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Abstract: The main topic in this article is to define and examine new sequence spaces bs(F̂(s, r))
and cs(F̂(s, r))), where F̂(s, r) is generalized difference Fibonacci matrix in which s, r ∈ R\ {0}.
Some algebric properties including some inclusion relations, linearly isomorphism and norms defined
over them are given. In addition, it is shown that they are Banach spaces. Finally, the α-, β- and
γ-duals of the spaces bs(F̂(s, r)) and cs(F̂(s, r)) are appointed and some matrix transformations of
them are given.

Keywords: Fibonacci numbers; Fibonacci double band matrix; sequence spaces; difference matrix;
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1. Introduction

Italian mathematician Leonardo Fibonacci found the Fibonacci number sequence. The Fibonacci
sequence actually originated from a rabbit problem in his first book “Liber Abaci”. This sequence is
used in many fields. The Fibonacci sequence is as follows:

1, 1, 2, 3, 5, 8, 13, 21, 34, ....

The Fibonacci sequence, which is denoted by ( fn), is defined as the linear reccurence relation

fn = fn−1 + fn−2.

f0 = 1, f1 = 1 and n ≥ 2. The golden ratio is

lim
n→∞

fn+1

fn
=

1 +
√

5
2

= ϕ (Golden Ratio).

The Golden Ratio, which is also known outside the academic community, is used in many fields
of science.

Let w be the set of all real valued sequences. Any subspace of w is called the sequence space.
c, c0 and `∞ are called as sequences space convergent, convergent to zero and bounded, respectively.
In addition to these representations, `1, bs and cs are sequence spaces, which are called absolutely
convergent, bounded and convergent series, respectively.

Let us take a two-indexed real valued infinite matrix A = (ank), where ank is real number and
k, n ∈ N. A is called a matrix transformation from X to Y if, for every x = (xk) ∈ X, sequence
Ax = {An(x)} is A transform of x and in Y, where

An(x) = ∑
k

ankxk (1)
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and Equation (1) converges for each n ∈ N.
Let λ be a sequence space and K be an infinite matrix. Then, the matrix domain λK is introduced by

λK = {t = (tk) ∈ w : Kt ∈ λ} . (2)

Here, it can be seen that λK is a sequence space.
For calculation of any matrix domain of a sequence, a triangle infinite matrix is used by

many authors. So many sequence spaces have been recently defined in this way. For more details, see
[1–22].

Kara [23] recently introduced the F̂ which is derived from the Fibonacci sequence ( fn) and
defined the new sequence spaces `p(F̂) and `∞(F̂) by using sequence spaces `p and `∞, respectively,
where 1 ≤ p < ∞. The sequence space `p(F̂) has been defined as:

`p(
∧
F) =

{
x ∈ w : F̂x ∈ `p

}
, (1 ≤ p < ∞),

where F̂ = ( fnk) defined by the sequence ( fn) as follows:

fnk :=


− fn+1

fn
, k = n− 1,

fn
fn+1

, k = n,
0, 0 ≤ k < n− 1 or k > n,

for all k, n ∈ N. In addition, Kara et al. [24] have characterized some class of compact operators on the
spaces `p(F̂) and `∞(F̂), where 1 ≤ p < ∞.

Candan [25] introduced c(F̂(s, r)) and c0(F̂(s, r)). Later, Candan and Kara [15] have investigated
the sequence spaces `p(F̂(s, r)) in which 1 ≤ p ≤ ∞.

The α-, β- and γ-duals Pα, Pβ and Pγ of a sequence spaces P are defined, respectively, as

Pα = {a = (ak) ∈ w : at = (aktk) ∈ `1 for all t ∈ P} ,

Pβ = {a = (ak) ∈ w : at = (aktk) ∈ cs for all t ∈ P} ,

Pγ = {a = (ak) ∈ w : at = (aktk) ∈ bs for all t ∈ P} ,

respectively.
In Section 2, sequence space bs(F̂) and cs(F̂) are defined and some algebric properties of them are

investigated. In the last section, the α-, β- and γ-duals of the spaces bs(F̂) and cs(F̂) are found and
some matrix tranformations of them are given.

2. Generalized Fibonacci Difference Spaces of bs and cs Sequences

In this section, spaces bs(F̂(s, r)) and cs(F̂(s, r)) of generalized Fibonacci difference of sequences,
which constitutes bounded and convergence series, respectively, will be defined. In addition, some
algebraic properties of them are investigated.

Now, we introduce the sets bs(F̂(s, r)) and cs(F̂(s, r)) as the sets of all sequences whose
F̂(s, r) = { fnk(s, r)} transforms are in the sequence space bs and cs,

bs(F̂(s, r)) =

{
x = (xk) ∈ w : sup

n∈N

∣∣∣∣∣ n

∑
k=0

(
s

fk
fk+1

xk + r
fk+1

fk
xk−1

)∣∣∣∣∣ < ∞

}
,

cs(F̂(s, r)) =

{
x = (xk) ∈ w :

n

∑
k=0

(
s

fk
fk+1

xk + r
fk+1

fk
xk−1

)
∈ c

}
,
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where F̂(s, r) = { fnk(s, r)} is

fnk(s, r) :=


r fn+1

fn
, k = n− 1,

s fn
fn+1

, k = n,
0, k < n− 1 or 0 ≤ k > n,

(3)

for all k, n ∈ N where s, r ∈ R\ {0}. Actually, by using Equation (2), we can get

bs(F̂(s, r)) = (bs)F̂(s,r) and cs(F̂(s, r)) = (cs)F̂(s,r).

With a basic calculation, we can find the inverse matrix of F̂(s, r) = { fnk(s, r)}. The inverse matrix
of F̂(s, r) = { fnk(s, r)} is F̂−1(s, r) =

(
f−1
nk (s, r)

)
such that

f−1
nk (s, r) =

{
1
s (−

r
s )

n−k f 2
n+1

fk fk+1
, 0 ≤ k < n,

0, k > n,
(4)

for all k, n ∈ N. If y = (yn) is F̂(s, r)-transform of a sequence x = (xn), then the below equality is
justified:

yn = (F̂(s, r)x)n =

{
sx0, n = 0,
s fn

fn+1
xn + r fn+1

fn
xn−1, n ≥ 1,

(5)

for all n ∈ N. In this situation, we see that xn = F̂−1(s, r)y, i.e.,

xn =
n

∑
k=0

1
s
(− r

s
)n−k f 2

n+1
fk fk+1

yk (6)

for all n ∈ N.

Theorem 1. bs(F̂(s, r)) is the linear space with the co-ordinatewise addition and scalar multiplation.

Proof. We omit the proof because it is clear and easy.

Theorem 2. cs(F̂(s, r)) is the linear space with the co-ordinatewise addition and scalar multiplation.

Proof. We omit the proof because it is clear and easy.

Theorem 3. The space bs(F̂(s, r)) is a normed space with

‖x‖bs(F̂(s,r)) = sup
n∈N

∣∣∣∣∣ n

∑
k=0

(
s

fk
fk+1

xk + r
fk+1

fk
xk−1

)∣∣∣∣∣ . (7)

Proof. It is clear that space bs(F̂(s, r)) ensures normed space conditions.

Theorem 4. The space cs(F̂(s, r)) is a normed space with norm Equation (7).

Proof. It is clear that normed space conditions are ensured by space cs(F̂(s, r)).

Theorem 5. bs(F̂(s, r)) is linearly isomorphic as isometric to the space bs, that is, bs(F̂(s, r)) ∼= bs.

Proof. For proof, we must demonstrate that bijection and linearly transformation T exist between the
space bs(F̂(s, r)) and bs. Let us take the transformation T : bs(F̂(s, r))→ bs mentioned above with the
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help of Equation (5) by Tx = F̂(s, r)x. We omit the details that T is both linear and injective because
the demonstration is clear.

Let us prove that transformation T is surjective. For this, we get y = (yn) ∈ bs.
In this case, by using Equations (6) and (7), we find

‖x‖bs(F̂(s,r)) = sup
n∈N

∣∣∣∣∣ n

∑
k=0

(
s

fk
fk+1

xk + r
fk+1

fk
xk−1

)∣∣∣∣∣
= sup

n∈N

∣∣∣∣∣ n

∑
k=0

[
s

fk
fk+1

(
k

∑
i=0
− 1

s
(− r

s
)k−i f 2

k+1
fi fi+1

yi

)

+r
fk+1

fk

(
k−1

∑
i=0
− 1

s
(− r

s
)k−i−1 f 2

k
fi fi+1

yi

)]∣∣∣∣∣
= sup

n∈N

∣∣∣∣∣ n

∑
k=0

yk

∣∣∣∣∣ = ‖y‖bs .

This result shows that x ∈ bs(F̂(s, r)). That is, T is surjective. At the same time, this result also
indicates that T is preserving the norm. Therefore, the sequence spaces bs(F̂(s, r)) and bs are linearly
isomorphic as isometric.

Theorem 6. The sequence space cs(F̂(s, r)) is linearly isomorphic as isometric to the space cs, that is,
cs(F̂(s, r)) ∼= cs.

Proof. If we write cs instead of bs and cs(F̂(s, r)) instead of bs(F̂(s, r)) in Theorem 5, the proof will be
demonstrated.

Theorem 7. The space bs(F̂(s, r)) is a Banach space with the norm, which is given in Equation (7).

Proof. We can easily see that norm conditions are ensured. Let us take that xi = (xi
k) is a Cauchy

sequence in bs(F̂(s, r)) for all i ∈ N. By using Equation (5), we have

yi
k = s

fk
fk+1

xi
k + r

fk+1
fk

xi
k−1

for all i, k ∈ N. Since xi = (xi
k) is a Cauchy sequence, for every ε > 0, there exists n0 = n0(ε) such that

∥∥∥xi − xm
∥∥∥

bs(F̂(s,r))
= sup

n∈N

∣∣∣∣∣ n

∑
k=0

(
s

fk
fk+1

(xi
k − xm

k ) + r
fk+1

fk
(xi

k−1 − xm
k−1)

)∣∣∣∣∣
= sup

n∈N

∣∣∣∣∣ n

∑
k=0

(
yi

k − ym
k

)∣∣∣∣∣ = ∥∥∥yi − ym
∥∥∥

bs
< ε

for all i, m ≥ n0. Since bs is complete, yi → y (i → ∞) such that y ∈ bs exist and since the sequence
spaces bs(F̂(s, r)) and bs are linearly isomorphic as isometric bs(F̂(s, r)) is complete. Consequently,
bs(F̂(s, r)) is a Banach space.

Theorem 8. The space cs(F̂(s, r)) is a Banach space with the norm, which is given in Equation (7).

Proof. We can easily see that norm conditions are ensured. Let us take that xi = (xi
k) is a Cauchy

sequence in cs(F̂(s, r)) for all i ∈ N. By using Equation (5), we have

yi
k = s

fk
fk+1

xi
k + r

fk+1
fk

xi
k−1
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for all i, k ∈ N. Since xi = (xi
k) is a Cauchy sequence, for every ε > 0, there exists n0 = n0(ε) such that

∥∥∥xi − xm
∥∥∥

cs(F̂(s,r))
= sup

n∈N

∣∣∣∣∣ n

∑
k=0

(
s

fk
fk+1

(xi
k − xm

k ) + r
fk+1

fk
(xi

k−1 − xm
k−1)

)∣∣∣∣∣
= sup

n∈N

∣∣∣∣∣ n

∑
k=0

(
yi

k − ym
k

)∣∣∣∣∣ = ∥∥∥yi − ym
∥∥∥

cs
< ε

for all i, m ≥ n0. Since cs is complete, yi → y (i→ ∞) such that y ∈ cs exists and since the sequence spaces
cs(F̂(s, r)) and cs are linearly isomorphic as isometric cs(F̂(s, r)) is complete. Consequently, cs(F̂(s, r)) is
a Banach space.

Now, let A = (ank) be an arbitrary infinite matrix and list the following:

sup
n∈N

∑
k
|ank| < ∞, (8)

lim
k

ank = 0 for each n ∈ N, (9)

sup
m

∑
k

∣∣∣∣∣ m

∑
n=0

(ank − an,k+1)

∣∣∣∣∣ < ∞, (10)

lim
n ∑

k
ank = α for each k ∈ N, α ∈ C, (11)

sup
n

∑
k

∣∣ank − an,k+1
∣∣ < ∞, (12)

lim
n

ank = αk for each k ∈ N, αk ∈ C, (13)

sup
N,K∈F

∣∣∣∣∣ ∑n∈N
∑
k∈K

(ank − an,k+1)

∣∣∣∣∣ < ∞, (14)

sup
N,K∈F

∣∣∣∣∣ ∑n∈N
∑
k∈K

(ank − an,k−1)

∣∣∣∣∣ < ∞, (15)

lim
n
(ank − an,k+1) = α for each k ∈ N, α ∈ C , (16)

lim
n→∞ ∑

k

∣∣ank − an,k+1
∣∣ = ∑

k

∣∣∣ lim
n→∞

(ank − an,k+1)
∣∣∣ , (17)

sup
n

∣∣∣∣limk ank

∣∣∣∣ < ∞, (18)

lim
n→∞∑

k

∣∣ank − an,k+1
∣∣ = 0 uniformly in n, (19)

lim
m ∑

k

∣∣∣∣∣ m

∑
n=0

(ank − an,k+1)

∣∣∣∣∣ = 0, (20)

lim
m ∑

k

∣∣∣∣∣ m

∑
n=0

(ank − an,k+1)

∣∣∣∣∣ = ∑
k

∣∣∣∣∣∑n
(ank − an,k+1)

∣∣∣∣∣ , (21)

sup
N,K∈F

∣∣∣∣∣ ∑n∈N
∑
k∈K

[(ank − an,k+1)− (an−1,k − an−1,k+1)]

∣∣∣∣∣ < ∞, (22)

sup
m∈N

∣∣∣∣∣limk m

∑
n=0

ank

∣∣∣∣∣ < ∞, (23)
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∃αk ∈ C 3 ∑
n

ank = αk for each k ∈ N, (24)

sup
N,K∈F

∣∣∣∣∣ ∑n∈N
∑
k∈K

[(ank − an−1,k)− (an,k−1 − an−1,k−1)]

∣∣∣∣∣ < ∞, (25)

where F denote the collection of all finite subsets of N.
Now, we can give some matrix transformations in the following Lemma for the next step that we

will need in the inclusion Theorems.

Lemma 1. Let A = (ank) be an arbitrary infinite matrix. Then,

(1) A = (ank) ∈ (bs, `∞) iff Equations (9) and (12) hold (Stieglitz and Tietz [26]),
(2) A = (ank) ∈ (cs, c) iff Equations (12) and (13) hold (Wilansky [27]),
(3) A = (ank) ∈ (bs, `1) iff Equations (9) and(14) hold (K.-G. Grosse-Erdman [28]).
(4) A = (ank) ∈ (cs, `1) iff Equation (15) holds (Stieglitz and Tietz [26]).
(5) A = (ank) ∈ (bs, c) iff Equations (9), (16) and (17) hold (K.-G. Grosse-Erdman [28]).
(6) A = (ank) ∈ (cs, `∞) iff Equations (12) and (18) hold (Stieglitz and Tietz [26]).
(7) A = (ank) ∈ (bs, c0) iff Equations (9) and (19) hold (Stieglitz and Tietz [26]).
(8) A = (ank) ∈ (bs, cs0) iff Equations (9) and (20) hold (Zeller [29]).
(9) A = (ank) ∈ (bs, cs) iff Equations (9) and (21) hold (Zeller [29]).

(10) A = (ank) ∈ (bs, bv) iff Equations (9) and (22) hold (Zeller [29]).
(11) A = (ank) ∈ (bs, bs) iff Equations (9) and (10) hold (Zeller [29]).
(12) A = (ank) ∈ (cs, cs) iff Equations (10) and (11) hold (Hill, [30]).
(13) A = (ank) ∈ (bs, bv0) iff Equations (12), (19) and (22) hold (Stieglitz and Tietz [26]).
(14) A = (ank) ∈ (cs, c0) iff Equation (12) holds and Equation (13) also holds with αk = 0 for all k ∈ N

(Dienes [31]).
(15) A = (ank) ∈ (cs, bs) iff Equations (10) and (23) hold (Zeller [29]).
(16) A = (ank) ∈ (cs, cs0) iff Equation (10) holds and Equation (24) also holds with αk = 0 for all k ∈ N

(Zeller [29]).
(17) A = (ank) ∈ (cs, bv) iff Equation (25) holds (Zeller [29]).
(18) A = (ank) ∈ (cs, bv0) iff Equation (25) holds and Equation (13) also holds with αk = 0 for all k ∈ N

(Stieglitz and Tietz [26]).

Theorem 9. The inclusion bs ⊂ bs(F̂(s, r)) is valid.

Proof. Let x ∈ bs. We must demonstrate that x ∈ bs(F̂(s, r)). It means that F̂(s, r) ∈ (bs, bs).
For F̂(s, r) ∈ (bs, bs), F̂(s, r) must ensure to the conditions of (11) of Lemma 1. We see that

lim
k

fnk(s, r) = 0 for each n ∈ N.

The other condition also holds as follows:

sup
m

∑
k

∣∣∣∣∣ m

∑
n=0

( fnk(s, r)− fn,k+1(s, r))

∣∣∣∣∣ = sup
m

lim
p

(
|s + r|
f1. f2

+
|s + r|
f2. f3

+ ... +
|s + r|

fp+1. fp+2

)

=
17
10
|s + r| < ∞.

Consequently, the conditions of (11) of Lemma 1 hold. The proof is complete.

Theorem 10. If |r/s| < 1/4, then bs(F̂(s, r)) ⊂ `∞ is valid.

Proof. Let x ∈ bs(F̂(s, r)). Then, y = F̂(s, r)x ∈ bs. We must demonstrate that x = F̂−1(s, r)y ∈ `∞.
That is, F̂−1(s, r) ∈ (bs, `∞). For F̂−1(s, r) ∈ (bs, `∞), F̂−1(s, r) must satisfy the conditions of (1) of
Lemma 1. It is clear that

lim
k

f−1
nk (s, r) = 0 for each n ∈ N.
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The other condition is also holds as follows:

sup
n

∑
k

∣∣∣( f−1
nk (s, r)− f−1

n,k+1(s, r))
∣∣∣ ≤ 2sup

n
∑
k

∣∣∣( f−1
nk (s, r)

∣∣∣− ∣∣∣ r
s

∣∣∣ (26)

≤ 4
s ∑

k

(
4r
s

)k
< ∞.

Consequently, the conditions of (1) of Lemma 1 hold. The proof is complete.

Theorem 11. The inclusion cs ⊂ cs(F̂(s, r)) is valid.

Proof. Let x ∈ cs. We must demonstrate that x ∈ cs(F̂(s, r)). It means that F̂(s, r) ∈ (cs, cs).
For F̂(s, r) ∈ (cs, cs), F̂(s, r) must satisfy the conditions of (12) of Lemma 1. Equation (10) has
been satisfied in Theorem 9. Now, we must demonstrate Equation (11). For every k ∈ N,

lim
n→∞ ∑

k
fnk(s, r) = lim

n
(s

fn

fn+1
+ r

fn+1

fn
) =

s
ϕ
+ rϕ = `

such that ` ∈ C exist. Consequently, the conditions of (12) of Lemma 1 hold. The proof is complete.

Theorem 12. If |r/s| < 1/4, then cs(F̂(s, r)) ⊂ c is valid.

Proof. Let x ∈ cs(F̂(s, r)). Then, y = F̂(s, r)x ∈ cs. We must demonstrate that x = F̂−1(s, r)y ∈ c.
That is, F̂−1(s, r) ∈ (cs, c). For F̂−1(s, r) ∈ (cs, c), F̂−1(s, r) must satisfy the conditions of (2) of
Lemma 1. Equation (12) has been satisfied in Theorem 10. Now, we must demonstrate Equation (13).
For each k ∈ N,

lim
n

f−1
nk (s, r) ≤ lim

n

∣∣∣ f−1
nk (s, r)

∣∣∣ = lim
n

∣∣∣∣∣∣ fn+1

s fn

(
− r

s

)n−k
fn+1
fk+1

fk
fn

∣∣∣∣∣∣ = lim
n

∣∣∣∣∣∣ fn+1

s fn

n−1

∏
i=k

r fi+2
fi+1

s fi
fi+1

∣∣∣∣∣∣
≤ lim

n

fn+1

|s| fn

n−1

∏
i=k

∣∣∣∣∣∣
supi∈N r fi+2

fi+1

infi∈N s fi
fi+1

∣∣∣∣∣∣ ≤ lim
n

fn+1

|s| fn

(
4r
s

)n−k
=

ϕ

|s| .0 = 0.

Thus, Equation (13) is also satisfied.

Theorem 13. The inclusion cs(F̂(s, r)) ⊂ bs(F̂(s, r)) is valid.

Proof. Let x ∈ cs(F̂(s, r)). Then, y = F̂(s, r)x ∈ cs. Hence, ∑k F̂(s, r)x ∈ c. c ⊂ `∞, so it becomes
∑k F̂(s, r)x ∈ `∞. That is, F̂(s, r)x ∈ bs. Hence, x ∈ bs(F̂(s, r)). Consequently, cs(F̂(s, r)) ⊂ bs(F̂(s, r)).

Before giving the corollary about the Schauder basis for the space cs(F̂(r, s)), let us define the
Schauder basis which was introduced by J. Schauder in 1927. Let (X, ‖.‖) be normed space and be a

sequence (ak) ∈ X . There exists a unique sequence (λk) of scalars such that x =
∞
∑

k=0
λkak, and

lim
n→∞

∥∥∥∥∥x−
n

∑
k=0

λkak

∥∥∥∥∥ = 0.

Then, (ak) is called a Schauder basis for X.

Now, we can give the corollary about Schauder basis.
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Corollary 1. Let us sequence b(k) =
{

b(k)n

}
n∈N

defined in the cs(F̂(s, r)) such that

b(k)n =


1
s (−

r
s )

n−k f 2
n+1

fk fk+1
, n > k,

1
s

fk+1
fk

, n = k,
0, n < k.

Then, sequence
{

b(k)
}

n∈N
is a basis of cs(F̂(s, r)) and every sequence x ∈ cs(F̂(s, r)) has a unique

representation x = ∑
k

ykbk, where yk = (F̂(s, r)x)k.

3. The α-, β- and γ-Duals of the Spaces bs(F̂(s, r)) and cs(F̂(s, r)) and Some Matrix Transformations

In this section, the alpha-, beta-, gamma-duals of the spaces bs(F̂(s, r)) and cs(F̂(s, r)) are
determined and characterized the classes of infinite matrices from the space bs(F̂(s, r)) and cs(F̂(s, r))
to some other sequence spaces.

Now, we give the two lemmas to prove the theorems that will be given in the next stage.

Lemma 2. Suppose that a = (an) ∈ w and the infinite matrix B = (bnk) is defined by Bn = an(F̂−1(s, r))n,
that is,

bnk =

{
an f−1

nk (s, r), 0 ≤ k < n,
0, k > n,

for all k, n ∈ N, δ ∈ {bs, cs}. Then, a ∈
{

δ(F̂(s, r))
}α iff B ∈ (δ, `1).

Proof. Let a = (an) and x = (xn) be an arbitrary subset of w. y = (yn) such that y = F̂(s, r)x, which is
defined by Equation (5). Then,

anxn = an(F̂−1(s, r)y)n = (By)n (27)

for all n ∈ N. Hence, we obtain by Equation (5) that ax = (anxn) ∈ `1 with x = (xn) ∈ δ(F̂(s, r)) iff
By ∈ `1 with y ∈ δ. That is, B ∈ (δ, `1).

Lemma 3. Let [32] C = (cnk) be defined via a sequence a = (ak) ∈ w and the inverse matrix V = (vnk) of
the triangle matrix U = (unk) by

cnk =

{
∑n

j=k ajvjk, 0 ≤ k < n,
0, k > n,

for all k, n ∈ N. Then, for any sequence space λ,

λ
γ
U = {a = (ak) ∈ w : C ∈ (λ, `∞)} ,

λ
β
U = {a = (ak) ∈ w : C ∈ (λ, c)} .

If we consider Lemmas 1–3 together, the following is obtained.

Corallary 1. Let B = (bnk) and C = (cnk) such that

bnk =

{
an f−1

nk (s, r), 0 ≤ k < n
0, k > n

and cnk =
n

∑
j=k

1
s
(− r

s
)j−k

f 2
j+1

fk fk+1
aj.
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If we take t1, t2, t3, t4, t5, t6, t7 and t8 as follows:

t1 =

{
a = (ak) ∈ w : sup

N,K∈F

∣∣∣∣∣ ∑n∈N
∑
k∈K

(bnk − bn,k+1)

∣∣∣∣∣ < ∞

}
,

t2 =

{
a = (ak) ∈ w : sup

N,K∈F

∣∣∣∣∣ ∑n∈N
∑
k∈K

(bnk − bn,k−1)

∣∣∣∣∣ < ∞

}
,

t3 =

{
a = (ak) ∈ w : lim

k→∞
cnk = 0

}
,

t4 =
{

a = (ak) ∈ w : ∃α ∈ C 3 lim
n→∞

(cnk − cn,k+1) = α
}

,

t5 =

{
a = (ak) ∈ w : lim

n→∞ ∑
k

∣∣cnk − cn,k+1
∣∣ = ∑

k

∣∣∣ lim
n→∞

(cnk − cn,k+1)
∣∣∣} ,

t6 =
{

a = (ak) ∈ w : ∃α ∈ C lim
n→∞

cnk = α, for all k ∈ N
}

,

t7 =

{
a = (ak) ∈ w : sup

n∈N
∑
k

∣∣cnk − cn,k+1
∣∣ < ∞

}
,

t8 =

{
a = (ak) ∈ w : sup

n∈N

∣∣∣∣limk cnk

∣∣∣∣ < ∞

}
.

Then, the following statements hold:

(1) {bs(F̂(s, r))}α = t1,
(2) {cs(F̂(s, r))}α = t2,
(3) {bs(F̂(s, r))}β = t3 ∩ t4 ∩ t5,
(4) {cs(F̂(s, r))}β = t6 ∩ t7,
(5) {bs(F̂(s, r))}γ = t3 ∩ t7,
(6) {cs(F̂(s, r))}γ = t7 ∩ t8.

Theorem 14. Let λ ∈ {bs, cs} and µ ⊂ w. Then, A = (ank) ∈ (λ(F̂(s, r)), µ) iff

Dm = (d(m)
nk ) ∈ (λ, c) for all n ∈ N, (28)

D = (dnk) ∈ (λ, µ), (29)

where

d(m)
nk =

 ∑m
j=k

1
s (−

r
s )

j−k f 2
j+1

fk fk+1
anj, 0 ≤ k < m,

0, k > m,
(30)

and

dnk =
∞

∑
j=k

1
s
(− r

s
)j−k

f 2
j+1

fk fk+1
anj (31)

for all k, m, n ∈ N.

Proof. To prove the necessary part of the theorem, let us suppuse that A = (ank) ∈ (λ(F̂(s, r), µ) and
x = (xk) ∈ λ(F̂(s, r)). By using Equation (6), we find

m

∑
k=0

ankxk =
m

∑
k=0

ank

k

∑
j=o

1
s
(− r

s
)k−j f 2

k+1
f j f j+1

yj (32)

=
m

∑
k=0

m

∑
j=k

1
s
(− r

s
)j−k

f 2
j+1

fk fk+1
anjyk =

m

∑
k=0

d(m)
nk yk = D(m)

n (y)
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for all m, n ∈ N. For each m ∈ N and x = (xk) ∈ λ(F̂(s, r)), Am(x) exists and also lies in c.
Then, D(m)

n also lies in c for each m ∈ N. Hence, D(m) ∈ (λ, c). Now, from Equation (32), we consider
for m→ ∞, and then Ax = Dy. Consequently, we obtain D = (dnk) ∈ (λ, µ).

If we want to prove the sufficient part of the theorem, then let us assume that Equations (28)
and (29) are satisfied and x = (xk) ∈ λ(F̂(s, r)). By using Corollary 1 and Equations (28) and (32), we
obtain y = F̂(s, r)x ∈ λ and D(m)

n (y) = ∑m
k=0 d(m)

nk yk = ∑m
k=0 ankxk = A(m)

n (x) ∈ c. Hence, A = (ank)k∈N
exists. In addition, in Equation (32), if we consider m→ ∞. Then, Ax = Dy. Consequently, we obtain
A = (ank) ∈ (λ(F̂(s, r)), µ).

In Theorem 14, we take λ(F̂(s, r)) instead of µ and µ instead of λ(F̂(s, r)), and then we get the
following theorem.

Theorem 15. Let λ ∈ {bs, cs} and µ be an arbitrary subset of w and A = (ank) and B = (bnk) be infinite
matrices. If we take

bnk := r
fn+1

fn
an−1,k + s

fn

fn+1
ank (33)

for all k, n ∈ N, then A ∈ (µ, λ(F̂(s, r))) iff B ∈ (µ, λ).

Proof. Let us suppose that A ∈ (µ, λ(F̂(s, r))) and Equation (33) exist. For z = (zk) ∈ µ, we obtain
Az ∈ λ(F̂(s, r)) from A ∈ (µ, λ(F̂(s, r))). Hence, F̂(s, r)(Az) ∈ λ. On the other hand, we have

m

∑
k=0

bnkzk =
m

∑
k=0

(
r

fn+1

fn
an−1,k + s

fn

fn+1
ank

)
zk (34)

for all m, n ∈ N. If we carry out m→ ∞ to Equation (34), we obtain that

(Bz)n =
(
(F̂(s, r)A)z

)
n =

(
F̂(s, r)(Az)

)
n . (35)

Since F̂(s, r)(Az) ∈ λ, we find Bz = (Bz)n ∈ λ for z = (zk) ∈ µ from Equation (35). Hence, we
obtain that B ∈ (µ, λ).This is the desired result.

At this stage, let us consider almost convergent sequences spaces, which were given by
Lorentz [33]. This is because they will help in calculating some of the results of Theorems 14 and
15. Let a sequence x = (xk) ∈ `∞. x is said to be almost convergent to the generalized limit ` iff
lim

m→∞
∑m

k=0
xn+k
m+1 = ` uniformly in n and is denoted by f − lim x = `. By f and f0, we indicate the

space of all almost convergent and almost null sequences, respectively. However, in this article, we
use ĉ and ĉ0 instead of f and f0, respectively, in order to avoid any confusion. This is because the
Fibonacci sequence is also denoted by f . In addition, by ĉs, we indicate the space of sequences, which
is composed of all almost convergent series. The sequences spaces ĉ and ĉ0 are

ĉ0 =

{
x = (xk) ∈ `∞ : lim

m→∞

m

∑
k=0

xn+k
m + 1

= 0 uniformly in n

}
,

ĉ =

{
x = (xk) ∈ `∞ : ∃` ∈ C 3 lim

m→∞

m

∑
k=0

xn+k
m + 1

= ` uniformly in n

}
.

Now, let A = (ank) be an arbitrary infinite matrix and list the following conditions:

∃αk ∈ C 3 f − lim ank = αk for each k ∈ N, (36)

lim
q ∑

k

1
q + 1

∣∣∣∣∣ q

∑
i=0
4
[

n+i

∑
j=0

(ajk − αk)

]∣∣∣∣∣ = 0 uniformly in n, (37)
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sup
n∈N

∑
k

∣∣∣∣∣4
[

n

∑
j=0

ajk

]∣∣∣∣∣ < ∞, (38)

∃αk ∈ C 3 f − lim
n

∑
j=0

ajk = αk for each k ∈ N, (39)

sup
n∈N

∑
k

∣∣∣∣∣ n

∑
j=0

ajk

∣∣∣∣∣ < ∞, (40)

∃αk ∈ C 3∑
n

∑
k

ank = αk for all k ∈ N, (41)

lim
n ∑

k

∣∣∣∣∣4
[

n

∑
j=0

(ajk − αk)

]∣∣∣∣∣ = 0 , (42)

sup
n∈N

∑
k

∣∣∣∣∣ n

∑
j=0

ajk

∣∣∣∣∣
q

< ∞, q =
p

p− 1
, (43)

sup
m,n∈N

∣∣∣∣∣ m

∑
n=0

ank

∣∣∣∣∣ < ∞, (44)

sup
m,l∈N

∣∣∣∣∣ m

∑
n=0

∞

∑
k=l

ank

∣∣∣∣∣ < ∞, (45)

sup
m,l∈N

∣∣∣∣∣ m

∑
n=0

l

∑
k=0

ank

∣∣∣∣∣ < ∞, (46)

lim
m ∑

k

∣∣∣∣∣ ∞

∑
n=m

ank

∣∣∣∣∣ = 0, (47)

∑
n

∑
k

ank, convergent, (48)

lim
m→∞

m

∑
n=0

(ank − an,k+1) = α, for each k ∈ N, α ∈ C. (49)

Let us give some matrix transformations in the following Lemma for use in the next step.

Lemma 4. Let A = (ank) be an infinite matrix for all k, n ∈ N. Then,

(1) A = (ank) ∈ (ĉ, cs) iff Equations (24) and (40)–(42) hold (Başar [34]).
(2) A = (ank) ∈ (cs, ĉ) iff Equations (12) and (36) hold (Başar and Çolak [35]).
(3) A = (ank) ∈ (bs, ĉ) iff Equations (9), (12), ( 36) and (37) hold (Başar and Solak [36]).
(4) A = (ank) ∈ (bs, ĉs) iff Equations (9) and (37)–(39) hold (Başar and Solak [36]).
(5) A = (ank) ∈ (cs, ĉs) iff Equations (38) and (39) hold (Başar and Çolak [35]).
(6) A = (ank) ∈ (`∞, bs) = (c, bs) = (c0, bs) iff Equation (40) holds (Zeller [29]).
(7) A = (ank) ∈ (`p, bs) iff Equation (43) holds (Jakimovski and Russell [37]).
(8) A = (ank) ∈ (`, bs) iff Equation (44) holds (Zeller [29]).
(9) A = (ank) ∈ (bv, bs) iff Equation (45) holds (Zeller [29]).

(10) A = (ank) ∈ (bv0, bs) iff Equation (46) holds (Jakimovski and Russell [37]).
(11) A = (ank) ∈ (`∞, cs) iff Equation (47) holds (Zeller [29]).
(12) A = (ank) ∈ (c, cs) iff Equations (11), (40) and (48) hold (Zeller [29]).
(13) A = (ank) ∈ (cs0, cs) iff Equations (10) and (49) hold (Zeller [29]).
(14) A = (ank) ∈ (`p, cs) iff Equations (11) and (43) hold (Jakimovski and Russell [37]).
(15) A = (ank) ∈ (`, cs) iff Equations (11) and (44) hold (Jakimovski and Russell [37]).
(16) A = (ank) ∈ (bv, cs) iff Equations (11), (44) and (46) hold (Zeller [29]).
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(17) A = (ank) ∈ (bv0, cs) iff Equations (11) and (46) hold (Jakimovski and Russell [37]).

Now, let us list the following condition, where dnk and d(m)
nk are taken as in Equations (30) and (31):

lim
k

d(m)
nk = 0 for all n ∈ N, (50)

∃dnk ∈ C 3 lim
n→∞

(d(m)
nk − d(m)

n,k+1) = dnk for all k, n ∈ N, (51)

lim
n→∞∑

k

∣∣∣d(m)
nk − d(m)

n,k+1

∣∣∣ < ∞ uniformly in n, (52)

lim
k

dnk = 0 for all n ∈ N, (53)

sup
n

∑
k

∣∣dnk − dn,k+1
∣∣ < ∞, (54)

∃dk ∈ C 3 lim
n→∞

(dnk − dn,k+1) = dk for all k, n ∈ N, (55)

∃α ∈ C 3 lim
n→∞∑

k

∣∣dnk − dn,k+1
∣∣ = α uniformly in n, (56)

sup
m∈N

∑
k

∣∣∣∣∣ m

∑
n=0

(dnk − dn,k+1)

∣∣∣∣∣ < ∞, (57)

lim
m ∑

k

∣∣∣∣∣ m

∑
n=0

(dnk − dn,k+1)

∣∣∣∣∣ = ∑
k

∣∣∣∣∣∑n
(dnk − dn,k+1)

∣∣∣∣∣ , (58)

lim
m ∑

k

∣∣∣∣∣ m

∑
n=0

(dnk − dn,k+1)

∣∣∣∣∣ = 0, (59)

sup
N,K∈F

∣∣∣∣∣ ∑n∈N
∑
k∈K

(dnk − dn,k+1)

∣∣∣∣∣ < ∞, (60)

sup
N,K∈F

∣∣∣∣∣ ∑n∈N
∑
k∈K

(dnk − dn,k+1)− (dn−1,k − dn−1,k+1)

∣∣∣∣∣ < ∞, (61)

sup
n

∑
k

∣∣∣d(m)
nk − d(m)

n,k+1

∣∣∣ < ∞, (62)

∃dk ∈ C 3 lim
n

d(m)
nk = dk for all k, n ∈ N, (63)

sup
n∈N

∣∣∣∣limk dnk

∣∣∣∣ < ∞, (64)

∃dk ∈ C 3 lim
n

dnk = dk for all k, n ∈ N, (65)

sup
m∈N

∣∣∣∣∣limk m

∑
n=0

dnk

∣∣∣∣∣ < ∞, (66)

sup
m∈N

∑
k

∣∣∣∣∣ m

∑
n=0

(dnk − dn,k−1)

∣∣∣∣∣ < ∞, (67)

∃dk ∈ C 3 ∑
n

dnk = dk for each k ∈ N, (68)

sup
N,K∈F

∑
n∈N

∣∣∣∣∣∑k∈K
(dnk − dn,k−1)

∣∣∣∣∣ < ∞, (69)
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∃dk ∈ C 3 f − lim dnk = dk for each k ∈ N, (70)

sup
N,K∈F

∣∣∣∣∣ ∑n∈N
∑
k∈K

(dnk − dn−1,k)− (dn,k−1 − dn−1,k−1)

∣∣∣∣∣ < ∞, (71)

lim
q ∑

k

1
q + 1

∣∣∣∣∣ q

∑
i=0
4
[

n+i

∑
j=0

(djk − αk)

]∣∣∣∣∣ = 0 uniformly in n, (72)

sup
n∈N

∑
k

∣∣∣∣∣ n

∑
j=0

djk

∣∣∣∣∣ < ∞, (73)

∃dk ∈ C 3∑
n

∑
k

dnk = dk for all k ∈ N, (74)

lim
n ∑

k

∣∣∣∣∣4
[

n

∑
j=0

(djk − αk)

]∣∣∣∣∣ = 0 , (75)

sup
n∈N

∑
k

∣∣∣∣∣4
[

n

∑
j=0

djk

]∣∣∣∣∣ < ∞, (76)

∃dk ∈ C 3 f − lim
n

∑
j=0

djk = dk for each k ∈ N, (77)

Now, we can give several conclusions of Theorems 14 and 15, and Lemmas 1 and 4.

Corallary 2. Let A = (ank) be an infinite matrix for all k, n ∈ N. Then,

(1) A = (ank) ∈ (bs(F̂(s, r), c0) iff Equations (50)–(53) hold and Equation (56) also holds with α = 0.
(2) A = (ank) ∈ (bs(F̂(s, r), cs0) iff Equations (50)–(53) and (59) hold.
(3) A = (ank) ∈ (bs(F̂(s, r), c) iff Equations (50)–(53), (55) and (56) hold.
(4) A = (ank) ∈ (bs(F̂(s, r), cs) iff Equations (50)–(53) and (58) hold.
(5) A = (ank) ∈ (bs(F̂(s, r), `∞) iff Equations (50)–(54) hold.
(6) A = (ank) ∈ (bs(F̂(s, r), bs) iff Equations (50)–(53) and (57) hold.
(7) A = (ank) ∈ (bs(F̂(s, r), `1) iff Equations (50)–(53) and (60) hold.
(8) A = (ank) ∈ (bs(F̂(s, r), bv) iff Equations (50)–(53) and (61) hold.
(9) A = (ank) ∈ (bs(F̂(s, r), bv0) iff Equations (50)–(52), (54) and (61) hold and Equation (56) also holds

with α = 0.

Corallary 3. Let A = (ank) be an infinite matrix for all k, n ∈ N. Then,

(1) A = (ank) ∈ (cs(F̂(s, r), c0) iff Equations (54), (62) and (63) hold and Equation (65) also holds with
dk = 0 for all k ∈ N.

(2) A = (ank) ∈ (cs(F̂(s, r), cs0) iff Equations (57), (62) and (63) hold and Equation (68) also holds with
dk = 0 for all k ∈ N.

(3) A = (ank) ∈ (cs(F̂(s, r), c) iff Equations (54), (62), (63) and (65) hold.
(4) A = (ank) ∈ (cs(F̂(s, r), cs) iff Equations (62), (63), (67) and (68) hold.
(5) A = (ank) ∈ (cs(F̂(s, r), `∞) iff Equations (54) and (62)–(64) hold.
(6) A = (ank) ∈ (cs(F̂(s, r), bs) iff Equations (57), (62), (63) and (66) hold.
(7) A = (ank) ∈ (cs(F̂(s, r), `1) iff Equations (62), (63) and (69) hold.
(8) A = (ank) ∈ (cs(F̂(s, r), bv) iff Equations (62), (63) and (71) hold.
(9) A = (ank) ∈ (cs(F̂(s, r), bv0) iff Equations (62), (63) and (65) hold and Equation (71) also holds with

dk = 0 for all k ∈ N.

Corallary 4. Let A = (ank) be an infinite matrix for all k, n ∈ N. Then,

(1) A = (ank) ∈ (bs(F̂(s, r), ĉ) iff Equations (50)–(54), (70) and (72) hold.
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(2) A = (ank) ∈ (bs(F̂(s, r), ĉ0) iff Equations (50)–(54) hold and (70) and Equation (72) also hold with
αk = 0 in Equation (70) and dk = 0 in (72).

(3) A = (ank) ∈ (cs(F̂(s, r), ĉ) iff Equations (54), (62), (63) and (70) hold.
(4) A = (ank) ∈ (cs(F̂(s, r), ĉ0) iff Equations (62), (63) and (54) hold and Equation (70) also holds with

αk = 0.
(5) A = (ank) ∈ (ĉ, cs(F̂(s, r)) iff Equations (68) and (73)–(75) hold with bnk instead of dnk, where bnk is

defined by Equation (33).
(6) A = (ank) ∈ (bs(F̂(s, r), ĉs) iff Equations (50)–(53), (72), (76) and (77) hold.
(7) A = (ank) ∈ (cs(F̂(s, r), ĉs) iff Equations (62), (63), (76) and (77) hold.

Corallary 5. Let A = (ank) be an infinite matrix for all k, n ∈ N. Then,

(1) A = (ank) ∈ (`∞, bs(F̂(s, r)) = (c, bs) = (c0, bs) iff Equation (40) holds with bnk instead of ank, where
bnk is defined by (33).

(2) A = (ank) ∈ (`p, bs(F̂(s, r)) iff Equation (43) holds with bnk instead of ank, where bnk is defined by (33).
(3) A = (ank) ∈ (`, bs(F̂(s, r)) iff Equation (44) holds with bnk instead of ank, where bnk is defined by

Equation (33).
(4) A = (ank) ∈ (bv, bs(F̂(s, r)) iff Equation (45) holds with bnk instead of ank, where bnk is defined by

Equation (33).
(5) A = (ank) ∈ (bv0, bs(F̂(s, r)) iff Equation (46) holds with bnk instead of ank, where bnk is defined by

Equation (33).
(6) A = (ank) ∈ (`∞, cs(F̂(s, r)) iff Equation (47) holds with bnk instead of ank, where bnk is defined by

Equation (33).
(7) A = (ank) ∈ (c, cs(F̂(s, r)) iff Equations (11), (40) and (48) hold with bnk instead of ank, where bnk is

defined by Equation (33).
(8) A = (ank) ∈ (cs0, cs(F̂(s, r)) iff Equations (10) and (49) hold with bnk instead of ank, where bnk is

defined by Equation (33).
(9) A = (ank) ∈ (`p, cs(F̂(s, r)) iff Equations (11) and (43) hold with bnk instead of ank, where bnk is

defined by Equation (33).
(10) A = (ank) ∈ (`, cs(F̂(s, r)) iff Equations (11) and (44) hold with bnk instead of ank, where bnk is defined

by Equation (33).
(11) A = (ank) ∈ (bv, cs(F̂(s, r)) iff Equations (11), (44) and (46) hold with bnk instead of ank, where bnk is

defined by Equation (33).
(12) A = (ank) ∈ (bv0, cs(F̂(s, r)) iff Equations (11) and (46) hold with bnk instead of ank, where bnk is

defined by Equation (33).

4. Discussion

The difference sequence operator was introduced for the first time in the literature by Kızmaz [38].
Kirişçi and Başar [4] have characterized and investigated generalized difference sequence spaces.
The Fibonacci difference matrix F̂ , which is derived from the Fibonacci sequence ( fn), was recently
introduced by Kara [23] in 2013 and defined the new sequence spaces `p(F̂) and `∞(F̂), which are
derived by the matrix domain of F̂ from the sequence spaces `p and `∞, respectively, where 1 ≤ p < ∞.
Candan [25] in 2015 introduced the sequence spaces c(F̂(s, r)) and c0(F̂(s, r)). Later, Candan and Kara
[15] studied the sequence spaces `p(F̂(s, r)) in which 1 ≤ p ≤ ∞. In addition, Kara et al. [24] have
characterized some class of compact operators in the spaces `p(F̂) and `∞(F̂), where 1 ≤ p < ∞.

The study is concerned with matrix domain on a sequences space of a triangle infinite matrix.
In this article, we defined spaces bs(F̂(s, r)) and cs(F̂(s, r)) of Generalized Fibonacci difference of
sequences, which constituted bounded and convergence series, respectively. We have demonstrated
the sets of bs(F̂(s, r)) and cs(F̂(s, r)), which are the linear spaces, and both spaces have the same norm

‖x‖ = sup
n∈N

∣∣∣∣∣ n

∑
k=0

(
s

fk
fk+1

xk + r
fk+1

fk
xk−1

)∣∣∣∣∣ ,
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where x ∈ bs(F̂(s, r)) or x ∈ cs(F̂(s, r)). In addition, it was shown that they are normed space and
Banach spaces. It was found that bs(F̂(s, r)) and bs are linearly isomorphic as isometric. At the same
time, cs(F̂(s, r)) and cs are linearly isomorphic as isometric. Some inclusions’ theorems were given
with respect to bs(F̂(s, r)) and cs(F̂(s, r)). According to this, inclusions bs ⊂ bs(F̂(s, r)), cs ⊂ cs(F̂(s, r))
are valid. In addition, if |r/s| < 1/4, then bs(F̂(s, r)) ⊂ `∞ and cs(F̂(s, r)) ⊂ c are valid. It was
concluded that cs(F̂(s, r)) has a Schauder basis.

Finally, the α-, β- and γ-duals of the both spaces are calculated and some matrix transformations
of them were given.

5. Conclusions

In this article, we have defined spaces bs(F̂(s, r)) and cs(F̂(s, r)) of Generalized Fibonacci
difference of sequences, which constituted bounded and convergence series, respectively. We have
demonstrated that the sets of bs(F̂(s, r)) and cs(F̂(s, r)) are the linear spaces and both spaces have the
same norm. In addition, it was shown that they are Banach spaces. Some inclusions theorems were
given with respect to bs(F̂(s, r)) and cs(F̂(s, r)). It was concluded that cs(F̂(s, r)) has a Schauder basis.
Finally, the α-, β- and γ-duals of the both spaces were calculated and some matrix transformations of
them were given.
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