Article

A Different Study on the Spaces of Generalized Fibonacci Difference bs and cs Spaces Sequence

Fevzi Yaşar * (D) and Kuddusi Kayaduman
Department of Mathematics, Faculty of Arts and Sciences, Gaziantep University, Gaziantep 27310, Turkey; kayaduman@gantep.edu.tr

* Correspondence: fevziyasar@hotmail.com; Tel.: +9-342-360-1012

Received: 13 June 2018; Accepted: 5 July 2018; Published: 11 July 2018

Abstract: The main topic in this article is to define and examine new sequence spaces $b s(\hat{F}(s, r))$ and $\operatorname{cs}(\hat{F}(s, r)))$, where $\hat{F}(s, r)$ is generalized difference Fibonacci matrix in which $s, r \in \mathbb{R} \backslash\{0\}$. Some algebric properties including some inclusion relations, linearly isomorphism and norms defined over them are given. In addition, it is shown that they are Banach spaces. Finally, the $\alpha-, \beta$ - and γ-duals of the spaces $b s(\hat{F}(s, r))$ and $c s(\hat{F}(s, r))$ are appointed and some matrix transformations of them are given.

Keywords: Fibonacci numbers; Fibonacci double band matrix; sequence spaces; difference matrix; matrix transformations; α, β, γ-duals

1. Introduction

Italian mathematician Leonardo Fibonacci found the Fibonacci number sequence. The Fibonacci sequence actually originated from a rabbit problem in his first book "Liber Abaci". This sequence is used in many fields. The Fibonacci sequence is as follows:

$$
1,1,2,3,5,8,13,21,34, \ldots .
$$

The Fibonacci sequence, which is denoted by $\left(f_{n}\right)$, is defined as the linear reccurence relation

$$
f_{n}=f_{n-1}+f_{n-2}
$$

$f_{0}=1, f_{1}=1$ and $n \geq 2$. The golden ratio is

$$
\lim _{n \rightarrow \infty} \frac{f_{n+1}}{f_{n}}=\frac{1+\sqrt{5}}{2}=\varphi \text { (Golden Ratio). }
$$

The Golden Ratio, which is also known outside the academic community, is used in many fields of science.

Let w be the set of all real valued sequences. Any subspace of w is called the sequence space. c, c_{0} and ℓ_{∞} are called as sequences space convergent, convergent to zero and bounded, respectively. In addition to these representations, $\ell_{1}, b s$ and $c s$ are sequence spaces, which are called absolutely convergent, bounded and convergent series, respectively.

Let us take a two-indexed real valued infinite matrix $A=\left(a_{n k}\right)$, where $a_{n k}$ is real number and $k, n \in \mathbb{N}$. A is called a matrix transformation from X to Y if, for every $x=\left(x_{k}\right) \in X$, sequence $A x=\left\{A_{n}(x)\right\}$ is A transform of x and in Y, where

$$
\begin{equation*}
A_{n}(x)=\sum_{k} a_{n k} x_{k} \tag{1}
\end{equation*}
$$

and Equation (1) converges for each $n \in \mathbb{N}$.
Let λ be a sequence space and K be an infinite matrix. Then, the matrix domain λ_{K} is introduced by

$$
\begin{equation*}
\lambda_{K}=\left\{t=\left(t_{k}\right) \in w: K t \in \lambda\right\} \tag{2}
\end{equation*}
$$

Here, it can be seen that λ_{K} is a sequence space.
For calculation of any matrix domain of a sequence, a triangle infinite matrix is used by many authors. So many sequence spaces have been recently defined in this way. For more details, see [1-22].

Kara [23] recently introduced the \hat{F} which is derived from the Fibonacci sequence $\left(f_{n}\right)$ and defined the new sequence spaces $\ell_{p}(\hat{F})$ and $\ell_{\infty}(\hat{F})$ by using sequence spaces ℓ_{p} and ℓ_{∞}, respectively, where $1 \leq p<\infty$. The sequence space $\ell_{p}(\hat{F})$ has been defined as:

$$
\ell_{p}(\hat{F})=\left\{x \in w: \hat{F} x \in \ell_{p}\right\},(1 \leq p<\infty)
$$

where $\hat{F}=\left(f_{n k}\right)$ defined by the sequence $\left(f_{n}\right)$ as follows:

$$
f_{n k}:=\left\{\begin{array}{cl}
-\frac{f_{n+1}}{f_{n}}, & k=n-1 \\
\frac{f_{n}}{f_{n+1}}, & k=n \\
0, & 0 \leq k<n-1 \text { or } k>n
\end{array}\right.
$$

for all $k, n \in \mathbb{N}$. In addition, Kara et al. [24] have characterized some class of compact operators on the spaces $\ell_{p}(\hat{F})$ and $\ell_{\infty}(\hat{F})$, where $1 \leq p<\infty$.

Candan [25] introduced $c(\hat{F}(s, r))$ and $c_{0}(\hat{F}(s, r))$. Later, Candan and Kara [15] have investigated the sequence spaces $\ell_{p}(\hat{F}(s, r))$ in which $1 \leq p \leq \infty$.

The α-, β - and γ-duals P^{α}, P^{β} and P^{γ} of a sequence spaces P are defined, respectively, as

$$
\begin{aligned}
& P^{\alpha}=\left\{a=\left(a_{k}\right) \in w: \text { at }=\left(a_{k} t_{k}\right) \in \ell_{1} \text { for all } t \in P\right\}, \\
& P^{\beta}=\left\{a=\left(a_{k}\right) \in w: \text { at }=\left(a_{k} t_{k}\right) \in c s \text { for all } t \in P\right\}, \\
& P^{\gamma}=\left\{a=\left(a_{k}\right) \in w: \text { at }=\left(a_{k} t_{k}\right) \in b s \text { for all } t \in P\right\},
\end{aligned}
$$

respectively.
In Section 2, sequence space $b s(\hat{F})$ and $c s(\hat{F})$ are defined and some algebric properties of them are investigated. In the last section, the α-, β - and γ-duals of the spaces $b s(\hat{F})$ and $c s(\hat{F})$ are found and some matrix tranformations of them are given.

2. Generalized Fibonacci Difference Spaces of $b s$ and $c s$ Sequences

In this section, spaces $b s(\hat{F}(s, r))$ and $c s(\hat{F}(s, r))$ of generalized Fibonacci difference of sequences, which constitutes bounded and convergence series, respectively, will be defined. In addition, some algebraic properties of them are investigated.

Now, we introduce the sets $b s(\hat{F}(s, r))$ and $c s(\hat{F}(s, r))$ as the sets of all sequences whose $\hat{F}(s, r)=\left\{f_{n k}(s, r)\right\}$ transforms are in the sequence space $b s$ and $c s$,

$$
\begin{aligned}
b s(\hat{F}(s, r)) & =\left\{x=\left(x_{k}\right) \in w: \sup _{n \in \mathbb{N}}\left|\sum_{k=0}^{n}\left(s \frac{f_{k}}{f_{k+1}} x_{k}+r \frac{f_{k+1}}{f_{k}} x_{k-1}\right)\right|<\infty\right\} \\
c s(\hat{F}(s, r)) & =\left\{x=\left(x_{k}\right) \in w: \sum_{k=0}^{n}\left(s \frac{f_{k}}{f_{k+1}} x_{k}+r \frac{f_{k+1}}{f_{k}} x_{k-1}\right) \in c\right\}
\end{aligned}
$$

where $\hat{F}(s, r)=\left\{f_{n k}(s, r)\right\}$ is

$$
f_{n k}(s, r):= \begin{cases}r \frac{f_{n+1}}{f_{n}}, & k=n-1 \tag{3}\\ s \frac{f_{n}}{f_{n+1}}, & k=n \\ 0, & k<n-1 \text { or } 0 \leq k>n\end{cases}
$$

for all $k, n \in \mathbb{N}$ where $s, r \in \mathbb{R} \backslash\{0\}$. Actually, by using Equation (2), we can get

$$
b s(\hat{F}(s, r))=(b s)_{\hat{F}(s, r)} \text { and } c s(\hat{F}(s, r))=(c s)_{\hat{F}(s, r)} .
$$

With a basic calculation, we can find the inverse matrix of $\hat{F}(s, r)=\left\{f_{n k}(s, r)\right\}$. The inverse matrix of $\hat{F}(s, r)=\left\{f_{n k}(s, r)\right\}$ is $\hat{F}^{-1}(s, r)=\left(f_{n k}^{-1}(s, r)\right)$ such that

$$
f_{n k}^{-1}(s, r)=\left\{\begin{array}{cc}
\frac{1}{s}\left(-\frac{r}{s}\right)^{n-k} \frac{f_{n+1}^{2}}{f_{k} f_{k+1}}, & 0 \leq k<n \tag{4}\\
0, & k>n
\end{array}\right.
$$

for all $k, n \in \mathbb{N}$. If $y=\left(y_{n}\right)$ is $\hat{F}(s, r)$-transform of a sequence $x=\left(x_{n}\right)$, then the below equality is justified:

$$
y_{n}=(\hat{F}(s, r) x)_{n}= \begin{cases}s x_{0}, & n=0, \tag{5}\\ s \frac{f_{n}}{f_{n+1}} x_{n}+r \frac{f_{n+1}}{f_{n}} x_{n-1}, & n \geq 1,\end{cases}
$$

for all $n \in \mathbb{N}$. In this situation, we see that $x_{n}=\hat{F}^{-1}(s, r) y$, i.e.,

$$
\begin{equation*}
x_{n}=\sum_{k=0}^{n} \frac{1}{s}\left(-\frac{r}{s}\right)^{n-k} \frac{f_{n+1}^{2}}{f_{k} f_{k+1}} y_{k} \tag{6}
\end{equation*}
$$

for all $n \in \mathbb{N}$.
Theorem 1. $b s(\hat{F}(s, r))$ is the linear space with the co-ordinatewise addition and scalar multiplation.
Proof. We omit the proof because it is clear and easy.
Theorem 2. $\operatorname{cs}(\hat{F}(s, r))$ is the linear space with the co-ordinatewise addition and scalar multiplation.
Proof. We omit the proof because it is clear and easy.
Theorem 3. The space $b s(\hat{F}(s, r))$ is a normed space with

$$
\begin{equation*}
\|x\|_{b s(\hat{F}(s, r))}=\sup _{n \in \mathbb{N}}\left|\sum_{k=0}^{n}\left(s \frac{f_{k}}{f_{k+1}} x_{k}+r \frac{f_{k+1}}{f_{k}} x_{k-1}\right)\right| . \tag{7}
\end{equation*}
$$

Proof. It is clear that space $b s(\hat{F}(s, r))$ ensures normed space conditions.
Theorem 4. The space cs $(\hat{F}(s, r))$ is a normed space with norm Equation (7).
Proof. It is clear that normed space conditions are ensured by space $c s(\hat{F}(s, r))$.
Theorem 5. $b s(\hat{F}(s, r))$ is linearly isomorphic as isometric to the space $b s$, that is, $b s(\hat{F}(s, r)) \cong b s$.
Proof. For proof, we must demonstrate that bijection and linearly transformation T exist between the space $b s(\hat{F}(s, r))$ and $b s$. Let us take the transformation $T: b s(\hat{F}(s, r)) \rightarrow b s$ mentioned above with the
help of Equation (5) by $T x=\hat{F}(s, r) x$. We omit the details that T is both linear and injective because the demonstration is clear.

Let us prove that transformation T is surjective. For this, we get $y=\left(y_{n}\right) \in b s$. In this case, by using Equations (6) and (7), we find

$$
\begin{aligned}
\|x\|_{b s(\hat{F}(s, r))}= & \sup _{n \in \mathbb{N}}\left|\sum_{k=0}^{n}\left(s \frac{f_{k}}{f_{k+1}} x_{k}+r \frac{f_{k+1}}{f_{k}} x_{k-1}\right)\right| \\
= & \sup _{n \in \mathbb{N}} \left\lvert\, \sum_{k=0}^{n}\left[s \frac{f_{k}}{f_{k+1}}\left(\sum_{i=0}^{k}-\frac{1}{s}\left(-\frac{r}{s}\right)^{k-i} \frac{f_{k+1}^{2}}{f_{i} f_{i+1}} y_{i}\right)\right.\right. \\
& \left.+r \frac{f_{k+1}}{f_{k}}\left(\sum_{i=0}^{k-1}-\frac{1}{s}\left(-\frac{r}{s}\right)^{k-i-1} \frac{f_{k}^{2}}{f_{i} f_{i+1}} y_{i}\right)\right] \mid \\
= & \sup _{n \in \mathbb{N}}\left|\sum_{k=0}^{n} y_{k}\right|=\|y\|_{b s} .
\end{aligned}
$$

This result shows that $x \in b s(\hat{F}(s, r))$. That is, T is surjective. At the same time, this result also indicates that T is preserving the norm. Therefore, the sequence spaces $b s(\hat{F}(s, r))$ and $b s$ are linearly isomorphic as isometric.

Theorem 6. The sequence space $c s(\hat{F}(s, r))$ is linearly isomorphic as isometric to the space cs, that is, $c s(\hat{F}(s, r)) \cong c s$.

Proof. If we write $c s$ instead of $b s$ and $c s(\hat{F}(s, r))$ instead of $b s(\hat{F}(s, r))$ in Theorem 5 , the proof will be demonstrated.

Theorem 7. The space bs $(\hat{F}(s, r))$ is a Banach space with the norm, which is given in Equation (7).
Proof. We can easily see that norm conditions are ensured. Let us take that $x^{i}=\left(x_{k}^{i}\right)$ is a Cauchy sequence in $b s(\hat{F}(s, r))$ for all $i \in \mathbb{N}$. By using Equation (5), we have

$$
y_{k}^{i}=s \frac{f_{k}}{f_{k+1}} x_{k}^{i}+r \frac{f_{k+1}}{f_{k}} x_{k-1}^{i}
$$

for all $i, k \in \mathbb{N}$. Since $x^{i}=\left(x_{k}^{i}\right)$ is a Cauchy sequence, for every $\varepsilon>0$, there exists $n_{0}=n_{0}(\varepsilon)$ such that

$$
\begin{aligned}
\left\|x^{i}-x^{m}\right\|_{b s(\hat{F}(s, r))} & =\sup _{n \in \mathbb{N}}\left|\sum_{k=0}^{n}\left(s \frac{f_{k}}{f_{k+1}}\left(x_{k}^{i}-x_{k}^{m}\right)+r \frac{f_{k+1}}{f_{k}}\left(x_{k-1}^{i}-x_{k-1}^{m}\right)\right)\right| \\
& =\sup _{n \in \mathbb{N}}\left|\sum_{k=0}^{n}\left(y_{k}^{i}-y_{k}^{m}\right)\right|=\left\|y^{i}-y^{m}\right\|_{b s}<\varepsilon
\end{aligned}
$$

for all $i, m \geq n_{0}$. Since $b s$ is complete, $y^{i} \rightarrow y(i \rightarrow \infty)$ such that $y \in b s$ exist and since the sequence spaces $b s(\hat{F}(s, r))$ and $b s$ are linearly isomorphic as isometric $b s(\hat{F}(s, r))$ is complete. Consequently, $b s(\hat{F}(s, r))$ is a Banach space.

Theorem 8. The space $c s(\hat{F}(s, r))$ is a Banach space with the norm, which is given in Equation (7).
Proof. We can easily see that norm conditions are ensured. Let us take that $x^{i}=\left(x_{k}^{i}\right)$ is a Cauchy sequence in $c s(\hat{F}(s, r))$ for all $i \in \mathbb{N}$. By using Equation (5), we have

$$
y_{k}^{i}=s \frac{f_{k}}{f_{k+1}} x_{k}^{i}+r \frac{f_{k+1}}{f_{k}} x_{k-1}^{i}
$$

for all $i, k \in \mathbb{N}$. Since $x^{i}=\left(x_{k}^{i}\right)$ is a Cauchy sequence, for every $\varepsilon>0$, there exists $n_{0}=n_{0}(\varepsilon)$ such that

$$
\begin{aligned}
\left\|x^{i}-x^{m}\right\|_{c s(\hat{F}(s, r))} & =\sup _{n \in \mathbb{N}}\left|\sum_{k=0}^{n}\left(s \frac{f_{k}}{f_{k+1}}\left(x_{k}^{i}-x_{k}^{m}\right)+r \frac{f_{k+1}}{f_{k}}\left(x_{k-1}^{i}-x_{k-1}^{m}\right)\right)\right| \\
& =\sup _{n \in \mathbb{N}}\left|\sum_{k=0}^{n}\left(y_{k}^{i}-y_{k}^{m}\right)\right|=\left\|y^{i}-y^{m}\right\|_{c s}<\varepsilon
\end{aligned}
$$

for all $i, m \geq n_{0}$. Since $c s$ is complete, $y^{i} \rightarrow y(i \rightarrow \infty)$ such that $y \in c s$ exists and since the sequence spaces $c s(\hat{F}(s, r))$ and $c s$ are linearly isomorphic as isometric $c s(\hat{F}(s, r))$ is complete. Consequently, $c s(\hat{F}(s, r))$ is a Banach space.

Now, let $A=\left(a_{n k}\right)$ be an arbitrary infinite matrix and list the following:

$$
\begin{align*}
& \sup _{n \in \mathbb{N}} \sum_{k}\left|a_{n k}\right|<\infty, \tag{8}\\
& \lim _{k} a_{n k}=0 \text { for each } n \in \mathbb{N}, \tag{9}\\
& \sup _{m} \sum_{k}\left|\sum_{n=0}^{m}\left(a_{n k}-a_{n, k+1}\right)\right|<\infty, \tag{10}\\
& \lim _{n} \sum_{k} a_{n k}=\alpha \text { for each } k \in \mathbb{N}, \alpha \in \mathbb{C}, \tag{11}\\
& \sup _{n} \sum_{k}\left|a_{n k}-a_{n, k+1}\right|<\infty, \tag{12}\\
& \lim _{n} a_{n k}=\alpha_{k} \text { for each } k \in \mathbb{N}, \alpha_{k} \in \mathbb{C}, \tag{13}\\
& \sup _{N, K \in \mathcal{F}}\left|\sum_{n \in N} \sum_{k \in K}\left(a_{n k}-a_{n, k+1}\right)\right|<\infty, \tag{14}\\
& \sup _{N, K \in \mathcal{F}}\left|\sum_{n \in N} \sum_{k \in K}\left(a_{n k}-a_{n, k-1}\right)\right|<\infty, \tag{15}\\
& \lim _{n}\left(a_{n k}-a_{n, k+1}\right)=\alpha \text { for each } k \in \mathbb{N}, \alpha \in \mathbb{C}, \tag{16}\\
& \lim _{n \rightarrow \infty} \sum_{k}\left|a_{n k}-a_{n, k+1}\right|=\sum_{k}\left|\lim _{n \rightarrow \infty}\left(a_{n k}-a_{n, k+1}\right)\right|, \tag{17}\\
& \sup _{n}\left|\lim _{k} a_{n k}\right|<\infty, \tag{18}\\
& \lim _{n \rightarrow \infty} \sum_{k}\left|a_{n k}-a_{n, k+1}\right|=0 \text { uniformly in } n, \tag{19}\\
& \lim _{m} \sum_{k}\left|\sum_{n=0}^{m}\left(a_{n k}-a_{n, k+1}\right)\right|=0, \tag{20}\\
& \lim _{m} \sum_{k}\left|\sum_{n=0}^{m}\left(a_{n k}-a_{n, k+1}\right)\right|=\sum_{k}\left|\sum_{n}\left(a_{n k}-a_{n, k+1}\right)\right|, \tag{21}\\
& \sup _{N, K \in \mathcal{F}}\left|\sum_{n \in N} \sum_{k \in K}\left[\left(a_{n k}-a_{n, k+1}\right)-\left(a_{n-1, k}-a_{n-1, k+1}\right)\right]\right|<\infty, \tag{22}\\
& \sup _{m \in \mathbb{N}}\left|\lim _{k} \sum_{n=0}^{m} a_{n k}\right|<\infty, \tag{23}
\end{align*}
$$

$$
\begin{gather*}
\exists \alpha_{k} \in \mathbb{C} \ni \sum_{n} a_{n k}=\alpha_{k} \text { for each } k \in \mathbb{N}, \tag{24}\\
\sup _{N, K \in \mathcal{F}}\left|\sum_{n \in N} \sum_{k \in K}\left[\left(a_{n k}-a_{n-1, k}\right)-\left(a_{n, k-1}-a_{n-1, k-1}\right)\right]\right|<\infty, \tag{25}
\end{gather*}
$$

where \mathcal{F} denote the collection of all finite subsets of \mathbb{N}.
Now, we can give some matrix transformations in the following Lemma for the next step that we will need in the inclusion Theorems.

Lemma 1. Let $A=\left(a_{n k}\right)$ be an arbitrary infinite matrix. Then,
(1) $A=\left(a_{n k}\right) \in\left(b s, \ell_{\infty}\right)$ iff Equations (9) and (12) hold (Stieglitz and Tietz [26]),
(2) $A=\left(a_{n k}\right) \in(c s, c)$ iff Equations (12) and (13) hold (Wilansky [27]),
(3) $A=\left(a_{n k}\right) \in\left(b s, \ell_{1}\right)$ iff Equations (9) and (14) hold (K.-G. Grosse-Erdman [28]).
(4) $A=\left(a_{n k}\right) \in\left(c s, \ell_{1}\right)$ iff Equation (15) holds (Stieglitz and Tietz [26]).
(5) $A=\left(a_{n k}\right) \in(b s, c)$ iff Equations (9), (16) and (17) hold (K.-G. Grosse-Erdman [28]).
(6) $A=\left(a_{n k}\right) \in\left(c s, \ell_{\infty}\right)$ iff Equations (12) and (18) hold (Stieglitz and Tietz [26]).
(7) $A=\left(a_{n k}\right) \in\left(b s, c_{0}\right)$ iff Equations (9) and (19) hold (Stieglitz and Tietz [26]).
(8) $A=\left(a_{n k}\right) \in\left(b s, c s_{0}\right)$ iff Equations (9) and (20) hold (Zeller [29]).
(9) $A=\left(a_{n k}\right) \in(b s, c s)$ iff Equations (9) and (21) hold (Zeller [29]).
(10) $A=\left(a_{n k}\right) \in(b s, b v)$ iff Equations (9) and (22) hold (Zeller [29]).
(11) $A=\left(a_{n k}\right) \in(b s, b s)$ iff Equations (9) and (10) hold (Zeller [29]).
(12) $A=\left(a_{n k}\right) \in(c s, c s)$ iff Equations (10) and (11) hold (Hill, [30]).
(13) $A=\left(a_{n k}\right) \in\left(b s, b v_{0}\right)$ iff Equations (12), (19) and (22) hold (Stieglitz and Tietz [26]).
(14) $A=\left(a_{n k}\right) \in\left(c s, c_{0}\right)$ iff Equation (12) holds and Equation (13) also holds with $\alpha_{k}=0$ for all $k \in \mathbb{N}$ (Dienes [31]).
(15) $A=\left(a_{n k}\right) \in(c s, b s)$ iff Equations (10) and (23) hold (Zeller [29]).
(16) $A=\left(a_{n k}\right) \in\left(c s, c s_{0}\right)$ iff Equation (10) holds and Equation (24) also holds with $\alpha_{k}=0$ for all $k \in \mathbb{N}$ (Zeller [29]).
(17) $A=\left(a_{n k}\right) \in(c s, b v)$ iff Equation (25) holds (Zeller [29]).
(18) $A=\left(a_{n k}\right) \in\left(c s, b v_{0}\right)$ iff Equation (25) holds and Equation (13) also holds with $\alpha_{k}=0$ for all $k \in \mathbb{N}$ (Stieglitz and Tietz [26]).

Theorem 9. The inclusion $b s \subset b s(\hat{F}(s, r))$ is valid.
Proof. Let $x \in b s$. We must demonstrate that $x \in b s(\hat{F}(s, r))$. It means that $\hat{F}(s, r) \in(b s, b s)$. For $\hat{F}(s, r) \in(b s, b s), \hat{F}(s, r)$ must ensure to the conditions of (11) of Lemma 1. We see that

$$
\lim _{k} f_{n k}(s, r)=0 \text { for each } n \in \mathbb{N} \text {. }
$$

The other condition also holds as follows:

$$
\begin{aligned}
\sup _{m} \sum_{k}\left|\sum_{n=0}^{m}\left(f_{n k}(s, r)-f_{n, k+1}(s, r)\right)\right| & =\sup _{m} \lim _{p}\left(\frac{|s+r|}{f_{1} \cdot f_{2}}+\frac{|s+r|}{f_{2} \cdot f_{3}}+\ldots+\frac{|s+r|}{f_{p+1} \cdot f_{p+2}}\right) \\
& =\frac{17}{10}|s+r|<\infty
\end{aligned}
$$

Consequently, the conditions of (11) of Lemma 1 hold. The proof is complete.
Theorem 10. If $|r / s|<1 / 4$, then $b s(\hat{F}(s, r)) \subset \ell_{\infty}$ is valid.
Proof. Let $x \in b s(\hat{F}(s, r))$. Then, $y=\hat{F}(s, r) x \in b s$. We must demonstrate that $x=\hat{F}^{-1}(s, r) y \in \ell_{\infty}$. That is, $\hat{F}^{-1}(s, r) \in\left(b s, \ell_{\infty}\right)$. For $\hat{F}^{-1}(s, r) \in\left(b s, \ell_{\infty}\right), \hat{F}^{-1}(s, r)$ must satisfy the conditions of (1) of Lemma 1. It is clear that

$$
\lim _{k} f_{n k}^{-1}(s, r)=0 \text { for each } n \in \mathbb{N} \text {. }
$$

The other condition is also holds as follows:

$$
\begin{align*}
\sup _{n} \sum_{k}\left|\left(f_{n k}^{-1}(s, r)-f_{n, k+1}^{-1}(s, r)\right)\right| & \leq 2 \sup _{n} \sum_{k} \left\lvert\,\left(f _ { n k } ^ { - 1 } (s , r) \left|-\left|\frac{r}{s}\right|\right.\right.\right. \tag{26}\\
& \leq \frac{4}{s} \sum_{k}\left(\frac{4 r}{s}\right)^{k}<\infty
\end{align*}
$$

Consequently, the conditions of (1) of Lemma 1 hold. The proof is complete.
Theorem 11. The inclusion $\operatorname{cs} \subset \operatorname{cs}(\hat{F}(s, r))$ is valid.
Proof. Let $x \in c s$. We must demonstrate that $x \in c s(\hat{F}(s, r))$. It means that $\hat{F}(s, r) \in(c s, c s)$. For $\hat{F}(s, r) \in(c s, c s), \hat{F}(s, r)$ must satisfy the conditions of (12) of Lemma 1. Equation (10) has been satisfied in Theorem 9. Now, we must demonstrate Equation (11). For every $k \in \mathbb{N}$,

$$
\lim _{n \rightarrow \infty} \sum_{k} f_{n k}(s, r)=\lim _{n}\left(s \frac{f_{n}}{f_{n+1}}+r \frac{f_{n+1}}{f_{n}}\right)=\frac{s}{\varphi}+r \varphi=\ell
$$

such that $\ell \in \mathbb{C}$ exist. Consequently, the conditions of (12) of Lemma 1 hold. The proof is complete.
Theorem 12. If $|r / s|<1 / 4$, then $\operatorname{cs}(\hat{F}(s, r)) \subset c$ is valid.
Proof. Let $x \in c s(\hat{F}(s, r))$. Then, $y=\hat{F}(s, r) x \in c s$. We must demonstrate that $x=\hat{F}^{-1}(s, r) y \in c$. That is, $\hat{F}^{-1}(s, r) \in(c s, c)$. For $\hat{F}^{-1}(s, r) \in(c s, c), \hat{F}^{-1}(s, r)$ must satisfy the conditions of (2) of Lemma 1. Equation (12) has been satisfied in Theorem 10. Now, we must demonstrate Equation (13). For each $k \in \mathbb{N}$,

$$
\begin{aligned}
\lim _{n} f_{n k}^{-1}(s, r) & \leq \lim _{n}\left|f_{n k}^{-1}(s, r)\right|=\lim _{n}\left|\frac{f_{n+1}}{s f_{n}}\left(-\frac{r}{s}\right)^{n-k} \frac{\frac{f_{n+1}}{f_{k+1}}}{\frac{f_{k}}{f_{n}}}\right|=\lim _{n}\left|\frac{f_{n+1}}{s f_{n}} \prod_{i=k}^{n-1} \frac{r \frac{f_{i+2}}{f_{i+1}}}{s \frac{f_{i}}{f_{i+1}}}\right| \\
& \leq \lim _{n} \frac{f_{n+1}}{|s| f_{n}} \prod_{i=k}^{n-1}\left|\frac{\sup _{i \in \mathbb{N}} r \frac{f_{i+2}}{f_{i+1}}}{\inf _{i \in \mathbb{N}} \frac{f_{i}}{f_{i+1}}}\right| \leq \lim _{n} \frac{f_{n+1}}{|s| f_{n}}\left(\frac{4 r}{s}\right)^{n-k}=\frac{\varphi}{|s|} .0=0
\end{aligned}
$$

Thus, Equation (13) is also satisfied.
Theorem 13. The inclusion $c s(\hat{F}(s, r)) \subset b s(\hat{F}(s, r))$ is valid.
Proof. Let $x \in c s(\hat{F}(s, r))$. Then, $y=\hat{F}(s, r) x \in c s$. Hence, $\sum_{k} \hat{F}(s, r) x \in c . c \subset \ell_{\infty}$, so it becomes $\sum_{k} \hat{F}(s, r) x \in \ell_{\infty}$. That is, $\hat{F}(s, r) x \in b s$. Hence, $x \in b s(\hat{F}(s, r))$. Consequently, $c s(\hat{F}(s, r)) \subset b s(\hat{F}(s, r))$.

Before giving the corollary about the Schauder basis for the space $\operatorname{cs}(\hat{F}(r, s))$, let us define the Schauder basis which was introduced by J. Schauder in 1927. Let $(X,\|\|$.$) be normed space and be a$ sequence $\left(a_{k}\right) \in X$. There exists a unique sequence $\left(\lambda_{k}\right)$ of scalars such that $x=\sum_{k=0}^{\infty} \lambda_{k} a_{k}$, and

$$
\lim _{n \rightarrow \infty}\left\|x-\sum_{k=0}^{n} \lambda_{k} a_{k}\right\|=0
$$

Then, $\left(a_{k}\right)$ is called a Schauder basis for X.
Now, we can give the corollary about Schauder basis.

Corollary 1. Let us sequence $b^{(k)}=\left\{b_{n}^{(k)}\right\}_{n \in \mathbb{N}}$ defined in the $\operatorname{cs}(\hat{F}(s, r))$ such that

$$
b_{n}^{(k)}= \begin{cases}\frac{1}{s}\left(-\frac{r}{s}\right)^{n-k} \frac{f_{n+1}^{2}}{f_{k} f_{k+1}}, & n>k \\ \frac{1}{s} \frac{f_{k+1}}{f_{k}}, & n=k \\ 0, & n<k\end{cases}
$$

Then, sequence $\left\{b^{(k)}\right\}_{n \in \mathbb{N}}$ is a basis of $\operatorname{cs}(\hat{F}(s, r))$ and every sequence $x \in \operatorname{cs}(\hat{F}(s, r))$ has a unique representation $x=\sum_{k} y_{k} b^{k}$, where $y_{k}=(\hat{F}(s, r) x)_{k}$.

3. The α-, β - and γ-Duals of the Spaces $b s(\hat{F}(s, r))$ and $c s(\hat{F}(s, r))$ and Some Matrix Transformations

In this section, the alpha-, beta-, gamma-duals of the spaces $b s(\hat{F}(s, r))$ and $c s(\hat{F}(s, r))$ are determined and characterized the classes of infinite matrices from the space $b s(\hat{F}(s, r))$ and $c s(\hat{F}(s, r))$ to some other sequence spaces.

Now, we give the two lemmas to prove the theorems that will be given in the next stage.
Lemma 2. Suppose that $a=\left(a_{n}\right) \in w$ and the infinite matrix $B=\left(b_{n k}\right)$ is defined by $B_{n}=a_{n}\left(\hat{F}^{-1}(s, r)\right)_{n}$, that is,

$$
b_{n k}= \begin{cases}a_{n} f_{n k}^{-1}(s, r), & 0 \leq k<n \\ 0, & k>n\end{cases}
$$

for all $k, n \in \mathbb{N}, \delta \in\{b s, c s\}$. Then, $a \in\{\delta(\hat{F}(s, r))\}^{\alpha}$ iff $B \in\left(\delta, \ell_{1}\right)$.
Proof. Let $a=\left(a_{n}\right)$ and $x=\left(x_{n}\right)$ be an arbitrary subset of $w . y=\left(y_{n}\right)$ such that $y=\hat{F}(s, r) x$, which is defined by Equation (5). Then,

$$
\begin{equation*}
a_{n} x_{n}=a_{n}\left(\hat{F}^{-1}(s, r) y\right)_{n}=(B y)_{n} \tag{27}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Hence, we obtain by Equation (5) that $a x=\left(a_{n} x_{n}\right) \in \ell_{1}$ with $x=\left(x_{n}\right) \in \delta(\hat{F}(s, r))$ iff $B y \in \ell_{1}$ with $y \in \delta$. That is, $B \in\left(\delta, \ell_{1}\right)$.

Lemma 3. Let [32] C $=\left(c_{n k}\right)$ be defined via a sequence $a=\left(a_{k}\right) \in w$ and the inverse matrix $V=\left(v_{n k}\right)$ of the triangle matrix $U=\left(u_{n k}\right)$ by

$$
c_{n k}=\left\{\begin{array}{cc}
\sum_{j=k}^{n} a_{j} v_{j k}, & 0 \leq k<n, \\
0, & k>n,
\end{array}\right.
$$

for all $k, n \in \mathbb{N}$. Then, for any sequence space λ,

$$
\begin{aligned}
\lambda_{U}^{\gamma} & =\left\{a=\left(a_{k}\right) \in w: C \in\left(\lambda, \ell_{\infty}\right)\right\} \\
\lambda_{U}^{\beta} & =\left\{a=\left(a_{k}\right) \in w: C \in(\lambda, c)\right\}
\end{aligned}
$$

If we consider Lemmas 1-3 together, the following is obtained.
Corallary 1. Let $B=\left(b_{n k}\right)$ and $C=\left(c_{n k}\right)$ such that

$$
b_{n k}=\left\{\begin{array}{cc}
a_{n} f_{n k}^{-1}(s, r), & 0 \leq k<n \\
0, & k>n
\end{array} \text { and } c_{n k}=\sum_{j=k}^{n} \frac{1}{s}\left(-\frac{r}{s}\right)^{j-k} \frac{f_{j+1}^{2}}{f_{k} f_{k+1}} a_{j} .\right.
$$

If we take $t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}$ and t_{8} as follows:

$$
\begin{aligned}
& t_{1}=\left\{a=\left(a_{k}\right) \in w: \sup _{N, K \in \mathcal{F}}\left|\sum_{n \in N} \sum_{k \in K}\left(b_{n k}-b_{n, k+1}\right)\right|<\infty\right\}, \\
& t_{2}=\left\{a=\left(a_{k}\right) \in w: \sup _{N, K \in \mathcal{F}}\left|\sum_{n \in N \in \in K} \sum_{k \in}\left(b_{n k}-b_{n, k-1}\right)\right|<\infty\right\}, \\
& t_{3}=\left\{a=\left(a_{k}\right) \in w: \lim _{k \rightarrow \infty} c_{n k}=0\right\}, \\
& t_{4}=\left\{a=\left(a_{k}\right) \in w: \exists \alpha \in \mathbb{C} \ni \lim _{n \rightarrow \infty}\left(c_{n k}-c_{n, k+1}\right)=\alpha\right\}, \\
& t_{5}=\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k}\left|c_{n k}-c_{n, k+1}\right|=\sum_{k}\left|\lim _{n \rightarrow \infty}\left(c_{n k}-c_{n, k+1}\right)\right|\right\}, \\
& t_{6}=\left\{a=\left(a_{k}\right) \in w: \exists \alpha \in \mathbb{C} \lim _{n \rightarrow \infty} c_{n k}=\alpha, \text { for all } k \in \mathbb{N}\right\}, \\
& t_{7}=\left\{a=\left(a_{k}\right) \in w: \sup _{n \in \mathbb{N}} \sum_{k}\left|c_{n k}-c_{n, k+1}\right|<\infty\right\}, \\
& t_{8}=\left\{a=\left(a_{k}\right) \in w: \sup _{n \in \mathbb{N}}\left|\lim _{k} c_{n k}\right|<\infty\right\} .
\end{aligned}
$$

Then, the following statements hold:
(1) $\{b s(\hat{F}(s, r))\}^{\alpha}=t_{1}$,
(2) $\{\operatorname{cs}(\hat{F}(s, r))\}^{\alpha}=t_{2}$,
(3) $\{b s(\hat{F}(s, r))\}^{\beta}=t_{3} \cap t_{4} \cap t_{5}$,
(4) $\{\operatorname{cs}(\hat{F}(s, r))\}^{\beta}=t_{6} \cap t_{7}$,
(5) $\{b s(\hat{F}(s, r))\}^{\gamma}=t_{3} \cap t_{7}$,
(6) $\{c s(\hat{F}(s, r))\}^{\gamma}=t_{7} \cap t_{8}$.

Theorem 14. Let $\lambda \in\{b s, c s\}$ and $\mu \subset w$. Then, $A=\left(a_{n k}\right) \in(\lambda(\hat{F}(s, r)), \mu)$ iff

$$
\begin{gather*}
D^{m}=\left(d_{n k}^{(m)}\right) \in(\lambda, c) \text { for all } n \in \mathbb{N} \tag{28}\\
D=\left(d_{n k}\right) \in(\lambda, \mu) \tag{29}
\end{gather*}
$$

where

$$
d_{n k}^{(m)}= \begin{cases}\sum_{j=k}^{m} \frac{1}{s}\left(-\frac{r}{s}\right)^{j-k} \frac{f_{j+1}^{2}}{f_{k} f_{k+1}} a_{n j}, & 0 \leq k<m \tag{30}\\ 0, & k>m\end{cases}
$$

and

$$
\begin{equation*}
d_{n k}=\sum_{j=k}^{\infty} \frac{1}{s}\left(-\frac{r}{s}\right)^{j-k} \frac{f_{j+1}^{2}}{f_{k} f_{k+1}} a_{n j} \tag{31}
\end{equation*}
$$

for all $k, m, n \in \mathbb{N}$.
Proof. To prove the necessary part of the theorem, let us suppuse that $A=\left(a_{n k}\right) \in(\lambda(\hat{F}(s, r), \mu)$ and $x=\left(x_{k}\right) \in \lambda(\hat{F}(s, r))$. By using Equation (6), we find

$$
\begin{align*}
\sum_{k=0}^{m} a_{n k} x_{k} & =\sum_{k=0}^{m} a_{n k} \sum_{j=o}^{k} \frac{1}{s}\left(-\frac{r}{s}\right)^{k-j} \frac{f_{k+1}^{2}}{f_{j} f_{j+1}} y_{j} \tag{32}\\
& =\sum_{k=0}^{m} \sum_{j=k}^{m} \frac{1}{s}\left(-\frac{r}{s}\right)^{j-k} \frac{f_{j+1}^{2}}{f_{k} f_{k+1}} a_{n j} y_{k}=\sum_{k=0}^{m} d_{n k}^{(m)} y_{k}=D_{n}^{(m)}(y)
\end{align*}
$$

for all $m, n \in \mathbb{N}$. For each $m \in \mathbb{N}$ and $x=\left(x_{k}\right) \in \lambda(\hat{F}(s, r)), A_{m}(x)$ exists and also lies in c. Then, $D_{n}^{(m)}$ also lies in c for each $m \in \mathbb{N}$. Hence, $D^{(m)} \in(\lambda, c)$. Now, from Equation (32), we consider for $m \rightarrow \infty$, and then $A x=D y$. Consequently, we obtain $D=\left(d_{n k}\right) \in(\lambda, \mu)$.

If we want to prove the sufficient part of the theorem, then let us assume that Equations (28) and (29) are satisfied and $x=\left(x_{k}\right) \in \lambda(\hat{F}(s, r))$. By using Corollary 1 and Equations (28) and (32), we obtain $y=\hat{F}(s, r) x \in \lambda$ and $D_{n}^{(m)}(y)=\sum_{k=0}^{m} d_{n k}^{(m)} y_{k}=\sum_{k=0}^{m} a_{n k} x_{k}=A_{n}^{(m)}(x) \in c$. Hence, $A=\left(a_{n k}\right)_{k \in \mathbb{N}}$ exists. In addition, in Equation (32), if we consider $m \rightarrow \infty$. Then, $A x=D y$. Consequently, we obtain $A=\left(a_{n k}\right) \in(\lambda(\hat{F}(s, r)), \mu)$.

In Theorem 14, we take $\lambda(\hat{F}(s, r))$ instead of μ and μ instead of $\lambda(\hat{F}(s, r))$, and then we get the following theorem.

Theorem 15. Let $\lambda \in\{b s, c s\}$ and μ be an arbitrary subset of w and $A=\left(a_{n k}\right)$ and $B=\left(b_{n k}\right)$ be infinite matrices. If we take

$$
\begin{equation*}
b_{n k}:=r \frac{f_{n+1}}{f_{n}} a_{n-1, k}+s \frac{f_{n}}{f_{n+1}} a_{n k} \tag{33}
\end{equation*}
$$

for all $k, n \in \mathbb{N}$, then $A \in(\mu, \lambda(\hat{F}(s, r)))$ iff $B \in(\mu, \lambda)$.
Proof. Let us suppose that $A \in(\mu, \lambda(\hat{F}(s, r)))$ and Equation (33) exist. For $z=\left(z_{k}\right) \in \mu$, we obtain $A z \in \lambda(\hat{F}(s, r))$ from $A \in(\mu, \lambda(\hat{F}(s, r)))$. Hence, $\hat{F}(s, r)(A z) \in \lambda$. On the other hand, we have

$$
\begin{equation*}
\sum_{k=0}^{m} b_{n k} z_{k}=\sum_{k=0}^{m}\left(r \frac{f_{n+1}}{f_{n}} a_{n-1, k}+s \frac{f_{n}}{f_{n+1}} a_{n k}\right) z_{k} \tag{34}
\end{equation*}
$$

for all $m, n \in \mathbb{N}$. If we carry out $m \rightarrow \infty$ to Equation (34), we obtain that

$$
\begin{equation*}
(B z)_{n}=((\hat{F}(s, r) A) z)_{n}=(\hat{F}(s, r)(A z))_{n} \tag{35}
\end{equation*}
$$

Since $\hat{F}(s, r)(A z) \in \lambda$, we find $B z=(B z)_{n} \in \lambda$ for $z=\left(z_{k}\right) \in \mu$ from Equation (35). Hence, we obtain that $B \in(\mu, \lambda)$.This is the desired result.

At this stage, let us consider almost convergent sequences spaces, which were given by Lorentz [33]. This is because they will help in calculating some of the results of Theorems 14 and 15. Let a sequence $x=\left(x_{k}\right) \in \ell_{\infty} . x$ is said to be almost convergent to the generalized limit ℓ iff $\lim _{m \rightarrow \infty} \sum_{k=0}^{m} \frac{x_{n+k}}{m+1}=\ell$ uniformly in n and is denoted by $f-\lim x=\ell$. By f and f_{0}, we indicate the space of all almost convergent and almost null sequences, respectively. However, in this article, we use \hat{c} and \hat{c}_{0} instead of f and f_{0}, respectively, in order to avoid any confusion. This is because the Fibonacci sequence is also denoted by f. In addition, by $\hat{c} s$, we indicate the space of sequences, which is composed of all almost convergent series. The sequences spaces \hat{c} and \hat{c}_{0} are

$$
\begin{aligned}
\hat{c}_{0} & =\left\{x=\left(x_{k}\right) \in \ell_{\infty}: \lim _{m \rightarrow \infty} \sum_{k=0}^{m} \frac{x_{n+k}}{m+1}=0 \text { uniformly in } n\right\} \\
\hat{c} & =\left\{x=\left(x_{k}\right) \in \ell_{\infty}: \exists \ell \in \mathbb{C} \ni \lim _{m \rightarrow \infty} \sum_{k=0}^{m} \frac{x_{n+k}}{m+1}=\ell \text { uniformly in } n\right\} .
\end{aligned}
$$

Now, let $A=\left(a_{n k}\right)$ be an arbitrary infinite matrix and list the following conditions:

$$
\begin{gather*}
\exists \alpha_{k} \in \mathbb{C} \ni f-\lim a_{n k}=\alpha_{k} \text { for each } k \in \mathbb{N}, \tag{36}\\
\lim _{q} \sum_{k} \frac{1}{q+1}\left|\sum_{i=0}^{q} \triangle\left[\sum_{j=0}^{n+i}\left(a_{j k}-\alpha_{k}\right)\right]\right|=0 \text { uniformly in } n, \tag{37}
\end{gather*}
$$

$$
\begin{gather*}
\sup _{n \in \mathbb{N}} \sum_{k}\left|\triangle\left[\sum_{j=0}^{n} a_{j k}\right]\right|<\infty, \tag{38}\\
\exists \alpha_{k} \in \mathbb{C} \ni f-\lim \sum_{j=0}^{n} a_{j k}=\alpha_{k} \text { for each } k \in \mathbb{N}, \tag{39}\\
\sup _{n \in \mathbb{N}} \sum_{k}\left|\sum_{j=0}^{n} a_{j k}\right|<\infty, \tag{40}\\
\exists \alpha_{k} \in \mathbb{C} \ni \sum_{n} \sum_{k} a_{n k}=\alpha_{k} \text { for all } k \in \mathbb{N}, \tag{41}\\
\lim _{n} \sum_{k}\left|\triangle\left[\sum_{j=0}^{n}\left(a_{j k}-\alpha_{k}\right)\right]\right|=0, \tag{42}\\
\sup _{n \in \mathbb{N}} \sum_{k}\left|\sum_{j=0}^{n} a_{j k}\right|<\infty, q=\left.\frac{p}{p-1}\right|^{q} \tag{43}\\
\sup _{m, n \in \mathbb{N}}\left|\sum_{n=0}^{m} a_{n k}\right|<\infty, \tag{44}\\
\sup _{n, l \in \mathbb{N}}\left|\sum_{n=0}^{m} \sum_{k=l}^{\infty} a_{n k}\right|<\infty, \tag{45}\\
\sup _{m, l \in \mathbb{N}}\left|\sum_{n=0}^{m} \sum_{k=0}^{l} a_{n k}\right|<\infty, \tag{46}\\
\lim _{m} \sum_{k}\left|\sum_{n=m}^{\infty} a_{n k}\right|=0, \tag{47}\\
\sum_{n} \sum_{k} a_{n k}, \text { convergent, } \tag{48}\\
\lim _{m \rightarrow \infty} \sum_{n=0}^{m}\left(a_{n k}-a_{n, k+1}\right)=\alpha, \text { for each } k \in \mathbb{N}, \alpha \in \mathbb{C} . \tag{49}
\end{gather*}
$$

Let us give some matrix transformations in the following Lemma for use in the next step.
Lemma 4. Let $A=\left(a_{n k}\right)$ be an infinite matrix for all $k, n \in \mathbb{N}$. Then,
(1) $A=\left(a_{n k}\right) \in(\hat{c}$, cs) iff Equations (24) and (40)-(42) hold (Başar [34]).
(2) $A=\left(a_{n k}\right) \in(c s, \hat{c})$ iff Equations (12) and (36) hold (Başar and Çolak [35]).
(3) $A=\left(a_{n k}\right) \in(b s, \hat{c})$ iff Equations (9), (12), (36) and (37) hold (Başar and Solak [36]).
(4) $A=\left(a_{n k}\right) \in(b s, \hat{c} s)$ iff Equations (9) and (37)-(39) hold (Başar and Solak [36]).
(5) $A=\left(a_{n k}\right) \in(c s, c \hat{s})$ iff Equations (38) and (39) hold (Başar and Çolak [35]).
(6) $A=\left(a_{n k}\right) \in\left(\ell_{\infty}, b s\right)=(c, b s)=\left(c_{0}, b s\right)$ iff Equation (40) holds (Zeller [29]).
(7) $A=\left(a_{n k}\right) \in\left(\ell_{p}, b s\right)$ iff Equation (43) holds (Jakimovski and Russell [37]).
(8) $A=\left(a_{n k}\right) \in(\ell, b s)$ iff Equation (44) holds (Zeller [29]).
(9) $A=\left(a_{n k}\right) \in(b v, b s)$ iff Equation (45) holds (Zeller [29]).
(10) $A=\left(a_{n k}\right) \in\left(b v_{0}, b s\right)$ iff Equation (46) holds (Jakimovski and Russell [37]).
(11) $A=\left(a_{n k}\right) \in\left(\ell_{\infty}, c s\right)$ iff Equation (47) holds (Zeller [29]).
(12) $A=\left(a_{n k}\right) \in(c, c s)$ iff Equations (11), (40) and (48) hold (Zeller [29]).
(13) $A=\left(a_{n k}\right) \in\left(c s_{0}\right.$, cs) iff Equations (10) and (49) hold (Zeller [29]).
(14) $A=\left(a_{n k}\right) \in\left(\ell_{p}, c s\right)$ iff Equations (11) and (43) hold (Jakimovski and Russell [37]).
(15) $A=\left(a_{n k}\right) \in(\ell, c s)$ iff Equations (11) and (44) hold (Jakimovski and Russell [37]).
(16) $A=\left(a_{n k}\right) \in(b v, c s)$ iff Equations (11), (44) and (46) hold (Zeller [29]).
(17) $A=\left(a_{n k}\right) \in\left(b v_{0}\right.$, cs) iff Equations (11) and (46) hold (Jakimovski and Russell [37]).

Now, let us list the following condition, where $d_{n k}$ and $d_{n k}^{(m)}$ are taken as in Equations (30) and (31):

$$
\begin{align*}
& \lim _{k} d_{n k}^{(m)}=0 \text { for all } n \in \mathbb{N}, \tag{50}\\
& \exists d_{n k} \in \mathbb{C} \ni \lim _{n \rightarrow \infty}\left(d_{n k}^{(m)}-d_{n, k+1}^{(m)}\right)=d_{n k} \text { for all } k, n \in \mathbb{N}, \tag{51}\\
& \lim _{n \rightarrow \infty} \sum_{k}\left|d_{n k}^{(m)}-d_{n, k+1}^{(m)}\right|<\infty \text { uniformly in } n, \tag{52}\\
& \lim _{k} d_{n k}=0 \text { for all } n \in \mathbb{N}, \tag{53}\\
& \sup _{n} \sum_{k}\left|d_{n k}-d_{n, k+1}\right|<\infty, \tag{54}\\
& \exists d_{k} \in \mathbb{C} \ni \lim _{n \rightarrow \infty}\left(d_{n k}-d_{n, k+1}\right)=d_{k} \text { for all } k, n \in \mathbb{N} \text {, } \tag{55}\\
& \exists \alpha \in \mathbb{C} \ni \lim _{n \rightarrow \infty} \sum_{k}\left|d_{n k}-d_{n, k+1}\right|=\alpha \text { uniformly in } n, \tag{56}\\
& \sup _{m \in \mathbb{N}} \sum_{k}\left|\sum_{n=0}^{m}\left(d_{n k}-d_{n, k+1}\right)\right|<\infty, \tag{57}\\
& \lim _{m} \sum_{k}\left|\sum_{n=0}^{m}\left(d_{n k}-d_{n, k+1}\right)\right|=\sum_{k}\left|\sum_{n}\left(d_{n k}-d_{n, k+1}\right)\right|, \tag{58}\\
& \lim _{m} \sum_{k}\left|\sum_{n=0}^{m}\left(d_{n k}-d_{n, k+1}\right)\right|=0, \tag{59}\\
& \sup _{N, K \in \mathcal{F}}\left|\sum_{n \in N} \sum_{k \in K}\left(d_{n k}-d_{n, k+1}\right)\right|<\infty, \tag{60}\\
& \sup _{N, K \in \mathcal{F}}\left|\sum_{n \in N} \sum_{k \in K}\left(d_{n k}-d_{n, k+1}\right)-\left(d_{n-1, k}-d_{n-1, k+1}\right)\right|<\infty, \tag{61}\\
& \sup _{n} \sum_{k}\left|d_{n k}^{(m)}-d_{n, k+1}^{(m)}\right|<\infty, \tag{62}\\
& \exists d_{k} \in \mathbb{C} \ni \lim _{n} d_{n k}^{(m)}=d_{k} \text { for all } k, n \in \mathbb{N}, \tag{63}\\
& \sup _{n \in \mathbb{N}}\left|\lim _{k} d_{n k}\right|<\infty, \tag{64}\\
& \exists d_{k} \in \mathbb{C} \ni \lim _{n} d_{n k}=d_{k} \text { for all } k, n \in \mathbb{N}, \tag{65}\\
& \sup _{m \in \mathbb{N}}\left|\lim _{k} \sum_{n=0}^{m} d_{n k}\right|<\infty, \tag{66}\\
& \sup _{m \in \mathbb{N}} \sum_{k}\left|\sum_{n=0}^{m}\left(d_{n k}-d_{n, k-1}\right)\right|<\infty, \tag{67}\\
& \exists d_{k} \in \mathbb{C} \ni \sum_{n} d_{n k}=d_{k} \text { for each } k \in \mathbb{N}, \tag{68}\\
& \sup _{N, K \in \mathcal{F}} \sum_{n \in N}\left|\sum_{k \in K}\left(d_{n k}-d_{n, k-1}\right)\right|<\infty, \tag{69}
\end{align*}
$$

$$
\begin{gather*}
\exists d_{k} \in \mathbb{C} \ni f-\lim d_{n k}=d_{k} \text { for each } k \in \mathbb{N}, \tag{70}\\
\sup _{N, K \in \mathcal{F}}\left|\sum_{n \in N} \sum_{k \in K}\left(d_{n k}-d_{n-1, k}\right)-\left(d_{n, k-1}-d_{n-1, k-1}\right)\right|<\infty, \tag{71}\\
\lim _{q} \sum_{k} \frac{1}{q+1}\left|\sum_{i=0}^{q} \triangle\left[\sum_{j=0}^{n+i}\left(d_{j k}-\alpha_{k}\right)\right]\right|=0 \text { uniformly in } n, \tag{72}\\
\sup _{n \in \mathbb{N}} \sum_{k}\left|\sum_{j=0}^{n} d_{j k}\right|<\infty, \tag{73}\\
\exists d_{k} \in \mathbb{C} \ni \sum_{n} \sum_{k} d_{n k}=d_{k} \text { for all } k \in \mathbb{N}, \tag{74}\\
\lim _{n} \sum_{k}\left|\triangle\left[\sum_{j=0}^{n}\left(d_{j k}-\alpha_{k}\right)\right]\right|=0, \tag{75}\\
\sup _{n \in \mathbb{N}} \sum_{k}\left|\triangle\left[\sum_{j=0}^{n} d_{j k}\right]\right|<\infty, \tag{76}\\
\exists d_{k} \in \mathbb{C} \ni f-\lim \sum_{j=0}^{n} d_{j k}=d_{k} \text { for each } k \in \mathbb{N}, \tag{77}
\end{gather*}
$$

Now, we can give several conclusions of Theorems 14 and 15, and Lemmas 1 and 4.
Corallary 2. Let $A=\left(a_{n k}\right)$ be an infinite matrix for all $k, n \in \mathbb{N}$. Then,
(1) $A=\left(a_{n k}\right) \in\left(b s\left(\hat{F}(s, r), c_{0}\right)\right.$ iff Equations (50)-(53) hold and Equation (56) also holds with $\alpha=0$.
(2) $A=\left(a_{n k}\right) \in\left(b s\left(\hat{F}(s, r), c s_{0}\right)\right.$ iff Equations (50)-(53) and (59) hold.
(3) $A=\left(a_{n k}\right) \in(b s(\hat{F}(s, r), c)$ iff Equations (50)-(53), (55) and (56) hold.
(4) $A=\left(a_{n k}\right) \in(b s(\hat{F}(s, r), c s)$ iff Equations (50)-(53) and (58) hold.
(5) $A=\left(a_{n k}\right) \in\left(b s\left(\hat{F}(s, r), \ell_{\infty}\right)\right.$ iff Equations (50)-(54) hold.
(6) $\quad A=\left(a_{n k}\right) \in(b s(\hat{F}(s, r), b s)$ iff Equations (50)-(53) and (57) hold.
(7) $A=\left(a_{n k}\right) \in\left(b s\left(\hat{F}(s, r), \ell_{1}\right)\right.$ iff Equations (50)-(53) and (60) hold.
(8) $A=\left(a_{n k}\right) \in(b s(\hat{F}(s, r)$, bv) iff Equations (50)-(53) and (61) hold.
(9) $A=\left(a_{n k}\right) \in\left(b s\left(\hat{F}(s, r), b v_{0}\right)\right.$ iff Equations (50)-(52), (54) and (61) hold and Equation (56) also holds with $\alpha=0$.

Corallary 3. Let $A=\left(a_{n k}\right)$ be an infinite matrix for all $k, n \in \mathbb{N}$. Then,
(1) $A=\left(a_{n k}\right) \in\left(\operatorname{cs}\left(\hat{F}(s, r), c_{0}\right)\right.$ iff Equations (54), (62) and (63) hold and Equation (65) also holds with $d_{k}=0$ for all $k \in \mathbb{N}$.
(2) $A=\left(a_{n k}\right) \in\left(c s\left(\hat{F}(s, r), c s_{0}\right)\right.$ iff Equations (57), (62) and (63) hold and Equation (68) also holds with $d_{k}=0$ for all $k \in \mathbb{N}$.
(3) $A=\left(a_{n k}\right) \in(c s(\hat{F}(s, r), c)$ iff Equations (54), (62), (63) and (65) hold.
(4) $A=\left(a_{n k}\right) \in(c s(\hat{F}(s, r), c s)$ iff Equations (62), (63), (67) and (68) hold.
(5) $\quad A=\left(a_{n k}\right) \in\left(\operatorname{cs}\left(\hat{F}(s, r), \ell_{\infty}\right)\right.$ iff Equations (54) and (62)-(64) hold.
(6) $A=\left(a_{n k}\right) \in(c s(\hat{F}(s, r), b s)$ iff Equations (57), (62), (63) and (66) hold.
(7) $A=\left(a_{n k}\right) \in\left(\operatorname{cs}\left(\hat{F}(s, r), \ell_{1}\right)\right.$ iff Equations (62), (63) and (69) hold.
(8) $A=\left(a_{n k}\right) \in(\operatorname{cs}(\hat{F}(s, r), b v)$ iff Equations (62), (63) and (71) hold.
(9) $A=\left(a_{n k}\right) \in\left(c s\left(\hat{F}(s, r), b v_{0}\right)\right.$ iff Equations (62), (63) and (65) hold and Equation (71) also holds with $d_{k}=0$ for all $k \in \mathbb{N}$.

Corallary 4. Let $A=\left(a_{n k}\right)$ be an infinite matrix for all $k, n \in \mathbb{N}$. Then,
(1) $A=\left(a_{n k}\right) \in(b s(\hat{F}(s, r), \hat{c})$ iff Equations (50)-(54), (70) and (72) hold.
(2) $\quad A=\left(a_{n k}\right) \in\left(b s\left(\hat{F}(s, r), \hat{c}_{0}\right)\right.$ iff Equations (50)-(54) hold and (70) and Equation (72) also hold with $\alpha_{k}=0$ in Equation (70) and $d_{k}=0$ in (72).
(3) $A=\left(a_{n k}\right) \in(c s(\hat{F}(s, r), \hat{c})$ iff Equations (54), (62), (63) and (70) hold.
(4) $A=\left(a_{n k}\right) \in\left(c s\left(\hat{F}(s, r), \hat{c}_{0}\right)\right.$ iff Equations (62), (63) and (54) hold and Equation (70) also holds with $\alpha_{k}=0$.
(5) $\quad A=\left(a_{n k}\right) \in\left(\hat{c}, \operatorname{cs}(\hat{F}(s, r))\right.$ iff Equations (68) and (73)-(75) hold with $b_{n k}$ instead of $d_{n k}$, where $b_{n k}$ is defined by Equation (33).
(6) $A=\left(a_{n k}\right) \in(b s(\hat{F}(s, r), \hat{c} s)$ iff Equations (50)-(53), (72), (76) and (77) hold.
(7) $\quad A=\left(a_{n k}\right) \in(c s(\hat{F}(s, r), \hat{c s})$ iff Equations (62), (63), (76) and (77) hold.

Corallary 5. Let $A=\left(a_{n k}\right)$ be an infinite matrix for all $k, n \in \mathbb{N}$. Then,
(1) $A=\left(a_{n k}\right) \in\left(\ell_{\infty}, b s(\hat{F}(s, r))=(c, b s)=\left(c_{0}, b s\right)\right.$ iff Equation (40) holds with $b_{n k}$ instead of $a_{n k}$, where $b_{n k}$ is defined by (33).
(2) $A=\left(a_{n k}\right) \in\left(\ell_{p}, b s(\hat{F}(s, r))\right.$ iff Equation (43) holds with $b_{n k}$ instead of $a_{n k}$, where $b_{n k}$ is defined by (33).
(3) $A=\left(a_{n k}\right) \in\left(\ell, b s(\hat{F}(s, r))\right.$ iff Equation (44) holds with $b_{n k}$ instead of $a_{n k}$, where $b_{n k}$ is defined by Equation (33).
(4) $A=\left(a_{n k}\right) \in\left(b v, b s(\hat{F}(s, r))\right.$ iff Equation (45) holds with $b_{n k}$ instead of $a_{n k}$, where $b_{n k}$ is defined by Equation (33).
(5) $A=\left(a_{n k}\right) \in\left(b v_{0}, b s(\hat{F}(s, r))\right.$ iff Equation (46) holds with $b_{n k}$ instead of $a_{n k}$, where $b_{n k}$ is defined by Equation (33).
(6) $A=\left(a_{n k}\right) \in\left(\ell_{\infty}, c s(\hat{F}(s, r))\right.$ iff Equation (47) holds with $b_{n k}$ instead of $a_{n k}$, where $b_{n k}$ is defined by Equation (33).
(7) $A=\left(a_{n k}\right) \in\left(c, c s(\hat{F}(s, r))\right.$ iff Equations (11), (40) and (48) hold with $b_{n k}$ instead of $a_{n k}$, where $b_{n k}$ is defined by Equation (33).
(8) $A=\left(a_{n k}\right) \in\left(c s_{0}, c s(\hat{F}(s, r))\right.$ iff Equations (10) and (49) hold with $b_{n k}$ instead of $a_{n k}$, where $b_{n k}$ is defined by Equation (33).
(9) $A=\left(a_{n k}\right) \in\left(\ell_{p}, c s(\hat{F}(s, r))\right.$ iff Equations (11) and (43) hold with $b_{n k}$ instead of $a_{n k}$, where $b_{n k}$ is defined by Equation (33).
(10) $A=\left(a_{n k}\right) \in\left(\ell, \operatorname{cs}(\hat{F}(s, r))\right.$ iff Equations (11) and (44) hold with $b_{n k}$ instead of $a_{n k}$, where $b_{n k}$ is defined by Equation (33).
(11) $A=\left(a_{n k}\right) \in\left(b v, c s(\hat{F}(s, r))\right.$ iff Equations (11), (44) and (46) hold with $b_{n k}$ instead of $a_{n k}$, where $b_{n k}$ is defined by Equation (33).
(12) $A=\left(a_{n k}\right) \in\left(b v_{0}, c s(\hat{F}(s, r))\right.$ iff Equations (11) and (46) hold with $b_{n k}$ instead of $a_{n k}$, where $b_{n k}$ is defined by Equation (33).

4. Discussion

The difference sequence operator was introduced for the first time in the literature by Kızmaz [38]. Kirişçi and Başar [4] have characterized and investigated generalized difference sequence spaces. The Fibonacci difference matrix \hat{F}, which is derived from the Fibonacci sequence $\left(f_{n}\right)$, was recently introduced by Kara [23] in 2013 and defined the new sequence spaces $\ell_{p}(\hat{F})$ and $\ell_{\infty}(\hat{F})$, which are derived by the matrix domain of \hat{F} from the sequence spaces ℓ_{p} and ℓ_{∞}, respectively, where $1 \leq p<\infty$. Candan [25] in 2015 introduced the sequence spaces $c(\hat{F}(s, r))$ and $c_{0}(\hat{F}(s, r))$. Later, Candan and Kara [15] studied the sequence spaces $\ell_{p}(\hat{F}(s, r))$ in which $1 \leq p \leq \infty$. In addition, Kara et al. [24] have characterized some class of compact operators in the spaces $\ell_{p}(\hat{F})$ and $\ell_{\infty}(\hat{F})$, where $1 \leq p<\infty$.

The study is concerned with matrix domain on a sequences space of a triangle infinite matrix. In this article, we defined spaces $b s(\hat{F}(s, r))$ and $c s(\hat{F}(s, r))$ of Generalized Fibonacci difference of sequences, which constituted bounded and convergence series, respectively. We have demonstrated the sets of $b s(\hat{F}(s, r))$ and $c s(\hat{F}(s, r))$, which are the linear spaces, and both spaces have the same norm

$$
\|x\|=\sup _{n \in \mathbb{N}}\left|\sum_{k=0}^{n}\left(s \frac{f_{k}}{f_{k+1}} x_{k}+r \frac{f_{k+1}}{f_{k}} x_{k-1}\right)\right|
$$

where $x \in b s(\hat{F}(s, r))$ or $x \in c s(\hat{F}(s, r))$. In addition, it was shown that they are normed space and Banach spaces. It was found that $b s(\hat{F}(s, r))$ and $b s$ are linearly isomorphic as isometric. At the same time, $c s(\hat{F}(s, r))$ and cs are linearly isomorphic as isometric. Some inclusions' theorems were given with respect to $b s(\hat{F}(s, r))$ and $c s(\hat{F}(s, r))$. According to this, inclusions $b s \subset b s(\hat{F}(s, r)), c s \subset c s(\hat{F}(s, r))$ are valid. In addition, if $|r / s|<1 / 4$, then $b s(\hat{F}(s, r)) \subset \ell_{\infty}$ and $c s(\hat{F}(s, r)) \subset c$ are valid. It was concluded that $c s(\hat{F}(s, r))$ has a Schauder basis.

Finally, the α-, β - and γ-duals of the both spaces are calculated and some matrix transformations of them were given.

5. Conclusions

In this article, we have defined spaces $b s(\hat{F}(s, r))$ and $c s(\hat{F}(s, r))$ of Generalized Fibonacci difference of sequences, which constituted bounded and convergence series, respectively. We have demonstrated that the sets of $b s(\hat{F}(s, r))$ and $c s(\hat{F}(s, r))$ are the linear spaces and both spaces have the same norm. In addition, it was shown that they are Banach spaces. Some inclusions theorems were given with respect to $b s(\hat{F}(s, r))$ and $c s(\hat{F}(s, r))$. It was concluded that $c s(\hat{F}(s, r))$ has a Schauder basis. Finally, the α-, β - and γ-duals of the both spaces were calculated and some matrix transformations of them were given.

Author Contributions: Both authors contributed equally to the writing of this paper. Both authors read and approved the final manuscript.
Funding: This research received no external funding
Acknowledgments: The authors are grateful to the responsible editor and the anonymous reviewers for their valuable comments and suggestions, which have greatly improved this paper.
Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
iff if and only if

References

1. Altay, B.; Başar, F. On some Euler sequence spaces of nonabsolute type. Ukranian Math. J. 2005, 57, 3-17. [CrossRef]
2. Malkowsky, E.; Savaş, E. Matrix transformations between sequence spaces of generalized weightedmean. Appl. Math. Comput. 2004, 147, 333-345.
3. Aydın, C.; Başar, F. On the new sequence spaces which include the spaces c_{0} and c. Hokkaido Math. J. 2004, 33, 1-16. [CrossRef]
4. Kirisş̧i, M.; Başar, F. Some new sequence spaces derived by the domain of generalized difference matrix. Comput. Math. Appl. 2010, 60, 1299-1309. [CrossRef]
5. Şengönül, M.; Başar, F. Some new Cesàro sequence spaces of non-absolute type which include thespaces c_{0} and c. Soochow J. Math. 2005, 31, 107-119.
6. Altay, B.; Başar, F. Some paranormed Riezs sequence spaces of non-absolute type. Southeast Asian Bull. Math. 2006, 30, 591-608.
7. Mursaleen, M.; Noman, A.K. On the spaces of λ-convergent and bounded sequences. Thai J. Math. 2010, 8, 311-329.
8. Candan, M. Domain of the double sequential band matrix in the classical sequence spaces. J. Inequal. Appl. 2012, 2012, 281. [CrossRef]
9. Candan, M.; Kayaduman, K. Almost convergent sequence space derived by generalized Fibonacci matrix and Fibonacci core. Br. J. Math. Comput. Sci. 2015, 7, 150-167. [CrossRef]
10. Candan, M. Almost convergence and double sequential band matrix. Acta Math. Sci. 2014, 34, 354-366. [CrossRef]
11. Candan, M. A new sequence space isomorphic to the space $\ell(p)$ and compact operators. J. Math. Comput. Sci. 2014, 4, 306-334.
12. Candan, M. Domain of the double sequential band matrix in the spaces of convergent and null sequences. Adv. Differ. Equ. 2014, 2014, 163. [CrossRef]
13. Candan, M.; Güneş, A. Paranormed sequence space of non-absolute type founded using generalized difference matrix. Proc. Nat. Acad. Sci. India Sect. A 2015, 85, 269-276. [CrossRef]
14. Candan, M. Some new sequence spaces derived from the spaces of bounded, convergent and null sequences. Int. J. Mod. Math. Sci. 2014, 12, 74-87.
15. Candan, M.; Kara, E.E. A study on topological and geometrical characteristics of new Banach sequence spaces. Gulf J. Math. 2015, 3, 67-84.
16. Candan, M.; Kılınç, G. A different look for paranormed Riesz sequence space derived by Fibonacci matrix. Konuralp J. Math. 2015, 3, 62-76.
17. Şengönül, M.; Kayaduman, K. On the Riesz almost convergent sequence space. Abstr. Appl. Anal. 2012, 2012, 18. [CrossRef]
18. Kayaduman, K.; Şengönül, M. The spaces of Ces'aro almost convergent sequences and core theorems. Acta Math. Sci. 2012, 32, 2265-2278. [CrossRef]
19. Çakan, C.; Çoşkun, H. Some new inequalities related to the invariant means and uniformly bounded function sequences. Appl. Math. Lett. 2007, 20, 605-609. [CrossRef]
20. Çoşkun, H.; Çakan, C. A class of statistical and σ-conservative matrices. Czechoslov. Math. J. 2005, 55, 791-801. [CrossRef]
21. Çoşkun, H.; Çakan, C.M. On the statistical and σ-cores. Stud. Math. 2003, 154, 29-35. [CrossRef]
22. Kayaduman, K.; Furkan, H. Infinite matrices and $\sigma^{(A)}$-core. Demonstr. Math. 2006, 39, 531-538. [CrossRef]
23. Kara, E.E. Some topological and geometrical properties of new Banach sequence spaces. J. Inequal. Appl. 2013, 2013, 38. [CrossRef]
24. Kara, E.E.; Başarır, M.; Mursaleen, M. Compact operators on the Fibonacci difference sequence spaces $\ell_{p}(\hat{F})$ and $\ell_{\infty}(\hat{F})$. In Proceedings of the 1st International Eurasian Conference on Mathematical Sciences and Applications, Prishtine, Kosovo, 3-7 September 2012.
25. Candan, M. A new approach on the spaces of generalized Fibonacci difference null and convergent sequences. Math. Aeterna 2015, 5, 191-210.
26. Stieglitz, M.; Tietz, H. Matrix transformationen von folgenräumen eine ergebnisübersicht. Math. Z. 1997, 154, 1-16. [CrossRef]
27. Wilansky, A. Summability through Functional Analysis, North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 1984; Volume 85.
28. Grosse-Erdman, K.-G. Matrix transformations between the sequence space of Maddox. J. Math Anal. Appl. 1993, 180, 223-238. [CrossRef]
29. Zeller, K. Allgemeine Eigenschaften von Limitierungsverfahren die auf Matrixtransformationen beruhen Wissenschaftliche Abhandlung. Math. Z. 1951, 53, 463-487. [CrossRef]
30. Hill, J.D. On the space (γ) of convergent series. Tohoku Math. J. 1939. Avaliable online: https:/ / www.jstage. jst.go.jp/article/tmj1911/45/0/45_0_332/_article/-char/ja/.
31. Dienes, P. An Introduction to the Theory of Functions of a Complex Veriable; Taylor Series; Clarendon Press: Oxford, UK; Dover, NY, USA, 1957.
32. Altay, B.; Başar, F. Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space. J. Math. Anal. Appl. 2007, 336, 632-645. [CrossRef]
33. Lorentz, G.G. A contribution to the theory of divergent sequences. Acta Math. 1948, 80, 167-190. [CrossRef]
34. Başar, F. Strongly-conservative sequence-to-series matrix transformations. Erciyes Üniversitesi Fen Bilimleri Dergisi 1989, 5, 888-893.
35. Başar, F.; Çolak, R. Almost-conservative matrix transformations. Turkish J. Math. 1989, 13, 91-100.
36. Başar, F.; Solak, I. Almost-coercive matrix transformations. Rend. Mat. Appl. 1991, 11, 249-256.
37. Jakimovski, A.; Russell, D.C. Matrix mapping between BK-spaces. Lond. Math. Soc. 1972, 4, 345-353. [CrossRef]
38. Kızmaz, H. On certain sequence spaces. Can. Math. Bull. 1981, 24, 169-176. [CrossRef]
