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Abstract: Facial landmarking locates the key facial feature points on facial data, which provides
not only information on semantic facial structures, but also prior knowledge for other kinds of
facial analysis. However, most of the existing works still focus on the 2D facial image which may
suffer from lighting condition variations. In order to address this limitation, this paper presents a
coarse-to-fine approach to accurately and automatically locate the facial landmarks by using deep
feature fusion on 3D facial geometry data. Specifically, the 3D data is converted to 2D attribute
maps firstly. Then, the global estimation network is trained to predict facial landmarks roughly by
feeding the fused CNN (Convolutional Neural Network) features extracted from facial attribute
maps. After that, input the local fused CNN features extracted from the local patch around each
landmark estimated previously, and other local models are trained separately to refine the locations.
Tested on the Bosphorus and BU-3DFE datasets, the experimental results demonstrated effectiveness
and accuracy of the proposed method for locating facial landmarks. Compared with existed methods,
our results have achieved state-of-the-art performance.

Keywords: facial landmarking; 3D geometry data; 2D attribute maps; fused CNN feature;
coarse-to-fine

1. Introduction

Accurate and automatic facial landmark detection or face alignment is critical in face verification,
face recognition, facial animation, facial expression recognition and other research. Therefore, it attracts
increasing research interests worldwide.

Recently, most studies on face alignment are still primarily conducted on texture images [1–10].
As known, 2D face images are rather sensitive to some condition changes such as arbitrary pose
and illumination variations. To address the pose limitation, some researchers proposed that using
the reconstructed 3D shape can assist facial landmarking performance under arbitrary poses [11,12].
However, the reconstructed 3D face shape based on corresponding 2D face texture is still sensitive to
illumination changes. Motivated by this challenge, the emergence of 3D facial data has provided an
alternative to enhance the accuracy and efficiency of facial landmarks’ estimation.

With the progress of 3D technology, locating facial landmarks on the 3D facial data has been
widely studied [13–21]. Unlike 2D images, both facial geometry information and texture information is
contained in each piece of 3D facial data. During the past decade, more studies about facial landmarks’
estimation on 3D facial data have been presented. Most of the approaches [20–22] applied both texture
data and geometry data to detect landmarks jointly, which can enhance the performance effectively.
In fact, not all 3D scanners provide texture and the texture information is not invariant to viewpoint
and lighting conditions, so it is necessary to locate landmarks accurately only from 3D geometry data.
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However, most studies only take range data into account and don’t make the best of features extracted
from 3D geometry data. In contrast, Li [23] employs feature fusion to recognize facial expression and
make great progress. Motivated by this, our proposed method would take five facial attribute maps
extracted from 3D geometry data, instead of only applying the range data.

In this paper, we proposed a general framework based on coarse-to-fine for face landmarking
only taking 3D facial geometry data. As Figure 1 illustrates, we firstly proposed five feature maps
computed from pre-processed 3D geometry data, including a range map, three surface normal maps
and a curvature map, which are insensitive to lighting conditions. To locate landmarks accurately,
a cascade regression network was designed to update landmarks location iteratively. For this purpose,
the global CNN feature extracted by a pre-trained deep neural network from five feature maps
was used to estimate landmarks roughly. According to learning the mapping functions from the
fused local CNN feature around the landmark estimated previously to corresponding residual
distance, local refinement nets are trained independently. By adopting the coarse-to-fine strategy,
the performance of landmarking would be improved iteratively.

𝑆0

Fused Global Feature 

Fused local Feature 

𝐻1

∆𝑆1

𝐻𝑁
∆𝑆𝑁

𝑆0 + ∆𝑆

…

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

∆𝑆

Global Estimation Local Refinement

.

.

.

F

Figure 1. Flowchart of our algorithm for landmarks’ detection on 3D facial geometry.

In summary, our learning-based framework is a novel coarse-to-fine approach to estimate
landmarks on 3D geometry data by fusing the deep CNN features. The main contributions of this
work are the following:

• We propose using the deep CNN feature extracted from five kinds of facial attribute maps to
estimate 3D landmarks jointly, instead of using any handcrafted features.

• We propose a global estimation stage and a local refinement stage for 3D landmarks’ prediction
based on coarse-to-fine strategy and feature fusion.

• Tested in the public 3D face datasets named Bosphrous and BU-3DFE databases, the performances
have been state-of-the-art.

The rest of this paper is organized as follows: Section 2 briefly reviews related works about
2D and 3D landmarks’ localization. Section 3 describes our proposed method in detail. In this
section, the architecture of proposed model, global estimation and local refinement will be introduced.
Experimental results are evaluated and compared in Section 4. The weakness of the proposed approach
will be discussed in Section 5. Section 6 includes the conclusions and future research derived from
this work.
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2. Related Work

2.1. Facial Landmarking on 2D Images

Various 3D based methods are the extension of 2D-based. The 2D facial landmarking can
generally be divided into two main categories: model-based [1–3] and regression-based [4,6,7]
methods. In the former category, it mainly builds face templates to fit the input images, such as
Active Appearance Model (AAM) [1], Active Shape Model (ASM) [2], and Constrained Local Model
(CLM) [3]. However, model-based methods do not perform not very well in the wild, mainly because
the linear model can’t handle the complex nonlinear model well. Thus, the regression-based method
was proposed to estimate landmark locations explicitly by regression models. It also has been the
most widely employed and has made great progress. Supervised Descent Regression (SDR) [6],
Cascade Fern Regression (CFR) [7], and Random Forest Regression (RFR) [4] have been established to
deal with face alignment on 2D face images. However, most regression-based methods [5,8–10] refine
an initial landmark location iteratively, and the performance under some challenging conditions such
as illumination changes are not very satisfactory.

Recently, research on deep learning has become a popular field of study with the development of
computer hardware and the theory of neural networks. Face recognition [24,25], face verification [26]
and facial expression recognition [27] have achieved better performance than the traditional approaches.
Compared with the traditional methods, deep learning-based methods have been emerging as
an innovative branch in facial landmarking studies recently. Cascade CNN [28], coarse-to-fine
Auto-encoder Networks (CFAN) [29] and deep multi-task [30] learning methods are proposed to locate
landmarks accurately. Stacked hourglass networks [31] are proposed to estimate landmarks end-to-end.
In essence, deep-learning based methods are still regression-based methods which adopt deeper
neural networks to estimate the nonlinear correlation between facial image and estimated landmarks.
However, it is a great challenge to acquire a huge amount of face data and corresponding labels.
Some methods are built on three-dimensional assistance. In Zhu [11], Jourabloo [12] and Kumar [32],
they all adopt a 3D solution in a novel alignment framework, which shows that the character of 3D data
can help to conquer the limitation of arbitrary pose and other challenges. In Bulat [33], they created a
large dataset and estimated 2D and 3D landmarks by adopting hourglass networks. However, all of
these methods obtain corresponding 3D shape by adopting 3DMM or 2D texture images that is also
sensitive to the changeable lighting conditions.

2.2. Facial Landmarking on 3D Facial Data

Many studies on face landmarking based on 3D geometry and texture data jointly have been
proposed recently.

In most of the existing works on 3D facial landmarking, 3D facial landmarks are estimated
by computing the 3D shape-related feature, including shape index [14,15,34], effective energy [16],
Gabor filter [17,18], local gradient [35] and curvature feature [36]. However, the accuracy on these
prominent landmarks decreases drastically, including nose tip and the corner of eyes.

Among these methods on 3D facial landmarking, many approaches utilize registered range data
and texture images jointly to estimate landmarks straightforwardly, which can take full advantage
of the information from range and texture data. In Boehnen and Russ [37], the eye and mouth maps
are computed by adopting both range and texture information. In Wang et al. [38], a point signature
representation and the Gabor jets from 2D texture images are used to represent the 3D face mesh.
Salah and Jahanbin et al. [22,39] proposed the Gabor wavelet coefficient so that the local appearance in
2D texture image and local patch in the range data around each landmark can be modeled well. As the
same thought, in Lu and Jain [40], the local shape index feature and cornerness texture feature around
seven landmarks were computed and fused to detect landmarks jointly.

Unlike the above approaches which estimate each landmark independently, the combination
of candidate landmarks is quite essential to improve the performance. To make use of the structure
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between each landmark, the heuristic model [21], 3D geometry-based model [37] and elastic bunch
graph-based model [22] were proposed. Most of the works constructed the average 3D position
of landmarks as the initialization shape and then updated the position iteratively. However, all of
these approaches didn’t consider the relationship between the 3D position of landmarks and the feature
around each landmark, including the range feature and texture feature. In addition, the 3D point
distribution model (PDM) was proposed to estimate eyes, nose and mouth corner. Nair and
Cavallaro [21] study 3D facial landmarking by building a statistical model to estimate landmarks
coarsely, and then heuristics are applied to refine the locations. Perakis et al. [14,15] study landmarking
on 3D facial data under much more challenging conditions, such as the missing data caused by self
occlusion. Zhao et al. [20] proposed another method based on statistical models, who presented a
model which take the both the relationship between each landmark and the local properties around
each landmark into account. However, the main problem of this approach is that the solution is not
global, which was caused by the inappropriate initialization.

3. Methodology

3.1. Overview

Given a 3D facial geometry data G, 3D facial landmarks’ detection is the task to locate N
pre-defined fiducial points, including eye corners, nose tip, mouth corners and so on. We denote the
homogeneous coordinate of 3D facial landmarks as S:

S =

x1 x2 ... xN
y1 y2 ... yN
z1 z2 ... zN

 , (1)

where N is the pre-defined number of landmarks. The function is also equal to the following function:

S =

x(u1, v1), x(u2, v2), ... x(uN , vN)

y(u1, v1), y(u2, v2), ... y(uN , vN)

z(u1, v1), z(u2, v2), ... z(uN , vN)

 , (2)

where x,y and z represent the x,y,z coordinate map for each pair (u, v). Given 3D facial data, our goal
is to simultaneously estimate the (u, v) accurately.

For this purpose, we propose transforming the 3D face landmarks’ estimation to detect the
landmarks on five types of 2D facial attribute maps, including shape index map, normal maps and
original range map that calculated on 3D geometry data. Then, a novel framework as Figure 1
was presented to achieve our goal accurately and efficiently. Based on the coarse-to-fine strategy,
the framework comprises two main parts: one is for global estimation and the other is for local
refinement. Specifically, the global estimation phase is intended to locate the landmarks roughly
by feeding into the fused global feature that extracted from these attribute maps. Then, the local
refinement stage is to learn the nonlinear mapping function from the fused local feature that extracted
from a local patch around estimated global landmarks to residual distance.

In the global estimation phase, the goal is to locate landmarks roughly, but it is still more robust
and accurate than the mean shape. To train this model, instead of applying the handcrafted feature,
we use the pre-trained deep network to extract features from each facial attribute map as a global
feature and then concatenate them as the fused feature. Feeding into the fused feature, the target
of the regression model is to estimate global landmarks directly. According to the trained model,
the global landmarks would be obtained roughly but robustly, which can lay the foundation for the
local refinement.

After global optimization by inputting the fused global feature, we can get the initialization
shape. The initialization shape is more robust and accurate than the mean shape; however, it is still
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not satisfied. To refine the global estimation, the refinement stage is designed to refine the results.
We extract the local CNN feature from the cropped local patches around the global landmarks and
then learn the mapping function from the fused local feature to the residual distance between previous
landmarks and ground truth.

3.2. Facial Attribute Maps

To comprehensively describe the geometric information of 3D data, five types of facial attribute
maps were constructed, including three surface normal maps Nx, Ny, Nz, curvature feature SI,
and range data R. Among these maps, surface curvature and normal maps are the most significant
feature in 3D object detection, recognition and other 3D tasks. Figure 2 shows the five types of facial
attribute maps computed from original 3D facial geometry data.

Figure 2. These five facial attribute maps, denoted as three surface normal map Nx, Ny, Nz, curvature
feature map SI and range map R.

3.2.1. Surface Curvature Feature

The surface curvature features have been adopted for 3D face landmarks’ estimation in many
types of research. Actually, surface curvature is the most significant feature in 3D object detection,
recognition and other 3D tasks. Thus, this paper chooses the shape index feature map as the first facial
attribute.

The Shape index is a continuous mapping of principal curvature values (kmax, kmin) of a 3D object
point p. Once we have two principal curvature (kmax, kmin), the shape index values, which describe
different shapes classed as single numbers ranging from 0 to 1, are calculated as:

SI(p) =
1
2
− 1

π
arctan(

kmax + kmin
kmax − kmin

). (3)

3.2.2. Surface Normal Maps

Considering a normalized 3D facial geometry data G, denoted as a m× n× 3 matrix:

G = [Puv(x, y, z)]m×n = [puvx, puvy, puvz]1≤u≤m,1≤v≤n, (4)

where [Puv(x, y, z)] denotes the corresponding 3D point coordinate of facial geometry data.
The corresponding surface normal maps are represented as:

N(Ig) = N[Puv(x, y, z)]m×n

= [N(puvx), N(puvy), N(puvz)]1≤u≤m,1≤v≤n.
(5)

In this paper, a local plane fitting method is applied to compute N(Ig), which consists of a three
M× n matrix. In other words, for each point in 3D facial geometry data, the surface normal vector can
be computed by the following function:

Suv : Nuvxquvx + Nuvyquvy + Nuvzquvz = d, (6)
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where (quvx, quvy, quvz) represents any point within the local neighbourhood of point puv and∥∥∥(Nuvx, Nuvy, Nuvz
)T
∥∥∥

2
= 1. In this paper, a neighbourhood of 5× 5 window is adopted and three

normal maps would be obtained, denoted as Nx, Ny, NZ.

3.3. Global Estimation

As the proposed method illustrates, these five types of attribute maps as Figure 2 would be
fed into the neural network to estimate landmarks roughly. Considered the calculated feature maps,
denoted as shape index SI, Nx, Ny, Nz and original range map R, Sg (x) ∈ R2N×1 represents the
ground truth of N landmarks. The goal of our global model is to learn the mapping function F from
our fused feature map to the ground truth coordinate:

Sg (x)← F
(
SI, Nx, Ny, Nz, R

)
. (7)

Limited to the amount of training data, training a global CNN model directly is always over-fitting.
To overcome this limitation, fine-tuning based on a pre-trained deep model was employed to learn
F. To achieve this goal, the parameters of pre-trained model were fixed except training the last layer.
Then, the SI, Nx, Ny, Nz, R are fed into the pre-trained model (e.g., VGG (Visual Geometry Group)-net
in this paper) separately. Generally, the pre-trained deep CNN model can be regarded as a special
feature extractor, which can be regarded as v = DNN (Map), where DNN represents the fixed part
of the pre-trained model, Map denotes the resized facial attribute map, and v is the extracted feature
vector of each attribute map. Consider adopting shape index maps and convolution neural networks
to detect a coarse S0 as the result of the first step. In particular, the deep models are all comprised of
three main parts including convolutional layers, pooling layers and fully connected layers.

• Convolutional Layer and ReLU Non-linearity.

Through a set of designed and learnable filters, the convolutional layer transforms the input
images or activation maps to another. Specifically, given a set of activation maps from the previous
layer yl−1 ∈ RWl−1×Hl−1×Dl−1 , and Kl convolutional filters, each with size W f × H f × Dl−1, a list
of activation maps yl ∈ RWl×Hl×Dl at the layer L will be computed and output. Let this stride be
S; then, the Wl = (Wl−1 −W f + 2P)/S + 1 and Hl = (Hl−1 − H f + 2P)/S + 1. Then, we add an
activation function ϕ to adjust the result to a nonlinear function. In this paper, rectified linear units
(ReLU), denoted as ϕ (x) = max (0, x) , is used. Thus, the result of l layer is denoted as:

yl = ϕ(Wl ∗ yl−1 + bl), (8)

where bl denotes the bias term, and ∗ denotes the convolution operator.

• Fully Connected layers.

This layer is used to reshape these feature maps into a vector feature. The hidden layers are
fully connected, which means that each unit in a previous layer is connected with each unit in the
next layer. Suppose the global network has L convolutional layers in total and so the feature maps
in the last convolutional layers are represented as yl ∈ RWL×HL×DL . Let the (L + 1)-th layer be the
fully connected layer, and the output of layer L be the input of layer L + 1, with size yL+1 ∈ RK,
where K = WL × HL × DL. Thus, this layer is equal to:

yL+1 = reshape(yL). (9)

Then, the next fully connected layer will be:

yL+2 = ϕ(wL+1 × yL+1 + bL+1), (10)
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where WL+1 is the weight value in the L + 1-th layer and bL+1 is the bias term value. ϕ denotes the
tanh activation function. C. Objective function. After feature extraction for each facial attribute map is
done separately, the feature vectors are concatenated as V =

[
vSI , vNx , vNy , vNz , vR

]
to train the global

model F. Specifically, by training a designed neural networks, our target has been formulated as
solving the objective function:

argmin
∥∥Sg − F (V)

∥∥2
2 , (11)

where F is the nonlinear regression function from V to the landmarks Sg, denoted as F = σ
(
WTV + b

)
,

where σ represents the nonlinear activation function such as sigmoid, tanh and Relu. In this paper,
sigmoid function is employed by the final output layer to learn the parameters [W, b]. However,
the range of final output is [0, 1], while the range of regression is inconsistent. Therefore, Sg would be
normalized to range [0, 1], so that the objective function can be formulated as minimizing the function:

argmin
∥∥Sg − F (V)

∥∥2
2 + λ ‖W‖2

F , (12)

where ‖W‖2
F denotes the regularization term, added to prevent the over-fitting. λ is the set to 0.00005.

After the optimization with Equation (12), the learned parameters [W, b] are obtained and S0

would be calculated via S0 = F(V).

3.4. Local Refinement

The global estimation phase describes the mapping function from the fused facial attribute maps
to the target landmarks’ location. Unlike other methods, the estimated shape is global and more
accurate than the mean shape. However, it is still rough and there is room for improvement. To achieve
more accurate locations, a coarse-to-fine based approach is proposed to improve the performance.
Similar to many cascade regression methods for 2D face alignment, a local model as Figure 3 is
employed to estimate the residual distance ∆S, representing the distance between global estimated
shape S0 and ground truth Sg.

Figure 3. Five different local attribute maps for 22 landmarks. (a): depth feature map; (b): curvature
feature; (c): surface normal feature along the x-axis; (d): surface normal feature along the y-axis;
(e): surface normal feature along the z-axis.
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Similar to the global estimation, we employed the pre-trained CNN model to extract local
features from the local patches around the estimated shape S0. Each local patch around S0 is cut
out within 30 mm, and then transformed to attribute maps. After the calculation of local attribute
maps, they would be resized to 224× 224 and are fed into the pre-trained deep neural network to
extract local CNN features. Actually, we once considered concatenating the fused local feature of all
landmarks to estimate the ∆S jointly. However, limited to the huge number of trained parameters
(e.g., 4096 × 5 × 22 × 44 = 19,824,640), we propose refining each local patch around a landmark
independently. For this purpose, deep feature fusion is also applied for training local model, denoted as
φi = [φi

SI , φi
Nx, φi

Ny, φi
Nz, φi

R]i=1,2,...N , where i represents the i-th landmark and N is the number of
located landmarks.

Getting the local feature vectors, the local refinement model is to learn a nonlinearity function Hi
from fused local feature φi to the ∆Si for each landmark, denoted as ∆Si = Sg(i)− S0(i). The objective
function of each model can be formulated as follows:

argmin ‖∆Si − Hi (φi)‖2
2 + β ‖Wk‖2

F , (13)

where Hi is a regression function the same as F, represented as Hi = σ (Wiφi + bi). Different from
the global estimation, the activation function σ is the tanh function, so that all the outputs are in
range [−1, 1]. After optimization, we can compute ∆Si according to ∆Si = Hi (φi), and then we obtain
∆S = [∆S1, ∆S2, ..., ∆SN ]. Therefore, normalized results S f inal can be computed as the following:

S f inal = ∆S + S0. (14)

4. Experiments

We firstly introduce the datasets used in this paper and then will describe data pre-processing,
data augmentation and the parameters’ setting briefly in this section. Finally, we will evaluate the
performance in these datasets and compare their performances with other methods.

4.1. Datasets

To evaluate the proposed approach, we employ two public 3D facial data, namely the Bosphorus
database [41] and the BU-3DFE (Binghamton University 3D Facial Expression) database [42].

The Bosphorus database contains 4666 pairs facial scans from 105 subjects. It also contains
3D facial geometry data under various occlusions (e.g., glass, hands and hair) and several facial
expressions. In our experiments, all of the nearly frontal facial data are selected regardless of the
occlusion and expressions, resulting in 3632 3D facial geometry data in total. However, the number
of landmarks in these data is inconsistent, so we manually selected and labelled 22 landmarks in the
Bosphorus dataset for training the models.

The BU-3DFE database includes data from 100 subjects which contain 56 female and 44 male.
Each subject contains not only a neutral expression but also the six universal expressions. In our
experiments, we have selected all near frontal facial data from all the subjects, regardless of the
expression variance, getting 2500 facial scans totally. In this dataset, among the labelled 83 landmarks,
we manually selected 68 landmarks and abandoned the other 15 landmarks located on the facial
edge. Actually, some common landmarks are labelled in the two datasets, such as eye corners and
mouth corners.

4.2. Data Pre-Processing

To learn the global and local attribute maps, the size of global and local patches needed to be
resized to the same size, meaning that the number of 3D clouds for each piece of 3D facial geometry
data is uniform. However, it is hard to be normalized because of the different face scales. Therefore,
uniform grids are applied to remesh the global facial scans or local regions around landmarks. To get
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local regions, we select all of the points around the landmark with a specific size of 30 mm× 30 mm,
and then remesh a uniform grid with the same number of points by using the interpolation. At the
same time, the z-values on this grid would be processed by using this normalization. Based on the
uniform grids, the facial attribute maps and local patches would be constructed easily and efficiently.

4.3. Data Augmentation

In fact, the number of training data in these datasets is not enough to avoid over-fitting.
To overcome over-fitting and improve the performance, increasing the number of training data
by utilizing data augmentation is necessary and useful. For this purpose, randomly rotation and
symmetry transformation were chosen to augment the variety of facial data. Firstly, we randomly
rotate facial data in the horizontal direction and ensure that the face is nearly frontal. Secondly, we also
transform the symmetry data for each piece of training data. After data augmentation, more artificially
generated facial data would be obtained, so that the over-fitting can be addressed effectively. Of course,
the corresponding ground truth would be changed by the same rules.

4.4. Experimental Setting

In our paper, the pre-trained deep CNN model, namely VGG16 [43], is selected for extracting
deep CNN features. In the pre-trained networks, all layers and parameters are kept unchanged in
the network except the final fully connected layer. As known, the size of the input map is 224× 224
and the dimension of features is 4096. Since we have five types of facial, the dimension of fused
feature is 4096 × 5, while the number of output units is 2 × N. The weight matrix W with size
(4096 × 5) × (2 × N) would be randomly initialized, and corresponding bias vector b would be
initialized by a 2× N-dimensional zero vector. Each local refinement network is almost similar to
the global estimation network, and the number of output units is 2. The weight matrix Wi with size
(4096× 5)× 2 would be also randomly initialized, and the corresponding bias vector bi would be
initialized by a two-dimensional zero vector.

4.5. Convergence and Model Selection

To train these models appropriately, we trained the global estimation model and local refinement
models for 2000 iterations, so that these models can converge. Actually, these models have been in
convergence when the models were trained about for 1600 iterations. However, to avoid over-fitting in
these testing data, the models which trained for about 1400 iterations would be chosen, which may be
closed to convergence and more suitable in the testing dataset. The experiments also show that these
models perform much better in the testing data.

4.6. Evaluation

To evaluate our proposed approach, three comparison experiments are designed in this section.
First, it is necessary to confirm the efficiency of coarse-to-fine strategy. Second, the performance
by using mean shape as initialization shape is evaluated. Furthermore, the third is to show the
performances under different feature combination. In all experiments, distance error calculated as
Euclidean distance between estimated landmarks location and corresponding ground truth were used
to evaluate the performance. To evaluate and compare these methods, these three main experiments
are carried out on the Bosphorus dataset. Among these 3632 data, 2800 data are randomly selected as
training data, and the other 832 are regarded as testing data. The number of training data is increased
to 2800× 6 = 16,800 after augmentation. In this section, all models are trained and tested by using the
same training and testing data.

To confirm the effective of global estimation, we compare our method with the method by taking
mean shape as initialization shape. Different from taking the global estimation as initialization,
mean shape is computed as the initialization shape for local refinement. Instead of global estimation,
the local patches around mean shape are taken to extract local features. Then, we will update the
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locations the same as the local refinement phase in our method. Figure 4a shows the average distance
error after global estimation and mean shape calculation, and Figure 4b illustrates the average distance
error via two different initialization ways after local refinement. As can be seen, the results of our
proposed method outperforms after the local refinement.

Figure 4. The comparison results between mean shape and our proposed method. (a) denotes the
results after global estimation and the (b) represents the results after refinement.

Furthermore, to verify the coarse-to-fine strategy, we compare the results after global estimation
and local refinement. In Figure 5, the blue bars show the average distance error of 22 landmarks in the
testing dataset after global estimation, while the other bars show the results after refinement. It can be
easily observed that the results are enhanced effectively from coarse to fine. Note that the mean error
has achieved 4.11 mm after global estimation, while 98.23% landmarks are located automatically with
20 mm and 93.31% landmarks are with 10 mm. After local refinement, the 100% landmarks are located
automatically with 20 mm precision and 96.43% are with 10 mm. Furthermore, the average error of all
landmarks in the testing data can also be improved to 3.37 mm, which has achieved the state-of-the-art.

Figure 5. The comparison results after global estimation and local refinement.

To show the performance under different feature combinations, the experiment is carried on
the same training and testing data, and independent models are trained under different feature
combinations. For this purpose, we selected maps from five facial attribute maps randomly and
30 = (25 − 2) kinds of feature combinations are generated to train and test models separately. In the
case of each condition, the number of inputs would be modified to adjust the different network
architecture, and other parameters in the networks are invariable. Figure 6 shows the global estimation
results under different feature combinations. In this figure, the blue bars represent the mean error
when different feature sets are fed into the network, while the red bar denotes our result. It can be
observed that our global estimation result is the best, especially when we fuse all of these five facial
attribute maps.
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Figure 6. The global estimation results under different feature fusion.

4.7. Comparison with Other Methods

4.7.1. Comparison with Handcrafted Features

To compare the performance of deep fusion feature with the results obtained by applying
handcrafted features, their handcrafted features were tested. Instead of the deep fusion feature,
three classical features including HOG (Histogram of Oriented Gradient), SIFT (Scale Invariant Feature
Transform) and LBP (Local Binary Pattern), which have been proved to be efficient for image analysis,
were employed to locate landmarks iteratively. For this purpose, these features around mean shape
are firstly extracted and then respectively fused and fed into the designed networks to estimate
landmarks coarse-to-fine with default parameters. Table 1 shows the average location error across all
of the 22 landmarks on the Bosphporus database. We can easily draw the conclusion that the deep
feature fusion marked with the bold fonts based on the pre-trained model is more accurate than the
handcrafted features for all of these 22 landmarks. Furthermore, among these handcrafted features,
the SIFT feature achieves the best performance, and outperforms HOG and LBP. These results also
indicate that the location performance would obviously be affected by different features.

Table 1. Comparison with hand-crafted features on the Boshporus database.

Landmarks SIFT LBP HOG Deep Features

Outer left eyebrow 6.13 ± 3.97 6.45 ± 4.11 6.38 ± 4.37 4.76 ± 3.15
Middle left eyebrow 5.37 ± 2.15 4.95 ± 2.07 5.68 ± 3.62 3.43 ± 2.38
Inner left eyebrow 5.14 ± 3.23 5.28 ± 3.45 5.48 ± 2.08 2.96 ± 2.14

Inner right eyebrow 5.04 ± 2.78 5.18 ± 2.96 5.34 ± 3.05 2.93 ± 1.79
Middle right eyebrow 4.88 ± 2.86 5.03 ± 2.54 5.08 ± 2.86 3.41 ± 2.06
Outer right eyebrow 6.02 ± 3.50 5.97 ± 3.45 6.17 ± 3.74 4.83 ± 4.07
Outer left eye corner 4.16 ± 2.05 4.83 ± 2.36 4.97 ± 2.60 3.14 ± 2.17
Inner left eye corner 4.53 ± 2.53 4.12 ± 2.27 5.02 ± 3.10 2.62 ± 1.73

Inner right eye corner 3.71 ± 2.19 4.03 ± 2.30 4.34 ± 2.62 2.74 ± 1.24
Outer right eye corner 4.09 ± 2.51 3.89 ± 2.84 4.13 ± 2.74 2.82 ± 1.85

Nose saddle left 7.85 ± 4.03 7.71 ± 3.96 7.91 ± 4.07 4.13 ± 2.75
Nose saddle right 8.23 ± 4.29 8.35 ± 4.02 8.41 ± 4.72 4.69 ± 3.18

Left nose peak 3.54 ± 2.06 3.67 ± 2.17 3.97 ± 2.37 2.96 ± 2.24
Nose tip 3.84 ± 2.43 3.91 ± 2.59 4.01 ± 2.77 2.69 ± 1.95

Right nose peak 3.53 ± 2.34 3.81 ± 2.61 3.48 ± 2.22 2.74 ± 2.27
Left mouth corner 4.39 ± 2.82 4.13 ± 2.58 4.47 ± 3.01 2.93 ± 3.24

Upper lip outer middle 4.73 ± 3.12 4.99 ± 3.19 4.45 ± 3.08 2.66 ± 2.63
Right mouth corner 6.32 ± 3.83 6.41 ± 3.95 7.04 ± 4.37 3.18 ± 2.93

Upper lip inner middle 4.86 ± 2.75 4.64 ± 2.67 4.93 ± 3.15 2.92 ± 2.65
Lower lip inner middle 5.15 ± 5.02 5.61 ± 4.96 5.89 ± 5.12 3.07 ± 3.17
Lower lip outer middle 6.19 ± 4.19 6.20 ± 3.95 6.07 ± 4.12 3.51 ± 3.15

Chin middle 7.69 ± 5.39 7.93 ± 5.62 8.01 ± 5.70 4.99 ± 4.16
Mean error 5.25 ± 3.18 5.32 ± 3.21 5.51 ± 3.43 3.37 ± 2.72
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4.7.2. Comparison with Pre-Trained Models

This section compares the performance of deep fused features based on three different pre-trained
models on the ImageNet dataset [43–45]. As aforementioned, different features extracted by using
different pre-trained models were fed into the coarse-to-fine networks separately. In this paper,
the same as the other handcrafted features, we use these pre-trained models to extract features
from these facial attribute maps independently and fuse these features to train the designed model.
Limited to numbers of the data, we keep all parameters fixed except the last fully connected layer.
We only tested three classical deep models, including AlexNet [44], VGG-net [43] and Google
Inception [45]. Table 2 shows the average location errors across all of the 22 landmarks on the
Bosphorus database. The best performance is marked by bold fonts. From it, we can conclude that:
(1) all of the deep features achieve better performance than the handcrafted features; (2) Deep fusion
features all can achieve satisfied performance; and the (3) Google Inception network and AlexNet
outperform the VGG-net for a few landmarks. However, comparing with VGG-net, Inception net takes
too much time to extract features because of the complex architecture, and AlexNex is unsatisfactory
among most of landmarks. Considering the computation accuracy and time complexity, the VGG-net
has been chosen as the pre-trained deep model.

Table 2. Comparison with pre-trained deep models on BoshporusDB.

landmarks AlexNet Google Inception VGG-Net

Outer left eyebrow 4.93 ± 2.54 4.47 ± 2.31 4.76 ± 3.15
Middle left eyebrow 4.19 ± 3.18 3.62 ± 2.47 3.43 ± 2.38
Inner left eyebrow 3.05 ± 2.43 2.88 ± 2.04 2.96 ± 2.14

Inner right eyebrow 3.16 ± 2.17 3.04 ± 1.92 2.93 ± 1.79
Middle right eyebrow 3.61 ± 2.58 3.55 ± 1.99 3.41 ± 2.06
Outer right eyebrow 4.02 ± 4.16 4.23 ± 4.35 4.83 ± 4.07
Outer left eye corner 3.16 ± 2.00 3.46 ± 2.10 3.14 ± 2.17
Inner left eye corner 2.39 ± 1.60 2.30 ± 1.40 2.62 ± 1.73

Inner right eye corner 3.10 ± 2.49 2.87 ± 1.54 2.74 ± 1.24
Outer right eye corner 3.01 ± 2.05 2.77 ± 1.94 2.82 ± 1.85

Nose saddle left 4.61 ± 3.56 4.88 ± 3.67 4.13 ± 2.75
Nose saddle right 5.71 ± 4.13 5.30 ± 3.71 4.69 ± 3.18

Left nose peak 3.51±2.99 3.11 ± 2.69 2.96 ± 2.24
Nose tip 3.31 ± 2.21 3.01 ± 2.07 2.69 ± 1.95

Right nose peak 2.56 ± 2.04 2.88 ± 2.50 2.74 ± 2.27
Left mouth corner 4.10 ± 3.74 3.43 ± 3.34 2.93 ± 3.24

Upper lip outer middle 3.29 ± 3.01 2.97 ± 2.85 2.66 ± 2.63
Right mouth corner 4.19 ± 3.45 3.57 ± 3.22 3.18 ± 2.93

Upper lip inner middle 3.61 ± 3.42 2.87 ± 3.15 2.92 ± 2.65
Lower lip inner middle 4.15 ± 5.04 3.59 ± 4.13 3.07 ± 3.17
Lower lip outer middle 4.19 ± 3.89 3.81 ± 3.77 3.51 ± 3.15

Chin middle 5.05 ± 5.04 5.13 ± 5.13 4.99 ± 4.16
Mean error 3.77 ± 3.08 3.53 ± 2.83 3.37 ± 2.72

4.7.3. Comparison on the Bosphorus Dataset

Furthermore, we compared our proposed approach with other existing methods on the Bosphorus
dataset. Figure 7 depicts the mean distance error and standard deviation of 22 detected landmarks.
From this figure, the mean distance error of all landmarks in the testing data is 3.37 mm, which has
achieved the state-of-the-art, especially in some landmarks such as middle left/right eyebrow and
so on. Compared with some other existing methods in these common landmarks, the comparison
results are shown in Table 3. The best performance is marked by bold fonts. From it, we can see that
our approach outperforms in outer eye corners, chin and mouth corners, which are difficult to locate.
Figure 8 illustrates some examples of facial landmarking by the proposed approach on this dataset.
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In this figure, 3D facial geometry data are rotated through several directions, so that the performance
of landmarking can be observed more clearly.
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Figure 7. Mean distance error and standard deviation of 22 landmarks on the Bosphorus dataset.

Table 3. Comparison with other methods on BoshporusDB.

Inner Eye
Corners

Outer Eye
Corners

Nose Tip Nose
Corners

Mouth
Corners

Chin

Manual [46] 2.51 - 2.96 1.75 - -
Alyuz [46] 3.70 - 3.05 3.10 - -
Creusot [47] 4.14 ± 2.63 6.27 ± 3.98 4.33 ± 2.62 4.16 ± 2.35 7.95 ± 5.44 15.38 ± 10.49
Sukno [48] 2.85 ± 2.02 5.06 ± 3.67 2.33± 1.78 3.02± 1.91 6.08 ± 5.13 7.58 ± 6.72
Camgoz (SIFT) [49] 2.26± 1.79 4.23 ± 2.94 2.72 ± 2.19 4.57 ± 3.62 3.14 ± 2.71 5.72 ± 4.31
Camgoz (HOG) [49] 2.33 ± 1.92 4.11 ± 3.01 2.69 ± 2.20 4.49 ± 3.62 3.16 ± 2.70 5.87 ± 4.19
Ours 2.66 ± 1.49 3.64± 2.01 2.69 ± 1.95 4.40 ± 2.61 3.06± 3.09 4.99 ± 4.16

Figure 8. Samples of facial landmarking on 3D facial geometry data on the Bosphorus Dataset.
To observe the performance more clearly, we rotate the facial data and estimated landmarks through
several directions.

4.7.4. Comparison on the BU-3DFE Dataset

The second experiment is carried out on the BU-3DFE dataset. Among the 2500 facial geometry
data, 2000 facial scans from the 100 subjects were selected as the training data. The other 500 facial
geometry data were used as testing data. After data argumentation, 12,000 facial scans can be obtained
that contain neural expressions and six universal facial expressions. Figure 9 illustrates average distance
error and standard deviation of 68 landmarks in the testing dataset of the 68 landmarks. Meanwhile,
98.88% of the landmarks are located with a 20 mm precision, and 93.20% are with the 10 mm precision.
The mean distance error of all 68 landmarks has been improved to 4.03 mm. Compared with some other
methods in the common landmarks on BU-3DFE dataset, Table 4 depicts the comparison results of 14
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common landmarks. The best performance is marked by bold fonts. We can see that the average error
of these points has been achieved 3.96 mm and the results in several points outperform, including the
outer corner of the left eye, center of the upper lip, and center of the lower lip.
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Figure 9. Mean distance error and standard deviation of 68 landmarks on the BU3DFE dataset.

Table 4. Comparison results with existing methods on BU3DFE.

Landmark Fanelli [50] Zhao [20] Nair [21] Sun [51] Our Method

Inner corner of left eye 2.60 ± 1.80 2.93 ± 1.40 11.89 3.35 ± 5.67 2.79 ± 1.63
Outer corner of left eye 3.60 ± 2.40 4.11 ± 1.89 19.38 3.89 ± 6.38 3.58 ± 2.27

Inner corner of right eye 2.80 ± 2.00 2.90 ± 1.36 12.11 3.27 ± 5.51 3.11 ± 2.24
Outer corner of right eye 4.00 ± 2.80 4.07 ± 2.00 20.46 3.73 ± 6.14 4.20 ± 2.18

Left corner of nose 3.90 ± 2.00 3.32 ± 1.94 - 3.60 ± 4.01 3.77 ± 1.87
Right corner of nose 4.10 ± 2.20 3.62 ± 1.91 - 3.43 ± 3.74 4.98 ± 2.63
Left corner of mouth 4.70 ± 3.50 7.15 ± 4.64 - 3.95 ± 4.17 3.88 ± 2.86
center of upper lip 3.50 ± 2.50 4.19 ± 2.34 - 3.09 ± 3.06 2.94 ± 1.35

Right corner of mouth 4.90 ± 3.60 7.52 ± 4.57 - 3.76 ± 4.05 3.94 ± 2.96
Center of lower lip 5.20 ± 5.20 8.82 ± 7.12 - 4.36 ± 6.03 3.73 ± 2.97

Outer corner of left brow 5.80 ± 3.80 6.26 ± 3.72 - 5.29 ± 6.93 4.92 ± 2.69
Inner corner of left brow 3.80 ± 2.70 4.87 ± 2.99 - 4.62 ± 5.92 3.81 ± 2.75

Inner corner of right brow 4.00 ± 3.00 4.88 ± 2.97 - 4.59 ± 5.76 3.85 ± 2.63
Outer corner of right brow 6.20 ± 4.30 6.07 ± 3.35 - 5.29 ± 7.04 5.98 ± 4.63

Mean results 4.22 ± 2.99 5.05 ± 3.01 - 4.02 ± 5.32 3.96 ± 2.55

5. Discussion

With the development of deep learning, more and more data is needed to train a robust and
accurate model. Unlike 2D images that can be easily obtained from the web, the 3D geometry data
can’t be constructed easily without professional equipment. Nowadays, the existing 3D geometry
databases are all collected from labs and under the controlled conditions. Furthermore, the number of
data is far from enough to train an appropriate deep model, so we need to fine-tune the pre-trained
model. In this paper, using the pre-trained deep model to extract features from the different attribute
maps is essential in the proposed approach. In most of the cases, fine-tuning these deep models means
that most of the parameters in the pre-trained models remain unchanged and only a few are updated
for specific tasks. For this purpose, we can update the parameters in the last layer or other layers
based on the amount of training data. Thus, in our paper, limited to the number of 3D geometry data,
we only updated the last layer and didn’t test the other choices at all.

In addition, feature fusion is the key step in the proposed approach. Applying the fused feature
extracted from deep model can take more useful information into account for locating landmarks.
For 3D data, more useful information can be obtained including surface normal, curvature and other
attribute maps. In this paper, we only select these five types of attribute maps to train the model. In fact,
for each attribute map, the features can be extracted based on different pre-trained models. It is another
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way to improve the location performance, but it is too complex to be applied in the other testing
data satisfied. On the other hand, a classical pre-trained model named ResNet was not considered
because of the computational complexity and our computer performance. Although the model would
achieve the best performance for our task perhaps, it still cost more than 3 min to extract the features
without updating any parameters. For this reason, ResNet was not selected in our approach.

As other research about deep learning, the main weakness is also the computation complexity.
Compared with other effective approaches, the computation complexity of our proposed method
is higher than the others. In addition, this paper is the first time to utilize the deep-learning based
approach to estimate 3D landmarks, while the other effective methods are all based on traditional
ways such as hand-crafted features. Actually, to improve the accuracy, higher computation complexity
is needed. Benefiting from more and more powerful computing power, the execution time is still
satisfied. Of course, a lot of works will be done to reduce the computation complexity and to ensure
the accuracy improvement synchronously in future works.

Although our algorithm has achieved state-of-the-art performance, there are a few other works
to study. Firstly, we didn’t take the profile face into account because there are only a few 3D profile
data and fewer landmarks to train a unified location architecture. In addition, data missing caused by
posing is the most challenging issue and the main weakness of our algorithm.

6. Conclusions

In this paper, we propose a novel approach to estimate landmarks on 3D geometry data.
By transforming the 3D data to 2D attribute maps, the goal of our approach is to predict the landmarks
based on the attribute maps. Different from using the handcrafted feature, we feed the global and
the local attribute maps into the deep CNN model to extract global and local feature. Based on
coarse-to-fine strategy, a global model is trained to estimate landmarks roughly and local models
are trained to refine the landmarks’ location. Evaluated on the Bosphorus dataset, the proposed
method performs more effectively than handcrafted features and other pre-trained models. Compared
with other existing methods, the results on the Bosphorus dataset and BU-3DFE dataset have also
demonstrated comparable performance, especially in some common landmarks.

In the future, some other issues of improving the robustness under other challenging conditions
such as self-occlusion and data missing will be studied. In addition, using decision fusion of simple
classifiers to balance the computation complexity and the accuracy may be another effective method
for this problem.
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