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Abstract: Space-time quantum contributions to the classical Einstein equations of General Relativity
are determined. The theoretical background is provided by the non-perturbative theory of
manifestly-covariant quantum gravity and the trajectory-based representation of the related quantum
wave equation in terms of the Generalized Lagrangian path formalism. To reach the target an
extended functional setting is introduced, permitting the treatment of a non-stationary background
metric tensor allowed to depend on both space-time coordinates and a suitably-defined invariant
proper-time parameter. Based on the Hamiltonian representation of the corresponding quantum
hydrodynamic equations occurring in such a context, the quantum-modified Einstein field equations
are obtained. As an application, the quantum origin of the cosmological constant is investigated.
This is shown to be ascribed to the non-linear Bohm quantum interaction of the gravitational field
with itself in vacuum and to depend generally also on the realization of the quantum probability
density for the quantum gravitational field tensor. The emerging physical picture predicts a generally
non-stationary quantum cosmological constant which originates from fluctuations (i.e., gradients)
of vacuum quantum gravitational energy density and is consistent with the existence of quantum
massive gravitons.

Keywords: covariant quantum gravity; cosmological constant; bohm potential; gaussian solutions

PACS: 03.65.Ca; 03.65.Ta

1. Introduction

The theory of manifestly-covariant quantum gravity (CQG-theory) recently proposed in a series
of papers (see Refs. [1–6]) provides a possible new self-consistent route to Quantum Gravity and the
cosmological interpretation of quantum vacuum. This refers specifically to the quantum prescription of
the cosmological constant and the long-standing question whether or not it can be ascribed exclusively
to suitable vacuum fluctuations arising at the quantum level.

The crucial feature, that we intend to display in this paper, is in fact that CQG-theory generates
self-consistently quantum corrections to the Einstein field equations, i.e., obtained without introducing
the semiclassical limit. More specifically, our claim is that CQG-theory actually gives rise to a
well-defined quantum prescription of the cosmological constant, its physical interpretation being
ascribed to the action of the non-linear quantum vacuum interaction of the gravitational field with
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itself. Remarkably, the new result is based purely on the self-consistent (in the sense indicated above)
prescription of quantum vacuum density ρA obtained in such a framework. In addition it is reached
without introducing “ad hoc” phenomenological prescriptions of quantum vacuum, nor possible
modifications of the classical Lagrangian formulation of GR based on higher-order classical curvature
terms [7,8].

While still not claiming its uniqueness, CQG-theory represents nevertheless a possible new
pathway for the establishment of a quantum theory for the standard formulation of General Relativity
(GR) and at the same time provides a promising mathematical-physics framework for the investigation
of gravitational quantum vacuum effects.

Indeed it is generally agreed that a theory of this type should be, at the same time, in agreement
with the fundamental principles of quantum mechanics and quantum field theory [9] as well as the
classical Einstein theory of GR [10–13]. The same principles—it should be stressed—notably include
the principles of covariance and manifest covariance [14].

CQG-theory realizes, as such, a first-quantization picture of space-time which embodies
simultaneously all the required fundamental principles (for an extended related discussion we refer
again to Refs. [1–6]). One of its notable features is realized, first of all, by the distinction between a
continuum classical background metric tensor ĝ ≡

{
ĝµν

}
, yielding the geometric properties of the

space-time, and the quantum gravitational field gµν which dynamically evolves over ĝ according to
a defined quantum wave equation (CQG-wave equation) [4]. The latter is based on the identification
of the Hamiltonian structure associated with the classical space-time, with the prescription of the
corresponding manifestly covariant Hamilton equations [2] and the related Hamilton-Jacobi theory [3]
obtained in the framework of a synchronous variational principle [1]. This leads to the realization in
4-scalar form of the quantum Hamiltonian operator and the CQG-wave equation for the corresponding
CQG-state and wave function, whose dynamics is parametrized in terms of an invariant proper-time
parameter.

Nevertheless, it must be remarked that relevant results established so far in the framework of
CQG-theory pertain both first- and second-quantization effects. The first category includes:

• The establishment of the Schroedinger-like CQG-wave equation in manifest covariant form, which
is realized by a first-order PDE with respect to the invariant proper-time [4].

• The statistical interpretation of the CQG-wave equation in terms of corresponding quantum
hydrodynamic equations [5].

• The fulfillment of generalized Heisenberg inequalities relating the statistical measurement
errors of quantum observables, represented in terms of the standard deviations of the quantum
gravitational tensor gµν and its quantum conjugate momentum operator [5].

• The formulation of a trajectory-based representation of CQG-theory achieved in terms of
a covariant Generalized Lagrangian-Path (GLP) approach relying on a suitable statistical
representation of Bohmian Lagrangian trajectories [6,15].

• The construction of generally non-stationary analytical solutions for the CQG-wave equation
with non-vanishing cosmological constant and exhibiting Gaussian-like probability densities that
are non-dispersive in proper-time [6].

• The proof of the existence of an emergent gravity phenomenon occurring in the context of
CQG-theory (previously referred to as “second-type emergent-gravity paradigm” (see Ref. [6]))
according to which it can/must be possible to represent the mean-field background space-time
metric tensor ĝ in terms of a suitable ensemble average. More precisely, as shown in the same
reference, this is identified in terms of a statistical average with respect to stochastic fluctuations
of the quantum gravitational field gµν, whose quantum-wave dynamics is actually described by
means of GLP trajectories [6].
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Results belonging to second-quantization effects concern instead:

• The proof of existence of a discrete invariant-energy spectrum for stationary solutions of the
CQG-wave equation, obtained by implementing the Dirac ladder method (i.e., a second-quantization
method) for the stationary wave equation with harmonic Hamiltonian potential [4].

• The analytical estimate for the graviton mass and its quantum discrete invariant energy spectrum,
supporting the interpretation of the graviton DeBroglie length as being associated with the
quantum ground-state related to the cosmological constant [4]. It must be stressed in this
connection that the prediction of massive gravitons represents an intrinsic property of CQG-theory
which marks also an important point of distinction with respect to past literature. In fact previous
perturbative treatments of quantum gravity based on linearized GR theories typically exhibit—in
analogy with the case of the electromagnetic field - massless gravitons. Indeed in the framework of
CQG-theory, as discovered in Ref. [4], the existence of massive gravitons and their mass estimate
are found to be associated with a non-vanishing cosmological constant.

Based on these outcomes, the target of this paper is to show that in the context of the CQG-theory
the equation for the background metric tensor ĝ can actually self-consistently be determined by
the CQG-wave equation itself, together with its relationship with the classical Einstein equations.
The consequences are of crucial importance since this feature of CQG-theory makes possible
the investigation of quantum corrections/contributions to the classical GR equations themselves.
In particular, focus is given on the quantum origin of cosmological constant and its quantum
representation as predicted by CQG-theory. The consequent second-quantization, i.e., non-linear
quantum modifications of the background space-time obtained in this way, represents the main subject
of investigation of the present work. As we intend to show, besides quantum gravity theory itself,
this is relevant in the context of theoretical astrophysics and cosmology to reach a quantum-gravity
interpretation/explanation of selected physical evidences emerging from large-scale phenomenology
of the universe.

1.1. Physical Evidence and Open Problems

The current status of observations of the large-scale structure of the universe is compatible with its
identification in terms of a coordinate-independent (i.e., frame independent) abstract setting realized
by a differential manifold

{
Q4, ĝ

}
, being Q4 a time-oriented 4-dimensional Riemann space-time with

signature {+,−,−,−} and ĝ ≡
{

ĝµν

}
to be considered a suitably-prescribed background metric

tensor characterized by a number of properties.
The first one (EVIDENCE #1) is about the flatness of the universe [16–19], i.e., the fact that

the 4-dimensional space-time curvature is very small and compatible with the existence of a
cosmological constant Λ which in magnitude is |Λ| � 1 [20,21]. However, open questions remain
in this regard. These concern, in particular, both the precise physical origin of the cosmological
constant [22–25] as well the actual meaning and possible realization of a dynamical evolution of
the universe to be realized either in the context of classical or quantum gravity [26–33]. The second
physical evidence (EVIDENCE #2) concerns the apparent lack of large-scale correlations among distant
regions of space in opposite directions (i.e., having typical light-ray separation & 109 light years)
and the consequent occurrence of the phenomenon of (large-scale) homogeneity of the universe,
whereby that latter appears to be the same in all directions (isotropic property) [34–43]. Also in this
case the physical origin of the phenomenon remains to be fully understood. In fact, it is unclear
how distant regions of the universe can undergo or have undergone significant interactions with
each other. The third evidence (EVIDENCE #3) concerns the discovery of an isotropic accelerating
expansion of the universe at large distances [44–47]. This implies, in turn, the fundamental consequence
that the same cosmological constant Λ must be slightly positive in value [48]. The fourth evidence
(EVIDENCE #4) is about the validity of a “Big Bang hypothesis” [49,50], according to which the initial
dynamical behavior of the universe should have been characterized by an explosive, i.e., extremely
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fast, expansion/acceleration of space-time starting from the initial condition which in classical GR
is understood as an initially-stationary primordial black hole singularity [51–53]. Although several
different theories/models have been advanced, the precise physical nature and explanation of the
involved phenomena remain still unexplained. Finally, the fifth evidence (EVIDENCE #5) refers
to the conjecture of an inflationary transient phase of the early universe [54–58]. In the original
version of the inflationary theory [59] the theoretical inflation model was based on the action of a
dynamically-varying scalar field (to be distinguished from the gravitational field) in a local minimum
of its potential energy function and rolling the inflation in the primordial era of the universe.

1.2. Issues about the Cosmological Constant

Thanks to the evidence provided by astrophysical observations [60], the inclusion of a
generic cosmological-constant term Λ in the Einstein field equations [61] has nowadays become
a well-established part of GR theory. Nevertheless, the cosmological constant Λ still emerges, for
its possible conceptual implications, as an unsolved issue of outmost importance. According to the
literature this can be cast in terms of a decomposition of the form

Λ = Λbare + ΛQM, (1)

where respectively Λbare > 0 denotes a possible classical contribution and ΛQM > 0 identifies a
quantum contribution. In the present case ΛQM will be identified with ΛCQG, namely the contribution
arising specifically in the context of CQG-theory.

Regarding the possible realizations of Equation (1), disparate theoretical models have been
proposed in the past. These refer both to classical and/or quantum derivations either for Λbare or ΛQM.
In particular, concerning existing models for Λbare a typical common aspect concerns the adoption of
modified classical GR theories. These include for example the so-called Einstein-Cartan gravity theory
based on the introduction of torsion effects in the energy-momentum tensor [62,63], the adoption of
higher-dimensional space-times (see for example Ref. [64]), Brans-Dicke theories involving the introduction
of coordinate-time dependent cosmological constants [65], coordinate-space or coordinate-time varying
models [66–70], etc. Regarding, instead, previous theoretical predictions/estimates of ΛQM the list of
possible candidates is numerous. A historically famous one inspired by quantum field theory is that
ΛQM might be interpreted as due to the quantum vacuum. This involves the conjecture that ΛQM
should actually be identified with the total quantum-vacuum energy density arising from all possible
quantum fields. In previous literature, estimates of ΛQM based on such a conjecture, i.e., with the
inclusion of all the particles corresponding to the standard model and typically a large number of
bosonic field components, yield estimates which exceed the experimentally-observed value of Λ by
nearly 120 orders of magnitude [71]. Therefore, in the literature such a route is usually regarded as to
lead to unphysical predictions. It is worth mentioning in this regard that recent numerical calculations
including 28 bosonic fields and based on the estimate of the stochastic fluctuations of the associated
total quantum-vacuum energy density, rather than the energy density itself, are claimed to provide
lower estimates and a resulting acceleration of the universe comparable to the observed one [72,73].
This type of studies should be regarded as complementary to the present quantum theory, although
they differ from it for the following main reasons: (1) they are based on numerical calculations, and
therefore are subject to the accuracy of the numerical codes actually implemented, while the theory
proposed here is analytical; (2) they assume that the source of the universe expansion is the vacuum
populated by bosonic fields, while in the present model the cosmological constant is shown to arise
purely from quantum gravitational field with its quantum dynamics being predicted by CQG-theory,
without needing to invoke any additional field; (3) they realize non-manifestly covariant solutions
in which the coordinate time is singled out with respect to space coordinates, while the investigation
based on CQG-theory preserves manifest covariance.
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Nevertheless, in part independent of the reasons indicated above, several alternative models have
been developed in the literature to explain the expansion/acceleration of the universe as well as the
cosmological constant itself (for a review see Ref. [74]). These include, among others: (a) Scalar-field
theories based on the introduction of scalar quantum fields and, possibly, related Lagrangian functionals
for the variational derivation of the corresponding dynamics ([75,76] or the so-called quintessence
model [77,78]). By comparison, as will be shown below, the present approach differs from these ones in that
there is no need to assume “a priori” existence of external quantum fields other than the gravitational one.
In other words, the theory proposed here provides a representation for the cosmological constant entering
the Einstein equations which is purely generated by quantum interaction of the vacuum gravitational
field with itself, independent of the possible additional action of external quantum fields. (b) Perturbative
calculations in the framework of loop quantum gravity (see for example Ref. [79]). Here the main difference
is provided by the mathematical setting where calculations are performed. In fact, models based on
loop quantum gravity approach are intrinsically non-manifestly covariant, in contrast to the present
approach which satisfies manifest covariance both at classical and quantum levels (see Refs. [3,4]).
In addition, as shown below, the calculation performed in the present framework is not perturbative,
but rather it realizes an exact analytical result obtained adopting the trajectory-based representation
of CQG-wave equation given in Ref. [6]. (c) Non-commutative approach to the Wheeler-DeWitt
equation [80]. Even in this case there are no analogies with the present approach, both because of
the non-commutative framework and for the adoption of the Wheeler-DeWitt equation, which is
intrinsically non-manifestly covariant in comparison to the CQG-wave equation and also makes use
of a Hamiltonian operator derived from preliminary space-time foliation. (d) Theoretical models
obtained by introducing quantum corrections in the Raychaudhuri equation [81,82]. Despite referring
to Bohmian trajectories, this type of model is phenomenological. In addition, the Raychaudhuri
equation is a kinematical equation, not a dynamical one, and therefore inadequate by itself to predict
quantum dynamics (see also discussion in Ref. [83]). As a consequence, similarities with the present
approach remain excluded also in this case. The CQG-theory in fact is variational, following from
preliminary establishment of Lagrangian, Hamiltonian and Hamilton-Jacobi theories for General
Relativity, and then implementing a canonical quantization approach. (e) Phenomenological models
associated with dark matter and/or corresponding dark energy [47,84,85]. Despite being very popular
in contemporary literature, dark matter/energy models still lack both experimental evidence and
definite theoretical support.

However, despite the huge number of papers appeared so far, no convincing theory or clear
physical evidence exists which can explain the physical origin of either Λbare or ΛQM. In particular,
a number of questions regarding the cosmological constant remain. They include in particular:

• ISSUE #1: the possible quantum origin and, more precisely, the quantum self-generation of the
cosmological constant Λ, i.e., in which the same one is produced merely by the presence of
gravitons, as well as its precise estimate in the context of Quantum Gravity.

• ISSUE #2: the possible dynamical behavior of Λ and the search of an admissible dynamical
parametrization in terms of physical observables, including the relationship with its
constant representation.

• ISSUE #3: the corresponding eventual implications for cosmology, in particular in reference with
the large-scale phenomenology of the universe.

1.3. Goals and Structure of the Paper

The problems addressed in the paper are cast in the framework provided by the trajectory-based
approach to CQG-theory formulated in Ref. [6] and referred to as generalized Lagrangian-path
(GLP) approach. The notable aspect of this representation is that it permits the construction
of dynamically-consistent analytic solutions of the CQG-wave equation which lays at the
basis of CQG-theory. These include in particular vacuum quantum solutions in cosmological
scenarios characterized by Gaussian-like or Gaussian quantum probability density functions (PDF).
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The GLP-approach developed in Ref. [6] refers to the case of stationary background space-time
{

Q4, ĝ
}

,
i.e., in which the background metric tensor ĝ is considered stationary, namely of the form

ĝ = ĝ(r). (2)

However, the quantum wave-function determined in the same reference exhibits an explicit
dependence in terms of the observer’s proper time, i.e., a physical observable (see related discussion
in Section 3 below). For this reason it is reasonable to conjecture (as shall be shown explicitly in
subsequent Sections 6–9) that via second quantization effects, also the same background tensor field
might be expected to include an analogous type of dependence. Therefore, the preliminary goal to
be pursued as a first task of the paper consists in the appropriate generalization of the theory to a
generally non-stationary metric tensor ĝ of the type

ĝµν = ĝµν(r, s), (3)

where s denotes a suitably-prescribed invariant proper-time parameter. The two settings (2) and (3)
will be referred to here respectively as stationary and non-stationary backgrounds. More precisely, for
this purpose the role of proper-time and its definition as physical observable are first discussed in
the context of both covariant classical gravity (CCG) and covariant quantum gravity (CQG) theories.
Then, the extension to the case of a non-stationary background metric tensor is ascertained both for
CCG and CQG theories as well as for the GLP-approach presented in Ref. [6]. As a consequence, the
non-stationary quantum solutions of the CQG-quantum wave equation determined in Ref. [6] are
shown to hold also in such a case.

The second task of the paper concerns, instead, the investigation of the possible validity of the
so-called “first-type emergent-gravity paradigm” (see Ref. [6]). Accordingly, the functional form of the
Einstein GR field equations should be preserved when quantum corrections implied by CQG-theory
and the GLP-approach are retained, consistent with the so-called emergent gravity picture. In other
words, the determination of the Einstein equations with quantum contributions included should not
depend on the evaluation of semiclassical continuum limit (namely obtained letting in particular
}→ 0; see for example Ref. [86] where the derivation of the Einstein field equations was discussed
in the context of loop quantum gravity) nor on the prescription of suitable stochastic/quantum
expectation values, but rather should be implied by the quantum-wave equation itself. This task
should involve the determination of the PDE for the background field tensor ĝµν with inclusion
of second-quantization effects arising from the quantum gravitational field itself, to be associated
with the corresponding covariant quantum gravity wave equation, i.e., the CQG-wave equation for
the quantum state ψ(g, r, s) pointed out in Refs. [4,5]. According to this procedure the CQG-wave
equation should deliver the so-called quantum-modified Einstein field equations. These are expected
to have the same functional form of the classical equations (see Equation (5) below) but to retain at
the same time also well-definite quantum expectation values for the relevant continuum fields, and
in particular a quantum expectation value of the cosmological constant Λ. To carry out this task a
number of steps are needed. First, the CQG-wave equation must be shown to imply the validity
of a set of Hamilton equations holding for suitable quantum canonical tensor fields and denoted
as quantum Hamilton equations. For this purpose the equivalent set of quantum hydrodynamic
equations, represented respectively by the continuity and quantum Hamilton-Jacobi equations, are first
recalled. Second, by suitably prescribing the initial conditions, the same quantum Hamilton equations
must be proved to imply the validity of the quantum-modified Einstein field equations. Third, by
explicitly taking into account the quantum solutions determined via the GLP-approach, the analytic
expression of the quantum cosmological constant Λ needs to be evaluated, with particular reference
to its possible explicit dependence in terms of the proper-time s and its consequent identification
as a dynamically-evolving cosmological scalar field. Fourth, the solution of the quantum-modified
Einstein field equations must be investigated and shown to take the general form of a non-stationary
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background metric tensor of the type given by (3), where explicit proper-time dependences are clearly
identified as arising from quantum gravitational contributions. Finally, the asymptotic behavior of the
cosmological constant needs to be analyzed in order to understand the physical role of the quantum
corrections to the gravitational field cosmological dynamics.

The implementation of this work-plan permits the establishment of a relevant theoretical result,
which concerns the investigation of the quantum origin of the cosmological constant. In fact it is
proved that CQG-theory predicts quantum-modified Einstein equations which contain a cosmological
constant term purely generated by quantum interaction. More precisely, the quantum cosmological
constant is shown to arise from the quantum interaction of the gravitational field with itself in vacuum.
From the point of view of mathematical treatment, this type of interaction is expressed by the quantum
Bohm potential term that is contained in the quantum-wave equation and is made explicit after
adoption of the Madelung representation for the quantum wave function and the representation of the
same equation in terms of quantum hydrodynamic equations. A characteristic feature of the Bohm
potential is that of carrying a non-linear interaction expressed by quadratic first-order derivatives and
second-order derivatives of the quantum probability density of the quantum gravitational field tensor.
For this reason, the Bohm potential depends also on the explicit realization of the same quantum
probability density, a feature which requires the simultaneous solution of both continuity and quantum
Hamilton-Jacobi equations equivalent to the quantum-wave equation. The emerging physical picture
predicts a generally non-stationary quantum cosmological constant which originates from fluctuations
(i.e., gradients) of vacuum quantum gravitational energy density and is consistent with the existence
of quantum massive gravitons (see also related discussion in Section 9).

Given these premises, the structure of the paper is as follows. In Section 2, the extension of the
functional setting of CQG-theory is presented as appropriate to the treatment of a non-stationary
background metric tensor. In Section 3 the role of proper-time in covariant classical/quantum gravity
is investigated. In Section 4 the formulation is presented of covariant classical/quantum gravity in the
framework of the extended functional setting. In Section 5, the quantum Hamilton equations associated
with the corresponding set of quantum hydrodynamics equations are presented. These lead in Section 6
to the construction of the corresponding quantum modified Einstein field equations. In Section 7 the
extension is considered of the Generalized Lagrangian Path approach earlier formulated appropriate
for the treatment of the extended functional setting. In Section 8 the explicit evaluation of the Bohm
effective potential and corresponding source term, together with the identification of the cosmological
constant are presented. In Section 9 the proper-time behavior of the quantum cosmological constant
ΛCQG(s) and related physical implications are discussed. Finally in Section 10 concluding remarks are
pointed out, while completing details of algebraic calculations are reported in Appendixes A–C.

2. Extended Functional Setting for CQG-Theory

The theoretical framework of the present paper is couched on the manifestly-covariant
Hamiltonian approach for massive gravitons recently developed in Refs. [1–6]. In its classical
formulation, referred to as covariant classical theory of gravity (CCG-theory), this is based on a classical
Hamiltonian representation for the Einstein field equations of the gravitational field which permits to
recover the same Einstein equations as particular solutions of a suitable set of manifestly-covariant
continuum Hamilton equations.

The corresponding quantization approach for the space-time metric tensor, denoted as
g-quantization [5], realizes instead a manifestly-covariant quantum gravity theory (CQG-theory).
The characteristic property of CQG-theory is that of yielding a non-perturbative hyperbolic quantum
wave equation, denoted as CQG-wave equation, advancing the state of the quantum gravitational field
with respect to an invariant proper-time parameter s. In addition, both CCG-theory and CQG-theory
are manifestly covariant. In accordance, it follows that all the classical and quantum Hamiltonian
densities and operators as well as the corresponding continuum coordinates and conjugate momenta,
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are all required to transform as 4-tensors, i.e., to fulfill as such well-definite covariance tensor
transformation laws

r ≡ {rµ} → r′ ≡
{

r′µ
}
= r′(r) (4)

associated with local point transformations between reference systems (LPT group [13]), namely in
which the rhs of the previous equation depends on the local value of the initial and transformed
4-positions r ≡ {rµ} and r′ ≡ {r′µ} respectively.

However, in order that the principle of manifest covariance can actually apply, a background
space-time picture must hold. This means that, consistent with experimental evidence, the universe
must be identified with a suitable classical curved space-time

{
Q4, ĝ

}
with the background metric

tensor ĝ ≡
{

ĝµν

}
to be considered a classical tensor field. In particular, this means that the LPT group

must leave invariant the differential manifold structure of a prescribed (but in principle arbitrary)
curved space-time

{
Q4, ĝ

}
, to be referred to as background space-time. Hence, no preferred GR

reference frames or coordinate systems are required. The latter occurrence follows for example when
decompositions or foliations of space-time (like the 3 + 1 representation) and the consequent adoption
of non-tensor Lagrangian/Hamiltonian variables are implemented. This typically involves the singling
out of the coordinate time to prescribe the dynamical evolution of metric tensor hypersurfaces
(see Refs. [87–91]). It must be stressed that although a manifestly-covariant theory of this type
needs not necessarily to be unique, the involved notion of manifest covariance given above is certainly
unambiguously determined when the background space-time

{
Q4, ĝ

}
is prescribed.

A crucial aspect is therefore the prescription of its functional setting.
One notices in this regard that by assumption ĝ determines the geometric properties of the same

space-time and is required to satisfy suitable physical prescriptions. The first one is that ĝ must be
considered as a deterministic, i.e., classical, tensor field. As such, in the framework of CQG-theory
this is assumed to realize a particular solution of the Einstein field equations. In standard notation the
latter can be written

R̂µν −
1
2

[
R̂− 2Λ

]
ĝµν = κT̂µν, (5)

with κ being the universal constant

κ ≡ 8πG
c4 , (6)

and where
Ĝµν ≡ R̂µν −

1
2

R̂ĝµν (7)

is the Einstein field tensor. Moreover: (1) R̂µν ≡ Rµν(ĝ), R̂ ≡ R(ĝ) ≡ ĝαβR̂αβ and T̂µν = Tµν(ĝ) identify
respectively the Ricci tensor, the Ricci 4-scalar and stress-energy tensor (or energy-momentum tensor
of matter) all evaluated in terms of the background metric tensor ĝ; (2) Λ is the still to be determined
cosmological constant which can always be taken of the general form (1). Accordingly, the metric
tensor ĝµν must raise and lower tensor indices of arbitrary tensor fields, such as for example the
second-order coordinate and momentum tensor fields Hµν = gµν, πµν, i.e.,

Hµν = ĝµα ĝνβHαβ, (8)

with Hµν and Hαβ denoting respectively corresponding covariant and counter-variant components.
The second prescription is that ĝ should determine the Riemann distance on the space-time

{
Q4, ĝ

}
and consequently the proper-time s by means of the 4-scalar equation

ds2 = ĝµνdrµdrν. (9)
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Here ds is the so-called line element (arc length) and drµ the corresponding 4-tensor displacement
around a 4-position r ≡ {rµ} which belongs to the subset of

{
Q4, ĝ

}
where ĝµνdrµdrν ≥ 0. As a

consequence it follows by integration that

s− s1 =

r∫
r1

√
ĝµνdrµdrν, (10)

where here r ≡ r(s) and r1 ≡ r(s1) denote two 4-positions along an arbitrary curve (worldline) r(s)
joining them (which therefore belong to the same light cone), while s and s1 are the corresponding
proper-times. In particular, in accordance to Ref. [4], the worldlines on which the Riemann distance
is evaluated can be conveniently identified with appropriate non-null field geodetics. Hence, for an
arbitrary GR-frame endowed with a 4-position rµ, such a worldline can in principle be identified with
one of the (infinite possible) curves that cross the same position, i.e., an arbitrary observer’s geodetics
r(s) ≡ {rµ(s)} prescribed in such a way that at proper-time s it coincides with the observer’s position,
namely so that it satisfies the initial (crossing) condition

rµ = rµ(s). (11)

Here s > 0 denotes the arc length which is associated with the same observer and therefore is
referred to here as observer proper-time. As discussed below (see following Sections 3.1 and 3.2), under
suitable assumptions s can be interpreted as a classical 4-scalar observable which can be unambiguously
associated with an arbitrary GR-frame. However, the prescription of the proper-time s achieved in
this way can also be made unique for all observers thus yielding also a global observable. The third
requisite, in close analogy with the quantum wave-function determined in Ref. [6] and for consistency
with the goals of the present investigation, is that the background metric tensor ĝ ≡

{
ĝµν

}
should

be allowed for greater generality to be non–stationary too. In the context of a manifestly-covariant
description, nevertheless, ĝ cannot depend on a coordinate time but necessarily on an invariant time
coordinate, to be identified with the proper-time s. Therefore, the metric tensor ĝ should conveniently
be allowed for greater generality to take the non-stationary form (3).

Regarding classical GR the possibility of an extended functional setting of this type has been
already pointed in Ref. [3] as being due either to the action of suitable non-local point transformations
acting on GR-frames [13] or to possible non-local source terms in the stress-energy tensor of the
Einstein equations. An example of the second type (for the explicit proper-time dependence) arises
in particular in the case of electromagnetic radiation-reaction phenomena affecting the dynamics of
N-body systems of charged particles, with N ≥ 1 [92,93], where the corresponding stress-energy tensor
depends explicitly on the proper-time of the particles subject to radiation-reaction.

In previous works dealing with CQG-theory the case of stationary background metric tensor
was actually treated, for which identically ĝµν = ĝµν(r). In the present context, however, requiring
validity of Equation (3) poses two crucial questions. The first one is whether a consistent generalization
of the theory of covariant quantum gravity and of the related GLP-theory developed in Ref. [6]
can actually be achieved for a non-stationary background metric tensor of the type (3). The issue
concerns also the corresponding formulation of CCG-theory and in particular how the extended
and reduced-dimensional variational Hamiltonian structures {H, x} determined in Refs. [3,4] can be
preserved under assumption (3). The second question instead is about the possibility of predicting the
s-dependence of ĝµν as arising specifically because of second-quantization effects of the gravitational
field, namely quantum modifications of the background metric tensor ĝµν and corresponding field
equations due to non-linear dynamical interaction of its quantum counterpart field gµν. In fact, as
shown in Ref. [4] the occurrence of an explicit proper-time dependence in the quantum wave-function
is a characteristic feature of CQG-theory for the quantum gravitational field, i.e., which arises in the
actual construction of particular solutions of the relevant quantum-wave equation of CQG-theory
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based on GLP-parametrization (see also Ref. [6]). As shown in this work, the answer to these questions
is deeply related with the investigation of Issues #1–#3 posed above.

3. The Role of Proper-Time in Covariant Classical/Quantum Gravity

In the context of both CCG- and CQG-theories a crucial aspect concerns the treatment of gravitons,
i.e., the quanta of the gravitational field and in particular the related prescription of the notion of
proper-time (s). For this purpose one first notices that both in CCG- and CQG-theories the background
space-time ĝµν prescribing the coordinate and the geometric properties of the reference system is not
quantized. The quantization pertains the fluctuations with respect to ĝµν of the quantum gravitational
field described by gµν. The implication is that gravitons still need to be treated as classical particles,
i.e., necessarily as point-like neutral, spin-2 collisionless particles, since in order to quantize them one
should actually perform a full quantization of the metric tensor defining the space-time, and therefore
the physical coordinates identified with position and velocity. In addition, in view of the invariant
discrete energy spectrum discovered in Ref. [4] gravitons must carry a non vanishing mass. As a
consequence their positions and velocities are considered as deterministic. Therefore they are endowed
with a purely geodesic motion while their admissible (or virtual) worldlines must be identified with
(deterministic) non-null subluminal geodetics which are associated with the background metric
tensor ĝ.

Concerning the notion of proper-time, as recalled above, this can be identified with the arc
length of a non-null geodetics, i.e., the virtual worldline of a graviton. Such geodetics are intrinsically
non-unique. In fact for an arbitrary observer (or GR-frame) defined by its 4-position r ≡ {rµ} , there
are infinite geodesic curves r(s) ≡ {rµ(s)} fulfilling the crossing condition (11) i.e., belonging to the
same observer. However, the notion of (observer) proper-time (s) makes sense only if s is an observable.
Therefore there must exist a suitable way to prescribe it. In this regard two choices are possible.
According to the first case, proper-time is an observer proper-time, i.e., a local observable which may have
nevertheless different realizations for each observer (i.e., GR-frames which are mutually connected
via the LPT group). In this case the proper-time s is by construction the same one for all geodesic
trajectories which cross simultaneously the observer 4-position (see Equation (11)).

The second possible realization is provided instead by the notion of global proper-time, i.e.,
a global observable which is the same one also for a family of observers which are properly “synchronized”
with each other in such a way that the observer proper-time s indeed coincides for all of them. In this
case the observer proper-time s takes therefore—by suitable construction—the same value for all such
observers. The two choices proposed here require in turn well-definite prescriptions for the functional
setting of the observers’ geodesic curves. We consider them below.

3.1. Proper-Time as a Local or Global Observable

In the first case one can show that a non-trivial definition of the observer proper-time requires that:
(1) For each observer, consistent with its identification with a graviton’s virtual worldline,

the corresponding geodesic curves (observer geodetics) must be all non-vanishing and oriented (each
one with its proper orientation).

(2) Because classical geodetics cannot cross event-horizons of arbitrary black holes (just as classical
particles with finite mass), curves originating near them must have a origin point r(so) = ro suitably
close to the same event horizons. It is understood that the indicated origin point r(so) = ro corresponds
to a creation point of a graviton’s virtual worldline, i.e., a point where a graviton may be created. Hence it
makes sense to assume that all the observer’s geodesic curves have proper origin points and hence are
semi-infinite. In addition, the origin points of all observer geodesic curves cannot coincide with event
horizons but can be also arbitrarily close to them, so that the limit of a suitable sequence of origin
points actually may coincide with the same event horizon.

(3) For all semi-infinite geodesic curves it makes sense to require that the initial proper-time so is
positive or null. For the uniqueness of s for a given observer—i.e., as a local observable—there must
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exist among all the observer’s geodesic curves a (possibly non-unique) observer’s maximal geodetics,
i.e., a geodesic curve with origin point rµ(so) having the maximal arc length s − so and subject to
the condition

so = 0, (12)

with rµ(so) coinciding (or being suitably close) to the Big Bang event rµ(so) ≡ rµ(so = 0), with so = 0 to
be referred to as Big Bang proper-time.

When interpreted in a cosmological scenario, such an assumption is consistent with the Big
Bang hypothesis (see EVIDENCE #4). Such curves therefore should have originated suitably near the
universe horizon created during Big Bang, which is characterized by the lowest initial proper-time.
Thus, the root (12) identifies the proper-time of a (possibly virtual) graviton generated in coincidence,
or immediately after, the Big Bang event. The remaining trajectories which are associated with a
given observer identify instead (again possibly virtual) massive gravitons which are generated at later
proper-times.

In order to be able to identify the proper-time s also as a global observable it is necessary to
require, in addition, that:

(4) For all observers which can be mutually connected by null geodetics (i.e., necessarily belong
to the same light-cone) and for all semi-infinite geodesic curves which are associated with them, the
corresponding initial proper-times so are all positive or null.

(5) Among them for all observers there is again for each one possibly a non-unique “maximal length”
geodetics with origin point rµ(so) such that the condition (12) holds.

3.2. Interpretation/Meaning of Proper-Time

An important issue about proper-time concerns its possible interpretation and meaning. This
concerns the customary interpretation occurring in the context of General Relativity [94,95], i.e.,
in terms of the Riemann distance on the space-time (geometric interpretation). Such an interpretation is
based on Equations (9) and (10). However, it does not provide, by itself, a unique prescription for s.
In fact, once the reference 4-position r = r(s) (see Equation (11)) is prescribed, the precise value of s
depends both on the choice of the space-time curve on which it is measured and that of the reference
4-position r1 = r(s1) on the same curve. As shown above, these indeterminacies can be resolved if,
for all observers belonging to the same light-cone, proper-time is the arc length measured along an
arbitrary observer geodetics with origin point r(so) and in particular along an observer’s maximal
geodetics having origin point r(so = 0) (CCG-theory geometric interpretation). Under the assumption
of existence of massive gravitons, proper-time acquires also the further interpretation according to
which, for all observers belonging to the same light-cone, it is the arc length of the worldline of a
graviton measured between its origin point r(so = 0) and the observer position r(s) = r (dynamic
interpretation). Finally, proper-time can also be interpreted as a global classical observable realized by a
4-scalar, which can be measured by an arbitrary observer via an ideal measurement experiment or
gedanken experiment (experimental interpretation).

Some additional remarks are in order concerning the role of proper-time in CQG-theory. First of
all it must be stressed that the adoption of the proper-time parametrization permits recovering
the customary concepts and formalism of standard quantum mechanics and relativistic quantum
mechanics also for CQG-theory, which are associated with the Hamiltonian and Hamilton-Jacobi
structures of the theory and the physical meaning of the quantum wave function. From one side the
proper-time is consistent with the manifest covariance principle, since it is a 4-scalar (contrary to the
coordinate time), while from the other side it indeed plays the role of “time” dynamical variable in
terms of which dynamical evolution of quantum systems is parametrized, and therefore it represents
also a convenient choice for the quantum theory itself. It follows that CQG-theory is truly founded
on the notion of proper-time, which becomes necessary for the representation of the fundamental
equations of CQG-theory and its physical interpretation. The role of the invariant proper-time is
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restored in CQG-theory as dynamical parameter, in difference with the marginal role played by
coordinate time in loop quantum gravity (for a discussion of the issue see Ref. [95]).

4. Covariant Classical/Quantum Gravity in the Extended Setting

Let us now pose the problem of formulating the theory of covariant gravity in the extended setting
of the type (3), i.e., in the general case of a non-stationary background metric tensor. This point, in
view of the goals set in the paper, is crucial. The expectation in fact is that second-quantization effects
arising due to non-linear quantum corrections of the background metric tensor might give rise to a
possible explicit proper-time dependence of the same tensor field. For this purpose the prerequisite is
to ascertain whether respectively the classical and quantum Hamiltonian structures determined in
Refs. [3,4], which are set at the basis of CCG and CQG theories, can actually be preserved in such a
case. This requires, more precisely, to uncover whether and under which conditions the validity of
the principle of manifest covariance can be warranted. In the following subsections the issues are
discussed in detail.

4.1. The Classical Hamiltonian Structure of GR

Let us first consider the extension of the reduced continuum Hamiltonian theory for GR and
of the related classical Hamiltonian structure of GR developed in Ref. [3]. This is represented by a
set {xR, HR} , formed by an appropriate 4-tensor canonical state xR ≡ (gµν, πµν) and an appropriate
4-scalar classical Hamiltonian density HR. According to the same reference this is identified with
the function

HR ≡ TR + V, (13)

where the effective kinetic and the normalized effective potential density TR and V are reported for
completeness in Appendix A. Then, adopting for definiteness the Eulerian representation given in
Ref. [6] and introducing the covariant s-derivative operator d

ds (see Equation (18) below), by assumption
the same Hamiltonian structure should generate the 4-tensor (continuum) GR-Hamilton equations:

dgµν

ds = ∂HR
∂πµν ,

dπµν

ds = − ∂HR
∂gµν

.
(14)

In terms of Equations (A1) and (A3) (see Appendix A) these reduce to
dgµν

ds =
πµν

αL ,

dπµν

ds = − ∂V
∂gµν

.
(15)

Omitting possible implicit dependences (i.e., with respect to the tangent 4-vector t ≡ {tα}, see
e.g., Equation (19) below and Ref. [4]) HR is assumed to be of the form HR = HR(xR, ĝ, r, s), where ĝ is
according to Equation (3). Then, by introducing a proper-time parametrization of the canonical state of
the form

xR ≡ xR(s) ≡ xR(r(s), s), (16)

the same state is assumed to be subject to an initial condition of the type gµν(s1) ≡ g(o)µν (r(s1), s1),

πµν(s1) ≡ π(o)µν(r(s1), s1),
(17)

being s1 ≥ so and r(s1) respectively an initial proper-time and a geodesic curve evaluated at the
same proper-time. The mandatory requisites in order to preserve the Hamiltonian structure indicated
above, i.e., for the validity of the canonical Equation (14), are that they should, at the same time: (a) be
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manifestly-covariant; (b) by prescription of the initial conditions (17), reduce identically for all s ≥ so

to the non-vacuum Einstein field Equation (5); (c) that a corresponding classical Hamilton-Jacobi
equation, equivalent to the canonical Equation (14), should hold.

As shown in Appendix B, the first requisite demands that the differential operator d
ds in

Equations (14) and (15), when written in Eulerian form in analogy to Ref. [6], should take the form

d
ds

=
d
ds

∣∣∣∣
s
+

d
ds

∣∣∣∣
r

. (18)

Here the notation is as follows. First, d
ds

∣∣∣
s
≡ tα∇α identifies the directional covariant derivative, with

tα =
drα(s)

ds
≡ d

ds

∣∣∣∣
s

rα(s) (19)

being the tangent to the geodetic curve r(s) ≡ {rα(s)} . Second, d
ds

∣∣∣
r

denotes now the covariant s-partial
derivative. When it operates on a 4−scalar this coincides with the ordinary partial derivative, so that

d
ds

∣∣∣∣
r
=

∂

∂s
, (20)

and consequently in this case
d
ds

=
d
ds

∣∣∣∣
s
+

∂

∂s
≡ Ds, (21)

with Ds to be referred to as convective derivative. However, when acting on a second-order tensor it must
be prescribed according to Equation (A8) (or equivalently Equation (A9)) reported in the Appendix B
respectively for the countervariant and covariant components of a generic second-order 4-tensor. As a
consequence one obtains respectively that the operator d

ds acts so that{ d
ds xαβ = Dsxαβ − 1

2 xpq ĝµp ĝνq
∂
∂s (ĝαµ ĝβν),

d
ds xαβ = Dsxαβ − 1

2 xpq ĝµp ĝνq ∂
∂s (ĝαµ ĝβν).

(22)

Thus, in particular, when xαβ ≡ ĝαβ(r, s) or xαβ ≡ ĝαβ(r, s), namely the covariant and
countervariant components of background metric tensor are considered, it follows that the identities

d
ds

ĝµν(r, s) ≡ 0, (23)

d
ds

ĝµν(r, s) ≡ 0, (24)

necessarily hold, where r ≡ r(s) denotes the (arbitrary) geodetics indicated above. Regarding the
second requisite, once Equation (18) is set, then the same formally follows in a straightforward way.
In fact, introducing the initial conditions{

gµν(so) ≡ ĝµν(r(so), so),

πµν(so) ≡ π̂µν(r(so), so) = 0,
(25)

and by requiring that the corresponding extremal fields are such that x̂R(s) ≡ (ĝµν(s), π̂µν(s) ≡ 0),
implies that thanks to the identities (23) and (24), Equation (14) becomes identically

dĝµν

ds ≡ 0,

− ∂V
∂gµν

∣∣∣
gµν(s)=ĝµν(s)

= 0.
(26)
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Hence, the second equation coincides identically with the Einstein field Equation (5).
The implication is therefore that the same equations hold also in validity of non-stationary sources
and consequently in the case of a non-stationary background field tensor. These conclusions overcome
the conditions earlier stated in Ref. [3] which instead referred to the case of a stationary background
field tensor.

Finally, let us consider the requirement of validity of the Hamilton-Jacobi equation indicated above,
originally first established in Ref. [3] for the case of stationary background field tensors (see THM. 1 in
the same reference). The question arises whether also in the non-stationary case of Equation (3) the set
of PDEs represented by the classical GR-Hamilton Equation (14) should be equivalent to a single PDE
to be referred to as GR-Hamilton-Jacobi equation, namely of the type

dS(g, ĝ, r, s)
ds

+ HR(g, π, ĝ, r, s) = 0, (27)

which holds for a 4-scalar function of the form S(g, ĝ, r, s) (Hamilton principal function), with ĝ ≡ ĝ(s)
to be understood everywhere in the following as a non-stationary tensor of the type (3). In addition,
due to the arbitrariness in the definition of the same function S(g, ĝ, r, s), the latter should be prescribed
so that: (1) first it results identically

πµν =
∂S(g, ĝ, r, s)

∂gµν
, (28)

with πµν being the canonical momentum conjugate to gµν; (2) second, denoting by(
Gµν ≡ gµν(s1), Pµν ≡ πµν(s1)

)
the initial state prescribed according to the initial condition (17),

the classical phase-function S(g, ĝ, r, s) should actually depend functionally on the initial canonical
state function P, to be identified either with the initial coordinate P ≡

{
gµν(s1)

}
, the conjugate

momentum P ≡ {πµν(s1)} or more generally a function of both of them, i.e., to be of the form

S(g, ĝ, r, s) ≡ S(g, ĝ, r, s; P). (29)

In addition, in order that the classical Hamilton-Jacobi equation actually warrants validity of
Equation (14) the same Hamilton principal function should satisfy identically also the corresponding
constraint equations  Qµν = ∂S(g,ĝ,r,s;P)

∂Pµν ,∣∣∣ ∂S2(g,ĝ,r,s;P)
∂gµν∂Pµν

∣∣∣ 6= 0,
(30)

with Qµν being a constant phase function, i.e., such that DsQµν ≡ 0, and
∣∣∣ ∂S2(g,ĝ,r,s)

∂gµν∂Pµν

∣∣∣ being the

determinant of the matrix
{

∂S2(g,ĝ,r,s;P)
∂gµν∂Pµν

}
. The latter, as usual in Hamilton-Jacobi theory, is therefore

required to be non-singular. To prove the validity of the GR-Hamilton equations let us evaluate
first the partial derivative of Equation (27) with respect to gik, keeping constant both ∂S(g,ĝ,r,s;P)

∂gιξ and

Π ≡ {Πµν}. This gives

∂

∂gik
HR

(
gβγ,

∂S(g, ĝ, r, s; P)
∂gιξ

, ĝ, r, s
)
+

∂

∂gik

d
ds
S(g, ĝ, r, s; P) = 0, (31)
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where the covariant s-derivative d
ds ≡ Ds acting on the 4-scalar S(g, ĝ, r, s; P) is performed

keeping g ≡ {gµν} and P ≡ {Pµν} constant and therefore is necessarily prescribed according to
Equations (18) and (20). In addition, the identities

∂

∂gµν
DsS (g, ĝ, r, s; P) =

d
ds

∂

∂gµν
S (g, ĝ, r, s; P) , (32)

∂

∂gµν
DsS (g, ĝ, r, s; P) =

d
ds

∂

∂gµν
S (g, ĝ, r, s; P) , (33)

hold respectively for the counter- and covariant components, where on the lhs Ds is identified with the
operator (21). On the other hand upon denoting ∂

∂gµν
S(g, ĝ, r, s; P) ≡ πµν and ∂

∂gµν S(g, ĝ, r, s; P) ≡ πµν

(and identifying respectively πµν ≡ xµν and πµν ≡ xµν in Equation (A8) of Appendix B), it is obvious
that in order to preserve the correct covariance properties of the previous equations the operator d

ds
appearing on the rhs of Equations (32) and (33) now must coincide with the covariant s-derivative
acting on the counter- and covariant components of a second-order 4-tensor respectively. Therefore
upon identifying ∂

∂gµν
S (g, ĝ, r, s; P) ≡ πµν the second equation in the GR-Hamilton Equation (14) is

found to be implied by the classical Hamilton-Jacobi equation. The construction of the corresponding
PDE for dgµν

ds is straightforward and analogous to that given in Ref. [3], thus implying the equivalence
between the GR-Hamilton equations and the GR-Hamilton-Jacobi equation. The consequence is
therefore that the classical Hamiltonian structure {xR, HR} remains preserved also in the case of a
non-stationary background metric tensor (3).

4.2. GR—Hamilton-Jacobi Quantization

Based on the validity of the classical GR-Hamilton equations as well the corresponding classical
GR-Hamilton-Jacobi equation, it is now formally straightforward to carry out the analogous extension
for covariant quantum gravity. The conclusion follows at once adopting the quantization approach
developed in Ref. [5], i.e., achieved by means of the so-called Hamilton-Jacobi g-quantization. In detail,
this is realized through the mapping

gµν → g(q)µν ≡ gµν, (34)

πµν ≡
∂S(g, ĝ, r, s; P)

∂gµν → π
(q)
µν ≡ −ih̄

∂

∂gµν , (35)

p ≡ −∂S(g, ĝ, r, s; P)
∂s

→ p(q) ≡ −ih̄
d
ds

, (36)

HR

(
g,

∂S(g, ĝ, r, s; P)
∂g

, ĝ(s), r, s
)
→ H(q)

R , (37)

with g(q)µν , π
(q)
µν , p(q) and H(q)

R denoting the corresponding quantum fields/operators. Accordingly, π
(q)
µν ,

p(q) denote the quantum canonical momenta conjugate to g(q)µν ≡ gµν and s respectively, while

H(q)
R ≡ T(q)

R (π, ĝ) + V, (38)

T(q)
R (π, ĝ) =

1
2αL

(
−ih̄

∂

∂gµν

)(
−ih̄

∂

∂gµν

)
, (39)

are the quantum Hamiltonian operator (with V being the effective potential prescribed according to
the second equation of Equation (A1) given in Appendix A) and the quantum effective kinetic energy
operator. The mapping realized by Equations (34)–(37) implies the simultaneous validity of the two
fundamental commutator relations [

π(q)αβ, gµν

]
= −i}δα

µδ
β
ν , (40)
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[
p(q), s

]
= −i}, (41)

together with [
gαβ, gµν

]
=
[
π(q)αβ, π

(q)
µν

]
= 0. (42)

Here we notice that since both π(q)αβ and g(q)µν are symmetric, Equation (40) holds for arbitrary permutations
of the indexes. As a consequence, based on the classical Hamilton-Jacobi Equation (27) also the mapping

dS
ds

+ HR = 0⇒
{

p(q) + H(q)
R

}
ψ (s) = 0 (43)

necessarily applies. This warrants the validity of the quantum-wave equation

i} d
ds

ψ(s) = H(q)
R ψ(s), (44)

to be denoted as CQG-wave equation, with d
ds denoting again the total covariant s-derivative in Eulerian

form defined by Equation (21). According to the notations of Ref. [4], and omitting possible implicit
contributions, here ψ(g, s) ≡ ψ(g, ĝ, r, s), with r = r(s), denotes, in principle for arbitrary s belonging
to the time axis I ≡ R, the 4-scalar quantum wave function associated with a graviton particle.
Furthermore, g =

{
gµν

}
is the quantum generalized-coordinate field which spans the 10-dimensional

real vector space Ug ⊆ R10 of the same wave-function, i.e., the set on which the associated quantum
probability density function ρ(g, s) = |ψ(g, s)|2 (quantum PDF) is prescribed.

One notices that, as shown in Ref. [4], the CQG-wave Equation (44) can be represented in terms
of an equivalent set of quantum hydrodynamic equations [4,5]. This requires the adoption of the
Madelung representation

ψ(g, ĝ, r, s) =
√

ρ(g, ĝ, r, s) exp
{

i
}S

(q)(g, ĝ, r, s)
}

, (45)

where the quantum fluid fields
{

ρ, S(q)
}
≡
{

ρ(g, ĝ, r, s),S (q)(g, ĝ, r, s)
}

identify respectively the
4-scalar quantum PDF and quantum phase-function. Elementary algebra then shows that based
on Equation (44) the same quantum fluid fields must satisfy the set of GR-quantum hydrodynamic
equations (CQG-QHE) realized respectively by continuity and quantum Hamilton-Jacobi equations.
Written again in Eulerian form these are given by

dρ

ds
+

∂

∂gµν

(
ρVµν

)
= 0, (46)

dS (q)
ds

+ H(q) = 0. (47)

Here in both equations, according to the notation (21), d
ds ≡ Ds [4]. Thus, in analogy with the classical

phase-function S(g, ĝ, r, s) (see Equations (29) and (30)) the quantum phase-function S (q) is taken of
the form

S (q)(g, ĝ, r, s) ≡ S (q)(g, ĝ, r, s; P). (48)

In particular this means that S (q) should depend smoothly on: (1) the initial tensor field P ≡ {Pµν}
to be considered independent of (g, ĝ, r, s) and constant in the sense DsP ≡ 0; (2) the variables
(g, ĝ, r, s). In addition, by assumption S (q) is required to satisfy the constraint and regularity conditions
determined respectively by: 

Qµν = ∂S (q)(g,ĝ,r,s;P)
∂Pµν ,∣∣∣∣ ∂S (q)2(g,ĝ,r,s;P)

∂gµν∂Pµν

∣∣∣∣ 6= 0.
(49)
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Here again
∣∣∣∣ ∂S (q)2(g,ĝ,r,s;P)

∂gµν∂Pµν

∣∣∣∣denotes the determinant of the matrix
{

∂S (q)2(g,ĝ,r,s;P)
∂gµν∂Pµν

}
while both

Pµνand Qµν are assumed to be constant phase functions, i.e., such that DsPµν ≡ 0 and DsQµν ≡ 0.
Furthermore, Vµν ≡ Vµν(g, s) and H(q) ≡ H(q)(g, s) denote respectively the quantum 4-tensor

velocity field identified with

Vµν =
1

αL
∂S (q)
∂gµν , (50)

and the effective quantum Hamiltonian density

H(q) =
1

2αL
∂S (q)
∂gµν

∂S (q)
∂gµν

+ VQM + V, (51)

with V ≡ V(g, s) being the effective potential defined according to Equation (A1) and VQM ≡ VQM(g, s)
being the Bohm effective quantum potential [96–98] given by

VQM ≡
}2

8αL
∂ ln ρ

∂gµν

∂ ln ρ

∂gµν
− }2

4αL
∂2ρ

ρ∂gµν∂gµν , (52)

with ρ ≡ ρ(g, ĝ, r, s) ≡ |ψ(g, ĝ, r, s)|2 being the 4-scalar quantum PDF. Equation (44) is therefore
manifestly covariant also in such a case. As such it retains its form under the action of arbitrary
local point transformations which preserve the differential manifold of space-time. As such the same
equation is appropriate for the treatment of problems of quantum gravity and quantum cosmology
also in such extended framework.

We conclude that the CQG-wave Equation (44) and the equivalent set of CQG-QHE are both
manifestly covariant also in validity of a non-stationary background metric tensor of the type (3).
Therefore they both hold also in such a case.

5. Hamiltonian Representation of the CQG-Quantum Hydrodynamics Equations

In this section we intend to uncover a novel feature of CQG-theory not previously pointed out.
This concerns the Hamiltonian structure, which in analogy to nonrelativistic quantum

mechanics [15,99], is associated with the quantum wave equation (i.e., the CQG-wave Equation (44))
and the corresponding quantum Hamilton-Jacobi Equation (47). More precisely, we intend to show
that such an equation is actually equivalent to a corresponding set of manifestly-covariant quantum
Hamilton equations, thus establishing “de facto” a Hamiltonian structure analogous to that holding
for the classical GR-Hamilton equations. Such a structure not only lies at the basis of CQG-theory
developed in Refs. [3–6] but—as shown in Section 4—remains also preserved under the extended
setting considered in the present paper. Given the equivalence between the classical GR equations
and the corresponding GR-Hamilton-Jacobi equation established in Section 4 (see also the analogous
one first pointed out in Ref. [3] in the case of stationary background) such a result is not surprising.
Nevertheless, it is worth stressing its unique and peculiar feature which distinguishes CQG-theory
from other previous non-manifestly covariant quantum theories of gravity, like the Wheeler-DeWitt
equation [100].

In particular, the goal of this section is to display the quantum Hamilton equations and
corresponding Hamiltonian structure represented by a set

{
x, H(q)

}
which are associated respectively

with an appropriate 4-tensor canonical state x ≡ (gµν, Πµν) and the 4-scalar effective quantum
Hamiltonian density H(q). As shown below, here the second-order canonical 4-tensor momentum Πµν

will be identified with

Πµν =
∂S (q)(g, ĝ, r, s; P)

∂gµν
, (53)
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S (q)(g, ĝ, r, s; P) being the quantum phase function of CQG-theory and H(q) the effective quantum
Hamiltonian density prescribed according to Equation (51). In the current notation the latter is
written as

H(q)(g, Π, ĝ(r, s), r, s) =
1

2αL
ΠµνΠµν + VQM + V. (54)

Then the following proposition holds.

Theorem 1 (Quantum Hamilton equations). In validity of the CQG-wave Equation (44) and the
corresponding quantum Hamilton-Jacobi Equation (47), upon denoting H(g, Π, r, s) ≡ H(q)(g, Π, ĝ, r, s),
the canonical state x ≡ (gµν, Πµν) satisfies identically the set of manifestly-covariant equations

d
ds gµν = ∂

∂Πµν
H(g, Π, r, s),

d
ds Πµν = − ∂

∂gµν H(g, Π, r, s),
(55)

subject to the initial conditions  gµν(s1) ≡ g(o)µν (r(s1), s1),

Πµν(s1) ≡ Πµν

(o)(r(s1), s1).
(56)

Equations (55) and (56) are referred to here as Quantum Hamilton equations.

Proof. To prove the thesis one notices preliminarily that in validity of Equations (53) and (54),
Equations (55) and (56) are realized by means of the set of equations

d
ds

gµν =
Πµν

αL
, (57)

d
ds

Πµν = −
∂(VQM + V)

∂gµν , (58)

to be solved subject to initial conditions of the form gµν(so) = gµν

(o)(r(so), so),

Πµν(so) = Π(o)
µν (r(so), so).

(59)

The proof of the canonical Equations (55) and (56) is actually analogous to that reached in Section 4.
Thus, in particular, letting H(g, Π, r, s) ≡ H(q)(g, Π, ĝ, r, s), the second equation is obtained in two
steps: first, by partial differentiation of the quantum Hamilton-Jacobi Equation (47) with respect to gµν,
while letting again ĝµν(s) as constant, namely

∂
∂gµν H (g, Π, r, s) +

d
ds

[
∂S (q)(g,ĝ,r,s;P)

∂gµν

]
= 0,

(60)

and second noting that ∂
∂s

[
∂S (q)(g,ĝ,r,s;P)

∂gµν

]
≡ d

ds Πµν. In a similar way, by evaluating the partial

derivative with respect to ∂S (q)(g,ĝ,r,s;P)
∂gµν ≡ Πµν and keeping ĝµν(s), gµν and rµ as constants, gives

∂
∂Πµν

H(g, Π, r, s)+

∂
∂Πµν

∂S (q)(g,ĝ,r,s;P)
∂s = 0.

(61)
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Then, the proof of Equation (53) follows by invoking the identity

∂

∂
∂S (q)(g,s)

∂gµν

∂S (q)(g, ĝ, r, s; P)
∂s

∣∣∣∣∣
gµν

=

∂

∂
∂S (q)(g,s)

∂gµν

∂S (q)(g, ĝ, r, s; P)
∂s

− (62)

− d
ds

gβγ ∂

∂
∂S (q)(g,s)

∂gµν

∂S (q)(g, ĝ, r, s; P)
∂gβγ

,

where ∂

∂
∂S(q)(g,ĝ,r,s;β)

∂gµν

∂S (q)(g,ĝ,r,s;P)
∂gβγ = δ

µν
βγ and δ

µν
βγ ≡ δ

µ
β δν

γ. Notice that, since the first term on the rhs

of Equation (62) vanishes identically, here ∂S (q)(g,ĝ,r,s;P)
∂s must be considered as independent of Πµν,

because they represent different canonical momenta. Finally, one notices that the dependence of the
quantum phase-function S (q) in terms of P ≡ {Pµν} remains still indeterminate. This means that it
can still be prescribed in such a way to satisfy identically the constraint equation

∂S (q)(g, ĝ, r, s; P)
∂Pµν ≡ Q(o)µν(r(so)), (63)

with Q(o)µν(r(so)) being the (still arbitrary) initial constant phase function prescribed in analogy to
Equations (59). As a consequence the 4-scalar quantum hydrodynamic Equation (47), in analogy with
the GR-Hamilton-Jacobi equation discussed above in Section 4 (see Equation (27)), can indeed be
interpreted in a proper sense as a Hamilton-Jacobi equation, i.e., as generating a corresponding set of
Hamilton equations. Q.E.D.

6. Quantum Modified Einstein Field Equations

Concerning the quantum Hamilton Equation (55) the fundamental question to be answered
is whether they actually admit a particular realization which is analogous to the classical Einstein
Equation (5), for a suitable choice of the initial conditions (56) and in close analogy with the classical
GR-Hamilton Equation (14) for which such a property was first pointed out in Ref. [3]. Being based on
the quantum Hamilton Equation (55), the tensor components of such an equation will be referred to as
quantum-modified Einstein field equations.

Given the formal analogy of the two sets of Hamiltonian equations, i.e., (14) and (55), both holding
in validity of the extended functional setting (3), the following result holds.

Theorem 2 (Quantum-modified Einstein field equations). Let us assume validity of the initial-value
problem represented by the quantum Hamilton Equation (55) and the initial conditions (56). For this purpose let
us impose that the initial conditions are prescribed requiring{

gµν(r(so), so) = ĝµν(r(so), so),

Πµν(r(so), so) ≡ 0,
(64)

(“extremal” initial conditions) and that at the initial proper-time so, ĝµν(r(s), s) is solution of the PDE

∂

∂gµν

[
V (g, ĝ, r, s) + VQM(g, s)

]∣∣∣∣g=ĝ
s=so

= 0 (65)

(constraint equation). Then the following propositions hold:
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(P21) The quantum Hamilton equations in the general case of non-vacuum configuration reduce to the
single extremal tensor equation

∂

∂gµν

[
V (g, ĝ, r, s) + VQM(g, s)

]∣∣∣∣
g=ĝ

= 0. (66)

(P22) In the case of vacuum, namely letting

V (g, ĝ, r, s) = Vo (g, ĝ, r, s) , (67)

and setting Λ = Λbare in Equation (A3), the extremal tensor Equation (66) becomes

R̂µν −
1
2

[
R̂− 2Λbare

]
ĝµν(r, s) = Bµν(r, s), (68)

which identifies the quantum-modified Einstein equation, where Bµν, prescribed in terms of the Bohm interaction
potential VQM as

Bµν(r, s) ≡ − 1
αL

∂

∂gµν VQM(g, s)
∣∣∣∣
g=ĝ(r,s)

, (69)

is referred to as Bohm source tensor field.

Proof. To reach the proof of P21 we first obtain an equivalent explicit representation for the quantum
Hamilton Equation (55) holding in case of validity of the extended representation (3). This follows
thanks to Equation (A9) and the prescription of the covariant s-derivative given by Equation (18). Thus
one finds that the same equations become:

Dsgµν − gµ
α

∂
∂s (ĝνα) = Πµν

αL ,
DsΠµν −Πα

µ
∂
∂s (ĝνα) =

− ∂
∂gµν

[
V (g, ĝ, r, s) + VQM(g, s)

]
,

(70)

where {
gµ

α
∂
∂s (ĝνα) = gµ

α Ds(ĝνα),

Πα
µ

∂
∂s (ĝνα) = Πα

µDs(ĝνα).
(71)

Hence, straightforward algebra delivers
ĝµαDsgν

α = Πµν

αL ,
ĝναDsΠα

µ =

− ∂
∂gµν

[
V (g, ĝ, r, s) + VQM(g, s)

]
,

(72)

implying, in turn, that the following equivalent explicit representation must hold for the same equations{
Dsgν

α = Πν
α

αL ,

DsΠα
ν = − ∂

∂gν
α

[
V (g, ĝ, r, s) + VQM(g, s)

]
.

(73)

As a second step one notices that the requirement that

∀s ∈ I : gν
α(r(s), s) = ĝν

α(r(s), s) (74)

is obviously equivalent to require that Equation (66) must hold identically. The implication, however,
is that to reach the thesis it is actually necessary to prove that the initial conditions (64) are actually
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equivalent to the validity of proposition (74). That this is indeed the case follows in fact by direct
inspection of Equation (73), since the constraint Equation (65) implies that

DsΠα
ν |s=so

= 0, (75)

while the initial conditions (64) warrant that Πα
ν |s=so

= 0 too. Hence, for all s ≥ so it is identically
vanishing as Dsgν

α, which means that the proposition (74) is necessarily true. As a consequence the
validity of the extremal tensor Equation (66) remains warranted too. The proof of P22 then follows
by elementary algebra once the condition (67) is imposed in Equation (66), which yields as well the
representation of the Bohm source tensor field Qµν(s). Q.E.D.

The main implication arising from THM. 2 is the appearance of a quantum contribution to the
stress energy tensor, denoted here T̂(q)

µν . In the context of CQG-theory this is prescribed in terms of the
Bohm source tensor field Bµν, so that

Bµν ≡ κT̂(q)
µν , (76)

with κ being again the universal constant (6). The tensor field Bµν is therefore ascribed to the effect of
Bohm vacuum self-interaction acting on gravitons, and more precisely, as shown below (see Equation (146)),
to corresponding quantum vacuum energy fluctuations produced by gravitons. The contribution associated
with Bµν defined by Equation (76) in the quantum-modified Einstein field Equation (68) realizes a
space-time second-quantization effect, namely a quantum correction to the classical metric tensor
arising from a non-linear quantum interaction of the gravitational field with itself. According to this
picture, the background metric tensor solution of Equation (68) is affected by quantum corrections, and
this distinguishes the second-quantization framework from the first-quantization one, where instead
the background metric tensor is prescribed to be a purely-classical space-time field tensor.

One notices that Equation (68) coincides functionally with the set (5) of classical Einstein equations
holding for the components of the background field tensor. Hence, Equation (68) will be referred
to as quantum-modified Einstein field equations. Indeed, the two equations coincide once the tensor
field Tµν is replaced with the quantum field Bµν(s). The notable difference arising in Equation (68)
lies in the non-stationary character of the quantum source term, i.e., its explicit dependence on
proper-time. Therefore in the present context all the tensor fields, including the background metric
tensor ĝ ≡

{
ĝµν

}
, the Ricci tensor R̂µν and the Ricci 4-scalar R̂ ≡ ĝαβ(r, s)R̂αβ are necessarily to be

considered as non-stationary too.
Nevertheless, an additional difficulty arises due to the intrinsic quantum origin of the Bohm

source tensor field Qµν, for which the prescription of the quantum probability density ρ ≡ ρ(g, ĝ, r, s)
is needed. Its determination requires in fact the explicit solution of the CQG-wave Equation (44) in a
highly non-linear second quantization picture (i.e., in which also the background field tensor must
be consistently evaluated). In fact, the crucial issue is that the latter must be consistently determined
by means of the quantum-modified Einstein field equations themselves. To unfold these tasks and
achieve the construction of explicit solutions of the CQG-wave equation the Generalized Lagrangian
Path Approach (GLP-approach) recently developed in Ref. [6] will be adopted. For this purpose, as a
starting point, the generalization of the GLP-approach to the extended functional setting adopted here
is performed.

7. GLP-Approach in the Extended Functional Setting

In this section we show that also the GLP-approach developed in Ref. [6] remains valid for the
extended functional setting (3) and actually fulfills the property of manifest covariance also in such a
case. Let us start recalling, for this purpose, that the GLP-approach crucially depends on the notion of
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Generalized Lagrangian Path (GLP), i.e., the integral curve
{

δGL(s) ≡ δGLµν(r(s), s), ∀s ∈ I
}

which is
determined by the GLP-initial-value problem

d
ds δGLµν(s) = Vµν(GL(s), ∆g, r(s), s),
δGLµν(s1) = δgLµν(s1)− ∆gµν(s1),

δgLµν(s1) ≡ δg(o)Lµν.
(77)

More precisely, here δgLµν(s) and δGLµν(s) identify respectively, according to Ref. [6], the
deterministic Lagrangian Path (LP) and stochastic Generalized Lagrangian Path (GLP). We remark that
in the extended functional setting d

ds identifies the covariant s-derivative (18) while r(s) denotes again,
also in such a context, an arbitrary geodesic trajectory with s1 ≥ so being in principle an arbitrary initial
proper-time along it. In particular in the following r(s) and s1 can always be identified respectively
with a maximal observer’s geodetics and, upon requiring

s1 = so = 0, (78)

with the Big Bang proper-time (12). Furthermore, according to the notations of Ref. [6] and consistent
with Equation (50), δg(o)µν and Vµν(GL(s), ∆g, r(s), s) denote respectively a deterministic initial tensor
field and the quantum tensor velocity field

Vµν(GL(s), ∆g, r(s), s) =
1

αL
∂S (q)(GL(s), ∆g, r(s), s; P)

∂δgLµν
, (79)

where ∆g ≡
{

∆gµν

}
identifies the stochastic displacement 4-tensor

∆gµν(s) ≡ δgLµν(s)− δGLµν(s). (80)

7.1. Formal Solution of GLP in the Extended Functional Setting

It is obvious “a priori” that the solution of Equations (77) must depend on the functional setting of
the background field tensor, i.e., again on the validity of the requirement (3). Nevertheless a formal
exact solution of the same equations can directly be recovered also in such a case. In fact, upon
denoting respectively 

δgα
Lν(s) = ĝµα(r(s), s)δgLµν(r(s), s),

δGα
Lν(s) = ĝµα(r(s), s)δGLµν(r(s), s),

∆gα
ν(s) = ĝµα(r(s), s)∆gµν(s),

Vα
ν (GL(s), ∆g, s) = ĝµα(r, s)Vµν(GL(s), ∆g, s),

(81)

one can show that the following result applies.

Theorem 3 (Construction of a formal representation of GLP). Regarding the GLP-initial-value
problem (77) the following propositions apply:

(P31) Upon integration, Equation (77) actually delivers formal exact solutions both for δgα
Lν(s) and

δGα
Lν(s). These are realized respectively by the initial-value problems{

δgα
Lν(s) = δgα

Lν(so) +
∫ s

s1
ds′Vα

ν (GL(s′), ∆g, r(s′), s′),

δgα
Lν(so) ≡ δgα(o)

Lν ,
(82)
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and 
δGα

Lν(s) = δGα
Lν(so) +

∫ s
s1

ds′Vα
ν (GL(s′), ∆g, r(s′), s′),

δGα
Lν(so) = δgα

Lν(so)− ∆gα
ν(so),

δgα
Lν(so) ≡ δgα(o)

Lν ,
(83)

where

Vα
ν (GL(s), ∆g, r(s), s) =

1
αL

∂S (q)(GL(s), ∆g, r(s), s; P)
∂δgν

Lα(s)
. (84)

These equations imply that by construction the stochastic displacement 4-tensor ∆gµ
ν (s) must be a constant,

i.e., such that for all s, so ∈ I
∆gµ

ν (s) = ∆gµ
ν (so) ≡ ∆gµ

ν , (85)

while δgα
Lν(s) and δGα

Lν(s) are related by means of the transformation

δGα
Lν(s) = δgα

Lν(s)− ∆gα
ν . (86)

(P32) Equations (82) and (83) can once again be represented in terms of the covariant components δGLµν(s)
(and similarly δgLµν(s)) yielding

δGLµν(s) = ĝµα(r(s), s)δGα
Lν(so)+

+ĝµα(r(s), s)
∫ s

s1
ds′Vα

ν (GL(s′), ∆g, r(s′), s′).
(87)

(P33) Finally, in validity of Equation (2) (stationary background metric tensor), the same equations recover
identically the form determined previously in Ref. [6], namely

δgLµν(s) = δgLµν(so)+

+
∫ s

s1
ds′Vµν(GL(s′), ∆g, r(s′), s′),

(88)

with ∆gµν(s) being such that identically

∆gµν(s) = ∆gµν(so) ≡ ∆gµν, (89)

and
δGLµν(s) = δgLµν(s)− ∆gµν. (90)

Proof. The proof of the previous statements follows by straightforward algebra. For this purpose one
notices first that Equation (77) can be equivalently written as

DsδGLµν(s) = Vµν(GL(s), ∆g, s)+

1
2 δGLpq(s)ĝµ′p(r, s)ĝν′q(r, s) ∂

∂s

(
ĝµµ′(r, s)ĝνν′(r, s)

)
,

(91)

where it is obvious also that ∂
∂s

(
ĝµµ′(r, s)ĝνν′(r, s)

)
≡ Ds

(
ĝµµ′(r, s)ĝνν′(r, s)

)
and furthermore

1
2

δGLpq(s)ĝµ′p(r, s)ĝν′q(r, s)
∂

∂s

(
ĝµµ′(r, s)ĝνν′(r, s)

)
= δGµ′

Lν(s)Ds

(
ĝµµ′(r, s)

)
. (92)
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Denoting δGµ′

Lν(s)ĝµµ′(r, s) = δGLµν(s), the Leibnitz differentiation rule requires the identity

δGµ′

Lν(s)Ds

(
ĝµµ′(r, s)

)
= Ds

(
δGµ′

Lν(s)ĝµµ′(r, s)
)

−ĝµµ′(r, s)Ds

(
δGµ′

Lν(s)
) (93)

to hold. Hence, Equation (91) finally yields

DsδGLµν(s) = Vµν(GL(s), ∆g, s)+

DsδGLµν(s)− ĝµµ′(r, s)Ds

(
δGµ′

Lν(s)
)

,
(94)

which also in turn implies

Vµν(GL(s), ∆g, s)− ĝµµ′(r, s)Ds

(
δGµ′

Lν(s)
)
= 0. (95)

Therefore, in the previous equation, upon multiplying tensorially term by term by ĝµα(r, s) and
noting that ĝµ′α(r, s)ĝµµ′(r, s) = δα

µ and ĝµα(r, s)Vµν(GL(s), ∆g, s) = Vα
ν (GL(s), ∆g, s), the differential

Equation (95) implies
Ds (δGα

Lν(s)) = Vα
ν (GL(s), ∆g, s), (96)

which, in turn, upon integration delivers the integral Equation (83) too (or equivalently Equation (87)).
Finally, the proof of P33 follows by noting that in case of a stationary background metric tensor
Equation (91) reduces to

DsδGLµν(s) = Vµν(GL(s), ∆g, s), (97)

thus implying in turn Equation (88). Q.E.D.

One notices, however, that the GLP initial-value problem (77) can be equivalently replaced with
d
ds δGLµν(s) = Vµν(GL(s), ∆g, s),

δGLµν(s) = δgLµν(s)− ∆gµν,
δgLµν(s) = δgLµν,

(98)

with δgLµν prescribing now the initial condition (associated with the deterministic Lagrangian Path).
Equation (98) admits the formal solution δGα

Lν(s) = δGα
Lν(s1) +

∫ s
s1

ds′Vα
ν (GL(s′), ∆g, r(s′), s′),

δGα
Lν(s) = δgα

Lν − ∆gα
ν ,

(99)

while correspondingly δgα
Lν(s) = δgα

Lν(s1) +
∫ s

s1
ds′Vα

ν (GL(s′), ∆g, r(s′), s′),

δgα
Lν(s) = δgα

Lν.
(100)

As a consequence the stochastic displacement 4-tensor defined by Equation (80) can also be
equivalently represented as

∆gµ
ν (s) ≡ δgµ

Lν − δGµ
Lν(s), (101)
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where δgµ
Lν ≡ gµ

Lν − ĝµ
ν (r, s) is considered prescribed and δGµ

Lν(s) is a function of the proper-time s.
Then, introducing as in Ref. [6] the Lagrangian derivative realized by the operator

D
Ds
≡ d

ds

∣∣∣∣
δgLµν(s)

+ Vµ
ν (GL(s), ∆g, r, s)

∂

∂δgµ
Lν

, (102)

and upon denoting d
ds

∣∣∣
δgµ

Lν(s)
≡ d

ds and invoking also Equation (98), one finds that the differential identity

D
Ds ∆gµ

ν (s) = Vµ
ν (GL(s), ∆g, r, s)−

Vµ
ν (GL(s), ∆g, r, s) ≡ 0

(103)

necessarily holds.

7.2. Properties of Polynomial GLP-Solutions of the Hamilton-Jacobi Equation

Next, in analogy to Ref. [6] let us consider polynomial GLP-solutions for the quantum phase-function
S (q)(GL(s), ∆g, r, s), namely represented in terms of a polynomial “harmonic” representation, i.e.,
determined by means of a second-degree polynomial of the form

S (q)(GL(s), ∆g, r, s; P) ≡

aαβ
pq (s)

2 ∆gαβ∆gpq + bαβ(s)∆gαβ + c(s).
(104)

Here aαβ
µν(s), bµν(s) and c(s) denote respectively suitable real 4-tensors and a 4-scalar functions of

s to be determined in terms of the quantum H-J Equation (47) recalled above. In particular, consistent
again with Ref. [6] and upon denoting δ

αβ
pq ≡ δα

pδ
β
q , the tensor coefficients aαβ

pq (s) are taken of the form

aαβ
pq (s) =

1
2

[
a(o)(s)δ

αβ
pq + a(1)(s)ĝpq(s)ĝαβ(s)

]
, (105)

with a(o)(s) and a(1)(s) being appropriate 4-scalar functions. Since δ
αβ
pq ∆gαβ∆gpq = ∆gαβ∆gαβ,

ĝpq(s)ĝαβ(s)∆gαβ∆gpq = ∆gα
α∆gβ

β,
(106)

from Equation (104) it follows

α
αβ
pq (s)∆gαβ∆gpq =

1
2

[
a(o)(s)∆gαβ∆gαβ + a(1)(s)∆gα

α∆gβ
β

]
, (107)

and therefore

S (q)(GL(s), ∆g, s) =
1
4

[
a(o)(s)∆gαβ∆gαβ + a(1)(s)∆gα

α∆gβ
β

]
+ (108)

bαβ(s)∆gαβ + c(s).

Notice furthermore that here for consistency with Equations (49) and the invariance property of
the displacement tensor field ∆gµ

ν (s):

∆gµ
ν (s) = ∆gµ

ν (s1) ≡ δgµ
Lν(s1)− δGµ

Lν(s1), (109)
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the constant tensor field Pµ
ν can always be identified with

Pµ
ν = δgµ

Lν(s1). (110)

In particular, this warrants that Equations (49) can indeed by suitably fulfilled by a particular solution of
the form (108). On the same grounds the effective quantum Hamiltonian density (51) can equivalently
be represented as

H(q) =
1

2αL
∂S (q)

∂δgµ
Lν

∂S (q)
∂δgν

Lµ

+ VQM + V, (111)

where
∂S (q)

∂δgµ
ν

= p(s)
[

a(o)(s)∆gν
µ + a(1)(s)δ

ν
µ∆gβ

β

]
+ p(s)bν

µ(s), (112)

and

[a(o)(s)∆gν
µ + a(1)(s)δ

ν
µ∆gβ

β][a(o)(s)∆gµ
ν +

a(1)(s)δ
µ
ν ∆gβ

β] = a2
(o)(s)∆gν

µ∆gµ
ν+ (113)[

4a2
(1)(s) + 2a(o)(s)a(1)(s)

]
∆gα

α∆gβ
β.

Then one can show that the following result applies.

Theorem 4 (Polynomial GLP-solutions of the Hamilton-Jacobi equation in the case of vacuum).
Regarding the existence of polynomial GLP-solutions of the quantum Hamilton-Jacobi Equation (47) in the case
of vacuum which hold in validity of the extended functional setting (3) the following propositions apply:

(P41) The quantum-modified Einstein field Equation (68) are recovered by requiring the identical validity
of the extremal equation

∂

∂∆gµν

[
Vo(g + ∆g) + VQM(g, s)

]∣∣∣∣
∆g=0

= 0. (114)

(P42) (Polynomial solution)—The solution of the quantum Hamilton-Jacobi Equation (47) takes the
polynomial form (108) (harmonic representation).

(P43) (Uniqueness property)—The 4-scalar coefficients a(o)(s) and a(1)(s) are determined by means of
ODEs which are implied by Equation (47).

(P44) (Invariance property)—The same ODEs are identical with the corresponding equations holding in
the case of stationary background field tensor (i.e., the case (3)) reported previously in Ref. [6]. Hence the 4-scalar
coefficients a(o)(s) and a(1)(s) are independent of the choice of the functional setting for the background field
tensor (i.e., respectively Equation (3) or Equation (2)).

Proof. To reach the thesis we introduce preliminarily a second-order, i.e., harmonic, expansion for the
effective potential Vo(g + ∆g). Elementary algebra shows that this takes the form

Vo(g + ∆g) = Vo(g)

+∆gµ
ν

∂

∂∆gµ
ν

Vo(g + ∆g)

∣∣∣∣∣
∆g=0

(115)

+
1
2

∆gα
β∆gµ

ν
∂2

∂∆gα
β∂∆gµ

ν

Vo(g + ∆g)

∣∣∣∣∣
∆g=0

.
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Then, substituting this expression in Equation (114), evaluation of the partial derivative gives

∂
∂∆gλ

k

[
Vo(g + ∆g) + VQM(g, s)

]∣∣
∆g=0 =

∂
∂∆gλ

k

[
Vo(g) + VQM(g, s)

]∣∣∣∣
∆g=0

+ ∂
∂∆gλ

k

[
∆gµ

ν
∂

∂∆gµ
ν

Vo(g + ∆g)
]∣∣∣∣

∆g=0

+ ∂
∂∆gλ

k

[
1
2 ∆gα

β∆gµ
ν

∂2

∂∆gα
β∂∆gµ

ν
Vo(g + ∆g)

]∣∣∣∣
∆g=0

.

(116)

Only the linear term in the ∆gµ
ν -expansion and the Bohm potential contribution VQM(g, s) remain, so

that explicit calculation recovers identically Equation (114) which is satisfied being proportional to the
quantum-modified Einstein Equation (68) (in agreement with Proposition P21). This proves P41. Then
one can show (Proposition P42) by straightforward algebra that, in analogy with Ref. [6], a polynomial
solution of the quantum Hamilton-Jacobi Equation (47) exists also in the case of non-stationary
background (see e.g., Equation (2)).

Next let us consider the uniqueness property (Proposition P43). For this purpose one needs
to evaluate the covariant s-derivative of the quadratic terms (i.e., proportional to ∆gα

α∆gβ
β) in

S (q)(GL(s), ∆g, s). For this purpose one notices that upon invoking Equation (108) it follows
identically that  Ds

[
∆gαβ∆gαβ

]
= 0,

Ds

[
∆gα

α∆gβ
β

]
= 0.

(117)

This implies the differential identity

Ds

[
aβq

αp(s)
2 ∆gα

β∆gp
q

]
=

1
2

[
∆gβ

α ∆gα
βDs

[
a(o)(s)

]
+ ∆gα

α∆gβ
βDs

[
a(1)(s)

]]
,

(118)

where the derivatives of a(o)(s) and a(1)(s) are respectively proportional to the two 4-scalars ∆gβ
α ∆gα

β

and ∆gα
α∆gβ

β, to be considered here as independent and arbitrary. Explicit evaluation of the coefficient
in the quadratic term appearing in Equation (116) then shows that two distinct ODEs are determined
for a(o)(s) and a(1)(s). Direct comparison with the analogous equations determined in Ref. [6]
then shows that the same ODEs are independent of the specific functional setting, i.e., either
Equation (2) or Equation (3). The remarkable conclusion is therefore realized by the invariance
property (Proposition P44) of the 4-scalar coefficients a(o)(s)and a(1)(s). Q.E.D.

7.3. GLP Gaussian Particular Solutions of the Quantum PDF

Let us now show that also the quantum continuity Equation (46) admits, even in the case of
an arbitrary non-stationary background field tensor (e.g., Equation (3)), Gaussian-like solutions of
the form:

ρ(GL(s), ĝ(s), ∆g, r(s), s) =

ρ(GL(so), ĝ(so), ∆g(so), r(so), so) (119)

exp

−
s∫

so

ds′
∂Vµ

ν (GL(s′), ∆g, r(s′), s′)
∂gµ

Lν(s
′)

 ,
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where, introducing the signature parameter θ ≡ ±,

ρ(GL(so), ∆g(so), r(so), so) ≡
1

π5r10
th

exp

{
− (∆g(so) + θ ĝ(so))

2

r2
th

}
(120)

≡ ρG(∆g(so) + θ ĝ(so)),

identifies an initial shifted Gaussian PDF, with ĝ(s) ≡ ĝ(r(s), s) and ĝ(so) ≡ ĝ(r(so), so) denoting a
generally non-stationary background metric tensor and its initial value at the initial proper-time
so evaluated along an observer’s geodesic curve. In particular, in validity of the polynomial
decomposition (108) for the quantum phase function S (q)(GL(s), ∆g, r, s), the 4-scalar function
∂Vµν(GL(s′),∆g,s′)

∂gLµν(s′)
is found to be function of proper-time only. More precisely it takes the form

∂Vµ
ν (GL(s′), ∆g, r(s′)s′)

∂gµ
Lν(s

′)
≡ 16p2(s′)a(s′), (121)

where p(s′) is given by Equation (A21) (see Appendix C) and the 4-scalar function a(s′) is prescribed
by requiring

a(s′) =
1
2

[
a(o)(s

′) + a(1)(s
′)
]

(122)

(or equivalently Equation (A19) in Appendix C). In addition, one notices that here both r2
th and

(∆g + θ ĝ(so))
2 are 4-scalars and

(∆g(so) + θ ĝ(so))
2 ≡

(∆g(so) + θ ĝ(so))µν (∆g(so) + θ ĝ(so))
µν , (123)

and r2
th is a constant independent of both the 4-position rµ and the proper-time s. In particular, one can

prove also in this case that the validity of the invariance property

(∆g(so) + θ ĝ(so))
2 = (∆g(s) + θ ĝ(s))2 (124)

remains preserved for arbitrary s, so ∈ I. The proof follows from elementary algebra by noting first that

(∆g(so) + θ ĝ(so))
2 ≡ ∆gµ

ν (so)∆gν
µ(so) + 4

+2θ∆gµν(so)ĝµν(so). (125)

Indeed, thanks to Equation (85)

∆gµ
ν (so)∆gν

µ(so) = ∆gµ
ν (s)∆gν

µ(s), (126)

while for the same reason

Ds
[
∆gµν(s)ĝµν(s)

]
=

Ds
[
∆gα

ν(s)ĝαµ(s)ĝµν(s)
]

= Ds [∆gα
ν(s)δν

α] = 0.
(127)

Hence also the equation

∆gµν(s)ĝµν(s) ≡ ∆gµν ĝµν(s) = ∆gµν(so)ĝµν(so) (128)
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necessarily holds. As a consequence one finds again as in Ref. [6] (i.e., for the case of stationary
background) that

ρG(∆g(so) + θ ĝ(so)) = ρG(∆g + θ ĝ(s)), (129)

which proves the statement. The conclusion is therefore that Equation (119) takes the form

ρ(GL(s), ∆g, s) = ρG(∆g + θ ĝ(s))

exp

{
−16

s∫
so

ds′p2(s′)a(s′)

}
,

(130)

which indeed realizes a Gaussian particular solution for the quantum PDF. Hence, the realization of
the quantum PDF (119) is again independent of the choice of the functional setting of the background
field tensor, respectively being prescribed either according to Equation (3) or Equation (2).

Although in principle both Gaussian solutions corresponding to θ = + and θ = − are admissible
from the mathematical point of view, in the following we shall consider only the one obtained from
Equation (119) by setting θ ≡ −. Hence, the initial shifted Gaussian PDF dealt with in the rest of the
calculations takes the form

ρ(GL(so), ∆g(so), r(so), so) ≡
1

π5r10
th

exp

{
− (∆g(so)− ĝ(so))

2

r2
th

}
(131)

≡ ρG(∆g(so)− ĝ(so)).

This choice has a physical basis. In fact, according to the emergent gravity picture inherent the GLP
formulation of CQG-wave equation, it warrants that the GLP-quantum/stochastic expectation value
of the stochastic displacement 4-tensor ∆gµν recovers the correct signature of the background metric
tensor, namely 〈

∆gµν

〉
=
∫

Ug
d(∆g)ρG(∆g− ĝ(r, s))∆gµν = ĝµν(r, s). (132)

We refer to Ref. [6] for an exhaustive discussion of the emergent gravity phenomenon in
CQG-theory and for a detailed mathematical definition of quantum expectation value, see in particular
Proposition 3 and related comments in the same reference.

7.4. Semiclassical Limit

An important aspect of CQG-theory and the related GLP description concerns the investigation
of the semiclassical limit of the quantum theory, which establishes the connection with the classical
Hamiltonian structure of GR reported in Ref. [2] and provides a test of consistency of the theory itself.
The study of the semiclassical limit is conveniently performed on the set of QHE, namely the quantum
Hamilton-Jacobi Equation (47) and the continuity Equation (46) through its explicit analytical Gaussian
solution for the quantum PDF given by Equation (130).

We consider first the quantum Hamilton-Jacobi equation, for which the semiclassical limit is
prescribed letting }→ 0. By requiring that in the same limit both α and L(mo) reduce to their classical

definition and that the real limit function lim}→0
(q)(s)
} = S(s)

α exists for arbitrary s ∈ I ≡ R, with
S(s) identifying the classical reduced Hamilton principal function (see Ref. [92]), then one can shown
that the quantum Hamilton-Jacobi Equation (47) reduces to the analogous classical Hamilton-Jacobi
Equation (27). In fact, considering without loss of generality the case of vacuum, the semiclassical limit
of Equation (47) delivers

1
α

∂S(s)
∂s

+
1

2α2L
∂S(s)
∂gµν

∂S(s)
∂gµν

+ lim
}→0

VQM(s)
} = 0, (133)



Symmetry 2018, 10, 287 30 of 46

where the limit lim}→0
VQM(s)

} = 0 holds identically. As a consequence the quantum Hamiltonian
density H(q) necessarily must reduce to the limit function

HR =
1

2αL
∂S(s)
∂gµν

∂S (s)
∂gµν

. (134)

This coincides in form with the classical normalized Hamiltonian density given above by Equation (13) in
the case of vacuum, while Equation (133) reduces to the classical GR-Hamilton-Jacobi equation.

Let us now consider the semiclassical limit for the quantum continuity equation, which is
investigated here by direct analysis of the analytical Gaussian solution. In this case the behavior
of the free-parameter r2

th must be prescribed when the limit lim}→0 holds. Here we require that

r2
th ∼ }γ, (135)

with the exponent γ > 0 to be later determined upon imposing that in the same semiclassical limit
both the quantum Bohm potential and the quantum cosmological constant expressed in the GLP
representation vanish identically. Thus, under the previous assumption the semiclassical limit on
the quantum PDF is prescribed equivalently letting limr2

th→0 ρ(GL(s), ∆g, s). This amounts to require
the finite width of the Gaussian function to vanish in the semiclassical limit, which means that the
quantum Gaussian PDF becomes a Dirac-delta function making the quantum gravitational field to
“collapse” and coincide with the classical background metric tensor at initial proper-time so:

lim
r2

th→0
ρ(GL(s), ∆g, s) = δ (∆g(so)− ĝ(so)) . (136)

The analysis of the semiclassical limit of the QHE enables us to stress the character of the
quantum modified Einstein field equations and the underlying Gaussian solution for the quantum
PDF. The latter ones in fact must not be interpreted as modified classical gravitational field equations.
The quantum modified Einstein equations truly include non-stationary quantum effects arising from
CQG-theory, but at the same time they preserve exactly the classical form of the Einstein theory. This is
made manifest by inspection of the semiclassical limit, which recovers exactly the classical equations.
Thus, the present theory is not providing some type of “ad hoc” modifications of classical GR, but
instead it is consistently including quantum effects computed in the framework of a covariant quantum
theory of the same gravitational field.

8. Explicit Evaluation of the Bohm Effective Potential and Source Term

In this section the Bohm effective potential and the corresponding source term appearing in the
quantum-modified Einstein tensor equation (see Equation (66)) are determined. The task is achieved
based on the GLP-approach developed here in the context of the extended functional setting. In this
regard it is important to acknowledge the following unique features:

• First, as shown in the present paper, the same Equation (66) has been recovered independently
also in the GLP-approach, being provided in such a context by the extremal tensor Equation (114)
(see THM. 4).

• Second, based on the construction of an analytic solution for the quantum PDF (see Equation (130)
above) and of the corresponding quantum phase-function (the function S (q)(GL(s), ∆g, s)
determined via the polynomial representation (108)), the GLP-approach permits one to obtain
also an explicit representation of the Bohm effective quantum potential (52) and corresponding
source term Bµν(s).

• Third, in the subsequent calculations all integrations are performed with respect to the local
extremal geodesic trajectory. As a consequence the initial proper-time so is set equal to so = 0.
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In fact, based on the construction of the analytic solution for the quantum PDF indicated above
(see Equation (130) in Section 7), an explicit representation of the Bohm effective quantum potential (52)
follows. This is determined by a second-degree polynomial in terms of the quantum displacement
field tensor ∆g, namely

VQM =
}2

4αL
8p2(s)

r2
th
− }2

8αL
4p2(s)

r4
th

(∆g− ĝ(s))2 , (137)

with h̄ being the reduced Planck constant, while rth is still arbitrary and must be suitably determined.
The rest of the notation follows from Ref. [4], with α being the dimensional constant defined as
α = mocL, while mo and L are the graviton mass and L its Compton length, namely L = h̄

moc . Thanks to
this result also the Bohm source tensor field Bµν ≡ Bµν(s), prescribed by means of Equation (69), can
be readily evaluated yielding the formal representation

Bµν = − h̄2

(αL)2
1

r4
th

f (s)ĝµν(r(s), s), (138)

with f (s) being a function of proper-time defined with respect to a maximal length local geodesic
trajectory. This is determined by the equation

f (s) ≡ p3(s). (139)

Notice that here p(s) is prescribed according to Ref. [6] (see also Equation (A21) recalled in

Appendix C). More precisely, it is a function of the definite integral
s∫

so

ds′a(s′) with respect to the

4-scalar function a(s) (see Equation (A19)), while also requiring so = 0 (i.e., upon identifying the local
geodetics with a maximal geodesic curve). As a consequence one has that

p(so = 0) = 1, (140)

while its precise s-dependence follows from the behavior of a(s). Omitting here unnecessary further
details on the matter we shall refer for this purpose to the related discussion already treated in the
cited reference.

Determination of the CQG-Cosmological Constant ΛCQG(s).

The representation given above (138) for the Bohm source tensor field Bµν suggests its obvious
connection with a suitably-prescribed notion of cosmological constant. The same tensor field Bµν can
in fact be equivalently represented as

Bµν ≡ −ΛCQG(s)ĝµν(r(s), s), (141)

with ΛCQG(s) denoting the CGQ-cosmological constant

ΛCQG(s) =
h̄2

(αL)2
1

r4
th

f (s) (142)

and the 4-scalar function f (s) is prescribed by Equation (139). A number of important features of
ΛCQG(s) emerge. First, the function ΛCQG(s) does not depend on the 4-position r ≡ {rµ} and hence
it effectively behaves as a constant in the quantum-modified Einstein field Equation (68). A further
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feature of ΛCQG(s) concerns its quantum origin. As a consequence one expects that ΛCQG(s) should
vanish identically in the semiclassical limit so that

lim
}→0

ΛCQG(s) = 0, (143)

and, in particular, that for }→ 0
ΛCQG(s) ∼ O(}). (144)

One can show that such a requirement permits us to determine consistently the still undetermined
exponential factor γ previously introduced in Equation (135). Given the analytical solution (142) the
prescription of γ, in fact, follows once demanding for consistency with Equation (144) that the ratio h̄2

r4
th

appearing in Equation (142) is such that
h̄2

r4
th
∼ O(h̄). (145)

Invoking Equation (135) this implies therefore that γ = 1/2, namely rth ∼ }1/4.
An equivalent representation of the CQG-cosmological constant can be achieved in terms of a

suitable, strictly positive vacuum energy density

ρvac =
1
κ

ΛCQG(s). (146)

Equation (141), in fact, can be represented equivalently via Equation (76) in terms of the corresponding
quantum contribution to the stress energy tensor T̂(q)

µν . This is obtained letting

T̂(q)
µν ≡

1
κ

Bµν ≡ −ρvac ĝµν(r, s). (147)

Equation (147) is therefore formally analogous to that given in Ref. [76], the realization of ρvac being,
however, quite different. In the present case, in fact, ρvac must be identified with the graviton vacuum
energy density, i.e., the vacuum energy density produced by gravitons and arising due to the Bohm
interaction which acts on the same gravitons.

Finally, a notable feature of ΛCQG(s) concerns its proper-time dependence occurring through the
strictly positive 4-scalar function f (s) (see Equation (139)). In view of the prescription of the function
p(s) (see Equation (A18) in Appendix C) it follows that its initial value is p(so) = 1 also for so = 0.
Hence the initial value of ΛCQG(s) occurring at s = so = 0 is

ΛCQG(so) =
h̄2

(αL)2
1

r4
th

, (148)

so that the relationship between ΛCQG(s) and ΛCQG(so) is simply

ΛCQG(s) = ΛCQG(so)p3(s). (149)

The issue over the prescription of the proper-time dependence of ΛCQG(s) and the related analysis
of qualitative properties is addressed in the next section.

9. Proper-Time Behavior of ΛCQG(s) and Physical Implications

In view of Equations (139) and (A21) (see Appendix C) the prescription of the proper-time
functions f (s) and p(s) requires in turn the evaluation of the 4-scalar function a(s) given by
Equation (A19). As discussed above the same function is realized by the Equation (122), with a(o)(s)
and a(1)(s) being the 4-scalar coefficients appearing in the quadratic term of Harmonic representation
of the quantum-phase function (108). According to Ref. [6] the same functions are determined by an
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initial-value problem associated with appropriate first-order ODEs. In the present case, one notices that
Λ must be identified with the CQG-cosmological constant ΛCQG(s) so that Equations (148) and (149)
must be taken into account. One obtains accordingly for a(o)(s) and a(1)(s) the two equations:



1
4

d
ds a(o)(s) =

p2(s)
8αL a2

(o)(s) +
αL
2 Λ(so)p2(s)+

− αL
2 Λ(so)p3(s) + G(o),

1
4

d
ds a(1)(s) =

p2(s)
8αL

(
4a2

(1)(s) + 2a(o)(s)a(1)(s)
)
+

− αL
2 Λ(so)p3(s) + G(1),

(150)

where G(o) and G(1) are arbitrary constant gauge functions which can be conveniently chosen in such a
way that the same equations admit a stationary solution. When cast in dimensionless form upon letting

θ = 2s
L ,

a(o)(θ) =
a(o)(θ)

α ,

a(1)(θ) =
a(1)

α ,

Λo = Λ(so)L2,

(151)

these yield 

d
dθ a(o)(θ) =

p2(θ)
4 a2

(o)(θ)−
a2
(o)
4 (θo) + Λ(so)

[
p2(θ)− 1

]
−

−Λ(so)
[
p3(θ)− 1

]
,

d
dθ a(1)(θ) =

p2(θ)
4

(
4a2

(1)(θ) + 2a(o)(θ)a(1)(θ)
)
+

−Λ(so)
[
p3(θ)− 1

]
− 3

4 a2
(1)(θo) +

a2
(o)
4 (θo).

(152)

Then, by setting the initial conditions  a(o)(θo) = â(o),

a(1)(θo) = â(1),
(153)

with
(

â(o), â(1)
)

being initial constants, and by requiring also

â(1) = −â(o), (154)

it follows that Equation (152) admit the stationary solution a(o)(θ) ≡ â(o), a(1)(θ) ≡ −â(o) and p(θ) ≡ 1.
We now pose the problem of the investigation of the asymptotic property of the solutions of

Equations (152) and (153), i.e., for solutions such that

limθ→∞ a(θ) = 0,

limθ→∞ a(o)(θ) = − limθ→∞ a(1)(θ) = a(o)∞,

limθ→∞
d
dθ a(o)(θ) = limθ→∞

d
dθ a(1)(θ) = 0,

limθ→∞ p(θ) = p∞,

limθ→∞ Λ(s) = ΛCQG∞.

(155)

In this regard the following result holds.
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Theorem 5 (Asymptotic behavior of the solutions of Equation (152)). Assuming that Equation (155)
and the limits a(o)∞ and p∞ exist, with a(o)∞ and p∞ being non-vanishing, then the following propositions apply:

(P51) First, the equation

p2
∞ =

1 + 1
4

a2
(1)(θo)

Λ(so)
− 1

2
a2
(o)(θo)

Λ(so)

1− 1
4

a2
(o)∞

Λ(so)

(156)

holds.
(P52) Second, depending whether p2

∞ > 1 or p2
∞ < 1, it follows respectively that

ΛCQG∞ > ΛCQG(so), (157)

or
ΛCQG∞ < ΛCQG(so). (158)

In particular, in validity of the initial conditions (154) it follows that

ΛCQG∞ = ΛCQG(so). (159)

Proof. The proof of proposition P51 follows from elementary algebra. Indeed, let us evaluate the limits
for s→ +∞ of Equation (152). In validity of Equation (155) these become respectively

0 = p2
∞
4 a2

(o)∞ −
a2
(o)
4 (θo) + Λ(so)

[
p2

∞ − 1
]
−

−Λ(so)
[
p3

∞ − 1
]

,

0 = p2
∞
4

(
4a2

(1)∞ + 2a(o)∞(θ)a(1)∞(θ)
)
+

−Λ(so)
[
p3

∞ − 1
]
− 3

4 a2
(1)(θo) +

1
4 a2

(o)(θo).

(160)

Subtracting the second equation from the first one it then follows

p2
∞ =

1
2 a2

(1)(θo)− 1
4 a2

(o)(θo)−Λ(so)

1
4 a2

(o)∞ −Λ(so)
, (161)

which implies Equation (156). Similarly, the inequalities Equations (157)–(159) are immediate consequences
of Equations (139) and (142). Q.E.D.

THM. 5 yields sufficient conditions for the establishment of the asymptotic behavior of the
CQG–cosmological constant. It follows, depending on the initial conditions, that the asymptotic
value of the cosmological constant ΛCQG∞ can in principle be either larger or smaller than the initial
value ΛCQG(so) provided that the asymptotic limit a2

(o)∞ ≡ a2
(1)∞ is suitably well behaved. However,

the issue remains under which initial conditions (53) p2
∞ can be respectively >1 or <1.

To answer this question let us consider for definiteness the case of small amplitude solutions
corresponding to initial conditions of the type

a(o)(θo) = â(o) + ∆a(o),

a(1)(θo) = −â(o) + ∆a(1),∣∣∣∆a(o)
â(o)

∣∣∣ ,
∣∣∣∆a(1)

â(o)

∣∣∣� 1,

(162)
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namely of the form 

p∞ = 1 + ∆p∞,

a(o)∞ = â(o) + ∆a(o)∞,

a(1)∞ = −â(o) − ∆a(o)∞,

|∆p∞| ,
∣∣∣∆a(o)∞

â(o)

∣∣∣� 1.

(163)

Then elementary algebra shows from Equation (150) that

∆p∞ ∼= −
2â(o)∆a(1)

3Λ(θo)

(
1− 5

24
â2
(o)

Λ(θo)

) . (164)

This implies, therefore, that depending on the initial conditions (see in particular Equation (162)) ∆p∞

in principle can indeed be either positive or negative and hence p∞ respectively >1 or <1.

Physical Implications

Given the results established so far, physical implications and qualitative properties of the
resulting quantum-modified Einstein field equations can be established. The main feature arising from
the discussion presented above is that it provides a generally non-stationary realization for ΛCQG(s),
leading in turn to a corresponding non-stationary background space-time of the form (2). In the case of
vacuum considered here this means that the latter may be identified, for example, with a non-stationary
de Sitter space-time

{
Q4, ĝ(r, s)

}
, i.e., an expanding universe having an explicitly proper-time dependent

cosmological constant
Λ(s) = Λbare + ΛCQG(s), (165)

as the only source of curvature, with the explicit proper-time dependence contained in ΛCQG(s)
being prescribed according to CQG-theory via second-quantization effects. The equation which
determines the cosmological constant (165), however, still contains arbitrary free parameters (see also
Equation (142)), i.e., besides the (possible) classical contribution Λbare, also rth. One notices, in particular,
that Λbare remains in principle completely undetermined at this stage. Indeed no account has been
given here for a classical physical mechanism that can possibly justify a non-vanishing contribution
of this kind. For this reason, ruling out possible classical modifications of Einstein field equation,
its contribution can be ignored in the present framework, thus yielding the identification

Λ(s) ≡ ΛCQG(s). (166)

As a consequence, upon introducing the function B(s) ≡
(

1− r2

A(s)2

)
, with A(s) identifying the

de Sitter characteristic length, the Riemann distance in the de Sitter space-time
{

Q4, ĝ(r, s)
}

when
expressed in spherical coordinates (ct, r, ϑ, ϕ) takes the form:

ds2 = B(s)c2dt2 − B(s)−1dr2 + r2dΩ2

≡ ĝµν(r, s)drµdrν.
(167)

Therefore the corresponding space-time background metric tensor becomes

ĝµν(r, s) = diag
{

B(s), B(s)−1, r2, r2 sin2 ϑ
}

. (168)
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Here the parameter A ≡ A(s) is related to Λ(s) by means of the prescription

A(s) =

√
3

Λ(s)
. (169)

Hence this means that in turn ds2 necessarily must depend on the maximal geodesic curve on which the
tangent infinitesimal displacement drµ ≡ drµ(s) is evaluated. One notices, in particular, that the same
parameter must be suitably associated with the radius of the de Sitter event horizon, i.e., the region of
space-time which can be reached only by particles which, after starting from the Big Bang event, have
traveled at the speed of light. As such they are necessarily realized by photons whose world-lines are
null geodesic trajectories. As a consequence, for these trajectories it must be that s = so ≡ 0 so that
both A(so = 0) and Λ(so = 0) are necessarily identified with pure constants. In particular Λ(so = 0)
can be identified with the radius of the de Sitter event horizon, i.e., prescribed so that B(so = 0) = 0.

Regarding the physical identification of the initial value A(so = 0) ≡
√

3
Λ(so=0) , this would

require in turn knowledge of the precise value of Λ(so = 0). However, a possible order-of-magnitude
estimate can be achieved assuming that the initial value of the cosmological constant was comparable
to its current experimental value, namely

Λobs
∼= 1.2× 10−52m−2. (170)

Thus, upon letting for example that
Λ(so = 0) ∼ Λobs, (171)

this yields for A(so = 0) the estimate

A(so = 0) ∼

√
3

Λobs
∼ 1010ly. (172)

As a consequence the initial value A(so = 0) is comparable, in order of magnitude, with the theoretical
estimate of the current radius of the universe, namely

λth
∼= 1.38× 1010ly. (173)

It must be stressed, however, that the precise estimate of A(so = 0) is also subject to the validity
of Equation (166), namely it can be modified if additional (classical/quantum) contributions to the
cosmological constant are included in the theory. Regarding, instead, the still undetermined quantum
4-scalar and dimensionless parameter rth a numerical estimate can be obtained as follows. First, thanks
to the prescriptions for α and L recalled above (see Ref. [4]), the ratio h̄2

(αL)2 becomes h̄2

(αL)2 = 1
L2 , with

L denoting again the graviton Compton length defined above. Next, in validity of Equation (166),
let us now require for definiteness that Λ(s) coincides in order of magnitude with Λobs. In this case
adopting for the graviton mass the theoretical estimate given in Ref. [4] one finds that r2

th
∼= 0.326.

As a consequence the Gaussian quantum PDF (130) remains prescribed, with its half-way amplitude
(namely r2

th) being necessarily of O (1), i.e., safely in the quantum regime (in fact validity of the
semiclassical regime would require instead r2

th → 0). In other words, the same PDF has a finite
“thermal spread”, so that it exhibits an intrinsic quantum character. Furthermore, the same result
warrants also validity of the Equation (166), a choice which is consistent with the graviton mass
estimate given in Ref. [4].

Equation (166) is the main result of the paper. The physical implications of the CQG-prediction of
the cosmological constant are potentially wide-range. The main one, besides the identification of the
non-stationary de Sitter space-time, concerns the physical interpretation of the quantum origin of the
cosmological constant. Unlike earlier conjectures that the quantum contribution to the cosmological
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constant should be ascribed to quantum-vacuum energy density arising from all possible quantum
fields [74], CQG-theory shows that ΛQM ≡ ΛCQG(s) is actually produced by the Bohm interaction
only due to a quantum vacuum populated by gravitons only, i.e., without requiring any additional
quantum or classical field. More precisely, as shown by Equation (69), the cosmological constant
behaves generally as a non-stationary (with respect to the invariant proper-time s) field generated
by the gravitational field itself through quantum self interaction. However, it follows clearly that
it is not the vacuum energy density per se which is responsible for a non-vanishing cosmological
constant, but rather the fluctuations of its probability density. From the mathematical point of view
this is expressed by the fact that the quantum cosmological constant term entering Equations (68) is
generated specifically due to the gradient of the Bohm potential, which here has the physical meaning
of a vacuum gravitational quantum interaction. In addition, it can be concluded that this same
mechanism of generation of ΛQM is also consistent with the existence of quantum massive gravitons,
as it follows from the results previously reported in Ref. [4] where the inclusion of a cosmological
constant in the quantum wave equation was shown to generate a discrete invariant-energy spectrum
for the same massive gravitons characteristic of manifestly-covariant quantum gravity theory.

Further interesting implications concern the comparison with the large-scale structure of the
universe and in particular evidences #1–#5 (see Section 1.1 in the Introduction). We stress that for this
purpose a systematic, i.e., detailed numerical, analysis of the solution (167) or equivalent (168) (both to
be considered in validity of Equation (166)) is required, being left to future work. Nevertheless its
consistency with the large-scale structure of the universe can still be formally established as discussed
above. Let us briefly outline some of the interesting conclusions that emerge in this way.

Consider, in particular, evidence #1 about the flatness property of the de Sitter space-time.
Indeed, this is characterized by a Ricci curvature 4-scalar R = R(s) such that R(s) = 4Λ(s). If one
assumes the ordering estimate Λ(so = 0) ∼ Λ(s) it follows, consistent with such a property, that
R(s) � 1. Similarly, evidence #2 (the lack of large-scale correlations among “distant” regions of
universe) is direct consequence of spherical symmetry property of the de Sitter metric tensor. The third
evidence about the isotropic and uniform character of the expansion/acceleration of the universe
at large distances is again consistent with the same symmetry property and the strict positivity
of the quantum cosmological constant determined here. Furthermore, regarding the “Big Bang
hypothesis” (see evidence #4), as discussed in Section 2, this is already built-in in CQG-theory itself.
Finally, concerning the issue of the inflationary transient phase of the early universe (evidence #5 ),
we conclude that its possible existence—based on the inequality estimates given above—cannot be
ruled out.

Finally, a comment must be made on the possible implications for cosmology and actual
physical relevance related to the determination of the CQG-cosmological constant and specifically
to the prediction of its possible proper-time dependence achieved here. This refers to the issue
whether the theory presented here may be adequate in a quantitative sense to explain the large-scale
phenomenology of the universe. The same issue is particularly relevant for the possible theoretical
prediction and suggested explanation of the observed values of the expansion rate and acceleration
of the universe. It seems wise to state that at this stage definite conclusions are still premature.
Indeed, before drawing definite conclusions, a systematic analysis of the proper-time dependence
predicted here for the cosmological constant as well a deeper analysis of the same phenomenology
are required. Nevertheless, the fact is that the prediction of the proper-time behavior determined
by the CQG-cosmological constant appears, at least in qualitative sense, compatible or in agreement
both with the possible existence of an inflationary stage in the early universe and the tentative
suggested explanation of the phenomena of expansion and acceleration of the universe based on
CQG-theory. According to CQG-theory, in fact, such phenomena should arise due to the quantum
self-generation of the cosmological constant, namely the vacuum quantum Bohm interaction occurring
among massive gravitons. As a consequence no additional external sources or classical/quantum
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interactions are actually needed to determine the proper-time dependence and observed value of the
cosmological constant.

This conclusion departs from previous literature in at least three respects. The first one is
the physical origin of the cosmological constant. In previous literature in fact, by far the most
popular conjecture is usually regarded to be the vacuum energy density (ρA) associated with dark
matter/energy as the possible physical cause able to explain both the expansion and acceleration
of the universe as well as the cosmological constant [47,84,85]. The second one, is that former
theoretical approaches are phenomenological in character and do not provide a self-consistent theory
for constructing either the quantum-modified Einstein field equations or the energy density ρA itself.
Third and final, there is no obvious connection between the same quantum-modified Einstein field
equations (which are manifestly covariant) and previous quantum theories of gravity (which typically
are not so).

10. Concluding Remarks

In this paper key issues have been address which are related to the determination of the
(quantum) cosmological constant in the context of manifestly-covariant quantum gravity (CQG-theory).
These have included in particular:

1. The definition of the observer’s proper-time (s), consistent with the treatment adopted in
CQG-theory of gravitons as classical point-particles and with the Big Bang hypothesis. This is
prescribed as the arc length of a suitable non-null geodesic world-line associated with the
background metric tensor ĝ, which represents a virtual trajectory, namely one of the infinite
possible physically admissible worldlines, associated with a massive graviton. To this end the
same curve is identified in a cosmological framework with an observer’s maximal geodetics, i.e.,
a geodesic curve having the maximal arc length and with origin point rµ(so), the point of creation
of the same particle, coinciding with (or suitably close to) the Big Bang event. By construction for
the initial 4-position rµ(so) is therefore such that rµ(so) ≡ rµ(so = 0).

2. The establishment of the Hamiltonian structure of CQG-theory. This is represented by a set of
continuous canonical equations (referred to here as quantum Hamilton equations) whose validity
is implied by the quantum-wave equation through its corresponding quantum Hamilton-Jacobi
equation. As shown in THM. 1, the same Hamiltonian structure remains preserved also in validity
of the said extended setting (i.e., for non-stationary background metric tensor).

3. The discovery of quantum-modified Einstein field equation. In fact, the quantum Hamilton
equations have been shown to admit a particular realization in terms of a set of PDEs which is
analogous to the classical Einstein Equation (5) but in which quantum source terms are taken
into account. Remarkably also such an equation remains preserved under the same extended
functional setting (see THM. 2).

4. The establishment of the corresponding formulation of the generalized Lagrangian path (GLP)
approach. The issues indicated above have been cast in the framework provided by the said,
earlier formulated, GLP-approach. The key feature of the GLP-approach unveiled here (THM. 3
and THM. 4) concerns its validity also in the context of the extended functional setting and the
determination of explicit vacuum solutions of the quantum hydrodynamic equations associated
with the CQG-wave equation, with particular reference to quantum solutions characterized by
Gaussian quantum PDFs.

5. The prescription of the quantum cosmological constant, its estimate achieved in the framework of
CQG-theory and its dynamical behavior. In fact it has been shown that the cosmological constant
Λ ≡ ΛCQG(s) is non-stationary, i.e., dependent on the observer’s proper-time s. The determination
of the proper-time dependence of the quantum cosmological constant has been based on the
GLP-approach which permits the construction of dynamically-consistent analytic solutions for
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the quantum wave-function. As a result the relevant asymptotic properties (for s → ∞) of the
s-dependent quantum cosmological constant have been established (THM. 5).

6. The implications and possible interpretation of the large-scale phenomenology of the universe
by means of an extended formulation of CQG-theory in which the background space-time itself
is non-stationary. For this purpose the associated background metric field tensor ĝ ≡

{
ĝµν

}
has

been couched in an extended functional setting in which the same tensor field is considered of the
form ĝ(r, s) ≡

{
ĝµν(r, s)

}
, namely again explicitly dependent on the same proper-time s.

The conclusions are relevant at least for two main reasons.
The first one refers to a peculiar emergent-gravity feature, previously referred to (see Ref. [6])

as “first-type emergent-gravity paradigm”, according to which the Einstein field equations themselves
should be implied by quantum theory of SF-GR. As a consequence this means that in such a context
also the precise form of the background space-time, i.e., the background field tensor itself should
be determined in terms of a suitable particular solution of the quantum-wave equation appropriate for the
same quantum theory. Such a feature, in our view, can be regarded as a true test of consistency for
arbitrary quantum theories of gravity. Indeed the ultimate goal of any theory of this type should
be the prediction of the background metric tensor of the universe and its corresponding tensor field
equation which in the context of SF-GR coincides with the Einstein field equations. In this paper such
a property has been shown to hold for CQG-theory based on the quantum-modified Einstein field
equations indicated above. The remarkable feature is, in fact, that as shown by THM. 2 these are
achieved without performing any limiting approximation, such as the semiclassical continuum limit
which is obtained letting }→ 0 in the quantum-wave equation.

However, in this connection, two additional side-consequences follow. The first one is a fundamental
physical restriction. Indeed, due to the manifest-covariance property of the Einstein field equations a
stringent condition arises also on the class of possible, i.e., physically-admissible, quantum field theories
of gravity. In fact, it is obvious that the same ones should necessarily be restricted to manifestly-covariant
ones, namely realized, as CQG-theory, by means of a 4-tensor field theory endowed with tensor properties
prescribed with respect to the same background field tensor ĝ. The second side-implication concerns
the physical interpretation and role of CQG-theory. In fact it cannot merely be viewed as one of
the possible background space-time theories, i.e., in which the background field tensor is arbitrarily
prescribed as a particular solution of the classical Einstein field equations. On the contrary it must be
intended as a truly self-consistent quantum theory of gravity in which the background field tensor ĝ
is a solution of the corresponding quantum-modified Einstein field equations, namely in which the
cosmological constant is, in turn, uniquely prescribed by means of CQG-theory itself.

The further aspect worth to be mentioned concerns the explicit prescription and properties of
the background space-time arising in the context of CQG-theory. This is identified here with the
non-stationary de Sitter space-time

{
Q4, ĝ(r, s)

}
, being ĝ(r, s) the corresponding metric field-tensor

characterized by the non-stationary cosmological constant Λ ≡ ΛCQG(s). In particular, remarkable
features which emerge in this connection are that: (A) The prediction of the initial value ΛCQG(so = 0)
obtained here is consistent with the graviton mass estimate established in a previous paper in the
case (see Ref. [4]). (B) The unique second-quantization character of the cosmological constant, which
arises due to the Bohm interaction and more precisely due to the gradient of the Bohm effective
quantum potential. (C) The universal property of the cosmological constant, i.e., the fact that its
existence is independent of the possible presence of additional external fields and further classical or
quantum interactions.

These conclusions provide also further theoretical insight on the axiomatic foundations as
well as physical implications of CQG-theory for large-scale phenomena of the universe. In the
present investigation crucially-important second-quantization aspects of the theory have been studied.
These concern the possible explanation, in such a context, of the physical mechanism responsible for the
occurrence of the cosmological constant, as well the possible existence of an inflationary phenomenon
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in the early universe, and, in turn, also a suggested physical explanation for the closely-related
observed values of the expansion rate and acceleration of the universe.

Nevertheless, CQG-theory is still built upon a first-quantization approach (realized by the
so-called g-quantization) which fulfills the quantum unitarity principle and, consequently, the
conservation of quantum probability associated with the quantum wave function. As such, no
trans-Planckian effects, nor possible information losses arising at event horizons in black-hole
space-times are taken into account in the current formulation of CQG-theory. Nevertheless, the
inclusion of additional second-quantization effects is in principle possible, with particular reference to
quantum modifications of the background space-time at the Planck length, such as the inclusion of
localized quantum particle sources.In view of these considerations, CQG-theory may be expected to
provide fertile grounds for new conceptual developments and a variety of applications in quantum
gravity and quantum cosmology.
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Appendix A. Classical Kinetic and Normalized Effective Potential Densities

The effective kinetic and the normalized effective potential density TR and V appearing in the
classical Hamiltonian density HR (13) take the form (see Refs. [3,4]) TR ≡ 1

2αL f (h)πµνπµν,

V (g, ĝ, r, s) ≡ σVo (g, ĝ, r, s) + σVF (g, ĝ, r, s) ,
(A1)

with h being the variational weight-factor

h(g, ĝ(r, s)) = 2− 1
4

gαβgµν ĝαµ(r, s)ĝβν(r, s), (A2)

while L and α are constants, i.e., suitable 4-scalars both identified according to the treatment given
in Ref. [4]. In addition, V and VF represent respectively the vacuum and external field contributions
(see definitions in Ref. [3]),

Vo ≡ hαL
[

gµνR̂µν − 2Λ
]

,

VF (g, ĝ, r) ≡ hLF (g, ĝ, r) ,
(A3)

where R̂µν ≡ Rµν(ĝ) and Λ identify respectively the background Ricci tensor and the cosmological
constant, LF being associated with a non-vanishing stress-energy tensor, while f (h) and σ denote
suitable multiplicative gauge functions identified with f (h) = 1 and σ = −1.
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Appendix B. Covariant Partial Derivative

In the case of non-stationary background metric tensor (see Equation (3)) the operator d
ds

∣∣∣
r

appearing in Equation (18) must be prescribed in such a way to satisfy the covariance property (4) also
for the covariant and countervariant components of the tensor field

Hµν ≡ d
ds

∣∣∣
r

xµν,

Hµν ≡ d
ds

∣∣∣
r

xµν,
(A4)

with xµν denoting the canonical 4-tensors xµν = gµν, πµν for which by construction xpq ĝµ′p ĝν′q = xµ′ν′ ,

xpq ĝµ′p ĝν′q = xµ′ν′ .
(A5)

For definiteness, denoting in the following ĝµα = ĝµα(r, s) and ĝµβ = ĝµβ(r, s), the identities
d
ds

∣∣∣
s

ĝµα ≡ d
ds

∣∣∣
s

ĝµβ ≡ 0 hold. Furthermore, noting that the non-stationary background metric tensor
must satisfy as well the orthogonality condition

ĝµα ĝµβ = δ
β
α , (A6)

it follows that also the identity

ĝµβ ∂

∂s
ĝµα + ĝµα

∂

∂s
ĝµβ = 0 (A7)

must hold. Then one can prove that, thanks to Equations (A5)–(A7), the following prescriptions for the
covariant partial derivatives d

ds

∣∣∣
r

hold:


d
ds

∣∣∣
r

xαβ = ∂
∂s xαβ − 1

2 xpq ĝµ′p ĝν′q
∂
∂s (ĝαµ′ ĝβν′),

d
ds

∣∣∣
r

xαβ = ∂
∂s xαβ − 1

2 xpq ĝµ′p ĝν′q ∂
∂s (ĝαµ′ ĝβν′).

(A8)

In view of the orthogonality conditions (A6) these can be equivalently written as
d
ds

∣∣∣
r

xαβ = ∂
∂s xαβ − 1

2 xµ′ν′
∂
∂s (ĝαµ′ ĝβν′),

d
ds

∣∣∣
r

xαβ = ∂
∂s xαβ − 1

2 xµ′ν′ ∂
∂s (ĝαµ′ ĝβν′).

(A9)

To prove Equation (A8) one notices in fact that

ĝµα ĝνβ
d
ds

∣∣∣
r

xαβ = ĝµα ĝνβ
∂
∂s xαβ

−ĝµα ĝνβ
1
2 xpq ĝµ′p ĝν′q

∂
∂s (ĝαµ′ ĝβν′),

(A10)

where
ĝµα ĝνβ

∂

∂s
xαβ =

∂

∂s
xµν − xαβ ∂

∂s
(ĝµα ĝνβ), (A11)
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and

ĝµα ĝνβ
1
2

xpq ĝµ′p ĝν′q
∂

∂s
(ĝαµ′ ĝβν′) =

−ĝαµ′ ĝβν′ 1
2

xpq ĝµ′p ĝν′q
∂

∂s
(ĝµα ĝνβ) = (A12)

−1
2

xαβ ∂

∂s
(ĝµα ĝνβ).

As a consequence, elementary algebra yields

ĝµα ĝνβ
d
ds

∣∣∣
r

xαβ = ∂
∂s xµν − 1

2 xαβ ∂
∂s (ĝµα ĝνβ) ≡

≡ d
ds

∣∣∣
r

xµν,
(A13)

and similarly

ĝµα ĝνβ d
ds

∣∣∣∣
r

xαβ =
d
ds

∣∣∣∣
r

xµν. (A14)

Furthermore, as a consequence of the prescriptions (A8) (or equivalent of Equation (A9)), it is
immediate to prove the distributive property holds

Ds

(
xαβxαβ

)
= xαβ d

ds
xαβ + xαβ

d
ds

xαβ, (A15)

with Ds and d
ds being respectively the covariant s-derivatives (21) and (18). This proves the

validity of the covariance property for the 4-tensor field defined by Equation (A4) and hence of
the prescriptions (A8) for the covariant partial derivatives d

ds

∣∣∣
r
.

Appendix C. Determination of the 4-Scalar Factor p(s)

In analogy to Ref. [6] let us introduce for the quantum phase-function S (q)(GL(s), ∆g, s) the
“harmonic” polynomial decomposition realized in terms of a second-degree polynomial of the
form (104). Then, in analogy to Ref. [6] the determination of the 4-scalar factor p(s) is provided
by the following propositions (with proofs analogous to those given in Appendix B of Ref. [6]).

Proposition A1 (Determination of the tensor field
∂∆gα

β

∂δgµ
Lν(s′)

). Given validity of the polynomial

representation (104), the tensor field
∂∆gα

β

∂δgµ
Lν(s

′)
takes the form

∂∆gα
β

∂δgµ
Lν(s

′)
= −

∂∆gα
β

∂Gµ
Lν(s

′)
, (A16)

with
∂∆gα

β

∂δgµ
Lν(s

′)
= δα

µδν
β p(s), (A17)

and p(s) being the 4-scalar function determined by the integral equation

p(s) =
1

1 +
∫ s

so
ds′ 1

αL a(s′)p(s′)
. (A18)

Here a(s) is the 4-scalar function

a(s) ≡ 1
4

apα
qβ(s)δ

q
p δ

β
α , (A19)
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with apα
qβ(s) being the tensor introduced in the polynomial decomposition of the phase function S (q) given above

by Equation (104).

Proposition A2 (Determination of the 4-scalar function p(s)). In validity of Equation (A18) it
follows that

|p(s)| = 1(
1 + 2

αL

s∫
so

ds′a(s′)

)1/2 , (A20)

which upon requiring p(so) = 1 delivers

p(s) =
1(

1 + 2
αL

s∫
so

ds′a(s′)

)1/2 . (A21)
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