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Abstract: Fragile watermarking algorithms for 3D models has attracted extensive research attention in
recent years. Although many literatures have proposed lots of solutions on this issue, low embedding
capacity and inaccurate located tampered region are still presented. Higher embedding capacity can
reduce the probability of false alarms for authentication, while accurate tamper localization can detect
all the modified vertices with fewer unaltered ones. This study proposes three strategies to enhance
the embedding capacity and the detection accuracy of our previous algorithm. First, the modified
message-digit substitution table can increase the embedding capacity by 11.5%. Second, the modified
embedding ratio generation method can be integrated to raise the embedding capacity by about
47.74%. Finally, the strategy adopting a reduced number of reference vertices for authentication
code generation accompanying the above two ones improves the embedding capacity up to 123.74%.
Extensive experiments show that the proposed algorithm can achieve superior performance in terms
of embedding capacity and tamper localization accuracy. Further, the model distortion between the
original and the marked ones is small.
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1. Introduction

The rise of Internet changes human behavior significantly. Multimedia content can be rapidly
shared and dispersed all over the world with the advanced network technology. However, Internet also
breeds new information security problems, such as piracy, reproduction, and tampering. Copyright
marking algorithms [1] can prevent the above problems from occurring, and robust watermarking and
fragile watermarking are two main branches according to their different applications.

Robust watermarking algorithms [2–4] can detect copyright information and protect intellectual
property rights even when the protected multimedia content is under different malicious attacks.
However, fragile watermarking algorithms [5–7] can effectively detect and locate the tampered
locations even if the protected multimedia content has minimum modifications. Some fragile
watermarking algorithms even have the capacity for self-recovery. Recently, some authors [8] proposed
a distributed and tamper-proof media transaction framework. The unique watermark information
contains a cryptographic hash of the transaction histories in the blockchain and an image hash
preserving retrievable original media content. The first part of the watermark is to retrieve the
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historical transaction trail and the latter part is used to identify the tampered regions. Consequently,
copyright marking is still a research topic that deserves our attention.

Whereas fragile watermarking has been extensively studied in images [9–14], videos [15,16],
and audio [17,18], there are still few studies discussing its application in 3D models. According to
the size of the tampered region localization, 3D fragile watermarking algorithms can be classified
as either vertex-based or region-based ones. A vertex-based algorithm can exactly locate a modified
vertex, whereas a region-based one can only locate a rough region with some unaltered vertices inside.
However, a region-based fragile watermarking algorithm has the ability to detect the modification of
the topological relationship between vertices.

The first fragile watermarking algorithm on 3D polygonal models was proposed by Yeo and
Yeung [19]. They iteratively moved the vertices to new positions to make the location and value
indexes, calculated from pre-defined hash functions, consistent. Lin et al. [20] proposed a local mesh
parametrization approach to perturb the coordinates of invalid vertices to eliminate the causality
problem caused by Yeo and Yeung. Molaei et al. [21] proposed a QIM-based fragile watermarking for
3D triangular mesh models. Watermark data is embedded into the middles of three sides of a marked
triangle in the spherical coordinate system. The recognition accuracy and the embedding capacity can
be enhanced by increasing the number of marked triangles. To solve the problem of low embedding
capacity, Tsai et al. [6] proposed a low-complexity, high-capacity, distortion-controllable, region-based
fragile watermarking algorithm with a high embedding rate for 3D polygonal models. A vertex
traversal scheme subdivides the input polygonal model into several overlapping embedding blocks,
each with one embeddable vertex and its reference vertices. The authentication code is generated by
feeding the local geometrical properties of each block into a hash function. The embeddable vertex
is then embedded with the authentication code and its vertex coordinates are modified based on a
simple message-digit substitution scheme.

Tsai et al.’s proposed algorithm had a higher embedding rate and higher embedding capacity
than up-to-date literature. However, the problems of low embedding capacity and inaccurately located
tampered regions have not been resolved. The proposed algorithm comprehensively considers three
issues that are not discussed in our previous scheme. Thus, the proposed algorithm offers three
advantages over the previous method, including higher embedding capacity, higher embedding rate,
and accurate tamper localization. In this paper, we employ modified message grabbing and modified
embedding ratio generation methods to resolve the problem of low embedding capacity. In addition,
we adopt a reduced number of reference vertices for authentication code generation, providing a
significant improvement on embedding capacity and embedding rate. Furthermore, the accuracy of
tamper localization is consequently raised. Finally, extensive experimental results demonstrate the
feasibility of the proposed algorithm.

The rest of paper is organized as follows. In Section 2, Tsai et al.’s proposed algorithm is introduced.
In Section 3, we give detailed descriptions of our three strategies to improve the embedding capacity.
Section 4 shows the experimental evaluations; finally, conclusions and future studies are made in
Section 5.

2. Tsai et al.’s Proposed Algorithm

This section provides a review of Tsai et al.’s proposed algorithm, and its flowchart is shown
in Figure 1. The proposed algorithm inputs a polygonal model with vertices and its topological
information and then constructs a vertex neighboring table in the preprocessing process. The polygonal
model is subdivided into lots of overlapping embedding blocks, each with one embeddable vertex and
its reference vertices, based on an iterative vertex traversal mechanism. Each block is the basic element
for the authentication code generation, embedding, reconstruction, and tamper localization processes.
Taking the embedding block shown in Figure 2 for example, V1 is the embeddable vertex and R1, R2,
R3, and R4 are the reference vertices of V1. G1 is the center of the reference vertices of V1.
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For each embedding block, the local geometrical property concerning the topological relationship
is fed into the hash function to obtain the authentication code. Thereafter, the authors calculated the
embedding ratio between the length of the embeddable vertex to the center of its reference vertices and
the summation of all sides of the reference vertices for message embedding. Continuing the example
in Figure 2, the embedding ratio AV1 is shown in (1), where SV1 is the summation of all sides ‖R1R2‖,
‖R2R3‖, ‖R3R4‖, and ‖R4R1‖.

AV1 =

{
‖V1G1‖/SV1 i f ‖V1G1‖ ≤ SV1

SV1 /‖V1G1‖i f ‖V1G1‖ > SV1

(1)

Finally, the authors select parts of the authentication code to embed into above ratio.
The data-embedded ratio A′V1

is derived by modifying the next few decimal digits after the first
non-zero one of AV1 using a simple message-digit substitution mechanism shown in Table 1.

The data-embedded vertex can be then obtained following the direction of
−−⇀
V1G1 with a data-embedded

ratio. Figure 3 shows the modification example, where V′1 is the vertex with the authentication code
embedded. Experimental results demonstrate the feasibility of the proposed algorithm.Symmetry 2018, 10, x FOR PEER REVIEW  3 of 14 
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Table 1. Tsai et al.’s message-digit substitution table.

Decimal Digit Binary Authentication Code

0 000
1 001
2 010
3 011
4 100
5 101
6 1100
7 1101
8 1110
9 1111
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V1G1 ‖ < ‖

−−−⇀
V′1G1 ‖.

3. The Proposed Algorithm

This section shows three improvement methods to provide higher embedding capacity than
Tsai et al.’s proposed algorithm, including modified message grabbing, modified embedding ratio
generation [22], and a reduced number of reference vertices for message embedding. The proposed
algorithm can also support higher embedding rate and accurate tamper localization.

3.1. Modified Message Grabbing Method

The authentication code embedding process in Tsai et al.’s proposed algorithm used a simple
message-digit substitution scheme shown in Table 1 to modify the embedded ratio. The distance with
the center of its reference vertices for each embeddable vertex is consequently modified. Three-bit
authentication code is grabbed one time and one more bit can be grabbed again if the above three-bit
code equals 110 or 111. In our test, the embedding capacity rises effectively if a four-bit authentication
code is firstly grabbed and the last bit is left for the next iteration if the grabbed four-bit binary code
is larger than one-bit decimal digit. Table 2 shows our message-digit substitution table. The bit with
a strikeout sign means that the bit should be left for next iteration because the decimal value for the
grabbed four-bit binary code is larger than nine.

Table 2. Our proposed message-digit substitution table.

Decimal Digit Binary Authentication Code

0 0000
1 0001
2 0010/1010
3 0011/1011
4 0100/1100
5 0101/1101
6 0110/1110
7 0111/1111
8 1000
9 1001

3.2. Modified Embedding Ratio Generation Method

From the above message-digit substitution table, we can know one decimal digit can have a
three- to four-bit authentication code embedded. However, from the experimental results in Tsai et
al.’s proposed algorithm, the number of most used decimal digits is three. It means most embedding
ratios equal to 0.0XEEEN, where X is the first non-zero digit, E is the decimal digit that can have
the authentication code embedded, and N is the digit without a message embedded for avoiding
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extraction error. If we can change the embedding ratio with the value of 0.0XEEEN to 0.XEEEEN, one
more decimal digit can be used to further raise the embedding capacity.

We then modify the embedding ratio generation method shown in (1) from the summation of all
sides of the reference vertices SV1 to maximum, minimum, and average side length (see blue line in
Figure 4) between the reference vertices for each embeddable vertex. The experimental results show
that the embedding ratio using minimum side length can achieve highest embedding capacity.
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3.3. Reduced Number of Reference Vertices for Authentication Code Generation

Tsai et al.’s proposed algorithm uses all the reference vertices for authentication code generation.
Therefore, only 24 to 30 percent of vertices [6] can be message-embedded. This improvement adopts a
user-defined embedding parameter p within 0 and 1 to control the ratio of used reference vertices for
each embeddable vertex. Equation (2) shows the controlling mechanism, where ONVi and FNVi are the
original and final number of used reference vertices for the embeddable vertex Vi. We then randomly
obtain FNVi reference vertices for the remaining process.
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(2)

However, not each vertex pair in the original input model has one edge to connect them. For the
example shown in Figure 2, assume that R2, R3, and R4 are the selected reference vertices for the
embeddable vertex V1. Comparing Figure 2 with Figure 5, no edges are presented to connect the
vertices R2 and R4. To make the following processes correctly performed, we construct the ‘virtual’
edge to connect the corresponding two unconnected vertices. G1 becomes the center of the used
reference vertices R2, R3, and R4. Further, the minimum number of used reference vertices is set as 3.
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4. Experimental Evaluations

This section presents the experimental results obtained from twenty-five 3D polygonal models
shown in Figure 6, where NV and NF mean the number of vertices and faces separately. Microsoft
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Visual C++ programming language was used to implement the proposed algorithm on a personal
computer with an Intel Core i7-6700K 4.00 GHz processor and 16 GB RAM. The distortion between the
original and marked models was measured by normalized root-mean-squared error, which is derived
from dividing the root-mean-squared error by the model size.
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௏ܰ: 23105, ிܰ: 46202 

Figure 6. Cont.
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Figure 6. Visual effects of our twenty-five test models.

First, this section presents the embedding capacity comparison for each improved strategy with
Tsai et al.’s proposed algorithm. We also show the model distortion for different embedding ratio
generation methods. Finally, we present the experimental results for tamper detection to demonstrate
the feasibility of our proposed algorithm.

Table 3 shows the embedding capacity comparison under different embedding thresholds between
Tsai et al.’s and our message grabbing method. The experimental results show that our message
grabbing method can effectively raise the embedding capacity, exceeding 11.5% on average for all
embedding thresholds.
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Table 3. Experimental results for our message grabbing method.

Model

Capacity [6] Proposed

T = 1 T = 2 T = 3 T = 1 T = 2 T = 3

Armadillo 414,512 269,128 147,280 462,775 300,427 164,377
Ateneam 18,161 12,046 6231 20,263 13,449 6941

Brain 53,982 37,438 21,010 60,231 41,792 23,501
Brain2 766,719 482,906 284,062 855,862 539,170 317,113
Bunny 79,115 49,020 31,137 88,273 54,709 34,704
Cow 108,200 62,873 45,415 120,695 70,198 50,650

Dinosaur 141,047 90,351 50,857 157,553 100,938 56,807
Dragon 1,199,940 806,740 435,755 1,337,835 899,538 485,751

DragonFusion 1,177,286 785,816 440,208 1,313,028 876,273 490,908
Elephant 46,107 30,401 15,883 51,461 33,992 17,758

Gear 625,266 409,512 219,449 697,417 456,854 244,805
Golfball 352,285 227,500 124,838 392,886 253,655 139,112

Hand 868,284 580,290 315,408 968,111 646,857 351,560
HappyBuddha 1,484,268 996,728 534,871 1,656,155 1,111,984 596,324

Hippo 58,474 38,900 20,092 65,037 43,206 22,305
Horse 117,450 75,291 43,598 131,063 83,978 48,625
Lion 430,769 278,123 157,266 480,906 310,553 175,720
Lucy 652,499 433,616 224,752 727,550 483,643 250,656

Maxplanck 117,011 75,540 41,556 130,232 84,161 46,302
Rabbit 162,576 102,799 60,551 181,361 114,605 67,502

RockerArm 98,948 63,072 36,546 110,314 70,262 40,665
Screw 121,398 81,681 44,396 135,366 91,167 49,568
Teeth 278,982 175,831 105,332 311,230 196,141 117,493

VenusBody 45,654 30,275 16,018 51,088 33,817 17,872
VenusHead 314,810 197,871 120,740 351,333 220,870 134,751

Average Improvement 11.56% 11.56% 11.53%

Table 4 shows the embedding capacity comparison for different embedding ratio generation
methods, including maximum (MAX), minimum (MIN), and average (AVE) of all the side lengths with
the embedding threshold T = 1. The embedding capacity using the summation (SUM) method for each
model is shown in Table 3. Obviously, the embedding ratio generation method using the minimum
side length can have the maximum embedding capacity, improving by about 47.74% on average, with
our modified message grabbing method. From the experimental results, we also found that the highest
embedding capacity for each embeddable vertex in each 3D polygonal model is between 14 and 16.
Four decimal digits of the calculated embedding ratio are used for data embedding, each with three
or four bits. Table 5 shows the model distortion for each test model under different embedding ratio
generation methods. The model distortion using the MIN method is only 0.009% of the model size,
on average.

This section shows the experimental results for adopting a reduced number of reference vertices
during the authentication code generation. When not all reference vertices are used, the residual
unused reference vertices may be the embeddable ones in some iterations. Because the number of
embedded vertices is increased, and the total embedding capacity can be effectively raised. Table 6
shows the embedding rate under different embedding parameters for each test model. Obviously,
the embedding rate can be effectively raised from 23.93~31.25% to 35.32~42.80%. Tables 7–9 show
the embedding capacity comparison for each model under different embedding parameters. When
the value of the embedding parameter p is smaller, it means the ratio of used reference vertices is
decreased. The total embedding capacity is increased with more embeddable vertices. The improved
ratio, on average, can be improved from 47.74% (see Table 4), 94.13%, or 121.37%, to 123.74% with
different embedding parameters p using the minimum side length for authentication code generation.



Symmetry 2018, 10, 290 9 of 14

Table 4. Experimental results for our embedding ratio generation method.

Model MAX Ratio AVE Ratio MIN Ratio

Armadillo 592,331 42.90% 605,771 46.14% 616,170 48.65%
Ateneam 24,908 37.15% 26,248 44.53% 26,987 48.60%

Brain 72,116 33.59% 73,231 35.66% 72,569 34.43%
Brain2 1,007,684 31.43% 1,070,707 39.65% 1,191,820 55.44%
Bunny 114,739 45.03% 117,149 48.07% 120,612 52.45%
Cow 152,848 41.26% 156,472 44.61% 168,732 55.94%

Dinosaur 191,920 36.07% 200,944 42.47% 209,391 48.45%
Dragon 1,660,464 38.38% 1,705,093 42.10% 1,656,703 38.07%

DragonFusion 1,663,575 41.31% 1,688,508 43.42% 1,671,791 42.00%
Elephant 64,613 40.14% 67,376 46.13% 69,126 49.93%

Gear 873,125 39.64% 910,416 45.60% 932,665 49.16%
Golfball 471,018 33.70% 505,152 43.39% 532,600 51.18%

Hand 1,235,389 42.28% 1,250,350 44.00% 1,246,830 43.60%
HappyBuddha 2,062,769 38.98% 2,121,269 42.92% 2,067,096 39.27%

Hippo 80,343 37.40% 84,051 43.74% 85,824 46.77%
Horse 169,728 44.51% 173,291 47.54% 176,905 50.62%
Lion 621,351 44.24% 634,770 47.36% 643,836 49.46%
Lucy 912,968 39.92% 951,119 45.77% 971,868 48.95%

Maxplanck 158,746 35.67% 164,168 40.30% 168,967 44.40%
Rabbit 237,878 46.32% 241,277 48.41% 246,362 51.54%

RockerArm 142,768 44.29% 145,529 47.08% 148,664 50.24%
Screw 171,429 41.21% 172,941 42.46% 171,053 40.90%
Teeth 406,523 45.72% 413,817 48.33% 423,267 51.72%

VenusBody 63,749 39.64% 66,681 46.06% 68,058 49.07%
VenusHead 459,561 45.98% 469,800 49.23% 480,740 52.71%

Average 40.27% 44.60% 47.74%

Table 5. Model distortion between the original and marked models.

Model SUM MAX AVE MIN

Armadillo 0.003% 0.006% 0.005% 0.004%
Ateneam 0.066% 0.032% 0.027% 0.026%

Brain 0.080% 0.062% 0.043% 0.047%
Brain2 0.004% 0.003% 0.003% 0.004%
Bunny 0.008% 0.013% 0.011% 0.007%
Cow 0.003% 0.002% 0.002% 0.003%

Dinosaur 0.003% 0.004% 0.005% 0.004%
Dragon 0.006% 0.006% 0.005% 0.004%

DragonFusion 0.006% 0.006% 0.005% 0.004%
Elephant 0.014% 0.027% 0.019% 0.011%

Gear 0.004% 0.007% 0.006% 0.004%
Golfball 0.004% 0.005% 0.007% 0.005%

Hand 0.005% 0.005% 0.004% 0.003%
HappyBuddha 0.005% 0.006% 0.004% 0.003%

Hippo 0.019% 0.026% 0.019% 0.013%
Horse 0.007% 0.011% 0.009% 0.006%
Lion 0.018% 0.022% 0.017% 0.013%
Lucy 0.003% 0.005% 0.004% 0.003%

Maxplanck 0.005% 0.006% 0.007% 0.007%
Rabbit 0.005% 0.011% 0.009% 0.006%

RockerArm 0.008% 0.014% 0.012% 0.009%
Screw 0.016% 0.014% 0.011% 0.011%
Teeth 0.005% 0.010% 0.008% 0.006%

VenusBody 0.039% 0.029% 0.020% 0.015%
VenusHead 0.003% 0.008% 0.007% 0.005%

Average 0.014% 0.014% 0.011% 0.009%
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Table 6. Embedding rate under different embedding parameters for each test model.

Model
Embedding Rate

p = 1.00 p = 0.75 p = 0.50 p = 0.25

Armadillo 26.18% 32.73% 36.13% 36.54%
Ateneam 24.98% 33.46% 38.15% 38.88%

Brain 26.68% 33.07% 36.06% 36.82%
Brain2 29.74% 33.59% 35.55% 35.62%
Bunny 27.45% 33.24% 35.59% 35.73%
Cow 30.08% 33.62% 35.17% 35.32%

Dinosaur 27.85% 37.30% 42.48% 42.56%
Dragon 27.58% 36.05% 40.21% 40.55%

DragonFusion 27.50% 35.53% 40.02% 40.13%
Elephant 24.38% 32.28% 35.70% 36.15%

Gear 26.79% 34.71% 38.93% 39.28%
Golfball 31.25% 30.91% 34.57% 36.91%

Hand 27.42% 35.38% 39.30% 39.41%
HappyBuddha 27.63% 36.16% 40.30% 40.65%

Hippo 26.10% 32.83% 36.21% 37.17%
Horse 27.40% 37.23% 41.91% 41.97%
Lion 26.32% 32.77% 35.98% 36.39%
Lucy 26.17% 32.92% 36.52% 37.37%

Maxplanck 26.01% 32.70% 35.99% 36.40%
Rabbit 27.60% 37.41% 42.35% 42.41%

RockerArm 27.73% 38.30% 42.65% 42.73%
Screw 27.53% 35.44% 39.56% 39.93%
Teeth 27.62% 36.39% 42.73% 42.80%

VenusBody 23.93% 33.06% 38.02% 38.64%
VenusHead 27.62% 37.97% 42.62% 42.66%

Average 27.18% 34.60% 38.51% 38.92%

Table 7. The embedding capacity comparison for each model under p = 0.75.

Model
p = 0.75

SUM Ratio MAX Ratio AVE Ratio MIN Ratio

Armadillo 620,651 49.73% 771,150 86.04% 789,114 90.37% 801,150 93.28%
Ateneam 28,848 58.85% 33,833 86.29% 35,245 94.07% 36,113 98.85%

Brain 77,514 43.59% 87,689 62.44% 89,430 65.67% 89,719 66.20%
Brain2 1,113,234 45.19% 1,323,805 72.66% 1,364,716 77.99% 1,402,490 82.92%
Bunny 126,784 60.25% 154,571 95.38% 159,829 102.02% 161,943 104.69%
Cow 172,822 59.72% 213,148 96.99% 217,408 100.93% 220,346 103.65%

Dinosaur 226,448 60.55% 270,542 91.81% 279,177 97.93% 284,736 101.87%
Dragon 1,897,529 58.14% 2,189,923 82.50% 2,233,088 86.10% 2,230,750 85.91%

DragonFusion 1,910,059 62.24% 2,247,132 90.87% 2,277,575 93.46% 2,284,915 94.08%
Elephant 73,733 59.92% 88,401 91.73% 90,172 95.57% 91,357 98.14%

Gear 989,284 58.22% 1,173,128 87.62% 1,211,001 93.68% 1,238,561 98.09%
Golfball 418,875 18.90% 502,197 42.55% 522,089 48.20% 537,986 52.71%

Hand 1,332,624 53.48% 1,607,963 85.19% 1,629,149 87.63% 1,638,186 88.67%
HappyBuddha 2,364,308 59.29% 2,729,198 83.88% 2,784,286 87.59% 2,784,237 87.58%

Hippo 86,695 48.26% 104,253 78.29% 106,992 82.97% 108,839 86.13%
Horse 193,485 64.74% 232,812 98.22% 241,042 105.23% 244,307 108.01%
Lion 654,428 51.92% 816,358 89.51% 835,455 93.95% 846,985 96.62%
Lucy 978,076 49.90% 1,172,694 79.72% 1,211,375 85.65% 1,239,243 89.92%

Maxplanck 175,509 49.99% 215,308 84.01% 221,682 89.45% 227,816 94.70%
Rabbit 263,592 62.13% 312,833 92.42% 327,974 101.74% 334,099 105.50%

RockerArm 162,807 64.54% 196,435 98.52% 202,342 104.49% 205,530 107.72%
Screw 191,189 57.49% 221,447 82.41% 224,922 85.28% 225,048 85.38%
Teeth 452,926 62.35% 545,497 95.53% 566,572 103.09% 575,483 106.28%

VenusBody 76,738 68.09% 89,767 96.62% 92,430 102.46% 94,199 106.33%
VenusHead 517,689 64.44% 627,006 99.17% 651,104 106.82% 660,952 109.95%

Average 55.68% 86.01% 91.29% 94.13%
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Table 8. The embedding capacity comparison for each model under p = 0.50.

Model
p = 0.50

SUM Ratio MAX Ratio AVE Ratio MIN Ratio

Armadillo 779,943 88.16% 885,585 113.65% 890,101 114.73% 894,890 115.89%
Ateneam 35,858 97.45% 40,180 121.24% 40,925 125.35% 41,456 128.27%

Brain 90,430 67.52% 96,232 78.27% 97,276 80.20% 97,200 80.06%
Brain2 1,339,809 74.75% 1,455,695 89.86% 1,480,357 93.08% 1,492,992 94.72%
Bunny 155,324 96.33% 175,873 122.30% 177,556 124.43% 177,989 124.98%
Cow 213,088 96.94% 232,068 114.48% 234,133 116.39% 234,979 117.17%

Dinosaur 282,584 100.35% 338,080 139.69% 342,089 142.54% 343,994 143.89%
Dragon 2,264,305 88.70% 2,485,317 107.12% 2,510,444 109.21% 2,491,536 107.64%

DragonFusion 2,323,078 97.32% 2,567,574 118.09% 2,585,866 119.65% 2,581,596 119.28%
Elephant 91,355 98.14% 99,234 115.23% 100,394 117.74% 101,377 119.87%

Gear 1,222,781 95.56% 1,366,716 118.58% 1,386,046 121.67% 1,399,906 123.89%
Golfball 540,521 53.43% 592,094 68.07% 602,896 71.14% 608,555 72.75%

Hand 1,636,256 88.45% 1,829,274 110.68% 1,844,593 112.44% 1,849,223 112.97%
HappyBuddha 2,819,907 89.99% 3,094,219 108.47% 3,127,214 110.69% 3,107,199 109.34%

Hippo 105,985 81.25% 117,936 101.69% 119,370 104.14% 120,406 105.91%
Horse 239,368 103.80% 289,708 146.66% 291,669 148.33% 292,486 149.03%
Lion 823,877 91.26% 935,470 117.16% 939,658 118.14% 944,095 119.17%
Lucy 1,210,175 85.47% 1,347,293 106.48% 1,366,173 109.38% 1,381,562 111.73%

Maxplanck 219,920 87.95% 250,033 113.68% 252,351 115.66% 254,049 117.12%
Rabbit 335,830 106.57% 401,153 146.75% 404,071 148.54% 405,735 149.57%

RockerArm 204,968 107.15% 243,940 146.53% 245,722 148.33% 246,705 149.33%
Screw 227,399 87.32% 250,753 106.55% 252,551 108.04% 251,622 107.27%
Teeth 591,592 112.05% 705,657 152.94% 711,382 154.99% 714,163 155.99%

VenusBody 95,500 109.18% 105,800 131.74% 107,417 135.28% 108,608 137.89%
VenusHead 666,516 111.72% 813,406 158.38% 817,330 159.63% 819,809 160.41%

Average 92.67% 118.17% 120.39% 121.37%

Table 9. The embedding capacity comparison for each model under p = 0.25.

Model
p = 0.25

SUM Ratio MAX Ratio AVE Ratio MIN Ratio

Armadillo 790,660 90.74% 898,171 116.68% 902,038 117.61% 905,992 118.57%
Ateneam 36,753 102.37% 40,922 125.33% 41,663 129.41% 42,195 132.34%

Brain 92,907 72.11% 98,315 82.13% 99,335 84.02% 99,268 83.89%
Brain2 1,342,154 75.05% 1,458,624 90.24% 1,483,496 93.49% 1,496,203 95.14%
Bunny 156,111 97.32% 176,644 123.27% 178,348 125.43% 178,757 125.95%
Cow 213,704 97.51% 233,022 115.36% 235,147 117.33% 235,891 118.01%

Dinosaur 283,536 101.02% 339,191 140.48% 343,144 143.28% 345,000 144.60%
Dragon 2,298,323 91.54% 2,509,489 109.13% 2,532,754 111.07% 2,512,309 109.37%

DragonFusion 2,336,787 98.49% 2,576,554 118.86% 2,594,226 120.36% 2,589,329 119.94%
Elephant 92,850 101.38% 100,541 118.06% 101,598 120.35% 102,602 122.53%

Gear 1,242,282 98.68% 1,382,372 121.09% 1,400,308 123.95% 1,413,421 126.05%
Golfball 579,062 64.37% 633,105 79.71% 643,223 82.59% 649,481 84.36%

Hand 1,643,661 89.30% 1,835,045 111.34% 1,849,972 113.06% 1,854,574 113.59%
HappyBuddha 2,863,070 92.89% 3,124,863 110.53% 3,155,207 112.58% 3,133,523 111.12%

Hippo 109,637 87.50% 121,174 107.23% 122,571 109.62% 123,613 111.40%
Horse 239,887 104.25% 290,235 147.11% 292,155 148.75% 292,969 149.44%
Lion 835,199 93.89% 948,496 120.19% 952,092 121.02% 955,782 121.88%
Lucy 1,246,947 91.10% 1,382,862 111.93% 1,400,097 114.57% 1,414,295 116.75%

Maxplanck 223,092 90.66% 253,473 116.62% 255,685 118.51% 257,157 119.77%
Rabbit 336,766 107.14% 402,232 147.41% 405,113 149.18% 406,737 150.18%

RockerArm 205,505 107.69% 244,484 147.08% 246,315 148.93% 247,260 149.89%
Screw 231,044 90.32% 253,407 108.74% 255,109 110.14% 254,139 109.34%
Teeth 593,427 112.71% 707,872 153.73% 713,451 155.73% 716,165 156.71%

VenusBody 97,584 113.75% 107,681 135.86% 109,314 139.44% 110,436 141.90%
VenusHead 667,585 112.06% 814,909 158.86% 818,767 160.08% 821,202 160.86%

Average 95.35% 120.68% 122.82% 123.74%



Symmetry 2018, 10, 290 12 of 14

Finally, Table 10 shows the number of detected suspicious vertices for each model under different
embedding parameters. We randomly add or subtract 0.01% of the length, width, and height of the
bounding volume of input model from the x, y, and z coordinate values of 50 vertices separately.
The proposed algorithm is then used to perform tamper localization. Recall that a region-based tamper
detection algorithm can only locate a rough region with some unaltered vertices inside. Therefore, any
one vertex that is altered in the embedding block may lead to all the vertices within the block being
regarded as suspicious. As the value of embedding parameter is decreased, the embedding block is
smaller with fewer vertices. Thus, the number of suspicious vertices is decreased and the accuracy of
the located tampered region is higher. The only exception is the results of embedding parameter 0.50
and 0.25 because their numbers of reference vertices for each embeddable vertex are similar.

Table 10. Number of suspicious vertices detected for each model under different
embedding parameters.

Model

Vertex Number Embedding Parameter p

1.00 0.75 0.50 0.25

Armadillo 617 396 277 272
Ateneam 540 365 265 254

Brain 588 417 281 269
Brain2 597 357 254 263
Bunny 561 358 245 254
Cow 636 367 257 272

Dinosaur 565 414 353 353
Dragon 1011 714 545 488

DragonFusion 553 419 346 339
Elephant 532 356 274 268

Gear 592 373 284 293
Golfball 706 411 247 249

Hand 587 398 311 303
HappyBuddha 685 488 418 429

Hippo 613 426 274 251
Horse 543 356 277 277
Lion 578 418 282 276
Lucy 570 375 271 277

Maxplanck 553 385 267 263
Rabbit 583 393 330 321

RockerArm 586 369 279 283
Screw 500 329 288 275
Teeth 513 368 295 289

VenusBody 498 356 290 290
VenusHead 594 379 286 286

5. Conclusions and Future Studies

This paper proposes three strategies to improve Tsai et al.’s proposed algorithm. We firstly
modified the message grabbing method to raise the embedding capacity above 11.5%. Further, we also
modified Tsai et al.’s embedding ratio generation method, increasing the embedding capacity to
47.74%. Finally, the strategy adopting a reduced number of reference vertices for message embedding
accompanying the above two ones improves the embedding capacity up to 123.74%. The experimental
results demonstrate the feasibility of the proposed algorithm with higher embedding capacity, higher
embedding rate, and accurate tamper localization. Further, the model distortion between the original
and the marked ones is small.

Future studies could fruitfully explore the proposed algorithm further for point geometries
without topological relationship between vertices. Thereafter, providing self-recovery ability is another
important research issue to be discussed.
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