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Abstract: In this article, we demonstrate how interval-valued intuitionistic fuzzy sets (IVIFSs)
can function as extended intuitionistic fuzzy sets (IFSs) using the interval-valued intuitionistic
fuzzy numbers (IVIFNs) instead of precision numbers to describe the degree of membership and
non-membership, which are more flexible and practical in dealing with ambiguity and uncertainty.
By introducing IVIFSs into three-way decisions, we provide a new description of the loss function.
Thus, we firstly propose a model of interval-valued intuitionistic fuzzy decision-theoretic rough
sets (IVIFDTRSs). According to the basic framework of IVIFDTRSs, we design a strategy to
address the IVIFNs and deduce three-way decisions. Then, we successfully extend the results
of IVIFDTRSs from single-person decision-making to group decision-making. In this situation,
we adopt a grey correlation accurate weighted determining method (GCAWD) to compute the
weights of decision-makers, which integrates the advantages of the accurate weighted determining
method and grey correlation analysis method. Moreover, we utilize the interval-valued intuitionistic
fuzzy weighted averaging (IIFWA) operation to count the aggregated scores and the accuracies of the
expected losses. By comparing these scores and accuracies, we design a simple and straightforward
algorithm to deduce three-way decisions for group decision-making. Finally, we use an illustrative
example to verify our results.

Keywords: three-way decisions; decision-theoretic rough sets; interval-valued intuitionistic fuzzy
sets; group decision-making

1. Introduction

Three-way decision-making, which is a decision-making model based on human cognition,
has a very unique function in dealing with uncertainty. It can offer three strategies (acceptance,
non-commitment, and rejection) in dealing with uncertainty problems. It has a very wide
application background, such as investment, risk decision, government decision, information filtering,
text classification, cluster analysis, etc. [1]. Three-way decisions theory is first proposed in the
framework of rough sets [2,3]. Yao [1,4–7] developed rules for three-way decisions, which include
positive, boundary, and negative rules. Yao also proposed decision-theoretic rough sets (DTRSs),
which greatly enriched and developed three-way decisions [5,6,8–11].

In the present study, how to confirm the loss functions of DTRSs is always the heart of the
matter. Under the influence of a realistic decision-making environment, some factors, such as limited
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knowledge, finite intelligence, and the different risk preference of decision-makers, limited time,
and limited budgets often make decision-makers fail to make precise decisions [12]. Therefore,
many researchers construct different kinds of loss functions based on the simulation and evaluation
of a decision-making environment, characterized by uncertainty, to adapt to a realistic decision
environment, which greatly enriches the determination of the loss function. Zadeh [13] found that fuzzy
sets are effective methods to deal with vague, imprecise, and uncertainty problems. Mishra et al. [14]
showed that the fuzzy information boundaries tend to be better at accurate information, which makes
decision-makers perform better in realistic decision-making environments. Liang et al. [15–19]
successfully used triangular fuzzy numbers, hesitant fuzzy sets, interval numbers, intuitionistic
fuzzy sets, and typical stochastic functions to determine the loss function.

The IVIFSs also play an important role in describing uncertainty [20]. Atanassov and Gargov [20]
extended the intuitionistic fuzzy sets (IFSs) to the interval-valued intuitionistic fuzzy sets (IVIFSs),
which use interval-valued intuitionistic fuzzy numbers (IVIFNs), instead of precise numbers,
to describe the membership and non-membership function. Then, the IVIFSs began to get a lot
of attention of researchers [21–29]. Atanassov [21] has studied basic properties and put forward some
relationships and the operational rules of the IVIFSs. Xu [26] designed a method based on a distance
measure for IVIFSs under a group decision-making environment. Xu [27] gave some aggregation
operators and defined the score and accuracy function of IVIFSs for ordering the IVIFSs. Liu et al. [28]
extended the entropy and subsethood from IFSs to general IVIFSs. Xu et al. [29] introduced the
clustering technique of IVIFSs. The IVIFSs, which use the interval-valued intuitionistic fuzzy numbers
instead of precision numbers to describe the membership and non-membership function, are more
flexible and practical in dealing with ambiguity and uncertainty.

Unlike the existing works, presented in [15–18], this article uses IVIFNs, instead of precise
numbers, to describe the loss functions of the DTRSs and construct a new framework of interval-valued
intuitionistic fuzzy decision-theoretic rough sets (IVIFDTRSs). We also design a strategy and
infer rules for three-way decisions for IVIFDTRSs in a single-person decision-making environment.
In dealing with complex problems, group decision-making tends to be more scientific and rational
than individual decision-making because it can focus on the wisdom of decision-makers in different
fields, take advantage of more information to form more feasible methods, and it is usually easy
for it to gain universal recognition. In order to avoid the incomprehensiveness of individual
decisions, we extend IVIFDTRSs from single-person decision-making to group decision-making.
It is common knowledge that the determination of the weight of decision-makers is crucial in group
decision-making. Hence, there are a lot of researchers introduced the correlation and aggregation
method of interval-valued intuitionistic fuzzy sets [30–37]. Thus, we provided the grey correlation
accurate weighted determining method (GCAWD) to confirm the weight of decision-makers, which
integrated the advantages of the accurate weighted determining method [30] and grey correlation
analysis method [31]. Then, we adopted the interval-valued intuitionistic fuzzy weighted averaging
(IIFWA) operation to aggregate the group opinions and compute the scores and accuracies of the
expected losses. By comparing these scores and accuracies, we develop a simple and straightforward
algorithm to deduce three-way decisions.

This paper extends IFDTRSs to IVIFDTRSs, and extends IVIFDTRSs from single-person
decision-making to group decision-making, which provides a more scientific and rational way to deal
with the uncertainty of decision-making. This paper also provides a new method, named GCAWD,
to confirm the weights of experts. This method first gives the expert a greater initial weight if the expert
has larger IVIFNs in relation to the membership degree of attributes, because such an expert knows
more about the attribute, and then determines the final weight of decision-makers by considering two
aspects of group ideas and information distribution. Finally, it establishes a planning model according
to the principle of entropy.

The remainder of the article contains the following: Section 2 introduces some basic concepts
of Bayesian decision procedures and IVIFNs. Section 3 designs the basic model of IVIFDTRSs.
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Section 4 designs a strategy and infers the rules of three-way decisions for IVIFDTRSs in single-person
decision-making. Section 5 provides the GCAWD to calculate the weights of decision-makers and
studies the decision analysis of IVIFDTRSs in relation to group decision-making. Section 6 gives
an illustrative example. Section 7 concludes the paper and introduces future research prospects.

2. Preliminaries

The model of DTRSs based on Bayesian decision procedure, the basic concepts, relations, and
operations of IVIFSs and IVIFNs are briefly introduced as follows [5,7,10,11].

2.1. Decision-Theoretic Rough Sets Model

Let the set of states Ω = {ω1, ω2, · · · , ωs} denote a finite set of s states, and the set of states
A = {a1, a2, · · · , an} be a finite set of n possible actions. Pr(ωj

∣∣x) is the conditional probability of an
object x being in state ωj, given that the object x is described by x. Here, x is the equivalence class of x.
λ(ai

∣∣ωj) is the loss or cost for taking action ai in the state ωj. For object x, suppose to take the action
ai. According to the method of minimum-risk Bayesian decision [11,38], the expected loss associated
with action ai is given below:

R(ai |x ) =
s

∑
j=1

λ(ai
∣∣ωj )P(ωj |x ) (1)

Generally, x is a description of the object x, τ(x) is a decision rule function that represents which
action to take, and R is the overall risk, which can be calculated as follows [16]:

R = ∑
x

R(τ(x) |x )Pr(x) (2)

Let Ω = {X, ¬X} denote the set of states indicating that an object is in X and not in X. Let A =

{aP, aB, aN} be the set of actions, where aP, aB, and aN represent the three actions in classifying
an object, deciding POS(X), NEG(X), and BND(X), respectively. λPP, λBP, and λNP represent the
cost of taking actions aP, aB, and aN when the object x is in X, respectively. Similarly, λPN , λBN , and
λNN represent the cost of taking actions aP, aB, and aN when the object x is not in X. For an object with
the description [x], suppose an action ai(i = P, B, N) is taken, then we can calculate the expected loss
R(ai|[x])(i = P, B, N) associated with taking the individual actions as follows:

R(aP|[x]) = λPPPr(X|[x]) + λPNPr(¬X|[x]) (3)

R(aB|[x]) = λBPPr(X|[x]) + λBNPr(¬X|[x]) (4)

R(aN |[x]) = λNPPr(X|[x]) + λNNPr(¬X|[x]) (5)

Here, Pr(X|[x]) and Pr(¬X|[x]) are the probabilities that an object in the equivalence class [x]
belongs to X and ¬X, respectively.

According to the minimum-risk decision of Bayesian decision procedure, the decision rules can
be expressed as follows:

(P)ifR(aP|[x]) ≤ R(aB|[x]) and R(aP|[x]) ≤ R(aB|[x]) , decidex ∈ POS(C)
(B)if R(aB|[x]) ≤ R(aP|[x]) andR(aB|[x]) ≤ R(aN |[x]) , decidex ∈ BND(C)
(N)ifR(aN |[x]) ≤ R(aP|[x]) andR(aN |[x]) ≤ R(aB|[x]) , decidex ∈ NEG(C)

2.2. Interval-Valued Intuitionistic Fuzzy Sets (IVIFSs)

The concept of IVIFSs was first introduced by Atanassov and Gargov [12,20]. It is composed
of an interval-valued membership degree and an interval-valued non-membership degree. In this
subsection, we review some basic concepts and operations of IVIFSs [27].
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Definition 1. Let a non-null set X = {x1, x2, · · · , xn} be fixed, then an IVIFS Ẽ over X is an object having
the form [3]:

Ẽ =
{
< xi, µ̃Ẽ(xi), ṽẼ(xi) > |xi ∈ X

}
(6)

Here, µ̃Ẽ(xi) ⊆ [0, 1] and ν̃Ẽ(xi) ⊆ [0, 1] are the membership and non-membership degrees of x to Ẽ,
respectively. Additionally, both µ̃Ẽ(xi) and ν̃Ẽ(xi) are intervals, and for all xi ∈ X:

supµ̃Ẽ(xi) + supṽẼ(xi) ≤ 1 (7)

Especially, if infµ̃Ẽ(x) = supµ̃Ẽ(x) and infν̃Ẽ(x) = supν̃Ẽ(x) then the IVIFS Ẽ reduces to
an intuitionistic fuzzy set (IFS).

2.3. Interval-Valued Intuitionistic Fuzzy Numbers (IVIFNs)

For an IVIFS Ẽ [20,27], the pair (µ̃Ẽ(xi), ν̃Ẽ(xi)) is called an interval-valued intuitionistic fuzzy
number (IVIFN). We denote an IVIFN by α̃ = ([a, b], [c, d]) for convenience, where:

[a, b] ⊆ [0, 1], [c, d] ⊆ [0, 1], b + d ≤ 1

Meanwhile, S(α) and H(α) are the score and accuracy functions of α̃, respectively. They can be
computed as follows:

S(α) =
1
2
(a− c + b− d), S(α) ∈ [−1, 1] (8)

H(α) =
1
2
(a + b + c + d), H(α) ∈ [0, 1] (9)

In particular, if a = b and c = d then the IVIFN α̃ reduces to an intuitionistic fuzzy number (IFN).

Definition 2. Let α̃1 = ([a1, b1], [c1, d1]) and α̃2 = ([a2, b2], [c2, d2]) be any two IVIFNs, we define their
relations and operations as follows [9,10]:

(O1) α̃1 + α̃2 = ([a1 + a2 − a1a2, b1 + b2 − b1b2], [c1c2, d1d2])

(O2) α̃1 · α̃2 = ([a1a2, b1b2], [c1 + c2 − c1c2, d1 + d2 − d1d2])

(O3) λα̃1 = ([1− (1− a1)
λ, 1− (1− b1)

λ], [c1
λ, d1

λ])

(O4) α̃λ
1 = ([a1

λ, b1
λ], [1− (1− c1)

λ, 1− (1− d1)
λ])

Additionally, the S(α) and H(α) of α̃1 and α̃2 can be computed as: (O5) S(α1) =
1
2 (a1 − c1 + b1 − d1)

(O6) S(α2) =
1
2 (a2 − c2 + b2 − d2)

(O7) H(α1) =
1
2 (a1 + b1 + c1 + d1)

(O8) H(α2) =
1
2 (a2 + b2 + c2 + d2)

(O9) d(α̃1, α̃2) =
1
4 (|a1 − a2|+ |b1 − b2|+ |c1 − c2|+ |d1 − d2|)

Then, we can use the S(α) and H(α) to contrast α̃1 and α̃2 as follows:

(R1) if S(α1) < S(α2), then α̃1 < α̃2.
(R2) if S(α1) > S(α2), then α̃1 > α̃2.
(R3) if S(α1) = S(α2) and H(α1) < H(α2), then α̃1 < α̃2.
(R4) if S(α1) = S(α2) and H(α1) > H(α2), then α̃1 > α̃2.
(R5) if S(α1) = S(α2) and H(α1) = H(α2), then α̃1 = α̃2.
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3. Interval-Valued Intuitionistic Fuzzy Decision-Theoretic Rough Sets Model

In this section, we introduce the IVIFNs, instead of precise numbers, to describe the loss functions
of DTRSs and construct a new model of interval-valued intuitionistic fuzzy decision-theoretic rough
sets (IVIFDTRSs) according to the Bayesian decision procedure [11,15–18,38].

Following the results in Ref. [17], the IVIFDTRS model is composed of two states and three
actions. Let Ω = {C, ¬C} denote the set of states indicating that an object is in C and not in C.
Let = {aP, aB, aN} be the set of actions, aP, aB and aN are three actions which represent deciding to
classify object x ∈ POS(C), x ∈ BND(C) and x ∈ NEG(C), respectively. The loss function matrix
represented by IVIFNs is supplied in Table 1.

Table 1. The loss function matrix represented by interval-valued intuitionistic fuzzy sets (IVIFNs).

Action C(P) ¬C(N)

aP
∼
E(λPP) = ([aPP, bPP], [cPP, dPP])

∼
E(λPN) = ([aPN , bPN ], [cPN , dPN ])

aB
∼
E(λBP) = ([aBP, bBP], [cBP, dBP])

∼
E(λBN) = ([aBN , bBN ], [cBN , dBN ])

aN
∼
E(λNP) = ([aNP, bNP], [cNP, dNP])

∼
E(λNN) = ([aNN , bNN ], [cNN , dNN ])

In Table 1, Ẽ is an interval-valued intuitionistic fuzzy concept of loss, and the loss functions Ẽ(λ••)
(• = P, B, N) are IVIFNs. Ẽ(λPP), Ẽ(λBP) and Ẽ(λNP) represent the cost degrees of taking actions aP,
aB and aN when the object x is in C, respectively. Additionally, Ẽ(λPN), Ẽ(λBN) and Ẽ(λNN) represent
the cost of taking actions aP, aB and aN when the alternation x belongs to ¬C. There are some deserved
relationships, which are as follows:

aPP < aBP < aNP, bPP < bBP < bNP, cPP > cBP > cNP, dPP > dBP > dNP,

aPN > aBN > aNN , bPN > bBN > bNN , cPN < cBN < cNN , dPN < dBN < dNN .

For Table 1, we denote that
∼
µE(λ••)(• = P, B, N) and

∼
νE(λ••)(• = P, B, N) are the membership

and non-membership degree of x to Ẽ, respectively. They are described as follows:

∼
µE(λPP) = [aPP, bPP],

∼
vE(λPP) = [cPP, dPP],

∼
µE(λPN) = [aPN , bPN ],

∼
vE(λPN) = [cPN , dPN ],

∼
µE(λBP) = [aBP, bBP],

∼
vE(λPN) = [cBP, dBP],

∼
µE(λBN) = [aBN , bPN ],

∼
vE(λBN) = [cBN , dBN ],

∼
µE(λNP) = [aNP, bNP],

∼
vE(λNP) = [cNP, dNP],

∼
µE(λNN) = [aNN , bNN ],

∼
vE(λNN) = [cNN , dNN ].

Proposition 1. Based on above operations, the following relationships are implied:

aPP < aBP < aNP
bPP < bBP < bNP

}
⇒ ∼

µE(λPP) <
∼
µE(λBP) <

∼
µE(λNP)

cPP > cBP > cNP
dPP > dBP > dNP

}
⇒ ∼

νE(λNP) <
∼
νE(λBP) <

∼
νE(λPP)

⇒
∼
E(λPP) <

∼
E(λBP) <

∼
E(λNP) ,

(10)
aPN > aBN > aNN
bPN > bBN > bNN

}
⇒ ∼

µE(λNN) <
∼
µE(λBN) <

∼
µE(λPN)

cPN < cBN < cNN
dPN < dBN < dNN

}
⇒ ∼

νE(λPN) <
∼
νE(λBN) <

∼
νE(λNN)

⇒
∼
E(λNN) <

∼
E(λBN) <

∼
E(λPN) .

(11)
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For Proposition 1, (10) and (11) illustrate that the loss from taking the action aP is less than that
from taking the action aB, and the combined loss from taking the action aP and aB is less than the
loss from taking the action aN when the classifying object x belongs to C. Meanwhile, the reverse
orders of these losses are set up when the classifying object x is in ¬C. It must be emphasized that
∼
µ• = [a••, b••](• = P, B, N) and

∼
ν• = [c••, d••](• = P, B, N) are the prerequisites of IVIFDTRSs.

Pr(C|[x]) and Pr(¬C|[x]) are the probabilities that an object x in the equivalence class [x] belongs to C
and ¬C, i.e., Pr(C|[x]) + Pr(¬C|[x]) = 1 . For an object x, the expected losses R(a•|[x])(• = P, B, N)

are described as follows:

R(aP

∣∣∣∣[x]) = ∼E(λPP)Pr(C
∣∣∣∣[x])⊕ ∼E(λPN)Pr(¬C

∣∣∣∣[x]) , (12)

R(aB

∣∣∣∣[x]) = ∼E(λBP)Pr(C
∣∣∣∣[x])⊕ ∼E(λBN)Pr(¬C

∣∣∣∣[x]) , (13)

R(aN

∣∣∣∣[x]) = ∼E(λNP)Pr(C
∣∣∣∣[x])⊕ ∼E(λNN)Pr(¬C

∣∣∣∣[x]) . (14)

Here, R(a•|[x])(• = P, B, N) are also IVIFNs. According to the operation rule (O3) of IVIFNs
proposed in Definition 2, the R(a•|[x])(• = P, B, N) are calculated as:

R(aP|[x]) = ([1− (1− aPP)
Pr(C|[x]), 1− (1− bPP)

Pr(C|[x])], [cPP
Pr(C|[x]), dPP

Pr(C|[x])])

⊕([1− (1− aPN)
Pr(¬C|[x]), 1− (1− bPN)

Pr(¬C|[x])], [cPN
Pr(¬C|[x]), dPN

Pr(¬C|[x])])
, (15)

R(aB|[x]) = ([1− (1− aBP)
Pr(C|[x]), 1− (1− bBP)

Pr(C|[x])], [cBP
Pr(C|[x]), dBP

Pr(C|[x])])

⊕([1− (1− aBN)
Pr(¬C|[x]), 1− (1− bBN)

Pr(¬C|[x])], [cBN
Pr(¬C|[x]), dBN

Pr(¬C|[x])])
, (16)

R(aN |[x]) = ([1− (1− aNP)
Pr(C|[x]), 1− (1− bNP)

Pr(C|[x])], [cNP
Pr(C|[x]), dNP

Pr(C|[x])])

⊕([1− (1− aNN)Pr(¬C|[x]), 1− (1− bNN)Pr(¬C|[x])], [cNN
Pr(¬C|[x]), dNN

Pr(¬C|[x])])
. (17)

Proposition 2. According to the operation rule (O1) of IVIFNs, proposed in Definition 2,
the R(a•|[x])(• = P, B, N) can be calculated as:

R(aP

∣∣∣[x]) = ([1− (1− aPP)
Pr(C|[x]) · (1− aPN)Pr(¬C|[x]), 1− (1− bPP)

Pr(C|[x]) · (1− bPN)Pr(¬C|[x])],

[cPP
Pr(C|[x]) · cPN

Pr(¬C|[x]), dPP
Pr(C|[x]) · dPN

Pr(¬C|[x])])
(18)

R(aB

∣∣∣[x]) = ([1− (1− aBP)
Pr(C|[x]) · (1− aBN)Pr(¬C|[x]), 1− (1− bBP)

Pr(C|[x]) · (1− bBN)Pr(¬C|[x])],

[cBP
Pr(C|[x]) · cBN

Pr(¬C|[x]), dBP
Pr(C|[x]) · dBN

Pr(¬C|[x])])
(19)

R(aN

∣∣∣[x]) = ([1− (1− aNP)
Pr(C|[x]) · (1− aNN)Pr(¬C|[x]), 1− (1− bNP)

Pr(C|[x]) · (1− bNN)Pr(¬C|[x])],

[cNP
Pr(C|[x]) · cNN

Pr(¬C|[x]), dNP
Pr(C|[x]) · dNN

Pr(¬C|[x])])
(20)

According to the minimum-risk decision of the Bayesian decision procedure, the decision rules can be
expressed as follows:

(P) i f R(aP|[x]) ≤ R(aB|[x]) andR(aP|[x]) ≤ R(aB|[x]) , decidex ∈ POS(C)
(B) i f R(aB|[x]) ≤ R(aP|[x]) andR(aB|[x]) ≤ R(aN |[x]) , decidex ∈ BND(C)
(N) i f R(aN |[x]) ≤ R(aP|[x]) andR(aN |[x]) ≤ R(aB|[x]) , decidex ∈ NEG(C)
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4. Decision Analysis of IVIFDTRSs for Single-Person Decision-Making

From Section 3, we use IVIFNs to describe the loss functions and propose a strategy
to deduce the rules of three-way decisions (P)–(N). Additionally, we know that the
expected losses R(a•|[x]) = ([A•, B•], [C•, D•](• = P, B, N) are IVIFNs too. Under single-person
decision-making, we can directly use the score and accuracy functions of IVIFNs to
compare the expected losses R(aP|[x]) = ([AP, BP], [CP, DP] , R(aB|[x]) = ([AB, BB], [CB, DB] and
R(aN |[x]) = ([AN , BN ], [CN , DN ] .

In light of (8) and (9), the score functions of R(a•|[x]) = ([A•, B•], [C•, D•](• = P, B, N) can be
expressed as follows:

S(R(aP|[x])) = (2− (1− aPP)
Pr(C|[x]) · (1− aPN)Pr(¬C|[x]) − (1− bPP)

Pr(C|[x]) · (1− bPN)Pr(¬C|[x])

−cPP
Pr(C|[x]) · cPN

Pr(¬C|[x]) − dPP
Pr(C|[x]) · dPN

Pr(¬C|[x]))/2
(21)

S(R(aB|[x])) = (2− (1− aBP)
Pr(C|[x]) · (1− aBN)Pr(¬C|[x]) − (1− bBP)

Pr(C|[x]) · (1− bBN)Pr(¬C|[x])

−cBP
Pr(C|[x]) · cBN

Pr(¬C|[x]) − dBP
Pr(C|[x]) · dBN

Pr(¬C|[x]))/2
(22)

S(R(aN |[x])) = (2− (1− aNP)
Pr(C|[x]) · (1− aNN)Pr(¬C|[x]) − (1− bNP)

Pr(C|[x]) · (1− bNN)Pr(¬C|[x])

−cNP
Pr(C|[x]) · cNN

Pr(¬C|[x]) − dNP
Pr(C|[x]) · dNN

Pr(¬C|[x]))/2
(23)

At the same time, the accuracy functions are deduced as follows:

H(R(aP|[x])) = (2− (1− aPP)
Pr(C|[x]) · (1− aPN)Pr(¬C|[x]) − (1− bPP)

Pr(C|[x]) · (1− bPN)Pr(¬C|[x])

+cPP
Pr(C|[x]) · cPN

Pr(¬C|[x]) + dPP
Pr(C|[x]) · dPN

Pr(¬C|[x]))/2
(24)

H(R(aB|[x])) = (2− (1− aBP)
Pr(C|[x]) · (1− aBN)Pr(¬C|[x]) − (1− bBP)

Pr(C|[x]) · (1− bBN)Pr(¬C|[x])

+cBP
Pr(C|[x]) · cBN

Pr(¬C|[x]) + dBP
Pr(C|[x]) · dBN

Pr(¬C|[x]))/2
(25)

H(R(aN |[x])) = (2− (1− aNP)
Pr(C|[x]) · (1− aNN)Pr(¬C|[x]) − (1− bNP)

Pr(C|[x]) · (1− bNN)Pr(¬C|[x])

+cNP
Pr(C|[x]) · cNN

Pr(¬C|[x]) + dNP
Pr(C|[x]) · dNN

Pr(¬C|[x]))/2
(26)

For the rule (P) of Section 3, the conditions based on the IVIFN contrast rules (R1)–(R4) imply the
following prerequisites:

(CP1)S(R(aP|[x])) < S(R(aB|[x]))

(CP2)S(R(aP|[x])) = S(R(aB|[x])) ∩ H(R(aP|[x])) < H(R(aB|[x]))

(CP3)S(R(aP|[x])) < S(R(aN |[x]))

(CP4)S(R(aP|[x])) = S(R(aN |[x])) ∩ H(R(aP|[x])) < H(R(aN |[x]))

Similarly, for the rule (B), the conditions based on the IVIFN contrast rules (R1)–(R4) imply the
following prerequisites:

(CB1)S(R(aB|[x])) < S(R(aP|[x]))

(CB2)S(R(aB|[x])) = S(R(aP|[x])) ∩ H(R(aB|[x])) < H(R(aP|[x]))

(CB3)S(R(aB|[x])) < S(R(aN |[x]))

(CB4)S(R(aB|[x])) = S(R(aN |[x])) ∩ H(R(aB|[x])) < H(R(aN |[x]))

Additionally, for the rule (N), the conditions based on the IVIFN contrast rules (R1)–(R4) imply
the following prerequisites:

(CN1)S(R(aN |[x])) < S(R(aP|[x]))

(CN2)S(R(aN |[x])) = S(R(aP|[x])) ∩ H(R(aN |[x])) < H(R(aP|[x]))

(CN3)S(R(aN |[x])) < S(R(aB|[x]))
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(CN4)S(R(aN |[x])) = S(R(aB|[x])) ∩ H(R(aN |[x])) < H(R(aB|[x]))

On the basis of (CP1)–(CP4), (CB1)–(CB4) and (CN1)–(CN4), the decision rules (P)–(N) can be
re-described as follows:

(P)i f ((CP1) ∪ (CP2)) ∩ ((CP3) ∪ (CP4)), decidex ∈ POS(C)
(B)i f ((CB1) ∪ (CB2)) ∩ ((CB3) ∪ (CB4)), decidex ∈ BND(C)
(N)i f ((CN1) ∪ (CN2)) ∩ ((CN3) ∪ (CN4)), decidex ∈ NEG(C)

5. Decision Analysis of IVIFDTRSs for Group Decision-Making

In Section 4, we deduce the decision rules of IVIFDTRSs for single-person decision-making,
where all the relevant evaluation information is supplied by only one person. However, due to the
limitations of personal knowledge and ability, as well as the complexity of the decision environment,
the original decision information, provided by only one person, is not enough. We need more persons
to provide the evaluation information. In order to adapt to this scenario, we develop the IVIFDTRSs
for group decision-making.

5.1. Basic Notations

Suppose there are m decision-makers D = {d1, d2, · · · , dk, · · · , dm}, whose weight vector is

ω = (ω1, ω2, · · · , ωk, · · · , ωm), ωk ≥ 0 and
m
∑

k=1
ωk = 1. For the decision-maker dk(k = 1, 2, · · · , m),

the interval-valued intuitionistic fuzzy loss functions are given in Table 2.

Table 2. The loss function matrix represented by IVIFNs with the decision-maker dk.

dk C(P) ¬C(N)

aP
∼

E(k)(λPP) = ([a(k)PP , b(k)PP ], [c
(k)
PP , d(k)PP ])

∼
E(k)(λPN) = ([a(k)PN , b(k)PN ], [c(k)PN , d(k)PN ])

aB
∼

E(k)(λBP) = ([a(k)BP , b(k)BP ], [c
(k)
BP , d(k)BP ])

∼
E(k)(λBN) = ([a(k)BN , b(k)BN ], [c(k)BN , d(k)BN ])

aN
∼

E(k)(λNP) = ([a(k)NP, b(k)NP], [c
(k)
NP, d(k)NP])

∼
E(k)(λNN) = ([a(k)NN , b(k)NN ], [c(k)NN , d(k)NN ])

In Table 2, [a(k)•• , b(k)•• ] ⊆ [0, 1], [c(k)•• , d(k)•• ] ⊆ [0, 1](• = P, B, N) and b(k)•• + d(k)•• ≤ 1. There are also
some reasonable relationships with respect to loss functions for the decision-maker dk, which are
as follows:

a(k)PP < a(k)BP < a(k)NP, b(k)PP < b(k)BP < b(k)NP, c(k)PP > c(k)BP > c(k)NP, d(k)PP > d(k)BP > d(k)NP,

a(k)PN > a(k)BN > a(k)NN , b(k)PN > b(k)BN > b(k)NN , c(k)PN < c(k)BN < c(k)NN , d(k)PN < d(k)BN < d(k)NN .

5.2. The Determination of Decision-Maker Weights

In group decision-making, the determination of the weight of decision-makers is the heart of the
matter. Zhou et al. [30] obtained the weight of decision-makers by the accurate weighted determining
method, and Li et al. [31] determined the weight of decision-makers by the grey related analytical
method. We provided the grey correlation accurate weighted determining method (GCAWD) to
confirm the weight of decision-makers, which integrated the advantages of the accurate weighted
determining method and grey correlation analysis method. The grey correlation accurate weighted
determining method (GCAWD) first confirmed the different classification decisions of attribute weights
by the accurate weighted determining method. This gave greater weight to the attributes that have
larger intuitionistic fuzzy numbers and maintained the original internal relationship between different
classification decision attribute values. Then, the grey correlation accurate weighted determining
method (GCAWD) determined the weight of decision-makers by the grey related analytical method,
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which established the model to find the weight of each decision-maker based on the grey relation degree
between the individual expert and the expert group, as well as the principle of entropy maximization.

5.2.1. The Determination of the Different Classification Decision Attribute Weights

To facilitate the calculation of the decision attribute weights, we construct a new score function
s(α) = 1

4 [2 + (a− c + b− d)] which has a consistent relationship with the original score function
S(α) = 1

2 (a− c + b− d). It is obvious that the new score function s(α) ∈ [0, 1]

It is common knowledge that E(k)
(λPP)

= (E(1)
(λPP)

, E(2)
(λPP)

, · · ·, E(k)
(λPP)

, · · ·E(m)
(λPP)

) are group

interval-valued intuitionistic fuzzy numbers. Let E(k)′
(λPP)

= (E(1)′
(λPP)

, E(2)′
(λPP)

, · · ·, E(k)′
(λPP)

, · · ·E(m)′
(λPP)

) be

a substitute for E(k)
(λPP)

= (E(1)
(λPP)

, E(2)
(λPP)

, · · ·, E(k)
(λPP)

, · · ·E(m)
(λPP)

), which satisfies E(k−1)′
(λPP)

≥ E(m)′
(λPP)

.
According to the accurate weighted determining method, we can calculate the accurate weight

vectors ω
E(k)′

λPP

= (ω
E(1)′

λPP

, ω
E(1)′

λPP

, · · ·, ω
E(k)′

λPP

, · · ·ω
E(m)′

λPP

) of the attribute E(k)′
(λPP)

as follows:

ω
E(k)′

λPP

= T
E(k)′
(λPP)

/
m

∑
k

T
E(k)′
(λPP)

(27)

where:
T

E(k)′
(λPP)

= S(E(k)′
(λPP)

) · I(E(k)′
(λPP)

) · L(E(k)′
(λPP)

) · R(E(k)′
(λPP)

) (28)

where:
S(E(k)′

(λPP)
) = s(E(k)′

(λPP)
), S(E(k)′

(λPP)
)
∣∣∣(s(E(k)′

(λPP)
) = 0)→ 0+

I(E(k)′
(λPP)

) =

 h(E(k)′
(λPP)

),
m
∏

j=1,j 6=k
(s(E(k)′

(λPP)
)− s(E(j)′

(λPP)
)) = 0

1, else

L(E(k)′
(λPP)

) =
k−1

∏
j=1

l(E(j)′
(λPP)

), k = 2, 3, · · ·, m;

l(E(j)′
(λPP)

) =


h(E(j)′

(λPP)
),

 s(E(j−1)′
(λPP)

)− s(E(j)′
(λPP)

) = 0

s(E(j)′
(λPP)

)− s(E(j+1)′
(λPP)

) > 0

1, else

R(E(k)′
(λPP)

) =
m

∏
j=k+1

r(E(j)′
(λPP)

), k = 1, 2, · · ·, m− 1;

r(E(j)′
(λPP)

) =


h(E(j)′

(λPP)
),

 s(E(j−1)′
(λPP)

)− s(E(j)′
(λPP)

) > 0

s(E(j)′
(λPP)

)− s(E(j+1)′
(λPP)

) = 0

1, else

Here, l(E(1)′
(λPP)

) = l(E(m)′
(λPP)

) = r(E(1)′
(λPP)

) = r(E(m)′
(λPP)

) = 1, L(E(1)′
(λPP)

) = 1, R(E(m)′
(λPP)

) = R(E(m−1)′
(λPP)

),
j = 2, 3, · · ·, m− 1.

Then, we can easily obtain the accurate weight vectors ω
E(k)

λPP

= (ω
E(1)

λPP

, ω
E(1)

λPP

, · · ·, ω
E(k)

λPP

, · ·

·ω
E(m)

λPP

) of the decision attribute E(k)
(λPP)

.

By parity of reasoning, we can calculate the accurate weight vectors ω
E(k)

λPN

, ω
E(k)

λBP

, ω
E(k)

λBN

, ω
E(k)

λNP

and ω
E(k)

λNN

of the decision attributes E(k)
(λPN)

, E(k)
(λBP)

, E(k)
(λBN)

, E(k)
(λNP)

and E(k)
(λNN)

.
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5.2.2. The Determination of Decision-Maker Weights

According to the principle of decision-maker consensus, and the accurate weights of the decision
attributes, which are calculated in Section 5.2.1, we can concentrate each decision solution to get
a comprehensive evaluation value for each decision solution in the determination of expert weights.
We can calculate the grey correlation degree by putting the comprehensive evaluation value of group
decision as the reference sequence and letting the appraisal value, which every expert gave to each
decision solution, be the compared sequence.

(1) The comprehensive index value of each decision solution for decision-maker dk can be
calculated as follows:

Z̃(k)
aP = ω

E(k)
(λPP)

· Ẽ
E(k)
(λPP)

+ ω
E(k)
(λPN)

· Ẽ
E(k)
(λPN)

= ([1− (1− a(k)PP)
ω

E(k)
(λPP) · (1− a(k)PN)

ω
E(k)
(λPN) , 1− (1− b(k)PP)

ω
E(k)
(λPP) · (1− b(k)PN)

ω
E(k)
(λPN) ],

[c(k)PP

ω
E(k)
(λPP) · c(k)PN

ω
E(k)
(λPN ) , d(k)PP

ω
E(k)
(λPP) · d(k)PN

ω
E(k)
(λPN ) ])

(29)

Z̃(k)
aB = ω

E(k)
(λBP)

· Ẽ
E(k)
(λBP)

+ ω
E(k)
(λBN)

· Ẽ
E(k)
(λBN)

= ([1− (1− a(k)BP)
ω

E(k)
(λBP) · (1− a(k)BN)

ω
E(k)
(λBN) , 1− (1− b(k)BP)

ω
E(k)
(λBP) · (1− b(k)BN)

ω
E(k)
(λBN) ],

[c(k)BP

ω
E(k)
(λBP) · c(k)BN

ω
E(k)
(λBN ) , d(k)BP

ω
E(k)
(λBP) · d(k)BN

ω
E(k)
(λBN ) ])

(30)

Z̃(k)
aN = ω

E(k)
(λNP)

· Ẽ
E(k)
(λNP)

+ ω
E(k)
(λNN)

· Ẽ
E(k)
(λNN)

= ([1− (1− a(k)NP)
ω

E(k)
(λNP) · (1− a(k)NN)

ω
E(k)
(λNN) , 1− (1− b(k)NP)

ω
E(k)
(λNP) · (1− b(k)NN)

ω
E(k)
(λNN) ],

[c(k)NP

ω
E(k)
(λNP) · c(k)NN

ω
E(k)
(λNN ) , d(k)NP

ω
E(k)
(λNP) · d(k)NN

ω
E(k)
(λNN ) ])

(31)

(2) The comprehensive evaluation average value of the decision-makers group with respect to
each decision solution can be counted as follows:

Z̃aPo = 1
m

m
∑

k=1
Z̃(k)

aP

= ([ 1
m

m
∑

k=1
(1− (1− a(k)PP)

ω
E(k)
(λPP ) · (1− a(k)PN)

ω
E(k)
(λPN) ), 1

m

m
∑

k=1
(1− (1− b(k)PP)

ω
E(k)
(λPP ) · (1− b(k)PN)

ω
E(k)
(λBN) )],

[ 1
m

m
∑

k=1
(c(k)PP

ω
E(k)
(λPP ) · c(k)PN

ω
E(k)
(λPN ) ), 1

m

m
∑

k=1
(d(k)PP

ω
E(k)
(λPP ) · d(k)PN

ω
E(k)
(λPN ) )])

(32)

Z̃aBo = 1
m

m
∑

k=1
Z̃(k)

aB

= ([ 1
m

m
∑

k=1
(1− (1− a(k)BP)

ω
E(k)
(λBP ) · (1− a(k)BN)

ω
E(k)
(λBN) ), 1

m

m
∑

k=1
(1− (1− b(k)BP)

ω
E(k)
(λBP ) · (1− b(k)BN)

ω
E(k)
(λBN) )],

[ 1
m

m
∑

k=1
(c(k)BP

ω
E(k)
(λBP ) · c(k)BN

ω
E(k)
(λBN ) ), 1

m

m
∑

k=1
(d(k)BP

ω
E(k)
(λBP ) · d(k)BN

ω
E(k)
(λBN ) )])

(33)

Z̃aN o = 1
m

m
∑

k=1
Z̃(k)

aN

= ([ 1
m

m
∑

k=1
(1− (1− a(k)NP)

ω
E(k)
(λNP ) · (1− a(k)NN)

ω
E(k)
(λNN) ), 1

m

m
∑

k=1
(1− (1− b(k)NP)

ω
E(k)
(λNP ) · (1− b(k)NN)

ω
E(k)
(λNN) )],

[ 1
m

m
∑

k=1
(c(k)NP

ω
E(k)
(λNP ) · c(k)NN

ω
E(k)
(λNN ) ), 1

m

m
∑

k=1
(d(k)NP

ω
E(k)
(λNP ) · d(k)NN

ω
E(k)
(λNN ) )])

(34)
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(3) The grey correlation coefficient between the opinion of the individual decision-maker and
the opinions of the group decision-makers with respect to each decision solution can be calculated
as follows:

ξ(Z̃aPo, Z̃(k)
aP ) =

min
k

min
aP

d(Z̃aPo, Z̃(k)
aP ) + ρmin

k
min

aP
d(Z̃aPo, Z̃(k)

aP )

d(Z̃aPo, Z̃(k)
aP ) + ρmax

k
max

aP
d(Z̃aPo, Z̃(k)

aP )

(35)

ξ(Z̃aBo, Z̃(k)
aB ) =

min
k

min
aP

d(Z̃aBo, Z̃(k)
aB ) + ρmin

k
min

aP
d(Z̃aBo, Z̃(k)

aB )

d(Z̃aBo, Z̃(k)
aB ) + ρmax

k
max

aP
d(Z̃aBo, Z̃(k)

aB )

(36)

ξ(Z̃(k)
aN o, Z̃(k)

aN ) =
min

k
min

aP
d(Z̃aN o, Z̃(k)

aN ) + ρmin
k

min
aP

d(Z̃aN o, Z̃(k)
aN )

d(Z̃aN o, Z̃(k)
aN ) + ρmax

k
max

aP
d(Z̃aN o, Z̃(k)

aN )

(37)

Here,

d(Z̃aPo , Z̃(k)
aP ) = 1

4 (

∣∣∣∣∣ 1
m

m
∑

k=1
(1− (1− a(k)PP)

ω
E(k)
(λPP ) · (1− a(k)PN)

ω
E(k)
(λPN) )− (1− (1− a(k)PP)

ω
E(k)
(λPP ) · (1− a(k)PN)

ω
E(k)
(λPN) )

∣∣∣∣∣
+

∣∣∣∣∣ 1
m

m
∑

k=1
(1− (1− b(k)PP)

ω
E(k)
(λPP ) · (1− b(k)PN)

ω
E(k)
(λPN) )− (1− (1− b(k)PP)

ω
E(k)
(λPP ) · (1− b(k)PN)

ω
E(k)
(λPN) )

∣∣∣∣∣
+

∣∣∣∣∣ 1
m

m
∑

k=1
(c(k)PP

ω
E(k)
(λPP ) · c(k)PN

ω
E(k)
(λPN ) )− c(k)PP

ω
E(k)
(λPP ) · c(k)PN

ω
E(k)
(λPN )

∣∣∣∣∣
+

∣∣∣∣∣ 1
m

m
∑

k=1
(d(k)PP

ω
E(k)
(λPP ) · d(k)PN

ω
E(k)
(λPN ) )− d(k)PP

ω
E(k)
(λPP ) · d(k)PN

ω
E(k)
(λPN )

∣∣∣∣∣)

d(Z̃aBo , Z̃(k)
aB ) = 1

4 (

∣∣∣∣∣ 1
m

m
∑

k=1
(1− (1− a(k)BP)

ω
E(k)
(λBP ) · (1− a(k)BN)

ω
E(k)
(λBN) )− (1− (1− a(k)BP)

ω
E(k)
(λBP ) · (1− a(k)BN)

ω
E(k)
(λBN) )

∣∣∣∣∣
+

∣∣∣∣∣ 1
m

m
∑

k=1
(1− (1− b(k)BP)

ω
E(k)
(λBP ) · (1− b(k)BN)

ω
E(k)
(λBN) )− (1− (1− b(k)BP)

ω
E(k)
(λBP ) · (1− b(k)BN)

ω
E(k)
(λBN) )

∣∣∣∣∣
+

∣∣∣∣∣ 1
m

m
∑

k=1
(c(k)BP

ω
E(k)
(λBP ) · c(k)BN

ω
E(k)
(λBN ) )− c(k)BP

ω
E(k)
(λBP ) · c(k)BN

ω
E(k)
(λBN )

∣∣∣∣∣
+

∣∣∣∣∣ 1
m

m
∑

k=1
(d(k)BP

ω
E(k)
(λBP ) · d(k)BN

ω
E(k)
(λBN ) )− d(k)BP

ω
E(k)
(λBP ) · d(k)BN

ω
E(k)
(λBN )

∣∣∣∣∣)
d(Z̃aN o , Z̃(k)

aN ) = 1
4 (

∣∣∣∣∣ 1
m

m
∑

k=1
(1− (1− a(k)NP)

ω
E(k)
(λNP ) · (1− a(k)NN)

ω
E(k)
(λNN) )− (1− (1− a(k)NP)

ω
E(k)
(λNP ) · (1− a(k)NN)

ω
E(k)
(λNN) )

∣∣∣∣∣
+

∣∣∣∣∣ 1
m

m
∑

k=1
(1− (1− b(k)NP)

ω
E(k)
(λNP ) · (1− b(k)NN)

ω
E(k)
(λNN) )− (1− (1− b(k)NP)

ω
E(k)
(λNP ) · (1− b(k)NN)

ω
E(k)
(λNN) )

∣∣∣∣∣
+

∣∣∣∣∣ 1
m

m
∑

k=1
(c(k)NP

ω
E(k)
(λNP ) · c(k)NN

ω
E(k)
(λNN ) )− c(k)NP

ω
E(k)
(λNP ) · c(k)NN

ω
E(k)
(λNN )

∣∣∣∣∣
+

∣∣∣∣∣ 1
m

m
∑

k=1
(d(k)NP

ω
E(k)
(λNP ) · d(k)NN

ω
E(k)
(λNN ) )− d(k)NP

ω
E(k)
(λNP ) · d(k)NN

ω
E(k)
(λNN )

∣∣∣∣∣)
(4) The grey correlation degree between the opinion of the individual decision-maker and the

opinions of the group decision-makers can be reckoned as follows:

γok =
1
3
(ξ(Z̃aPo, Z̃(k)

aP ) + ξ(Z̃aBo, Z̃(k)
aB ) + ξ(Z̃aN o, Z̃(k)

aN )) (38)



Symmetry 2018, 10, 281 12 of 23

(5) In order to ensure the consistency of the expert opinion, we set up the decision-maker weight
solution model according to the maximum relevance principle of the comprehensive index value of
expert weight and the group comprehensive evaluation value.

max
m
∑

k=1
(ωkγok)

2

s.t.
m
∑

k=1
ωk = 1

ωk ≥ η, k = 1, 2, · · ·, m

(39)

According to the maximal entropy principle, we set up the decision-maker weight solution model
as follows:

maxH(ω) = −
m
∑

k=1
ωk ln ωk

s.t.
m
∑

k=1
ωk = 1

ωk ≥ η, k = 1, 2, · · ·, m

(40)

Overall considering the consistency of the opinions of each decision-makers with the maximizing
principle of entropy, the solving model of decision-maker weights can be built as follows:

max[µ
m
∑

k=1
(ωkγok)

2 − (1− µ)
m
∑

k=1
ωk ln ωk]

s.t.
m
∑

k=1
ωk = 1

ωk ≥ η, k = 1, 2, · · ·, m

(41)

Here, µ and 1− µ are the weight distribution between maximum correlation and maximum
entropy, 0 < µ < 1, generally, µ = 0.5. ωk are the weights of decision-makers, ωk ≥ η to ensure that
all decision-makers are involved in decision-making, and η is critical value. Generally, η > 0, and
the value is suggested to be η = 1

2m .

5.3. The Aggregation of Group Decision-Making Loss Functions

Xu and Chen [25] provided an interval-valued intuitionistic fuzzy weighted averaging (IIFWA)
operation, which can be used to aggregate the interval-valued intuitionistic fuzzy loss functions and
obtain the aggregation loss functions in group decision-making. The aggregation loss functions are:

I IFWAω(Ẽ(1)(λ••), Ẽ(2)(λ••), · · · , Ẽ(m)(λ••)) = ω1Ẽ(1)(λ••)⊕ω2Ẽ(2)(λ••)⊕ · · · ⊕ωm Ẽ(m)(λ••) (42)

where (• = P, B, N), according to the calculation rules of IVIFNs, and the aggregation loss functions
are computed as follows:

I IFWAω(Ẽ(1)(λ••), Ẽ(2)(λ••), · · · , Ẽ(m)(λ••)) = ([1−
m

∏
k=1

(1− a(k)•• )
ωk

,1−
m

∏
k=1

(1− b(k)•• )
ωk
], [

m

∏
k=1

c(k)•• ωk ,
m

∏
k=1

d(k)•• ωk ]) (43)

So, the aggregation of the loss functions Ẽ(λPP), Ẽ(λPN), Ẽ(λBP), Ẽ(λBN), Ẽ(λNP) and Ẽ(λNN)

are calculated as:

I IFWAω(Ẽ(1)(λPP), Ẽ(2)(λPP), · · · , Ẽ(m)(λPP)) = ([1−
m

∏
k=1

(1− a(k)PP)
ωk

,1−
m

∏
k=1

(1− b(k)PP)
ωk
], [

m

∏
k=1

c(k)PP
ωk ,

m

∏
k=1

d(k)PP
ωk ]) (44)

I IFWAω(Ẽ(1)(λPN), Ẽ(2)(λPN), · · · , Ẽ(m)(λPN)) = ([1−
m

∏
k=1

(1− a(k)PN)
ωk

,1−
m

∏
k=1

(1− b(k)PN)
ωk
], [

m

∏
k=1

c(k)PN
ωk ,

m

∏
k=1

d(k)PN
ωk ]) (45)

I IFWAω(Ẽ(1)(λBP), Ẽ(2)(λBP), · · · , Ẽ(m)(λBP)) = ([1−
m

∏
k=1

(1− a(k)BP)
ωk

,1−
m

∏
k=1

(1− b(k)BP)
ωk
], [

m

∏
k=1

c(k)BP
ωk ,

m

∏
k=1

d(k)BP
ωk ]) (46)
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I IFWAω(Ẽ(1)(λBN), Ẽ(2)(λBN), · · · , Ẽ(m)(λBN)) = ([1−
m

∏
k=1

(1− a(k)BN)
ωk

,1−
m

∏
k=1

(1− b(k)BN)
ωk
], [

m

∏
k=1

c(k)BN
ωk ,

m

∏
k=1

d(k)BN
ωk ]) (47)

I IFWAω(Ẽ(1)(λNP), Ẽ(2)(λNP), · · · , Ẽ(m)(λNP)) = ([1−
m

∏
k=1

(1− a(k)NP)
ωk

,1−
m

∏
k=1

(1− b(k)NP)
ωk
], [

m

∏
k=1

c(k)NP
ωk ,

m

∏
k=1

d(k)NP
ωk ]) (48)

I IFWAω(Ẽ(1)(λNN), Ẽ(2)(λNN), · · · , Ẽ(m)(λNN)) = ([1−
m

∏
k=1

(1− a(k)NN)
ωk

,1−
m

∏
k=1

(1− b(k)NN)
ωk
], [

m

∏
k=1

c(k)NN
ωk ,

m

∏
k=1

d(k)NN
ωk ]) (49)

5.4. The Decision Rules and Method for Group Decision-Making

In light of the results (18)–(20) and (44)–(49), we can calculate the R(a•|[x])(• = P, B, N) as follows:

R(aP |[x] ) = ([1−
m
∏

k=1
(1− a(k)PP)

ωk ·Pr(C|[x])
·

m
∏

k=1
(1− a(k)PN)

ωk ·Pr(¬C|[x]),1−
m
∏

k=1
(1− b(k)PP)

ωk ·Pr(C|[x])
·

m
∏

k=1
(1− b(k)PN)

ωk ·Pr(¬C|[x])
],

[
m
∏

k=1
c(k)PP

ωk ·Pr(C|[x]) ·
m
∏

k=1
c(k)PN

ωk ·Pr(¬C|[x]),
m
∏

k=1
d(k)PP

ωk ·Pr(C|[x]) ·
m
∏

k=1
d(k)PN

ωk ·Pr(¬C|[x]) ])

(50)
R(aB |[x] ) = ([1−

m
∏

k=1
(1− a(k)BP)

ωk ·Pr(C|[x])
·

m
∏

k=1
(1− a(k)BN)

ωk ·Pr(¬C|[x])
,1−

m
∏

k=1
(1− b(k)BP)

ωk ·Pr(C|[x])
·

m
∏

k=1
(1− b(k)BN)

ωk ·Pr(¬C|[x])
],

[
m
∏

k=1
c(k)BP

ωk ·Pr(C|[x]) ·
m
∏

k=1
c(k)BN

ωk ·Pr(¬C|[x]),
m
∏

k=1
d(k)BP

ωk ·Pr(C|[x]) ·
m
∏

k=1
d(k)BN

ωk ·Pr(¬C|[x]) ])

(51)
R(aN |[x] ) = ([1−

m
∏

k=1
(1− a(k)NP)

ωk ·Pr(C|[x])
·

m
∏

k=1
(1− a(k)NN)

ωk ·Pr(¬C|[x])
,1−

m
∏

k=1
(1− b(k)NP)

ωk ·Pr(C|[x])
·

m
∏

k=1
(1− b(k)NN)

ωk ·Pr(¬C|[x])
],

[
m
∏

k=1
c(k)NP

ωk ·Pr(C|[x]) ·
m
∏

k=1
c(k)NN

ωk ·Pr(¬C|[x]),
m
∏

k=1
d(k)NP

ωk ·Pr(C|[x]) ·
m
∏

k=1
d(k)NN

ωk ·Pr(¬C|[x]) ])

(52)
According to the results (50)–(52), the scores of R(a•|[x])(• = P, B, N) are calculated as follows:

S(R(aP |[x] )) = (2−
m
∏

k=1
(1− a(k)PP)

ωk ·Pr(C|[x])
·

m
∏

k=1
(1− a(k)PN)

ωk ·Pr(¬C|[x])
−

m
∏

k=1
(1− b(k)PP)

ωk ·Pr(C|[x])
·

m
∏

k=1
(1− b(k)PN)

ωk ·Pr(¬C|[x])

−
m
∏

k=1
c(k)PP

ωk ·Pr(C|[x]) ·
m
∏

k=1
c(k)PN

ωk ·Pr(¬C|[x])−
m
∏

k=1
d(k)PP

ωk ·Pr(C|[x]) ·
m
∏

k=1
d(k)PN

ωk ·Pr(¬C|[x]))/2
(53)

S(R(aB |[x] )) = (2−
m
∏

k=1
(1− a(k)BP)

ωk ·Pr(C|[x])
·

m
∏

k=1
(1− a(k)BN)

ωk ·Pr(¬C|[x])
−

m
∏

k=1
(1− b(k)BP)

ωk ·Pr(C|[x])
·

m
∏

k=1
(1− b(k)BN)

ωk ·Pr(¬C|[x])

−
m
∏

k=1
c(k)BP

ωk ·Pr(C|[x]) ·
m
∏

k=1
c(k)BN

ωk ·Pr(¬C|[x])−
m
∏

k=1
d(k)BP

ωk ·Pr(C|[x]) ·
m
∏

k=1
d(k)BN

ωk ·Pr(¬C|[x]))/2
(54)

S(R(aN |[x] )) = (2−
m
∏

k=1
(1− a(k)NP)

ωk ·Pr(C|[x])
·

m
∏

k=1
(1− a(k)NN)

ωk ·Pr(¬C|[x])
−

m
∏

k=1
(1− b(k)NP)

ωk ·Pr(C|[x])
·

m
∏

k=1
(1− b(k)NN)

ωk ·Pr(¬C|[x])

−
m
∏

k=1
c(k)NP

ωk ·Pr(C|[x]) ·
m
∏

k=1
c(k)NN

ωk ·Pr(¬C|[x])−
m
∏

k=1
d(k)NP

ωk ·Pr(C|[x]) ·
m
∏

k=1
d(k)NN

ωk ·Pr(¬C|[x]))/2

(55)
Also, the accuracies of R(a•|[x])(• = P, B, N) are calculated as:

H(R(aP |[x] )) = (2−
m
∏

k=1
(1− a(k)PP)

ωk ·Pr(C|[x])
·

m
∏

k=1
(1− a(k)PN)

ωk ·Pr(¬C|[x])
−

m
∏

k=1
(1− b(k)PP)

ωk ·Pr(C|[x])
·

m
∏

k=1
(1− b(k)PN)

ωk ·Pr(¬C|[x])

+
m
∏

k=1
c(k)PP

ωk ·Pr(C|[x]) ·
m
∏

k=1
c(k)PN

ωk ·Pr(¬C|[x])+
m
∏

k=1
d(k)PP

ωk ·Pr(C|[x]) ·
m
∏

k=1
d(k)PN

ωk ·Pr(¬C|[x]))/2

(56)
H(R(aB |[x] )) = (2−

m
∏

k=1
(1− a(k)BP)

ωk ·Pr(C|[x])
·

m
∏

k=1
(1− a(k)BN)

ωk ·Pr(¬C|[x])
−

m
∏

k=1
(1− b(k)PP)

ωk ·Pr(C|[x])
·

m
∏

k=1
(1− b(k)PN)

ωk ·Pr(¬C|[x])

+
m
∏

k=1
c(k)BP

ωk ·Pr(C|[x]) ·
m
∏

k=1
c(k)BN

ωk ·Pr(¬C|[x])+
m
∏

k=1
d(k)BP

ωk ·Pr(C|[x]) ·
m
∏

k=1
d(k)BN

ωk ·Pr(¬C|[x]))/2

(57)
H(R(aN |[x] )) = (2−

m
∏

k=1
(1− a(k)NP)

ωk ·Pr(C|[x])
·

m
∏

k=1
(1− a(k)NN)

ωk ·Pr(¬C|[x])
−

m
∏

k=1
(1− b(k)NP)

ωk ·Pr(C|[x])
·

m
∏

k=1
(1− b(k)NN)

ωk ·Pr(¬C|[x])

+
m
∏

k=1
c(k)NP

ωk ·Pr(C|[x]) ·
m
∏

k=1
c(k)NN

ωk ·Pr(¬C|[x])+
m
∏

k=1
d(k)NP

ωk ·Pr(C|[x]) ·
m
∏

k=1
d(k)NN

ωk ·Pr(¬C|[x]))/2

(58)
Finally, we designed a simple and straightforward algorithm for IVIFDTRSs in group

decision-making, which is as follows:
Step 1: Choose m decision-makers D = {d1, d2, · · · , dk , · · · , dm} (k = 1, 2, · · · , m).
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Step 2: Let X = {x1, x2, · · · , xn} be a finite set of objects. Confirm the Pr(C|x) and Pr(¬C|x) ,
which are the conditional probabilities of an object x being in state C and ¬C, respectively,
where Pr(C|x) + Pr(¬C|x) = 1 .

Step 3: The decision-makers provided their interval-valued intuitionistic fuzzy loss functions
for each object, and we collect the original information of the loss functions provided by all
decision-makers, the loss functions are provided in Table 2.

Step 4: Calculate the weight vector ω = (ω1, ω2, · · · , ωk, · · · , ωm) by the grey correlation accurate
weighted determining method (GCAWD) for each decision-maker, where ωk ≥ 0 and

m
∑

k=1
ωk = 1.

Step 5: According to the operation of IIFWA, we calculate the scores S(R(aP|[x] )), S(R(aB|[x] )),
S(R(aN |[x] )) and the accuracies H(R(aP|[x] )), H(R(aB|[x] )), H(R(aN |[x] )) of the expected losses based
on (53)–(58).

Step 6: Rank all the scores S(R(aP|[x] )), S(R(aB|[x] )) and S(R(aN |[x] )). Obviously, we select the
minimum score of the excepted loss. If there is only one minimum score, we take the action which has
the minimum score and go to Step 9. If not, we go to Step 7.

Step 7: Since there are two or more minimum scores, we continue to rank the accuracies H(R(aP|[x] )),
H(R(aB|[x] )), H(R(aN |[x] )). If there is only one minimum accuracy, we take the action that has the
minimum accuracy and go to Step 9. If not, we go to Step 8.

Step 8: If there are two or more actions that have the same minimum score and accuracy, we select
the action supported by more experts according to the minority is subject to majority rule and then go
to Step 9.

Step 9: End.

6. An Illustrative Example

In this section, we use the decision-making process of IVIFDTRSs to deal with the E-commerce
development decisions of the regional economy of Sichuan Province of China and exhibit the decision
process of individual three-way decisions. According to the 11th five-year plan of the Sichuan national
economic and social development, the regional economy of the Sichuan Province is constituted
by five regions: (1) x1: Chengdu economic region; (2) x2: Northeast of Sichuan economic region;
(3) x3: Panxi economic region; (4) x4: Southern Sichuan economic region; (5) x5: Northwest of Sichuan
economic region. Because of resource constraints, we choose the region appropriate to the development
of E-commerce or step-up development efforts. At the same time, we also consider that different
choices will result in different degrees of loss. Therefore, the E-commerce development decisions of
the regional economy of the Sichuan Province are consistent with three-way decisions.

6.1. The Decision Analysis of IVIFDTRSs for Group Decision-Making

For the E-commerce development decisions of the regional economy of the Sichuan Province,
there are two states Ω = {C, ¬C}, C represents that one region is prosperous and ¬C represents that
one region is behindhand. The set of actions for each region xi(i = 1, 2, . . . , 5) is given by = {aP, aB, aN}.
Here, aP represents to take the action of developing E-commerce, aB represents to take the action
of creating conditions to develop E-commerce, aN represents to take the action of refuse to develop
E-commerce, respectively. We also set up a group, which consists of five experts ei(i = 1, 2, . . . , 5),
to evaluate the five regions. Hence, we use the algorithm of IVIFDTRSs for group decision-making.

Step 1: We suppose that the conditional probabilities of the regions to C are shown in Table 3.

Table 3. The conditional probabilities of regions belong to C.

Region x1 x2 x3 x4 x5

Pr(C|[x] ) 1 0.8 0.3 0.6 0.1
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Step 2: The values of the losses corresponding to every expert are listed in Tables 4–8,
which consists of IVIFNs.

Table 4. The loss function matrix represented by IVIFNs with the expert e1.

e1 C(P) ¬C(N)

aP
∼

E(1)(λPP) = ([a(1)PP , b(1)PP ], [c
(1)
PP , d(1)PP ]) = ([0.01, 0.01], [0.99, 0.99])

∼
E(1)(λPN) = ([a(1)PN , b(1)PN ], [c(1)PN , d(1)PN ]) = ([0.99, 0.99], [0.01, 0.01])

aB
∼

E(1)(λBP) = ([a(1)BP , b(1)BP ], [c
(1)
BP , d(1)BP ]) = ([0.2, 0.4], [0.5, 0.6])

∼
E(1)(λBN) = ([a(1)BN , b(1)BN ], [c(1)BN , d(1)BN ]) = ([0.6, 0.7], [0.2, 0.3])

aN
∼

E(1)(λNP) = ([a(1)NP, b(1)NP], [c
(1)
NP, d(1)NP]) = ([0.8, 0.9], [0.01, 0.1])

∼
E(1)(λNN) = ([a(1)NN , b(1)NN ], [c(1)NN , d(1)NN ]) = ([0.01, 0.05], [0.9, 0.95])

Table 5. The loss function matrix represented by IVIFNs with the expert e2.

e2 C(P) ¬C(N)

aP
∼

E(2)(λPP) = ([a(2)PP , b(2)PP ], [c
(2)
PP , d(2)PP ]) = ([0.05, 0.1], [0.8, 0.9])

∼
E(2)(λPN) = ([a(2)PN , b(2)PN ], [c(2)PN , d(2)PN ]) = ([0.85, 0.95], [0.01, 0.05])

aB
∼

E(2)(λBP) = ([a(2)BP , b(2)BP ], [c
(2)
BP , d(2)BP ]) = ([0.5, 0.6], [0.2, 0.4])

∼
E(2)(λBN) = ([a(2)BN , b(2)BN ], [c(2)BN , d(2)BN ]) = ([0.2, 0.3], [0.6, 0.7])

aN
∼

E(2)(λNP) = ([a(2)NP, b(2)NP], [c
(2)
NP, d(2)NP]) = ([0.9, 0.95], [0.01, 0.05])

∼
E(2)(λNN) = ([a(2)NN , b(2)NN ], [c(2)NN , d(2)NN ]) = ([0.01, 0.1], [0.8, 0.9])

Table 6. The loss function matrix represented by IVIFNs with the expert e3.

e3 C(P) ¬C(N)

aP
∼

E(3)(λPP) = ([a(3)PP , b(3)PP ], [c
(3)
PP , d(3)PP ]) = ([0.01, 0.05], [0.9, 0.95])

∼
E(3)(λPN) = ([a(3)PN , b(3)PN ], [c(3)PN , d(3)PN ]) = ([0.82, 0.95], [0.01, 0.05])

aB
∼

E(3)(λBP) = ([a(3)BP , b(3)BP ], [c
(3)
BP , d(3)BP ]) = ([0.2, 0.4], [0.3, 0.6])

∼
E(3)(λBN) = ([a(3)BN , b(3)BN ], [c(3)BN , d(3)BN ]) = ([0.4, 0.5], [0.3, 0.4])

aN
∼

E(3)(λNP) = ([a(3)NP, b(3)NP], [c
(3)
NP, d(3)NP]) = ([0.7, 0.9], [0.05, 0.1])

∼
E(3)(λNN) = ([a(3)NN , b(3)NN ], [c(3)NN , d(3)NN ]) = ([0.05, 0.1], [0.7, 0.8])

Table 7. The loss function matrix represented by IVIFNs with the expert e4.

e4 C(P) ¬C(N)

aP
∼

E(4)(λPP) = ([a(4)PP , b(4)PP ], [c
(4)
PP , d(4)PP ]) = ([0.1, 0.2], [0.7, 0.8])

∼
E(4)(λPN) = ([a(4)PN , b(4)PN ], [c(4)PN , d(4)PN ]) = ([0.85, 0.9], [0.01, 0.1])

aB
∼

E(4)(λBP) = ([a(4)BP , b(4)BP ], [c
(4)
BP , d(4)BP ]) = ([0.4, 0.5], [0.45, 0.5])

∼
E(4)(λBN) = ([a(4)BN , b(4)BN ], [c(4)BN , d(4)BN ]) = ([0.45, 0.55], [0.4, 0.45])

aN
∼

E(4)(λNP) = ([a(4)NP, b(4)NP], [c
(4)
NP, d(4)NP]) = ([0.7, 0.8], [0.1, 0.2])

∼
E(4)(λNN) = ([a(4)NN , b(4)NN ], [c(4)NN , d(4)NN ]) = ([0.1, 0.15], [0.8, 0.85])

Table 8. The loss function matrix represented by IVIFNs with the expert e5.

e5 C(P) ¬C(N)

aP
∼

E(5)(λPP) = ([a(5)PP , b(5)PP ], [c
(5)
PP , d(5)PP ]) = ([0.1, 0.3], [0.6, 0.7])

∼
E(5)(λPN) = ([a(5)PN , b(5)PN ], [c(5)PN , d(5)PN ]) = ([0.7, 0.8], [0.1, 0.2])

aB
∼

E(5)(λBP) = ([a(5)BP , b(5)BP ], [c
(5)
BP , d(5)BP ]) = ([0.3, 0.5], [0.4, 0.5])

∼
E(5)(λBN) = ([a(5)BN , b(5)BN ], [c(5)BN , d(5)BN ]) = ([0.6, 0.7], [0.2, 0.3])

aN
∼

E(5)(λNP) = ([a(5)NP, b(5)NP], [c
(5)
NP, d(5)NP]) = ([0.75, 0.9], [0.01, 0.1])

∼
E(5)(λNN) = ([a(5)NN , b(5)NN ], [c(5)NN , d(5)NN ]) = ([0.1, 0.2], [0.6, 0.8])

Step 3: According to (27)–(28), we can compute the accurate weight vectors of the decision
attributes. The results are shown in the following matrices:

ω1 =


0.0154, 0.2170

0.1571, 0.2511

0.2043, 0.0758

, ω2 =


0.1731, 0.2049

0.2618, 0.1067

0.2157, 0.1480

, ω3 =


0.0808, 0.2033

0.1780, 0.1973

0.1964, 0.2347



ω4 =


0.3077, 0.1995

0.2042, 0.1928

0.1821, 0.2166

, ω5 =


0.4231, 0.1753

0.1990, 0.2516

0.2015, 0.3249
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Based on (29)–(31), we can calculate the comprehensive index value of each decision solution for
each expert. The results are shown in the following matrices:

d1 =


[0.6319, 0.6319], [0.3681, 0.3681]

[0.2329, 0.3179], [0.5987, 0.6821]

[0.2808, 0.3777], [0.3872, 0.6223]

, d2 =


[0.3281, 0.4686], [0.3744, 0.5314]

[0.1857, 0.2429], [0.6211, 0.7571]

[0.3924, 0.4841], [0.3583, 0.5159]

,

d3 =


[0.2949, 0.4584], [0.3888, 0.5416]

[0.1311, 0.2036], [0.6364, 0.7621]

[0.2200, 0.3793], [0.5107, 0.6038]

, d4 =


[0.3369, 0.4102], [0.3576, 0.5898]

[0.1971, 0.2558], [0.7120, 0.7442]

[0.2150, 0.2799], [0.6264, 0.7201]

,

d5 =


[0.2256, 0.3515], [0.5380, 0.6485]

[0.2600, 0.3561], [0.5563, 0.6439]

[0.2691, 0.4152], [0.3349, 0.5848]


Based on (32)–(34), we can calculate the average value of the comprehensive evaluation of group

decision-makers with respect to each decision solution. The results are shown in the following matrix:

de =


[0.3035, 0.4641], [0.4054, 0.5359]

[0.2014, 0.2753], [0.6249, 0.7179]

[0.2755, 0.3872], [0.4435, 0.6094]


Based on (35)–(37), we can calculate the grey correlation coefficient between the opinion of the

individual decision-maker and the opinions of the group decision-makers for each decision solution.
The results are shown in the following matrices:

k1 =


0.4709

0.6103

0.8605

, k1 =


0.9062

0.7141

0.5106

, k1 =


0.8696

0.5094

0.7713

, k1 =


0.7715

0.6083

0.4680

, k1 =


0.5373

0.4151

0.7260


Based on (38), we can calculate the grey correlation degree between the opinion of the individual

decision-maker and the opinions of the group decision-makers. The results are shown in the following
matrix:

γok = (γok1 , γok2 , γok3 , γok4 , γok5 ) = (0.6472, 0.7103, 0.7168, 0.6159, 0.5595)

Based on (41), we can calculate the decision-maker weights. The results are shown in the following
matrix:

ω = (ω1, ω2, ω3, ω4, ω5) = (0.1987, 0.2158, 0.2176, 0.1907, 0.1771)

Step 4: Based on (53)–(58), we can calculate the scores and accuracies of R(a•|[x])(• = P, B, N) for
each region with the group experts. The results are exhibited in Tables 9 and 10 and Figure 1.

Table 9. The computation results list of the scores with the group experts.

Region x1 x2 x3 x4 x5

S(R(aP|[x ])) −0.7383 0.0204 0.7524 0.4401 0.8544
S(R(aB|[x ])) −0.0212 0.0152 0.1004 0.0503 0.1323
S(R(aN |[x ])) 0.7850 0.6829 0.1147 0.5269 −0.3728

Table 10. The computation results list of the accuracies with the group experts.

Region x1 x2 x3 x4 x5

H(R(aP|[x ])) 0.9229 0.8755 0.9245 0.8862 0.9649
H(R(aB|[x ])) 0.8388 0.8474 0.8672 0.8555 0.8746
H(R(aN |[x ])) 0.9053 0.8792 0.8274 0.8515 0.8496
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Here, we take x2 as an example to illustrate the calculation procedure. According to Table 3,
the conditional probability Pr(C|[x2] ) is 0.8. Hence, Pr(¬C|[x2] ) = 0.2. For the region x2, the scores of
R(a•|[x])(• = P, B, N) are calculated based on (53)–(55):

S(R(aP|[x2] )) = (2−
5

∏
k=1

(1− a(k)PP)
0.8ωk ·

5
∏

k=1
(1− a(k)PN)

0.2ωk −
5

∏
k=1

(1− b(k)PP)
0.8ωk ·

5
∏

k=1
(1− b(k)PN)

0.2ωk

−
5

∏
k=1

c(k)PP
0.8ωk ·

5
∏

k=1
c(k)PN

0.2ωk−
5

∏
k=1

d(k)PP
0.8ωk ·

5
∏

k=1
d(k)PN

0.8ωk )/2 = 0.0204

S(R(aB|[x2] )) = (2−
5

∏
k=1

(1− a(k)BP)
0.8ωk ·

5
∏

k=1
(1− a(k)BN)

0.2ωk −
5

∏
k=1

(1− b(k)BP)
0.8ωk ·

5
∏

k=1
(1− b(k)BN)

0.2ωk

−
5

∏
k=1

c(k)BP
0.8ωk ·

5
∏

k=1
c(k)BN

0.2ωk−
5

∏
k=1

d(k)BP
0.8ωk ·

5
∏

k=1
d(k)BN

0.8ωk )/2 = 0.0152

S(R(aN |[x2] )) = (2−
5

∏
k=1

(1− a(k)NP)
0.8ωk ·

5
∏

k=1
(1− a(k)NN)

0.2ωk −
5

∏
k=1

(1− b(k)NP)
0.8ωk ·

5
∏

k=1
(1− b(k)NN)

0.2ωk

−
5

∏
k=1

c(k)NP
0.8ωk ·

5
∏

k=1
c(k)NN

0.2ωk−
5

∏
k=1

d(k)NP
0.8ωk ·

5
∏

k=1
d(k)NN

0.8ωk )/2 = 0.6829

The accuracies of R(a•|[x])(• = P, B, N) are calculated based on (56)–(58):

H(R(aP|[x2] )) = (2−
5

∏
k=1

(1− a(k)PP)
0.8ωk ·

5
∏

k=1
(1− a(k)PN)

0.2ωk −
5

∏
k=1

(1− b(k)PP)
0.8ωk ·

5
∏

k=1
(1− b(k)PN)

0.2ωk

+
5

∏
k=1

c(k)PP
0.8ωk ·

5
∏

k=1
c(k)PN

0.2ωk+
5

∏
k=1

d(k)PP
0.8ωk ·

5
∏

k=1
d(k)PN

0.8ωk )/2 = 0.8755

H(R(aB|[x2] )) = (2−
5

∏
k=1

(1− a(k)BP)
0.8ωk ·

5
∏

k=1
(1− a(k)BN)

0.2ωk −
5

∏
k=1

(1− b(k)BP)
0.8ωk ·

5
∏

k=1
(1− b(k)BN)

0.2ωk

+
5

∏
k=1

c(k)BP
0.8ωk ·

5
∏

k=1
c(k)BN

0.2ωk+
5

∏
k=1

d(k)BP
0.8ωk ·

5
∏

k=1
d(k)BN

0.8ωk )/2 = 0.8388

H(R(aN |[x2] )) = (2−
5

∏
k=1

(1− a(k)NP)
0.8ωk ·

5
∏

k=1
(1− a(k)NN)

0.2ωk −
5

∏
k=1

(1− b(k)NP)
0.8ωk ·

5
∏

k=1
(1− b(k)NN)

0.2ωk

+
5

∏
k=1

c(k)NP
0.8ωk ·

5
∏

k=1
c(k)NN

0.2ωk+
5

∏
k=1

d(k)NP
0.8ωk ·

5
∏

k=1
d(k)NN

0.8ωk )/2 = 0.8792

Step 4: In light of the results calculated in Figure 1, we find that S(R(aP|[x 1 ])), S(R(aB|[x 2 ])),
S(R(aB|[x 3])), S(R(aB|[x 4])) and S(R(aN |[x 5])) are the only minimum scores in the regions x1, x2, x3, x4 and
x5, respectively. Hence, we classify the regions x1, x2, x3, x4 and x5 into POS(C), BND(C), BND(C), BND(C)

and NEG(C), respectively. Thus, we decide to vigorously develop E-commerce in region x1, named aP,
take the non-commitment decision in the region x2, x3 and x4, named aB, and reduce investment to
develop E-commerce in region x5, named aN . Finally, the decision results of each are shown in Table 11.
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Table 11. The final decision to select the regions in which to develop E-commerce in the Sichuan
Province with the group of experts.

Region The Minimum Score The Selected Action The Development Decision

x1 S(R(aP|[x 1 ])) aP POS(C)
x2 S(R(aB|[x 2])) aB BND(C)
x3 S(R(aB|[x 3])) aB BND(C)
x4 S(R(aB|[x 4])) aB BND(C)
x5 S(R(aN |[x 5])) aN NEG(C)

6.2. The Contrastive Analysis of IVIFDTRSs between Group Decision-Making and Single-Expert
Decision-Making

For the sake of contrasting the effectiveness of IVIFDTRSs for group decision-making and
single-expert decision-making, we count the scores of R(a•|[x])(• = P, B, N) for each region with the
expert e5 based on (21)–(23). The results are shown in Table 12 and Figure 2.

Table 12. The computation results list of the scores with the expert e5.

Region x1 x2 x3 x4 x5

S(R(aP|[x ])) −0.4500 −0.1157 0.4146 0.1394 0.5461
S(R(aB|[x ])) −0.0500 0.0615 0.2906 0.1610 0.3656
S(R(aN |[x ])) 0.7700 0.6756 0.1770 0.5359 −0.2449
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The decision results for expert e5 are show in Table 13.

Table 13. The final decision to select the regions in which to develop E-commerce in the Sichuan
Province with the expert e5.

Region The Minimum Score The Selected Action The Development Decision

x1 S(R(aP|[x 1 ])) aP POS(C)
x2 S(R(aP|[x 2])) aP POS(C)
x3 S(R(aB|[x 3])) aN NEG(C)
x4 S(R(aB|[x 4])) aP POS(C)
x5 S(R(aB|[x 5])) aN NEG(C)
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Comparing Tables 11 and 13, the group of experts and the expert e5 make different decisions in
regions x2, x3 and x4: the experts group tend to take the non-commitment decision in regions x2, x3

and x4, but the expert e5 decides to develop E-commerce in regions x2, x4 and to reduce investment
in, or abstain from, developing E-commerce in region x3. From the different decisions, the results
in Table 11 are more authoritative and reasonable, because they are more cautious and synthetically
utilize all the decision information of the five experts.

6.3. The Contrastive Analysis between IVIFDTRSs and IFDTRSs

In order to illustrate that the IVIFDTRSs more effectively characterize the risk attitude of
decision-makers than IFDTRSs, we also asked the group of five experts to give the values of the
loss functions with intuitionistic fuzzy numbers. The values with intuitionistic fuzzy numbers (IFNs)
of the losses with the group experts are listed in Tables 14–18.

Table 14. The loss function matrix represented by IFNs with the expert e1.

e1 C(P) ¬C(N)

aP
∼

E(1)(λPP) = (µ
(1)
PP , ν

(1)
PP ) = (0.01, 0.99)

∼
E(1)(λPN) = (µ

(1)
PN , ν

(1)
PN) = (0.99, 0.01)

aB
∼

E(1)(λBP) = (µ
(1)
BP , ν

(1)
BP ) = (0.4, 0.6)

∼
E(1)(λBN) = (µ

(1)
BN , ν

(1)
BN) = (0.7, 0.3)

aN
∼

E(1)(λNP) = (µ
(1)
NP, ν

(1)
NP) = (0.9, 0.1)

∼
E(1)(λNN) = (µ

(1)
NN , ν

(1)
NN) = (0.05, 0.95)

Table 15. The loss function matrix represented by IFNs with the expert e2.

e2 C(P) ¬C(N)

aP
∼

E(2)(λPP) = (µ
(2)
PP , ν

(2)
PP ) = (0.1, 0.9)

∼
E(2)(λPN) = (µ

(2)
PN , ν

(2)
PN) = (0.95, 0.05)

aB
∼

E(2)(λBP) = (µ
(2)
BP , ν

(2)
BP ) = (0.6, 0.4)

∼
E(2)(λBN) = (µ

(2)
BN , ν

(2)
BN) = (0.3, 0.7)

aN
∼

E(2)(λNP) = (µ
(2)
NP, ν

(2)
NP) = (0.95, 0.05)

∼
E(2)(λNN) = (µ

(2)
NN , ν

(2)
NN) = (0.1, 0.9)

Table 16. The loss function matrix represented by IFNs with the expert e3.

e3 C(P) ¬C(N)

aP
∼

E(3)(λPP) = (µ
(3)
PP , ν

(3)
PP ) = (0.05, 0.95)

∼
E(3)(λPN) = (µ

(3)
PN , ν

(3)
PN) = (0.95, 0.05)

aB
∼

E(3)(λBP) = (µ
(3)
BP , ν

(3)
BP ) = (0.4, 0.6)

∼
E(3)(λBN) = (µ

(3)
BN , ν

(3)
BN) = (0.5, 0.4)

aN
∼

E(3)(λNP) = (µ
(3)
NP, ν

(3)
NP) = (0.9, 0.1)

∼
E(3)(λNN) = (µ

(3)
NN , ν

(3)
NN) = (0.1, 0.8)

Table 17. The loss function matrix represented by IFNs with the expert e4.

e4 C(P) ¬C(N)

aP
∼

E(4)(λPP) = (µ
(4)
PP , ν

(4)
PP ) = (0.2, 0.8)

∼
E(4)(λPN) = (µ

(4)
PN , ν

(4)
PN) = (0.9, 0.1)

aB
∼

E(4)(λBP) = (µ
(4)
BP , ν

(4)
BP ) = (0.5, 0.5)

∼
E(4)(λBN) = (µ

(4)
BN , ν

(4)
BN) = (0.55, 0.45)

aN
∼

E(4)(λNP) = (µ
(4)
NP, ν

(4)
NP) = (0.8, 0.2)

∼
E(4)(λNN) = (µ

(4)
NN , ν

(4)
NN) = (0.1, 0.85)
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Table 18. The loss function matrix represented by IFNs with the expert e5.

e5 C(P) ¬C(N)

aP
∼

E(5)(λPP) = (µ
(5)
PP , ν

(5)
PP ) = (0.3, 0.7)

∼
E(5)(λPN) = (µ

(5)
PN , ν

(5)
PN) = (0.8, 0.2)

aB
∼

E(5)(λBP) = (µ
(5)
BP , ν

(5)
BP ) = (0.5, 0.5)

∼
E(5)(λBN) = (µ

(5)
BN , ν

(5)
BN) = (0.7, 0.3)

aN
∼

E(5)(λNP) = (µ
(5)
NP, ν

(5)
NP) = (0.9, 0.1)

∼
E(5)(λNN) = (µ

(5)
NN , ν

(5)
NN) = (0.2, 0.8)

Based on the operational rules (46)–(48) of IFDTRSs, and Liang and Liu [1], we count the scores of
the R(a•|[x])(• = P, B, N) for each region. The results are exhibited in Table 19 and Figure 3.

Table 19. The computation results list of the scores with the group experts.

Region x1 x2 x3 x4 x5

S(R(aP|[x ])) −0.3680 0.0038 0.3774 0.2163 0.4299
S(R(aB|[x ])) −0.0141 0.0052 0.0503 0.0238 0.0672
S(R(aN |[x ])) 0.4017 0.3478 0.0459 0.2643 −0.2031
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The decision results for IFNSs are shown in Table 20.

Table 20. The final decision to select the regions in which to develop E-commerce in the Sichuan
Province with the group of experts for IFNSs.

Region The Minimum Score The Selected Action The Development Decision

x1 S(R(aP|[x 1 ])) aP POS(C)
x2 S(R(aP|[x 2])) aP POS(C)
x3 S(R(aN |[x 3])) aN NEG(C)
x4 S(R(aB|[x 4])) aB BND(C)
x5 S(R(aN |[x 5])) aN NEG(C)

Comparing Tables 11 and 20, the decisions of IVIFNSs and IFNSs are different in region x2 and x3:
the decision process of IVIFNSs tend toward the non-commitment decision in region x2 and x3, but the
decision process of IFNSs tend toward the decision to develop E-commerce in region x2 and reduce
investment in, or abstain from, developing E-commerce in region x3. As we know, the loss of delayed
decision is usually less than the loss of putting an object into POS(C) when the object does not belong to
C. Additionally, the loss of delayed decision is usually less than the loss of putting an object into NEG(C)

when the object does not belong to ¬C. From the difference in the decisions between Tables 11 and 20,
it can be deduced that the decision process of IVIFNSs can more effectively reduce the loss caused by
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wrong decision-making than can the decision process of IFNSs, and it can help individuals make more
scientific and reasonable decisions in fuzzy environments.

7. Conclusions

In this paper, we construct a new IVIFDTRSs model by introducing IVIFNs into DTRSs,
which can extend the DTRSs and IFDTRSs. Based on the IVIFDTRSs model, we also expand
three-way decisions from single-person decision-making to group decision-making. Under the
single-person decision-making, we design a strategy to deduce the decision rules. With respect
to group decision-making, we adopt GCAWD to confirm the weight of each expert and use an
IIFWA-integrated operator to aggregate the losses of every expert as well as deduce the rules of
three-way decisions with respect to IVIFDTRSs.

This research discusses the IVIFDTRSs model by considering IVIFSs and deduces its decision
rules, which is a very important form of uncertainty, and expands the classical model of DTRSs.
This research also adopts GCAWD method to confirm the weight of each expert, which offers a more
scientific way to determine the weight of experts in group decision-making. We will continue to
research the generalization IVIFDTRSs model, expand the IVIFDTRSs model to Multi-classification
problem, and use in practical applications based on the IVIFDTRSs model.
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