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Abstract: The fractional viscoplasticity (FV) concept combines the Perzyna type viscoplastic model
and fractional calculus. This formulation includes: (i) rate-dependence; (ii) plastic anisotropy; (iii)
non-normality; (iv) directional viscosity; (v) implicit/time non-locality; and (vi) explicit/stress-fractional
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together with a detailed discussion on a general 3D numerical implementation for the explicit time
integration scheme.
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1. Introduction

In search of a generalization of existing models describing experimentally observed phenomena,
the concept of fractional calculus [1,2] emerged as a tool that in the recent years became
widely applied. Among the areas in which this theory has found application, it is worth mentioning
mechanics where one can distinguish: (i) time-fractional models; (ii) space-fractional models; and (iii)
stress-fractional models. For example, in [3], the time-fractional model was used to describe the
time-dependent mechanical property evolution in ductile metals. The fractional oscillators were
analyzed in [4], whereas the heat and mass transfer analysis in the framework of fractional calculus was
presented in [5,6]. Furthermore, the analysis and modeling of turbulent flow in a porous medium [7],
fluid transport induced by the osmotic pressure of glucose and albumin [8], wave propagation in the
viscoelastic material [9], non-local boundary value problem [10], and evolution for the damage variable
for hyperelastic materials [11] with an application of time-fractional derivative suggests great versatility
of this approach. On the other hand, the space-fractional models are successfully used in mechanics
to describe the deformation of a harmonic oscillator [12], deformation of an infinite bar subjected
to a self-equilibrated load distribution [13], modeling plane strain and plane stress elasticity [14],
Euler–Bernoulli beam [15], Darcy’s flow in porous media [16] and fractional strain formulation [17].
Finally, the stress-fractional models [18,19] and their finite element implementations were used to
study the granular soils under drained cyclic loading [20], and monotonic triaxial compression [21].
Concluding, one should emphasize that regardless of the specific formulation, the fractional operators
have one common feature, namely, the ‘change’ of a selected variable is based on integration over
a closed interval, thus extending the definition of integer order derivative (defined in a point) and
simultaneously introducing a non-locality in a given space.

It is commonly accepted that the Theory of Thermo-Viscoplasticity (TTV), which plays a central
role in the following considerations, began with the publication of Perzyna [22], which, until the present
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day, serves a basis for many efforts in linking experimental and numerical results for different types
of materials. The main results of this theory were discussed in a great number of papers that focused
on phenomena such as propagation of mechanical and thermal waves [23,24], viscosity controlled
by material parameter [25,26], dispersion [26], or implicit non-locality in the time variable [27].
Nonetheless, the classical TTV formulation does not include directional viscosity, and to include
the non-normality extension needs, as all classical plasticity theories, postulation of an additional
potential, which is not straightforward and causes the increase of material parameters. Furthermore,
the same concern is relevant to the plastic anisotropy effects in terms of the original Perzyna model;
to include this effect additional variables and evolution equations for them are needed to be postulated.
This limitations were resolved by the generalization of the Perzyna formulation by definition of the
fractional flow rule, first proposed in [18] and later developed in [19,28–30].

The implementation of the fractional plastic (rate independent) rule, for the Huber-Mises-Hencky
(HMH) yield criterion, in the framework of implicit and explicit procedures and with examples on
material point level, was presented in [28]. This was further developed in the subsequent article [29] to
any smooth and convex yield criterion but still focusing on rate independent plastic flow. Concluding,
in both these articles the non-locality in the stress state was present, however the implicit time
non-locality common for the viscoplastic flow was not included in them.

This paper extends the concept of FV, which was first reported in [18], for the Initial Boundary
Value Problem (IBVP), and provides a detailed discussion of the model material parameters.
The parametric study includes the influence of the overstress power and the relaxation time (which is
understood as implicit length scale parameter, as mentioned in [27]) on the dynamic properties of the
FV model. Moreover, additional fractional material parameters, which induce the directional viscosity,
the non-associative, and the anisotropic plastic flow, were also discussed.

2. Fractional Viscoplasticity

2.1. Remarks on Fractional Calculus

Fractional calculus (FC) introduces a new, universal method for calculating the intensity of
changes of various quantities in mathematical models describing experimentally observed phenomena.
FC implies a generalization of integer order derivatives, by fractional derivatives (FD). The selection
of the FD definition (from an infinite number) can use a type of material as a criterion to obtain the
best fitting of the constitutive model to a given experimental evidence. All definitions of the FD have
a common property, namely they include summation over an interval abandoning the integer order
derivative definition given at a single point; therefore they are called non-local. The classical derivative
can be regarded a special case of the FD when its order becomes integer.

In order to explain the FD concept, let us consider a generalized fractional differential operator
Bα

P as a composition of fractional integral Kα
P with classical integer (n-th) differential operator [31]

Bα
P = Kn−α

P ◦ dn

dtn , (1)

where α is the order of the derivative, n = bαc+ 1, b·c denotes the floor function, P is a parameter set
(described below) and ◦ denotes the composition operator. Bα

P is referred to as the fractional differential
operator B (B-op) of order α and p-set P, and analogously Kα

P identifies the K (K-op) fractional integer
operator of order α and p-set P.

The definition of K for the parameter set P =
〈

a, t, b, p, q
〉

can be given as

(Kα
P f ) (t) = p

∫ t

a
kα(t, τ) f (τ)dτ + q

∫ b

t
kα(τ, t) f (τ)dτ, (2)

where t ∈
[
a, b
]

and a < t < b, p, q are real numbers, and kα(t, τ) is a kernel that depends on the
order of the derivative α. It can be shown that if kα is a difference kernel, i.e., kα(t, τ) = kα(t− τ)
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and kα ∈ L1 ([0, b− a]) then L1 ([b, a]) → L1 ([b, a]) is well defined, bounded and linear. For explicit
definition, the special form of the kernel function can be assumed

kα(t− τ) =
1

Γ(α)
(t− τ)α−1 , (3)

then for P =
〈

a, t, b, 1, 0
〉
(Kα

P f ) (t) =
1

Γ(α)

∫ t

a
(t− τ)α−1 f (τ)dτ = (a Iα

t f ) (t), (4)

is obtained or, if P =
〈

a, t, b, 0, 1
〉

then

(Kα
P f ) (t) =

1
Γ(α)

∫ b

t
(τ − t)α−1 f (τ)dτ = (t Iα

b f ) (t), (5)

where Γ is the Euler gamma function. Equations (4) and (5) describe the left and right
Riemann-Liouville fractional integrals of the order α, respectively. The application of these operators
in Equation (1) leads to the following fractional derivative definitions:

(Bα
P) f (t) = C

a Dα
t f (t) =

1
Γ(n− α)

∫ t

a

f (n)(τ)
(t− τ)α−n+1 dτ, (6)

for t > a, and

− (Bα
P) f (t) = C

t Dα
b f (t) =

(−1)n

Γ(n− α)

∫ b

t

f (n)(τ)
(τ − t)α−n+1 dτ, (7)

for t < b. The FD operators C
a Dα

t f (t) and C
t Dα

b f (t) are known as the left- and right-sided Caupto
fractional integrals.

Finally, for the purpose of further definition of the FV, the Riesz-Caputo (RC) derivative can be
expressed as a linear combination of previously given left and right Caputo derivatives

RC
a Dα

b f (t) =
1
2

(
C
a Dα

t f (t) + (−1)n C
t Dα

b f (t)
)

. (8)

It can be shown that for the RC derivative the fundamental property of integer order derivatives is
preserved, that is, the derivative of a constant is zero.

2.2. Basic Concepts

In the following section Voigt notation is applied, thus the second rank tensors are ordered as
(6× 1 column matrix)

t = (t11 t22 t33 t23 t13 t12)
T = (t1 t2 t3 t4 t5 t6)

T , (9)

whereas the fourth order tensors are represented by 6× 6 matrices ordered in accordance with the rule
used in Equation (9).

Deformation assumes the additive decomposition of total strain, therefore

ε = εe + εvp, (10)

or in a rate form
ε̇ = ε̇e + ε̇vp, (11)
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where ε is the total strain, εe is the elastic strain and εvp is the viscoplastic strain. Next, due to
thermodynamic restrictions, the elastic strain is related to elastic stress through Hooke’s law

σe = Leεe, (12)

where σe denotes the Cauchy stress tensor and Le denotes the elastic constitutive tensor. The rate of
viscoplastic strain is analogous to the classical viscoplastic definition, namely

ε̇vp = Λp, (13)

where Λ is a scalar multiplier and p is the second order unit tensor which governs the direction
of viscoplastic flow. As the p tensor is normalized, the magnitude of ε̇vp depends solely on the Λ
parameter.

Following the concept introduced by Perzyna [22], this parameter is expressed as

Λ = γ 〈Φ(F)〉 , (14)

where γ = 1
Tm

is the viscosity parameter, Φ is the overstress function that depends on the
rate-independent yield surface F, and 〈·〉 is Macaulay brackets. It is well-known that γ introduces
implicit time non-locality in the viscoplastic model [27]. Furthermore, the function Φ has the
following form

Φ(F) = Fmvp =

(√
J2

κ
− 1
)mvp

, (15)

where
√

J2 denotes the second invariant of stress deviator and κ is the static yield stress in simple shear.
Finally, the remaining object needed to be defined is the tensor p. In this place, the difference

between the classical theory of viscoplasticity and the new approach is most evident. Let us recall,
that in the classical formulation the direction of yield is normal to yield surface and p can be written as

p =
∂F
∂σ

(∣∣∣∣∣∣∣∣ ∂F
∂σ

∣∣∣∣∣∣∣∣)−1
. (16)

It is also well known, that Equations (16) and (15) indicate that the viscoplastic strain is coaxial
with the deviatoric stress tensor (associated flow). As a result, the volume change can occur in the range
of elastic deformations only. For modern materials such as metal-matrix composites, this assumption
is no longer valid. Therefore, the constitutive model should be modified to capture this phenomenon.

The fractional approach assumes the application of the RC operator to p definition [18]. In such a
case, Equation (16) is generalized to the form

p = DαF ||DαF||−1 , (17)

where Dα stands for the RC operator (see Equation (8)). It is worth noting that the proposed formulation
of p introduces the anisotropy of viscoplastic flow and furthermore (due to non-associativity) develops
a tool to control the volume change in the plastic range of material behaviour [18]. Another essential
remark is that Equation (17) introduces explicit stress-fractional non-locality in the overall model. It is
important that the thermodynamic restrictions are formulated in a standard manner, and because of
complicated structure of Equation (17) they are checked incrementally in the numerical procedure
(see [29] for a detailed discussion).

3. Implementation

Introduction of the three-dimensional fractional viscoplastic model requires a numerical procedure
that governs the solution. Since our considerations are focused on extreme dynamic processes,
the explicit time integration was chosen for finite element method. Therefore, the ABAQUS/Explicit
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code was utilized together with the user subroutine VUMAT. The critical steps of the implementation
are presented below.

In the first step, Hooke’s law is written as

σ11

σ22

σ33

σ23

σ13

σ12



=



2G + λ λ λ 0 0 0

λ 2G + λ λ 0 0 0

λ λ 2G + λ 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G





ε11

ε22

ε33

2ε23

2ε13

2ε12



, (18)

where G = E/2(1 + ν) and λ = Eν/(1 + ν)(1− 2ν) are elastic constants and E and ν denote Young’s
modulus and Poisson’s ratio, respectively. Next, because of application of the HMH yield criterion,
the yield function in a matrix form is as follows

F(σ) =



σ11

σ22

σ33

σ23

σ13

σ12



T 

1 − 1
2 − 1

2 0 0 0

− 1
2 1 − 1

2 0 0 0

− 1
2 − 1

2 1 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3





σ11

σ22

σ33

σ23

σ13

σ12



− 3κ2 = 0. (19)

Afterwards, the increment of viscoplastic strain (see Equations (13) and (17)) can be written in
the form

∆εvp = ∆tΛp = ∆tΛ

{
D
σ11

αF D
σ22

αF D
σ33

αF D
σ23

αF D
σ13

αF D
σ12

αF
}T

||DαF|| , (20)

where (cf. [28])



p11

p22

p33

p23

p13

p12



=



kM
(11) − 1

2 kM
(11) − 1

2 kM
(11) 0 0 0

− 1
2 kM

(22) kM
(22) − 1

2 kM
(22) 0 0 0

− 1
2 kM

(33) − 1
2 kM

(33) kM
(33) 0 0 0

0 0 0 3kM
(23) 0 0

0 0 0 0 3kM
(13) 0

0 0 0 0 0 3kM
(12)





σ11

σ22

σ33

σ23

σ13

σ12



+



kQ
(11)

kQ
(22)

kQ
(33)

3kQ
(23)

3kQ
(13)

3kQ
(12)



. (21)

Symbols in Equation (21) denotes

kM
(ij) =

Γ(2)
Γ(2− α)

[(
∆L
(ij)

)1−α
+
(

∆R
(ij)

)1−α
]

, (22)

kQ
(ij) =

(
Γ(2)

Γ(2− α)
− 1

2
Γ(3)

Γ(3− α)

) [(
∆R
(ij)

)2−α
−
(

∆L
(ij)

)2−α
]

, (23)
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∆L =

(
∆L
(11) ∆L

(22) ∆L
(33) ∆L

(23) ∆L
(13) ∆L

(12)

)T
, (24)

and

∆R =

(
∆R
(11) ∆R

(22) ∆R
(33) ∆R

(23) ∆R
(13) ∆R

(12)

)T
, (25)

where
a(ij) = σij − ∆L

(ij), b(ij) = σij + ∆R
(ij). (26)

Terminals a(ij), b(ij) are needed to define the partial fractional derivatives in Equation (17) that
enforce the directional nature of the fractional viscoplastic flow–the subscripts L and R corresponds
to the left and the right Caputo derivatives, respectively. In addition, by introducing sections that
extend the calculation beyond the material point, a virtual neighbourhood is obtained that results in a
non-locality in a stress state.

The interpretation of the virtual surrounding in a stress state depends on the specific material
(see [28]), but in general it could be understood as a (homogenized) phenomenological measure
of some instability, e.g., for metallic materials it is connected with dislocation nucleation [32–34],
nucleation of voids [35] or breakup of grains [36–38] (see review paper [39]). By way of illustration,
Figure 1 shows the cross-section of this virtual neighbourhood in the σ2 − σ3 plane.

Figure 1. Virtual surrounding of a material point.

The analysis of Equation (21) shows differences in relation to the classical viscoplasticity where
the change in volume may only occur in the elastic range—in the classical case, the trace of the p tensor
equals 0. This condition is abandoned in the fractional formulation (when α ∈ (0, 1)), thus explicitly
providing a tool to control the evolution of volume in the plastic range through α and parametric
vectors ∆L and ∆R. Moreover, the versatility of the fractional approach is proven for α = 1, for which
the associated plastic flow as a special case is obtained.

Finally, the flowchart was formulated that presents the general calculation scheme for the
elasto-viscoplastic material in the framework of the fractional viscoplastic flow rule for explicit time
integration in VUAMT subroutine (see Figure 2). The VUAMT subroutine aims at determination of
the values of Cauchy stresses and updating strains and internal variables at time tn+1 based on the
knowledge of these parameters at the previous moment tn. The procedure starts with the calculation
of the elastic trial stress, which is later used to establish the value of the yield criterion. If this criterion
is fulfilled, the plastic multiplier Λ and the direction of plastic flow p are calculated according to the
flow rule; otherwise the elastic step is conducted.
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Given parameters: E, ν, κ, Tm, m

∆εn+1, σn, εn = εe
n + ε

vp
n

∆σtrial
n+1 = Le∆εn+1

σtrial
n+1 = σn + ∆σtrial

n+1

J2

(
σtrial

n+1

)
> κ

Λn = 0

∆ε
vp
n = 0

No (elasticity)

ε
vp
n+1 = ε

vp
n

εe
n+1 = εe

n + ∆εn+1

= εe
n + ∆εe

n+1

σn+1 = σtrial
n+1 = Leεe

n+1

Λn = 1
Tm

〈√
J2(σn)

κ − 1
〉m

pn = Mσn + q

∆ε
vp
n = ∆tΛnpn ||pn||−1

Yes (plasticity)

ε
vp
n+1 = ε

vp
n + ∆ε

vp
n

εe
n+1 = εe

n + (∆εn+1 − ∆ε
vp
n )

= εe
n + ∆εe

n+1

σn+1 = Leεe
n+1

Figure 2. VUMAT subroutine flowchart for the fractional viscoplastic rule.

4. Parametric Study: Uniaxial Tension

4.1. Description of the Numerical Experiment

The conducted parametric study is focused on the material point level represented by a unit cube
with dimensions of 1 × 1 × 1 mm discretized by a single finite element C38DR (linear, eight-node brick
with reduce integration). The boundary conditions required to achieve uniaxial constraints are shown
in Figure 3. Basic mechanical properties were assumed as for the carbon steel, therefore the elastic
range was characterized by Young’s modulus E = 205 GPa and Poisson’s ratio ν = 0.27. The fractional
flow rule presented in Section 2 was applied in the plastic range. The static yield stress in simple shear
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for the selected material was κ = 605 MPa. Other material parameters, depending on the studied case,
were chosen as described below.

Figure 3. Unit cubic model restricted to uniaxial tension.

The analyzed cases of fractional flow were divided into two groups to show how various
combinations of model parameters influence plastic deformation. The first group is focused on the
value of the stress-fractional non-locality spread (∆L,R) and the order (α) of the fractional flow. In the
second group, the influence of the material parameters Tm and m under various speeds of the imposed
displacement is closely studied. Anticipating the anisotropic behaviour of the fractional material model,
these two groups were further subdivided according to the direction where the dominant viscoplastic
flow was expected. Hence, two cases were formed for tension direction (∆L,R

22 = 0.005κ ≈ 3.0 MPa)
and direction perpendicular to tension (∆L,R

11 = 0.005κ ≈ 3.0 MPa). In each of those cases, other values
of the ∆ were set to 0.0017κ ≈ 1.0 MPa.

Two kinds of plots were used to present the results of the parametric study. The first kind
exemplify the relation between three normal strains ε11, ε22, ε33. The second type shows the stress–strain
relation in the tension (2) direction (it should be pointed out that for this kind of plots, a ‘softening’
is observed, especially for highest tension velocities, however, this effect is due to the lateral stresses
induced by the inertia effects and is not due to constitutive model κ = const. See Figure 4, where this
effect is negligible due to relatively small tension velocity v = 1 m

s ). The research on influence of the
fractional derivative order was performed for a set α ∈ {0.1, 0.25, 0.5, 0.75, 0.99, 1.0}—as mentioned
earlier, fractional generalization of the viscoplasticity reduces to the classical solution for α = 1.
The study of Tm and m was conducted for three different velocities of tension, i.e., v = 1, 25 and 50 m

s .
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Figure 4. Influence of the order α and the value of material parameter ∆22 on the stress–strain relation,
for: v = 1 m

s , Tm = 2.5e-6 s, m = 1.

4.2. Influence of the Order of FV and Non-Locality in a Stress State on Plastic Flow

4.2.1. Study of Intensified Plastic Flow in Tension Direction for Different Orders of Flow

Figure 4 presents the material response to the applied tension velocity of v = 1 m
s for different flow

intensities in tension direction and flow orders. Increasing the flow intensity parameter (∆L,R) causes
higher evolution of the plastic flow in the chosen direction but in this case the velocity of the load is not
sufficient to reveal different behaviour in the stress–strain relation for different values of α (see Figure 4).
Next, for the same configuration of material parameters higher velocity is applied, namely v = 25 m

s .
At this speed (Figure 5), a slight waveform begins to be visible for ∆L,R

22 = 1.0 MPa. The amplitude of
the stress signal increases with the increases ∆L,R

22 . Additionally, the influence of α is shown because
the decrease in its value translates into greater amplitude of oscillations. So, we conclude that both
fractional parameters, control the dynamic properties of a fractional model.
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Figure 5. Influence of the order α and the value of material parameter ∆22 on the stress–strain relation,
for: v = 25 m

s , Tm = 2.5e-6 s, m = 1.
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4.2.2. Study of Intensified Plastic Flow Perpendicular to the Tension Direction for Different Orders
of Flow

Results presented in this section were obtained for a parameter set similar to this in Section 4.2.1
with the difference that flow intensity is increased in the direction perpendicular to tension,
namely ∆L,R

11 = 3.0 MPa. Others components of vectors in Equations (24) and (25) equal 1. As in the
discussion in the previous section, the tension velocity of v = 1 m

s is insufficient to reveal the influence
of α on the stress–strain relation (see Figure 6). However, Figure 7 shows that the material prefers to
deform in (1) direction when the magnitude of ∆L,R

11 growths, hence the ε11/ε33 ratio is greater then 1.
Moreover, the intensity of the flow in the preferred direction increases as the value of α diminishes to 0.
Next, as before, the velocity is increased to v = 25 m

s . Figure 8 shows that when the value of ∆L,R rises,
greater amplitude of the oscillation and hardening of the material can be observed. This last effect
is inversely proportional to the order of the fractional flow. The relation between ε11, ε22 and ε33 is
presented in Figure 9 and is very similar to Figure 7 with the only distinction that slight oscillation
occurs as a result of higher velocity. So, we conclude that both fractional parameters control the
anisotropic properties of a fractional model in the plastic range.
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Figure 6. Influence of the order α and the value of material parameter ∆11 on the stress–strain relation,
for: v = 1 m

s , Tm = 2.5e-6 s, m = 1.
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s , Tm = 2.5e-6 s, m = 1.

4.3. Influence of the Relaxation Time and the Overstress Power

4.3.1. Study of the Fractional Flow Under Different Dynamic Loading Rates for Intensified Plastic Flow
in Tension Direction

Here we assume that the intensified plastic flow, determined by ∆L,R
22 = 3.0 MPa, is in

tension direction. Figure 10 presents the effect of different relaxation times for various velocities
of tension. It should be pointed out that in order to increase clarity of interpretation both the classical
(α = 1) and the fractional (α = 0.75) solutions are compared on each graph. As can be seen, when the
relaxation time grows, the hardening of the material as well as the stress waves oscillations increase.
The latter is especially pronounced for the relaxation time Tm = 2.5e-5 s.
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Figure 10. Influence of the relaxation parameter Tm and the value of applied velocity field v on the
stress–strain relation, for: α = 0.75, m = 1, ∆22 = 3.0.

Figure 11 presents the result of increasing the value of the overstress parameter m. For the
fractional (α = 0.75) viscoplastic material the stress level is smaller in relation to the classical (α = 1.0)
viscoplastic solution (Figures 10 and 11).
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Figure 11. Influence of the material parameter m and the value of applied velocity field v on the
stress–strain relation, for: α = 0.75, Tm = 2.5e-6 s, ∆22 = 3.0.

Results discussed above indicate that the relaxation time and overstress power, together with
fractional parameters, control the level of strain rate hardening and stress waves oscillation amplitude.

4.3.2. Study of the Fractional Flow Under Different Dynamic Loading for the Intensified Plastic Flow
Perpendicular to the Tension Direction

In this section, it is assumed that fractional flow is intensified in the direction perpendicular to
tension load (∆L,R

11 = 3.0 MPa). Figure 12 shows that raising relaxation time causes similar effects to
those discussed in the previous section. The biggest change occurs for the relaxation time Tm = 2.5e-5 s
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both in the stress level and the stress wave oscillations frequency. In Figure 13 a clear anisotropy of the
plastic deformation for α = 0.75 can be noticed. As before, it is observed that increasing the value of
m causes a growth in the material strain hardening without any apparent influence on the frequency
of the stress wave (see Figure 14). By analogy to what is presented for Tm, in Figure 15 the dominant
nature of ε11 can be observed, in addition to more pronounced oscillations for greater values of m.
The analysis of the σ − ε relation for α = 1 and α = 0.75 also revealed that the stress levels of the
fractional model are generally greater than for the classical solution (see Figures 12 and 14). This last
observation is different from what was discovered in the previous section.
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Figure 12. Influence of the relaxation parameter Tm and the value of applied velocity field v on the
stress–strain relation, for: α = 0.75, m = 1, ∆11 = 3.0.
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Figure 13. Influence of the relaxation parameter Tm and the value of applied velocity field v on the
relation between three normal stresses, for: α = 0.75, m = 1, ∆11 = 3.0.

In conclusion, as before, a prominent influence of the relaxation time and overstress power,
together with fractional parameters, on the level of strain rate hardening and stress waves oscillation
amplitude is observed. Additionally, the impact on dynamic properties of deformation anisotropy for
fractional material was confirmed.
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Figure 14. Influence of the material parameter m and the value of applied velocity field v on the
stress–strain relation, for: α = 0.75, Tm = 2.5e-6 s, ∆11 = 3.0.
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Figure 15. Influence of the material parameter m and the value of applied velocity field v on the relation
between three normal stresses, for: α = 0.75, Tm = 2.5e-6 s, ∆11 = 3.0.

4.4. Study of the Disperse Character of the Fractional Viscoplastic Stress Waves

The last study performed was the analysis of the disperse character of the fractional viscoplastic
stress waves. As shown in the previous sections, the uniaxial dynamic deformation induces a
stress waves. The regularity of the oscillations was determined by averaging intervals between
peaks and then calculating the frequency. Table 1 lists the stress wave frequencies for ∆L,R

22 = 3.0 MPa
and ∆L,R

11 = 3.0 MPa, which were depicted in the middle graphs of Figures 10 and 12. The material
parameter ∆L,R does not appear in the classical viscoplasticity, so there is no change in the stress wave
frequency for various values of this parameter when α = 1, thus tension velocity is only important.
However, for fractional material, i.e., when α = 0.75, both flow intensity parameters and tension
velocities modulate the frequency of stress waves. For α = 0.75 the frequencies are higher when the
distinguished direction is co-linear with tension (∆22 = 3.0 MPa).
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Table 1. The stress wave frequencies for Tm = 2.5e-6 s, m = 1

∆22 = 3.0 ∆11 = 3.0

v = 25 m
s

α = 1 2.085 MHz 2.085 MHz

α = 0.75 2.108 MHz 1.996 MHz

v = 50 m
s

α = 1 2.073 MHz 2.073 MHz

α = 0.75 2.157 MHz 2.028 MHz
.

The results presented in Table 2 correspond to the investigation of the role of the relaxation time
and overstress power discussed in Section 4.3. Regardless of the value of α, the largest change in
frequency can be observed between columns 2 and 3, that is for Tm = 2.5e-6 s and Tm = 2.5e-5 s.
The comparison of the values in columns 1 (Tm = 2.5e-7 s) and 2 (Tm = 2.5e-6 s) shows that the stress
wave frequencies are the same or very similar. The impact of m shows that the significant influence of
this parameter was only recorded for Tm = 2.5e-5 s. For both α = 0.75 and α = 1 the increase of the
overstress power results in the increase of the frequency of the stress wave.

Table 2. The stress wave frequencies for ∆22 = 3.0 MPa, v = 50 m
s

Tm

2.5e-7 2.5e-6 2.5e-5

m = 1
α = 1 2.073 MHz 2.073MHz 2.274 MHz

α = 0.75 2.157 MHz 2.157 MHz 2.288 MHz

m = 2
α = 1 2.073 MHz 2.085 MHz 2.182 MHz

α = 0.75 2.157 MHz 2.157 MHz 2.207 MHz

m = 3
α = 1 2.073 MHz 2.085 MHz 2.169 MHz

α = 0.75 2.157 MHz 2.157 MHz 2.182 MHz
.

One concludes that the relaxation time and overstress power, together with fractional parameters,
control the dispersive character of stress waves, and even more, makes this attribute directional.

5. Conclusions

The analysis of the dynamic properties of the Perzyna model of viscoplasticity (implicit time,
non-local) generalized using fractional calculus (explicit, stress-fractional, non-local) leads to the
following conclusions:

• Fractional viscoplasticity introduces an additional set of material parameters, namely flow order
α and virtual stress state surrounding ∆.

• Fractional parameters α and ∆ control the dynamic properties of the fractional model,
especially hardening, the character of the stress waves, and plastic anisotropy.

• The direction of the flow vector is controlled by ∆, which in general leads to non-normality of
plastic flow.

• As in the classical Perzyna model, the relaxation time Tm and the overstress power m affect the
strain rate hardening and the character of the stress waves.
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• Induced plastic anisotropy of the fractional model should be regarded not only in the classical
sense as directional deformation but also as directional viscosity, which results in directional
dispersive character.

The above results are fundamental from the point of view of modeling strain localization and
damage phenomena. Both these aspects will serve as a base for future studies.
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