| ≥ |b1|, |a2| ≥ |b2|, but |CFWA(a1, a2)| ≤ |CFWA(b1, b2)|.

4. Complex Fuzzy Ordered Weighted Geometric Operators

Based on the partial ordering of complex numbers, we propose a complex fuzzy ordered weighted
geometric (CFOWG) operator as follows:

Definition 7. Let a1, a2, ..., an be CFVs, a CFOWG operator is defined as

CFOWG(a1, a2, ..., an) =
n

∏
i=1

awi
σ(i), (14)

where wi ∈ [0, 1] for all i, and ∑n
i=1 wi = 1, (σ(1), σ(2), ..., σ(n)) is a permutation of (1, 2, ..., n) such that

|aσ(i−1)| ≥ |aσ(i)| for all i.

Especially when wi = 1/n for all i, then the CFOWG operator is reduced to the CFWG operator.
Similar to Theorem 5, we have the following.

Theorem 8. Let a1, a2, ..., an be CFVs, then the aggregated value CFOWG(a1, a2, ..., an) is also a complex
fuzzy value.

Similar to Theorem 6, the CFWG operator is reflectionally invariant and rotationally invariant.
The CFOWG operator also possesses these two properties.

Theorem 9. The CFOWG operator is reflectionally invariant and rotationally invariant.

Similar to Theorem 7, the CFOWG operator satisfies idempotency, amplitude boundedness,
and amplitude monotonicity.

Theorem 10. Let a1, a2, ..., an, b1, b2, ..., bn be CFVs, CFOWAA weights are real values, that is, wi ∈ [0, 1] for
all i, and ∑n

i=1 wi = 1. Then, we have the following:

(1) (Idempotency): If a1 = a2 = ... = an, then

CFOWG(a1, a2, ..., an) = a1.

(2) (Boundedness): ∣∣CFOWG(a1, a2, ..., an)
∣∣ ≤ a,

where a = max
i
|ai|.

(3) (Monotonicity): If |ai| ≤ |bi| i = 1, 2, ..., n, then

|CFOWG(a1, a2, ..., an)| ≤ |CFWAA(b1, b2, ..., bn)|.

Besides the above properties, the CFOWG operator has the following.

Theorem 11. Let a1, a2, ..., an be CFVs, CFOWG weights are real values, that is, wi ∈ [0, 1] for all i,
and ∑n

i=1 wi = 1. Then, we have the following:
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(1) If w = (1, 0, ..., 0), then
|CFOWG(a1, a2, ..., an)| = max

i
|ai|;

(2) If w = (0, 0, ..., 1), then ∣∣CFOWG(a1, a2, ..., an)
∣∣ = min

i
|ai|;

(3) If wi = 1, wk = 0, k 6= i, then ∣∣CFOWG(a1, a2, ..., an)
∣∣ = |aσ(i)|,

where aσ(i) is the i-th (modulus-based) largest of a1,a2, ...,an.

Now we give a brief summary of the properties of the CFWG and CFOWG operators with
real-valued weights. The results are summarized in Table 1, in which

√
and × represent that the

corresponding property holds and does not hold, respectively.

Table 1. Properties of the complex fuzzy aggregation operators.
√

and × represent that the
corresponding property holds and does not hold, respectively.

Idempotency Amplitude
Boundedness

Amplitude
Monotonicity

Reflectional
Invariance

Rotational
Invariance

CFAA
√ √

×
√ √

CFWA
√ √

×
√ √

CFWG
√ √ √ √ √

CFOWG
√ √ √ √ √

5. Complex Fuzzy Values and Pythagorean Fuzzy Numbers

Yager and Abbasov [25] showed that Pythagorean membership grades can be expressed using
complex numbers, called Π− i numbers, which belong to the upper-right quadrant of the complex
unit disk. Essentially, the CFWAA and CFOWAA operators are used to deal with special complex
numbers, which belong to the complex unit disk.

In this section, we consider the CFWG and CFOWG operators in the domain of Π− i numbers.
We first recall the concepts of Pythagorean fuzzy sets (PFSs) and Π− i numbers.

Definition 8 ([25]). Let X be a universe. A PFS A is defined by

A =
{
< x, pA(x), νA(x),>

∣∣x ∈ X
}

, (15)

where pA(x) ∈ [0, 1] and νA(x) ∈ [0, 1] respectively represent the membership grade and nonmembership grade
of the element x to set A, such that

0 ≤
(

pA(x)
)2

+
(
νA(x)

)2 ≤ 1

for all x ∈ X. The degree of indeterminacy of the element x to set A is πA(x), defined by

πA(x) =
√

1−
(

pA(x)
)2 −

(
νA(x)

)2.

For convenience, Zhang and Xu [49] referred to
(

pA(x), νA(x)
)

as a Pythagorean fuzzy number
(PFN) simply denoted by a = (pa, νa), where pa ∈ [0, 1], νa ∈ [0, 1] and (pa)2 + (νa)2 ≤ 1.

Yager and Abbasov [25] discussed the relationship between Pythagorean membership grades
and complex numbers. They showed that the complex numbers of the form z = r · ejθ with conditions



Symmetry 2018, 10, 251 10 of 14

r ∈ [0, 1] and θ ∈ [0, π/2] can be interpretable as PFNs (r cos θ, r sin θ). They referred to these complex
numbers as “Π− i numbers”, which are complex numbers in the upper-right quadrant of the complex
unit disk.

As explained in [25], we should consider which aggregation operation is closed under
Π− i numbers.

Let us consider the closeness of Π− i numbers under the CFWG and CFOWG operations. For the
CFWG operator, we have the following result.

Theorem 12. Let z1, z2, ..., zn be Π− i numbers, and the CFWG weights are real values, that is, wi ∈ [0, 1] for
all i, and ∑n

i=1 wi = 1. Then, the aggregated value CFWG(z1, z2, ..., zn) is also a Π− i number.

Proof. Denoting CFWG(z1, z2, ..., zn) = t · ejν = ∏n
i=1 twi

zi · e
j ∑n

i=1 wi ·νzi , from Theorem 2, we have
t =

∣∣CFWG(z1, z2, ..., zn)
∣∣ ≤ 1.

Since ν = ∑n
i=1 wi · νzi is a weighted geometric aggregation (WGA) operator of real numbers on

[0, π/2], then we have ν ∈ [0, π/2]. Thus, CFWG(z1, z2, ..., zn) is also a Π− i number.

Similar to the above Theorem, we have the following.

Theorem 13. Let z1, z2, ..., zn be Π− i numbers, and the CFOWG weights are real values, that is, wi ∈ [0, 1]
for all i, and ∑n

i=1 wi = 1. Then, the aggregated value CFOWG(z1, z2, ..., zn) is also a Π− i number.

The above theorems show us that the CFWG and the CFOWG operators are closed under Π− i
numbers. When PFNs are interpreted as Π− i numbers, then we can aggregate these PFNs to a PFN
by using the CFWG or CFOWG operator.

From the above theorems, the CFWG and the CFOWG operators are closed on the upper-right
quadrant of complex unit disk.

Consider other quadrants of the complex unit disk. Let

Dk =
{

z = r · ejθ∣∣r ∈ [0, 1], θ ∈ [
(k− 1)π

2
,

kπ

2
]
}

for k = 1 to 4. D1 is the set of Π− i numbers.
Now, we discuss the closeness of the CFWG and the CFOWG operators on other quadrants of the

complex unit disk. Plainly, we have the following.

Theorem 14. For any k ∈ {1, 2, 3, 4}, if z1, z2, ..., zn ∈ Dk, and the weights are real values, that is, wi ∈ [0, 1]
for all i, and ∑n

i=1 wi = 1. Then, we have

CFWG(z1, z2, ..., zn) ∈ Dk,

CFOWG(z1, z2, ..., zn) ∈ Dk.

Proof. Similar to Theorem 13.

Theorem 15. For any k ∈ {1, 2, 3, 4}, if z1, z2, ..., zn, y1, y2, ..., yn ∈ Dk, and the weights are real values,
that is, wi ∈ [0, 1] for all i, and ∑n

i=1 wi = 1. Then, we have the following:

(1) (Idempotency): If z1 = z2 = ... = zn, then

CFWG(z1, z2, ..., zn) = z1,

CFOWG(z1, z2, ..., zn) = z1.
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(2) (Amplitude boundedness): ∣∣CFWG(z1, z2, ..., zn)
∣∣ ≤ z,∣∣CFOWG(z1, z2, ..., zn)
∣∣ ≤ z,

where z = max
i
|zi|.

(3) (Amplitude monotonicity): If |zi| ≤ |yi| i = 1, 2, ..., n, then

|CFWG(a1, a2, ..., an)| ≤ |CFWG(y1, y2, ..., yn)|,

|CFOWG(a1, a2, ..., an)| ≤ |CFWG(y1, y2, ..., yn)|.

Proof. Similar to Theorem 7.

6. Example Application

In this section, we consider a target location application of the complex fuzzy aggregation operator.
We do not intend to show the potential advantages of using complex fuzzy aggregation methods in
comparison with existing alternative aggregation approaches in this section.

Assume the observer position is fixed. Using a position sensor and an angular sensor, the observer
measures the distance and angle of the fixed target. To improve the target location accuracy,
the observer repeatedly measures the same target. Then, the target position is estimated according to
aggregation theory.

Assume n measurements
(
(d1, θ1), (d2, θ2), ..., (dn, θn)

)
have been measured by the observer.

The target position is estimated in the following five stages, as illustrated in Figure 2.

Step 1 Complexification of the measured results; each measurement is represented as ci = di · eθi .
Step 2 (Fuzzification) Normalize the amplitudes of all measurements. Let d = maxi di, for each ci,

the normalized result is ai = ci/d, where tai = di/d.
Step 3 (Aggregation) Produce an aggregate result. For simplicity, using the CFWG operator with

weights (1/n, 1/n, ..., 1/n). We obtain

a =
n

∏
i=1

a1/n
i , (16)

where ta = n
√

ta1 · ta2 · · · tan and νa =
1
n ·∑

n
i=1 θi.

Step 4 (Defuzzification) Calculate c = a · d, where tc = ta · d.
Step 5 Decomplexification (or sometimes “realification”) of c. We get the target position (p, ν),

where p = tc, ν = νa.

Aggregation Weighs

FuzzificationComplexification

DefuzzificationDecomplexificationOutput

Inputs

Figure 2. A simple method of target location based on complex fuzzy aggregation.
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Numerical Example:Assume that the observer obtains five measurements as follows:(
(865, 24◦), (867, 25◦), (871, 24◦), (866, 25◦), (869, 23◦)

)
,

where (d, θ) means that the target lies on the θ degrees east of south of the observer and d metres from
the observer. Then,

Step 1 Complexifications of the measured results are calculated as(
(865 · ej2π336/360), (867 · ej2π335/360), (871 · ej2π336/360), (866 · ej2π335/360), (869 · ej2π337/360)

)
.

Step 2 Normalizations of the amplitudes of all measurements are calculated as(
0.9931 · ej2π336/360, 0.9954 · ej2π335/360, 1 · ej2π336/360, 0.9943 · ej2π335/360, 0.9977 · ej2π337/360).

Step 3 Aggregation of CFVs is calculated as

0.9961 · ej2π335.8/360,

where the weights are (1/5, 1/5, ..., 1/5).
Step 4 Defuzzification of the aggregate result is calculated as 867.6 · ej2π335.8/360.
Step 5 Decomplexification of the above result is calculated as (867.6, 24.2).

Then, the target position is estimated at (867.6, 24.2). That is, it lies 24.2 degrees east of south of
the observer and 867.6 m from the observer.

Note that we do not discuss how to choose complex fuzzy aggregation functions, nor their
weights.

7. Conclusions

In this paper, we propose two complex fuzzy aggregation operators: the CFWG and CFOWG
operators. Their main properties are summarized in Table 1. In particular, both the CFWG and the
CFOWG operators are reflectionally invariant and rotationally invariant. We also showed that the
CFWG and the CFOWG operators are closed under Π− i numbers.

As we know, complex data are frequently encountered in many different applications, such as
engineering, management, finance, and medicine. CFSs are suitable to represent information with
uncertainty and periodicity simultaneously. Complex fuzzy information aggregation techniques may
be useful in these applications.
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