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Abstract: Without the assumption that the coefficient of weak damping is large enough, the existence
of the global random attractors for simplified Von Karman plate without rotational inertia driven by
either additive white noise or multiplicative white noise are proved. Instead of the classical splitting
method, the techniques to verify the asymptotic compactness rely on stabilization estimation of the
system. Furthermore, a clear relationship between in-plane components of the external force that
act on the edge of the plate and the expectation of radius of the global random attractors can be
obtained from the theoretical results. Based on the relationship between global random attractor and
random probability invariant measure, the global dynamics of the plates are analyzed numerically.
With increasing the in-plane components of the external force that act on the edge of the plate, global
D-bifurcation, secondary globalD-bifurcation and complex local dynamical behavior occur in motion
of the system. Moreover, increasing the intensity of white noise leads to the dynamical behavior
becoming simple. The results on global dynamics reveal that random snap-through which seems to
be a complex dynamics intuitively is essentially a simple dynamical behavior.

Keywords: Simplified clamped Von Karman plate without rotational inertia; global random attractors;
global dynamics; random invariant measure; white noise

1. Introduction

1.1. Background and Literatures Review

There exists an essential difference between full Von Karman plate without rotational inertia and
simplified Von Karman plate without rotational inertia. From the view of physics, the former takes
account into the acceleration in-plane and the latter neglects it [1,2]. In the mathematical standpoint,
the governing equations of full Von Karman plates without rotational inertia comprise coupled plate
equations and wave equations, while the coupled plate equation and elliptic equation compose the
governing equations of Von Karman plate [3].

The definition of global random attractors for random dynamical system (RDS) established by
Arnold [4] were proposed by Crauel and Flandoli [5] and Schmalfuss [6]. The former developed the
theory of global random attractors in phase space, while the random attractor is seen as a subset in
the space of probability measures by Schmalfuss. Afterwards, Crauel et al. [7] introduced a notion of
global random attractors which is accessible to the researcher who are not familiar to the probabilistic
language. Furthermore, the assertion that global random attractors are uniquely determined by
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attracting deterministic compact sets in phase space was attained by Crauel in [8]. Invoking these
theories, the existence of global random attractors for RDS related to a plenty of mathematical physics
problems have been studied by many researchers, (e.g., [9–14] and the references therein).

Von Karman plate equation is a well-known model that arise in nonlinear elastodynamics, which
can be found in many engineering applications, for instance, wing skin in airplane, vertical fins of
High-speed aircraft, etc. For more details, see the Introduction in Monograph [1]. There is an abundant
achievements on Von Karman plate and the brief list given below is by no means exhaustive. Invoking
the adjoint method, Pappalardo and Guida [15] considered the optimal control problem associated
with the vibration of Von Karman plates. Utilizing the theory of plate theory, monohull ship was
modelled by Fortuna and Muscato [16]; moreover, the problem of identification and adaptive control
were also investigated. To compute the modal parameters of the plates, the system identification
algorithm was proposed by Pappalardo and Guida [17]. A survey on computational methods for
motion of multibody systems (include plates) was made by Pappalardo and Guida [18]. For the sake of
computing the motion of large deformation of the plates, Pappalardo et al. [19–21] developed different
kinds of plate/shell finite elements.

From the mathematical view, to address the long time behavior of the mathematical physics
problems, it must be verified that they can generate a dynamical system, which can be accomplished
by achieving the existence and uniqueness of the solution for the systems. Lasiecka [22] was concerned
with weak, classical and intermediate solutions to full von Karman equations. With respect to the
nonautonomous case, one can refer to Leiva and Sivoli [23] and Abels et al. [24]. According to the
proof of a “sharp regularity” estimates of the Von Karman bracket, the consequence of global existence,
uniqueness and regularity of solutions for simplified Von Karman plate with nonlinear boundary
dissipation can be founded in Favini et al. [25]. For more detail, one can refer to the Monograph [26].
As for the long time behavior of the Von Karman plate equations, the global attractors as well as
inertial manifolds for the system in autonomous situation were studied by Chueshov and Lasiecka [27]
and Chueshov and Lasiecka [28], respectively. Lasiecka [29] studied the uniform decay rates for
thermoelastic full von karman system. Dynamics of a thermoelastic von Karman plate in a subsonic
gas flow was addressed by Ryzhkova [30]. For a von Karman plate equation with a boundary memory
condition which can even be a fractional damping, Park and Sun [31] tackled the uniform decay of
the solution. For more detail of the research status of long time behavior of the Von Karman plate
before the year 2010, one can refer to Monograph [26]. The study of long-time dynamics of a von
Karman equation with time delay is due to Park [32]. Chueshov [33] investigated questions related
to global attractors for delayed, nonrotational von Karman plates without any damping in the status
of flow–structure interactions. Eliminating flutter for clamped von Karman plates in subsonic flows
was concerned by Lasiecka and Webster [34]. Without assuming large values for the coefficient of
damping, Khanmamedov [35] proved the existence of the global random attractors for Von Karman
plate equation. With a very strict assumption on the coefficient of the weakly damping, the existence
of global random attractors for simplified Von Karman plate without rotational inertia driven by
multiplicative white noise was studied by Chen et al. [36].

The study on dynamics of Von Karman plates can be divided into two parts: the investigation of
local dynamics and investigation of global dynamics. There exists abundant studies on local dynamics
for Von Karman plates. For instance, invoking the Bubnov–Galerkin approach, Awrejcewicz and
Krysko [37] analyzed the complex parametric vibrations of plates and shells. Nonlinear vibration
and dynamic response as well as Thermal post-buckling of functionally graded thermoelastic
Von Karman plates was considered by Huang and Shen [38] and Park and Kim [39], respectively.
Employing the Homotopy perturbation technique, Rashidi et al. [40] studied the nonlinear vibration
of Von Karman rectangular plate. Ghayesh et al. [41] tackled the nonlinear dynamics of axially
moving Von Karmam plates. Ghayesh and Farokhi [42] were devoted to handling the nonlinear
dynamics of Von Karman plate in MEMS. The nonlinear vibrations of viscoelastic Von Karman plate
was analyzed by Amabili [43]. The global dynamics of nonlinear systems which can reveal more
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dynamic information than local dynamics are important in engineering applications. Compared
with the literature on local dynamics, the investigation related to global dynamics is insufficient.
Global dynamics of four-dimensional perturbed Hamiltonian systems and parametrically forced
mechanical systems were addressed by Wiggins [44] and Feng and Wiggins [45], respectively.
The technique employed in those works is Melnikov method which was invoked by Zhang to tackle a
parametrically Von Karman plate in [46]. Due to the lack of analytical tools, numerical method is the
main approach to study the global dynamics of nonlinear systems. According to Cell to Cell mapping
method proposed by Hsu [47], Xu et al. [48] addressed global stochastic bifurcation in Duffing system.

There exist two standpoints in study on dynamics of random dynamical system, which are
equivalent in the deterministic case, the “static” standpoint and the “dynamical” standpoint. However,
two views are very different in the stochastic status (see [4,49,50]). The investigation on dynamics of
the RDS associated with vibration of Von Karman plates in this paper means study the of “dynamical”
dynamics of the systems; alternatively, the global dynamics in this paper are understood as the change
in the pattern of existing probability invariant measures of the RDS. There exist some results on global
dynamics on RDS. Crauel and Flandoli [49] asserted that additive noise destroys pitchfork bifurcation
in one dimensional system. The statement that parametric noise (even a multiplicative white noise)
destroys Hopf bifurcation was duo to Arnold et al. [51]. Wang [52] focused on the bifurcation for
stochastic parabolic equations. The investigation on stochastic bifurcation in Duffing system by the
theory of random attractors was due to Schenk-Hoppé [53]. According to some invariant manifolds to
derive the lower bounds on the dimension of global random attractors, Caraballo et al. [54] studied
the stochastic pitchfork bifurcation of the reaction diffusion equation with multiplicative white noise.

1.2. Formulation and Contribution of This Investigation

In some circumstances, the Von Karman plate equation that epitomizes certain distinct features
and mathematical difficulties which lead to the “splitting method” [55], a traditional approach in the
study on the existence of global random attractors, for extensive mathematical problems becomes
invalid, such as SAVKP and SMVKP (introduced in Section 2.1). The existence of global attractors for
the system in deterministic case (such as Chueshov and Lasiecka [27]) and stochastic case (e.g., [36])
relies on large enough value of damping coefficient. To our best knowledge, there hardly exists
results on global random attractors for SAVKP and SMVKP with arbitrary small coefficient of the
weakly damping.

Recently, the study on dynamics of Von Karman plate equation mainly focused on the local
dynamics, inspired by Crauel [49] and Schenk-Hoppé [53]. Based on the existence of global random
attractors and the relationship between invariant measure and global random attractor summarized in
Proposition 2 in Section 3.1, the dynamics of Von Karman plate can be accomplished by employing
the stochastic subdivision algorithm method proposed by Keller and Ochs [56] to achieve the global
random attractors numerically.

As far as we know, the consequence of investigation in this aspect also do not be published in
any composition. The purpose of this paper is to investigate the existence of global random attractors
for SAVKP and SMVKP and to derive the global dynamics by achieving the structure of their global
random attractors.

1.3. Organization of the Paper

The rest of this paper is organized as follows. In Section 2, the mathematical description of
model and main results main results are given. Section 3 is intended to provided preliminary results
employed in accomplishing the main proof which are given in Section 4. Finally, based on the main
results listed in Section 3, summary and conclusions is made in Section 5.

Finally, to express the results and their respective proofs succinctly, the following conventions
are made. Unless otherwise stated, in the sequel, the letter C, C̃, Ĉ, Ci, C̃i, Ĉi (i = 1, 2, 3, · · · , ) are
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positive constants; in addition, C(a, · · · , b), C̃(a, · · · , b), Ĉ(a, · · · , b) and Ci(a, · · · , b), C̃i(a, · · · , b),
Ĉi(a, · · · , b) (i = 1, 2, 3, · · · , ) are positive constants depended on a, · · · , b.

2. The Mathematical Model and Main Results

Section 2.1 is used to make the mathematical description of the model considered in this paper.
The main results of this paper are listed in Section 2.2.

2.1. Mathematical Description of the Model

Let D ⊂ R2 be a bounded domain with boundary Γ; without loss of generality, assume the origin
0 belongs to Γ. Suppose (x, y) ∈ Γ is an arbitrarily given point, while Γ(x, y) denotes the arc, oriented
in the usual manner, joining the origin 0 to the point (x, y) along the boundary of D. For more details,
one can refer to Ciarlet [3]. The governing equation of simplified Von Karman plate without rotational
inertia is:

ρhUtt + chG(Ut) + D∆2U = P + [V(U), U] , (1)

with the clamped boundary

x ∈ ∂D : U =
∂U
∂n

= 0, (2)

where U is transversal displacement of the plate. [·, ·] is Von Karman bracket [26] (also known as
Monge-Ampère form[3]) with the form of

[v, u] =
∂2u
∂x2

1

∂2v
∂x2

2
+

∂2v
∂x2

1

∂2u
∂x2

2
− 2

∂2u
∂x1∂x2

∂2v
∂x1∂x2

.

V(U) is the Airy function satisfies

∆2V = −Eh
2
[U, U],

x ∈ Γ : V = φ0,
∂V
∂n

= φ1,

in which the physical parameter E, ρ, h, I, D can refer to [1]. φ0, φ2 is defined as

φ0(x, y) = −x
∫

Γ(x,y)
f2ds + y

∫
Γ(x,y)

f1ds +
∫

Γ(x,y)
x f2 − y f1ds, (3)

and

φ1(x, y) = −n1(x, y)
∫

Γ(x,y)
f2ds + n2(x, y)

∫
Γ(x,y)

f1ds, (4)

where f1, f2 are components of the in-plane force on boundary along the direction x, y, which
comply with

n1N11 + n2N12 = f1, n1N12 + n2N22 = f2,

where N11, N12, N22 are membrane forces in the plate; for more details, one can refer to [3]. Moreover,
let V = V0 + V1, V0 be the solution of the following system

∆2V0 = −Eh
2
[w, w], (5)

V0 =
∂V0

∂n
= 0. (6)
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V1 satisfies

∆2V1 = 0, (7)

V1 = φ0,
∂V1

∂n
= φ1. (8)

Thus, Equation (1) can be rewritten as:

ρhUtt − ρI∆Utt + chG(Ut) + D∆2U = F + P + [V1 + V0, U] . (9)

In some cases, only V0 is named Airy function, while V1 is called the in-plane force, (see Chueshov
and Lasiecka [26]). This convention is employed in this paper.

To formulate the system tackled in this paper, some spaces are introduced in the following.
Let ‖u‖ ≡ ‖u‖L2(D),‖u‖s ≡ ‖u‖Hs

0(D),(u, v) ≡ (u, v)L2(D),(u, v)s = (u, v)Hs
0(D), where Hs(D), Hs

0(D),
s ∈ R are the usual Sobolev Spaces. Let A = ∆2 : H2

0
⋂

H4(D)→ L2(D), then A is self-adjoint, positive,
unbounded linear operators and A−1 ∈ L (L2(D)) is compact. Therefore, their eigenvalues {Λi}i∈N
satisfy 0 < Λ1 ≤ Λ2 ≤ · · · → ∞ and the corresponding eigenvalues {wi}∞

i=1 forms an orthonormal
basis in L2(D). Then, we can interpret the power of As, s ∈ R by the method developed by Temam [55].
Specifically, ‖A

1
4 u‖ = ‖∇u‖, ‖A

1
2 u‖ = ‖∆u‖, ∀u ∈ D(A), however, it is mentioned here that A

1
2 6=

−∆, A
1
4 6= ∇. Nevertheless, it is emphasized here that A

1
2 6= −∆ with the boundary in Equation (2).

In fact, the operator A1 := −∆ with the boundary condition in Equation (2) is a self-adjoint, positive,
unbounded linear operators from L2(D) to L2(D) and A−1 ∈ L (L2(D), L2(D)) is compact. Thus,
the power of (−∆)s, s ∈ R can be defined; furthermore, ‖As

1u‖ ≤ ‖A
s
2 u‖, ∀s ∈ [0, 1], u ∈ D(A).

Suppose P is a stochastic pressure signified by white noise, then the dynamics equation of abstract
dimensionless clamped simplified Von Karman plate without rotational inertia driven by white noise
are as follow

utt + αut + Au− k[F (u) + F0, u] = σq(x)Ẇ, (10a)

utt + αut + Au− k[F (u) + F0, u] = σuẆ, (10b)

with the clamped boundary condition

x ∈ ∂D : u =
∂u
∂n

= 0, (10c)

where u : R× D → R is the dimensionless transversal displacement of the plate. σ ≥ 0, k > 0 are a
given constant,

q(x) ∈ (H2
0 ∩ H4)(D). (10d)

W is the one dimensional two-sided real-valued standard Wiener process, and Ẇ is called white
noise. α > 0 is the coefficient of damping.

Equation (10a) describe abstract dimensionless clamped simplified Von Karman plate without
rotational inertia driven by additive/multiplicative white noise, respectively. Furthermore, F satisfies

∆2F = −[u, u], (10e)

x ∈ Γ : F =
∂F
∂n

= 0 (10f)

and F0 is in agreement with
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∆2F0 = 0, (10g)

x ∈ Γ : F0 = g1,
∂F0

∂n
= g2 (10h)

where g1 ∈ H
3
2 (Γ), g2 ∈ H

1
2 (Γ) are derived from Equations (3) and (4). By the monograph of Lions

and Magenes [57], F0 ∈ H2(D), define

N(u) = k[F (u) + F0, u].

The system described by Equations (10a), (10c), and (10e)–(10h) is denoted by SAVKP. The system
interpreted by Equations (10b), (10c), and (10e)–(10h) is represented by SMVKP.

Invoking the compactness of A, the Hilbert space D(As), s ∈ R with norm ‖ · ‖s and (·, ·)s

can be defined as the mechanism in Temam [55], especially, D(A
1
2 ) = H2

0(D). Moreover, for all
s1, s2 ∈ R, s1 ≥ s2, D(As1) can be compact imbedding in D(As2) and the following holds

‖u‖s1 ≥ Λ
s1−s2

2
1 ‖u‖s2 , ∀u ∈ D(As1). (11)

Let E1+2s = D(A
1
2+s)×D(As), 0 ≤ s ≤ 1

2 equipped with Graph norm and the induced inner
product, then they are all Hilbert spaces.

Let (X, ‖ · ‖X) be a separable space with Borel σ− algebra B(X) and (Ω,F , P) be a probability
space. {θt : Ω→ Ω, t ∈ R} is a family of measure preserving transformations such that (t, ω)→ θtω is
measurable, θ0 = id, θt+s = θt ◦ θs for all s, t ∈ R. Then, the flow θt together with the probability space
(Ω,F , P, {θt}t∈R) is called a metric dynamical system. For the particular applications in this paper,
the metric dynamical systems generated by a one dimensional two-sided standard Wiener process
defined on a Probability space (Ω,F ,P) is introduced there. Let Ω = {ω|ω(·) ∈ C(R,R), ω(0) = 0},
F is the σ− algebra induced by the compact open topology for this set and P is the Wiener measure on
F . Set

θtω(·) = ω(·+ t)−ω(·), ∀t ∈ R, (12)

according to Arnold [4], we have P is ergodic with respect to the flow {θt}t∈R. Thus, (Ω,F ,P, {θ}t∈R)

is the metric dynamical systems employed in this paper. Moreover, the Ornstein–Uhlenbeck process,
which should be used in transforming a stochastic system to a random system, is introduced as follows{

dz + µzdt = dW,
z(−∞) = 0.

(13)

in which µ > 0. The general form for the solution of Equation (13) is

z(t) =
∫ t

−∞
e−µ(t−s)dW.

Let

z(θtω) := −µ
∫ 0

−∞
eµτ(θtω)(τ)dτ. (14)

where {θt}t∈R is defined by Equation (12) in Section 2. Merging with integration by parts, z(θtω) is
the solution for the system in Equation (13).

Although by no means always, it will be convenient to reduce Equations (10a) and (10b) to an
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evolution equation of the first order in time in the following manner. Let v = ut + εu, U = [U1, U2]
T =

[u, v]T , then Equation (10a) can be transformed to the ensuing form

dU
dt

= A1U + F1(U) (15)

where

A1 =

(
−εI, I

−A + ε(α− ε), −(α− ε)I

)
, F1(U) =

(
F11(U)

F12(U)

)
and

F11(U) = 0, F12 = N(U1) + σq(x)Ẇ.

The system described by Equations (10c), (15) and (10e)–(10h) denoted by SAVKPT1. Obviously,
SAVKP is equivalent to SAVKPT1.

To accomplish the stabilization estimation for the solution of SAVKPT1, the following systems
is needed. Suppose U(1) = [U(1)

1 , U(1)
2 ] = [u1, v1], U(2) = [U(2)

1 , U(2)
2 ] = [u2, v2] are two solution of

SAVKPT1, then
dU(1) −U(2)

dt
= A1

(
U(1) −U(2)

)
+ F̃1(U(1) −U(2)), (16)

where F̃1(U(1) −U(2)) = F1(U(1))− F1(U(2)).
Furthermore, let v = v− σq(x)z(θtω), Φ = [u, v]T and

[u, v]T = [u, v− σq(x)z(θtω)]T ≡ TA(θtω)[u, v]T , ∀[u, v] ∈ E1, (17)

thus
dΦ

dt
= A1Φdt + F2(z(θtω)) + F3(Φ) (18)

where Φ = [u, v]T ,

F2(z(θtω)) =

(
F21(z(θtω))

F22(z(θtω))

)
=

(
σq(x)z(θtω)

σ(µ− α + ε)q(x)z(θtω)

)
, F3(Φ) =

(
F31(Φ)

F32(Φ)

)
,

here

F31(Φ) = 0, F32(Φ) = N(U1).

Equation (18) is a partial differential equations with random coefficient which can be studied
ω by ω. Let SAVKPT2 signify the system described by Equations (18), (10c) and (10e)–(10h). It is
emphasized that SAVKPT2 is not equivalent to SAVKPT1.

Analogously, let v = ut + εu, U = [U1, U2]
T = [u, v]T and

[u, v]T = [u, v− σuz(θtω)]T ≡ TM(θtω)[u, v]T , ∀[u, v] ∈ E1, ω ∈ Ω, (19)

define Φ = [Φ1, Φ2]
T = [u, v]T , the following system associated with SMVKP can be attained.

dU
dt

= A1U + F1(U) (20)

in which

A1 =

(
−εI, I

−A + ε(α− ε), −(α− ε)I

)
, F1 =

(
F11(U)

F12(U)

)
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and

F11(U) = 0, F12(U) = N(U1) + σU1Ẇ.

dΦ

dt
= A1Φ + F2(Φ, θtω) + F3(Φ, θtω) (21)

where

F2(Φ, θtω) =

(
F21(Φ, θtω)

F22(Φ, θtω)

)
=

(
σz(θtω)Φ1

−σz(θtω)Φ2

)
,

F3(Φ, θtω) =

(
F31(Φ, θtω)

F32(Φ, θtω)

)

F31(Φ, θtω) = 0, F32(Φ, θtω) = σ(µ− α + 2ε)z(θtω)Φ1 − σ2z2(θtω)Φ1 + N(Φ1),

SMVKPT1 represents the systems defined by Equations (20), (10c) and (10e)–(10f), then SMVKP
and SMVKPT1 are equivalent. The system described by Equations (21), (10c) and (10e)–(10f) is denoted
by SMVKPT2.

Furthermore, assume Φ(1) = [Φ(1)
1 , Φ(1)

2 ]T = [u1, v1]
T , Φ(2) = [Φ(2)

1 , Φ(2)
2 ]T = [u2, v2]

T are two
solutions of SAVKPT2, thus

dΦ(1) −Φ(2)

dt
= A1

(
Φ(1) −Φ(2)

)
+ DF1(Φ

(1) −Φ(2), θtω) + DF2(Φ
(1) −Φ(2), θtω), (22)

in which

DF1(Φ
(1) −Φ(2), θtω) =

(
DF11(Φ

(1) −Φ(2), θtω)

DF12(Φ
(1) −Φ(2), θtω)

)
= F2(Φ, θtω)− F2(Φ, θtω),

DF2(Φ
(1) −Φ(2), θtω) =

(
DF21(Φ

(1) −Φ(2), θtω)

DF22(Φ
(1) −Φ(2), θtω)

)
= F3(Φ, θtω)− F3(Φ, θtω).

Equation (22) is used to obtain the stabilization estimation for SMVKPT1.

Remark 1. For the sake of brevity, when no ambiguity is possible, the symbols used in SAVKPT and SMVKPT,
SAVKPT1 and SMVKPT1, and SAVKPT2 and SMVKPT2 are the same or similar. Since each of the symbols
has a clearl explanation, it is not confusing to express the main results in this paper. However, it must be kept in
mind that they are not the same.

2.2. Main Results

Approved by the equivalent between SAVKPT and SAVKPT1, and SMVKPT and SMVKPT1, it is
enough to only address the dynamical behavior of SAVKPT1 and SMVKPT1. This subsection is used
to present the main results of this paper. Let

ε0 =
Λ1α

2Λ1 + α2 , 0 < ε ≤ ε0, (23)

2.2.1. Random Attractors in Additive White Noise Case

This part is devoted to providing the main results for SAVKPT1. The following Theorem considers
the existence and uniqueness of solution for SAVKPT2.

Theorem 1. For any given initial value t = τ : Φ = Φτ ∈ E1, there exists a uniqueness (mild) solution for
SAVKPT2 Φ(t, τ, ω) ∈ C([τ, τ + T], E1), t ∈ [τ, τ + T], ∀T > 0.
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Furthermore, let ΦA(t, τ, ω; Φτ) = ϕA(t, τ, ω)Φτ , which means that ϕA(t, τ, ω) is the solution mapping
of SAVKPT2. Then,

ϕA(t− τ, 0, θτω) = ϕA(t, τ, ω), ϕA(τ, τ, ω) = id.

Let
SA

ε (t, ω) = ϕA(t, 0, ω) = ϕA(0,−t, θtω), ∀t ≥ 0, ∀ω ∈ Ω,

by means of Theorem 1, SA
ε (t, ω) is the RDS induced by SAVKPT2. Correspondingly, SAVKPT1 can

also generate a RDS SA(t, ω) which is defined as

SA(t, ω) = TA(θtω)−1SA
ε (t, ω)TA(ω) : E1 → E1.

here TA(θtω) is defined by Equation (17). Furthermore, the solution mapping determined by SAVKPT1
is denoted by φA(t, τ, ω), then

SA(t, ω) = φA(t, 0, ω) = φA(0,−t, θtω), ∀t ≥ 0, ∀ω ∈ Ω.

The following turns to the existence of global random attractors for SAVKPT1.
Let δ0 be any given positive constant, k̄ = max{1, k} and

µ > µ0 =
64|σ|2‖q‖2

πε2 , (24)

K = K0 + |z(θtω)K1 + |z(θtω)|2K2, (25)

ρ(ω) = σ2‖q(x)‖2|z(ω)|2 + 2
∫ 0

−∞
eεt+

∫ 0
t 2
√

k̄|σz(θsω)|‖q‖dkKds + δ0, (26)

r(ω) =
√

ρ(ω). (27)

in which

K0 =
3kε

2
C(

7
6

, C1, C2)‖F0‖2
2, K1 = 2

√
k̄k|σ|‖q‖C(1

4
, C1, C2)‖F0‖2

2,

K2 =
2σ2(µ− α + ε)2

k0
‖q(x)‖2 +

4k2|σ|2‖q‖2
1‖F0‖2

2
ε

+
4σ2

ε
‖A

1
2 q(x)‖2,

C(η, C1, C2), η = 1
4 , 7

6 are constants that satisfy Equation (45) in Section 3.2.1.
The next theorem considers the existence and expectation of radius of global random attractors

for SA(t, ω).

Theorem 2. SA(t, ω) possesses the global random attractors A (ω), ω ∈ Ω in E1 which satisfies P-a.s.

A (ω) ⊆ B(0, r(ω)),

E(ρ(ω)) ≤ M < ∞.

where B(0, r(ω)) denotes the open ball centered at the origin with radius is r(ω), while M is given by
Equation (A24) in Section 3.2.1.

2.2.2. Random Attractors in Multiplicative White Noise Case

The main results for SMVKPT1 is given in this part.
The form of following theorem is very similar to the Theorem 1.

Theorem 3. For any given initial value t = τ : Φ = Φτ ∈ E1, SMVKPT2 possesses uniqueness (mild)
solution ΦM(t, τ, ω; Φτ) ∈ C([τ, τ + T], E1), t ∈ [τ, τ + T], T > 0.



Symmetry 2018, 10, 315 10 of 41

Furthermore, set ΦM(t, τ, ω; Φτ) = ϕM(t, τ, ω)Φτ , which indicates that ϕB(t, τ, ω) is the solution
mapping of SMVKPT2. Thus,

ϕM(t− τ, 0, θτω) = ϕM(t, τ, ω), ϕM(τ, τ, ω) = id.

Therefore, set

SM
ε (t, ω) = ϕM(t, 0, ω) = ϕM(0,−t, θtω), ∀t ≥ 0, ∀ω ∈ Ω,

then, SM
ε (t, ω) the RDS induced by SMVKPT2 and RDS SM(t, ω) defined as follow

SM(t, ω) = TM(θtω)−1SM
ε (t, ω)TM(ω) : E1 → E1.

is the RDS generate by SMVKPT1, where TM(θtω) is defined by Equation (19). In additive, let

SM(t, ω) = φM(t, 0, ω) = φM(0,−t, θtω), ∀t ≥ 0, ∀ω ∈ Ω.

Thus, φ(t, τ, ω) is the solution mapping of SMVKPT1.
The following turns to the existence of global random attractors for SMVKPT1.
Suppose δ0 is any given positive constant, µ = α− 2ε and

3σ2

µ
√

Λ1
+

12σ
√

πµ
< ε. (28)

Set

C0(θtω) = 3
(

2|σz(θtω)|+ σ2|z(θtω)|2√
Λ1

)
, ρ0(ω) =

∫ t

−∞
eεt+

∫ 0
t C0(θsω)dsKds + δ0, (29)

ρ(ω) = ρ0(ω) + kC(
1
2

, C1, C2)‖F0‖2
2, K0 = εkC(

3
2

, C1, C2)‖F0‖2
2, (30)

K1 = 8kC(
1
8

, C1, C2)‖F0‖2
2, K2 =

4kσ2
√

Λ1
C(

1
8

, C1, C2)‖F0‖2
2,

K = K0 + |z(θtω)|K1 + |z(θtω)|2K2, (31)

r(ω) =

√(
|σz(ω)|2

Λ1
+ 1
)

ρ(ω), (32)

where C(η, C1, C2), η = 1
2 , 3

2 , 1
8 are constants satisfying Equation (45) in Section 3.2.2. Then, the existence

and finite expectation of radius of global random attractors for SM(t, ω) can be asserted by the
next theorem.

Theorem 4. There exists global random attractors A (ω), ω ∈ Ω for SM(t, ω) in E1; moreover,

A (ω) ⊂ B(0, r(ω)), P− a.s.

E(ρ(ω)) ≤ M < ∞,

where B(0, r(ω)) denotes the open ball centered at the origin with radius is r(ω), while M is given by
Equation (A43) in Section 3.2.2.

Comparing Theorems 1 and 3, as well as Theorems 2 and 4, their forms are the same or similar,
while there exists essential difference between them, which is expounded in Section 5.
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2.2.3. Global Dynamics in Both Additive and Multiplicative White Noise Cases

Based on the theoretical results and the relationship between invariant measures and global
attractors introduced in Proposition 2 in Section 3.1, the rest of this subsection is dedicated to studying
the global dynamics of the stochastic Von Kaman plates, which is accomplished by deriving the
components of global random attractor numerically, the main components are referred as global
random point attractor and global random basic attractor. The modal equations associated with the
stochastic Von Karman plates which are not display here (see Equation (A1) in Appendix A) can be
obtained by employing inertial manifold with delay [58] and nonlinear gakerlin method [59].

Let s1 = 2, s2 = 2, s0 = 4, D = [0, 8]× [0, 6] ⊂ R2 in Appendix A, Figure 1 shows the model for
vibration of Von Karman plate. The eigenvalues {Λi}4

i=1 and eigenvectors {wi}4
i=1 of operator A and

integration with respect to space variable in Equation (A2) listed in Appendix A can be performed by
COMSOL with Matlab [60], and then the solution of model equations can be obtained by stochastic
Runge–Kutta method [61].

f1

f2

P

o y

z

x

Figure 1. The model for vibration of Von Kaman plate under the random loading.

The situation of additive white noise. In this case, the P in Figure 1 is equal to σq(x)Ẇ, let
α = 0.5, k = 2, q(x) = Λ1(0.2w1 + 0.2w2 + 0.2w3 + 0.2w4) and ( f1, f2) are component of the in-plane
force on boundary along the direction x, y, thus the g1, g2 in Equation (10h) can be derived by
Equations (3) and (4). Since D is rectangle, g2 = 0. Furthermore, let f1 = f2, the dynamics of
simplified Von Karman plate without rotational inertia driven by additive white noise is signified by
the motion of the position x = 3, y = 2 of the plate, which are studied in the following cases.

Case I. Let f1 = 1.2,σ = 0.2; the global random basic attractor, global random point attractor and
global random attractors for SAVKP are the same. Figure 2 shows that global random basic attractor
is a random fixed point which supports a invariant Markov measure δx0(ω). Furthermore, δx0(ω) is
almost surely global stability.
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0.008

0.01

u
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δ
x

0

(ω)

(a)
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0
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0.008

0.01

u

u
t

(b)

Figure 2. Invariant measures and random attractors for SAVKP in Case I.: (a) invariant measure and
section of global random basic attractor; and (b) global random basic attractor.
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Case II. Set f1 = 1.3, σ = 0.2, in this situation, global random basic attractor is equivalent to global
random point attractor. Global random basic attractor (see Figure 3c) and its section (see Figure 3a)
indicate that the system possesses two invariant Markov measures δx1(ω), δx2(ω) which are supported
by two fixed random points. Figure 3b illustrates the section of the global random attractor of SAVKP.
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0

x 10
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(c)

Figure 3. Invariant measures and random attractors for SAVKP in Case II: (a) invariant measures and
global random basic attractor; (b) section of global random attractor; and (c) global random basic
attractor.

Case III. let f1 = 3, σ = 0.2, Figure 4 describes the invariant measures and random attractors for
SAVKP. Global random basic attractor is equivalent to global random point attractor in this status.
Section of global random basic attractor demonstrated by Figure 4a reveals that the steady states of
the system comprise four parts, which means that are least four stable invariant Markov measures for
SAVKP exist. In addition, in Figure 4a, it can be obtained that the local dynamics of the system may be
complex. The sketch of global random basic attractor is shown by Figure 4b,
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Figure 4. Invariant measures and random attractors for SAVKP in Case III: (a) invariant measure and
section of global random basic attractor; and (b) global random basic attractor.
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Case IV. when f1 = 1.3, σ = 2, global random basic attractor is also equivalent to global random
point attractor in this case. The numerical results on the invariant measures and random attractors for
SAVKP (see Figure 5) expose the system has a almost surely global stability invariant Markov measure
supported by a random fixed points.

−0.65 −0.6 −0.55 −0.5
0

0.02

0.04

0.06

0.08

0.1

u

u t

δ
x

IV

(ω)

(a) (b)

Figure 5. Invariant measures and random attractors for SAVKP in Case IV: (a) invariant measure and
section of global random basic attractor; and (b) global random basic attractor.

The situation of multiplicative white noise. In this case, the P in Figure 1 is equal to σuẆ,
while the remaining parameters are chosen to be the same as in the situation of additive white noise.
The dynamics of SMVKP are studied in the following cases.

Case I. Let f1 = 1.1, σ = 0.02Λ1, similar to the Case I in additive noise, global random basic
attractor, global random point attractor and global random attractors for SAVKP are the same in
this circumstance. The assertion that there exists an almost surely global stability invariant measure
supported by a random fixed points for SMVKP can be attained by Figure 6.
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0

1x 10
−4
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Figure 6. Invariant measures and random attractors for SMVKP in Case I: (a) invariant measure and
section of global random basic attractor; and (b) global random basic attractor.

Case II. When f1 = 1.2, σ = 0.04Λ1, the numerical results on invariant measures and random
attractors were described by Figure 7. Invoking the section of global random basic attractor (see
Figure 7a), it can be obtained that the system possesses two local stable invariant Markov measures,
which together with the numerical results of section global random point attractor described by
Figure 7b give that another invariant measure exists, which could even be a unstable invariant
Markov measure.

Case III. Set f1 = 2.9, σ = 0.04Λ1, Figure 8 expresses the numerical results on global random
attractors for SMVKP. The section of global random basic attractor shown by Figure 8a indicates that
there exist four local stable invariant Markov measures. Furthermore, SMVKP has another three
invariant measures which are interpreted by section of global random point attractor (see Figure 8b).
The sketch of global random point attractor is illustrated by Figure 8c.



Symmetry 2018, 10, 315 14 of 41

Case IV. Let f1 = 1.2, σ = 0.4Λ1, the similar results in Case IV can be got, the Figure to describe
the invariant measure and random attractor is not displayed here.
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Figure 7. Invariant measures and random attractors for SMVKP in Case II: (a) invariant measure and
section of global random basic attractor; and (b) global random basic attractor.
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Figure 8. Invariant measures and random attractors for SMVKP in Case III: (a) invariant measures
and global random basic attractor; (b) section of global random point attractor; and (c) global random
point attractor.

Some affirmations can be approved by the aforementioned numerical results. For the clamped
irrotational inertia Von Karman driven by additive white noise, fixed σ = 0.2, let f1 vary from 1.2 to
1.3, the global D-bifurcation occurs in the motion of the system. Change the value of f1 to be a big
one, such f1 = 3, the dynamical behavior becomes much more interesting. From the view of global
dynamics, there exits secondary D-bifurcation. The local dynamics of the system is complex. On the
other hand, let f1 = 1.3 and change the σ from 0.2 to 2, the phenomenon of global D-bifurcation
disappears. As for clamped irrotational inertia Von Karman driven by multiplicative white noise, fixed
σ = 0.04Λ1, the similar global dynamics of the system can be obtained with varying the f1 from 1.1 to
2.9. In addition, once the coefficient of the multiplicative white noise becomes big, global D-bifurcation
vanishes. Nevertheless, there exist differences between the two cases above. The multiplicative
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white noise is more likely to result in the appearance of global D-bifurcation and secondary global
D-bifurcation in the motion of clamped Von Karman without rotational inertia than additive noises.
when the secondary D-bifurcation occurs, the local dynamics of the system driven by additive white
noise is more complex than the situation of multiplicative white noise.

3. Preliminary Results

This section pays attention to give preliminaries and derive certain estimates for solution of
SAVKPT1 and SMVKPT1, which are very important to prove main results provided in Section 2.2.

3.1. Basic Theory Related to Global Random Attractors

This subsection is devoted to introduce basic theory related to the theory of random attractors
used in this paper.

The next Proposition pertinent to z(θtω) can be found in References [13,62].

Proposition 1. z(θtω) defined by Equation (14) satisfies

E[z(θtω)] = 0, D[z(θtω)] =
1

2µ
,

and z(θtω) is a stationary Gauss Process and Markov Process, its probability-distribution function induce a
Markov semigroup. Furthermore,

lim
t→±∞

1
t

∫ t

0
|z(θτω)|2dτ = E[|z(ω)|2] = 1

2µ
, (33)

lim
t→±∞

1
t

∫ t

0
|z(θτω)|dτ = E[|z(ω)|] = 1

√
πµ

, (34)

and

lim
t→±∞

z(θtω)

t
= 0.

The sets {z(ω)} is tempered with respect to {θt}t∈R. Moreover, if µ ≥ 2β, β > 0, then

E
(

eβ
∫ s+t

s |z(θτω)|2dτ
)
≤ e

βt
µ , ∀s ∈ R, t ≥ 0. (35)

When µ3 ≥ r2, r ≥ 0, the following holds

E
(

er
∫ s+t

s |z(θτω)|dτ
)
≤ e

rt√
µ , ∀s ∈ R, t ≥ 0. (36)

Moreover,

E (|z(θsω)|r) =
Γ( r+1

2 )√
πµr , r ∈ R+, (37)

where Γ(·) is usual Γ function.

To give the notion of global random attractors, the definition of RDS inaugurated by Arnold [4] is
needed to be given firstly.
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Definition 1 ([4]). A RDS on Polish space (X, d) with Borel σ-algebra B(X) over a metric dynamical system
(Ω,F , P, {θt}t∈R) is a (B(R+)×F ×B(X),B(X)) measurable mapping

φ : R+ ×Ω× X → X, (t, ω, x) 7→ Φ(t, ω, x)

such that, for P− a.s., ω ∈ Ω,

(i). φ(0, ω) = id on X.
(ii). φ(t + s, ω) = φ(t, θsω) ◦ φ(s, ω) for all s, t ∈ R+.

A RDS is continuous or differential if φ(t, ω) : X → X is continuous or differential. Furthermore,
φ(t, θ−tω) can be understood as the solution start from −t to 0.

The coming definitions related to random attractors for RDS was established by
Crauel et al. [5,63].

Definition 2. A random set K(ω) is said to absorb the set B ⊂ X for a RDS φ, if P− a.s. there exists tB(ω)

such that
φ(t, θ−tω)B ⊂ K(ω) for all t ≥ tB(ω)

Definition 3. Let B ⊂ 2X be a collection of subsets of X, then a closed random set A(ω) is called B-random
attractor associated with the RDS φ, if P− a.s.

(i). A(ω) is a random compact set.
(ii). A(ω) is invariant i.e., φ(t, ω)A(ω) = A(θtω) for all t ≥ 0
(iii). For every B ∈ B,

lim
t→∞

dist(φ(t, θ−tω)B,A(ω)) = 0

where dist denotes the Hausdorff semidistance:

dis(A, B) = sup
x∈A

inf
y∈B

d(x, y), A, B ⊂ X.

When B is composed of all bounded set of X, then A(ω) is the global random attractors for φ.
If B = {{x} : x ∈ X}, A(ω) is said to be global random point attractor.

The next theorem, dedicated to verifying the existence of random attractors for SEBT1 directly,
can be derived from Theorem 3.11 in Crauel et al. [5].

Theorem 5. Suppose φ is an RDS on connected Polish space (X, d), and suppose that φ possesses an absorbing
set in X and for any nonrandom bounded set B ⊂ X, lim

t→+∞
φ(t, θ−tω)B is relatively compact P-a.s. Then,

φ possesses uniqueness global random attractors defined by the following

A(ω) =
⋃

B⊂X
ΛB(ω)

where union is taken over all bounded B ⊂ X ,and ΛB(ω) given by

ΛB(ω) =
⋂
s≥0

⋃
t≥s

φ(t, θ−tω)B

Furthermore, A (ω) is measurable with respect to F and connected.P− a.s..

The following assertion provides the relationship between random attractors and invariant
measures which is important to expound the global dynamics for RDS was stated in [4,8,63,64].
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Proposition 2. When the RDS ϕ possesses global random attractor comply with Definition 3, by the
Corollary 4.4 in Crauel [8], this attractors supports every invariant measures. The random point attractor
of ϕ given by Definition 3 always supports at lest one invariant measure which even is a invariant Markov
measure (Crauel [63], P423; Arnold [4], Theorem 1.6.13 and Theorem 1.7.5). When ϕ is a white noise RDS or
SDS, together with the Theorem 3.6 in Crauel [63] give that every invariant Markov measure is supported by
the global point attractor. On the other hand, if the global random attractors for ϕ exists, then ϕ also has the
global point attractor. For any fixed ω ∈ Ω, taking advantage of pullback mechanism [4], follow the proof of
Theorem 5.2 in Birnir [64], the global random attractor can be decomposed into two ingredients, one is random
basic attractor which supports all stable invariant Markov measures of white noise RDS, the other is random
remainder. For the definition of basic and remainder, we refer to Birnir [64].

With the assertion that the RDS possesses a global random attractors, in light of Proposition 2,
the investigation on global dynamics of RDS can be accomplished by exploiting the numerical results
on the structure of global random attractor.

The next proposition should be used in checking that the RDS φ(t, ω) satisfies condition “for any
nonrandom bounded set B ⊂ X, lim

t→+∞
φ(t, θ−tω)B is relative compact P-a.s.” in Theorem 5.

Proposition 3. ([26]) Suppose B ⊂ X is any bounded set, let

α(B) = inf {d : B has a finite cover of diameter < d} (38)

then α(B) is known as the Kuratowski’s α-measure of non-compactness of B, in short, α-measure of B, which has
the following properties.

(i) α(B) = 0 if and only if B is pre-compact.
(ii) α(A ∪ B) ≤ max {α(A), α(B)}.
(iii) α(A + B) ≤ α(A) + α(B).
(iv) α(coB) = α(B), where α(coB) is the closed convex hull of B.
(v) If B1 ⊃ B2 ⊃ B3 ⊃ · · · are nonempty closed sets in X such that α(Bn)→ 0 as n→ ∞, then ∩n≥1Bn is

nonempty and compact.

3.2. Main Estimates

This subsection presents the main estimates for the solutions of the systems and some lemmas
that are momentous to derive the proof for main results.

Firstly, the following properties on Von Karman bracket were given by Proposition 1.4.2 in
Chueshov and Lasiecka [26].

If either at least on of u, v, w belongs to H2
0(D) or all of them belong to (H1

0
⋂

H2)(D), then∫
D
[u, v]wdx =

∫
D
[u, w]vdx =

∫
D
[v, w]udx. (39)

If v, w ∈ (H1
0
⋂

H2)(D), then∫
D
[u, v]wdx =

∫
D
[u, w]vdx, u ∈ H2(D). (40)

The next Lemma consider the sharp regularity Von Karman bracket.

Lemma 1. ([25]) Suppose D is a bounded domain with regular boundary or a rectangle in R2, the following
estimates holds

‖[u, w]‖−j−θ ≤ C‖u‖2−θ+β‖w‖3−j−β, u ∈ H2−θ+β(D), w ∈ H3−j−β(D), (41)
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where j = 0, 1, 0 < β ≤ θ < 1.

‖[u, w]‖−j ≤ C‖u‖2−β‖w‖3−j+β, u ∈ H2−β(D), w ∈ H3−j+β(D), (42)

in which j = 1, 2, 0 ≤ β < 1. Let ∆−2 be the inverse operator of ∆2 with clamped boundary condition, invoking
Equations (41) and (42), we have (u, w) 7→ G(u, w) ≡ ∆−2[u, w] is bounded mapping from (H2 × H2)(D) to
(H3 ∩W2,∞)(D) which satisfies

‖[u, w]‖−2 ≤ C‖u‖1‖w‖2, (43)

‖G(u, v)‖2,∞ ≤ C‖u‖2‖v‖2,

‖[w, G(u, v)]‖2 ≤ C‖u‖2‖v‖2‖w‖2.

The assertion that the condition “D is a bounded domain with regular boundary or a rectangle in
Rn” can be relaxed to “D is a bounded domain satisfies cone property in Rn”, which can be derived
using the property of continuation in Sobolev space [65].

The coming Lemma reveals a relationship between Airy function F and in-plane force F0.

Lemma 2. Let F is the solution for system described by Equations (10e) and (10f); F0 satisfies Equations (10g)
and (10h); and then ∫

D
∆F∆F0dx = 0.

Proof. See the Appendix B.1.

According to Lemma 2, the following estimates which play a crucial role in obtaining the
existence of global absorbing set for vibration of Von Karman with a arbitrarily small coefficient
of weakly damping.

Let Φ = [u, v]T be the solution of SAVKPT2 or SMVKPT2, ε satisfies (23), define

Υ(F , F0) =
∫

D
[u, u]F0dx. (44)

Combining Lemma 2 with Equations (10e)–(10h), we have

Υ(F , F0) =
∫

D
∆2F (u)F0dx =

∫
Γ

∂∆F
∂n

F0ds−
∫

Γ

∂F0

∂n
∆Fds,

then
Υ(F , F0) ≤‖

∂∆F
∂n
‖− 3

2 ,Γ‖F0‖ 3
2 ,0,Γ + ‖

∂F0

∂n
‖ 1

2 ,Γ‖∆F‖− 1
2 ,0,

≤C1‖
∂∆F
∂n
‖− 3

2 ,Γ‖F0‖ 3
2 ,0,Γ + C2‖

∂F0

∂n
‖ 1

2 ,Γ‖∆F‖− 1
2 ,0,Γ,

≤η‖∆F‖2 + C(η, C1, C2)‖F0‖2
2.

(45)

where η is any given positive, C(η, C1, C2) is a positive, which is inversely proportional to η.
In addition, invoking the trace theorem [57], we attain

‖F0‖2
2 ≤ C̃‖g1‖2

3
2 ,Γ + Ĉ‖g2‖2

1
2 ,Γ

. (46)

In contrast to Inequality (9.1.17) provided by Lemma 9.1.7 in Chueshov and Lasiecka [26],
the inequality in Equation (45) give a clear relationship between Υ(F , F0) and the in-plane force F0,
which along with Equation (46) indicates that Υ(F , F0) is determined by the component of the in-plane
force on boundary along the direction x, y.

Since the form of damping is weak and the coefficient of it can be arbitrarily small, it is
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accomplished by verifying the condition in Theorem 5 that “for any nonrandom bounded set
B ⊂ E1, lim

t→+∞
φ(t, θ−tω)B is relative compact P-a.s.” relies on the stabilization estimation of the

considered systems. The results listed in the next two Lemmas are very important to accomplish the
stabilization estimation of SAVKPT1 and SMVKPT1.

Lemma 3. Suppose {un}+∞
n=1 ∈ L∞((τ, t), (H2

0
⋂

H4)(D), {un
t }+∞

n=1 ∈ L∞((τ, t), L2(D) are two given
bounded sequences, which are weakly star convergence to u, ut, respectively. Then, for ∀n, m ∈ N,
the following holds

lim
n→∞

lim
m→∞

∫ t

τ
([F (un) + F0, un]− [F (um) + F0, um] , un

t − um
t ) ds = 0. (47)

Lemma 4. Suppose {un}+∞
n=1 ∈ L∞((τ, t), (H2

0
⋂

H4)(D), {un
t }+∞

n=1 ∈ L∞((τ, t), L2(D) are two given
bounded sequences, which are weakly star convergence to u, ut, respectively. Then, for ∀n, m ∈ N,
the following holds

lim
n→∞

lim
m→∞

∫ t

τ
([F (un) + F0, un]− [F (um) + F0, um] , un − um) ds = 0. (48)

Lemma 3 was proposed by Khanmamedov [35]. With a similar treatment, the results in Lemma 4
can be attained. Hence, it is omitted it here.

It is noticed that the A1 in Equations (15) and (20) are the same, then the estimates given in the
next Lemma, which can be obtained by simple computation, should be employed in both cases of
additive white noise and multiplicative white noise.

Lemma 5. for any U = [U1, U2]
T ∈ E1, the ensuring holds

(A1U, U)E1 ≤ −
ε

2
‖U‖2

E1
− k0

2
‖U2‖, (49)

where 0 < ε < ε0, 0 < k0 ≤ α− ε and ε, ε0 satisfies Equation (23).

The following Lemmas are used to prove the existence and uniqueness of solutions for SAVKP
and SMVKP by semigroup theory.

Lemma 6.

−A1 ∈ L (E2, E1), (−A1)
−1 ∈ L (E1, E1).

Proof. See Appendix B.2.

Base on the Lemma 6, the ensuring results focus on eigenvalues of A1 can be verified.

Lemma 7. The eigenvalues of A1 are as follows.

λ
(+)
k =

−α +
√

α2 − 4Λk
2

,

λ
(−)
k =

−α−
√

α2 − 4Λk
2

, k = 1, · · · , n, · · · .

Proof. See Appendix B.3.
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3.2.1. Main Estimates Only Be Valid in Situation of Additive White Noise

This subsubsection is to give main estimates that only be valid in additive white noise case.
For any given T > 0, τ ∈ R, for ∀ U, V ∈ E1, ‖U‖E1 ≤ M, ‖V‖E1 ≤ M, by Reference [26], we have

there exists constant M = C(M), such that

[F (U1) + F0, U1]− [F (V1) + F0, V1] ≤ C(M)‖U−V‖E1 (50)

along with Equation (50), we have

‖F3(U)− F3(V)‖E1
≤ C1(T, τ, ω, M)‖U−V‖E1 (51)

where C1(T, τ, ω, M) is a constant.
Let the value of η in Equation (45) be 7

6 , 1
2 , 1

4 , respectively, we find

3kε

2
Υ(F , F0)Υ(F , F0) ≤

7kε

4
‖∆F‖2 +

3kε

2
C(

7
6

, C1, C2)‖F0‖2
2, (52)

kΥ(F , F0)Υ(F , F0) ≤
k
2
‖∆F‖2 +

k
2

C(
1
2

, C1, C2)‖F0‖2
2, (53)

√
k̄|σz(θtω)|‖q‖kΥ(F , F0) ≤

√
k̄|σz(θtω)|‖q‖ k

4
‖∆F‖2

+
√

k̄k|σz(θtω)|‖q‖C(1
4

, C1, C2)‖F0‖2
2.

(54)

Applying Equations (39) and (40) and Lemma 1, we get∫
D
[F (u), u]vdx

=
∫

D
[ut, u]F (u)dx + ε

∫
D
[u, u]F (u)dx− σz(θtω)

∫
D
[q, u]F (u)dx

≤− 1
2

∫
D
(∆2F (u))tF (u)dx− ε

∫
D

∆2F (u)F (u)dx + |σz(θtω)|
∫

D
[q, u]F (u)dx

≤− 1
4

d
dt
‖∆F (u)‖2 − ε‖∆F (u)‖2 +

|σz(θtω)|‖q‖1√
k

(
‖A

1
2 u‖2 +

k
4
‖∆F (u)‖2

)
(55)

and ∫
D
[F0, u]vdx

=
∫

D
[ut, u]F0dx + ε

∫
D
[u, u]F0dx− σz(θtω)

∫
D
[q, u]F0dx

≤ −1
2

∫
D
(∆2F (u))tF0dx− ε

∫
D

∆2F (u)F0dx + |σz(θtω)|
∫

D
[q, u]F0dx

= −1
2

d
dt

Υ(F , F0)− εΥ(F , F0) +
η

2
‖Au‖2 +

1
2η

(|σz(θtω)|‖q‖1‖F0‖2)
2 .

where η is positive constant. Set η = ε
4k , then∫

D
[F0, u]vdx

≤− 1
2

Υ(F , F0)− εΥ(F , F0) +
ε

8k
‖Au‖2 +

2k
ε
(|σz(θtω)|‖q‖1‖F0‖2)

2 .
(56)
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Employing Young’s inequality, it can be obtained that

2
(

σA
1
2 q(x)z(θtω), A

1
2 u
)
≤ ε

4
‖A

1
2 u‖2 +

4σ2|z(θtω)|2
ε

‖A
1
2 q(x)‖2, (57)

2 (σ(µ− α + ε)q(x)z(θtω), v) ≤ k0

2
‖v‖2 +

(σ(µ− α + ε)z(θtω))2

k0
‖q(x)‖2. (58)

The next lemma shows SA(t, ω) possesses global random absorbing set in E1. In addition,
the expectation of radius of this random set is bounded.

Lemma 8. For any given non random bounded set B ⊂ E1, there exists TB(ω) ≥ 0, such that, for ∀t ≥ TB(ω),
the following holds P-a.s.

‖SA(t, θ−tω)B‖E1 ≤ r(ω)

and E(ρ(ω)) ≤ M < ∞. In which ρ(ω) and r(ω) are formulated by Equations (26) and (27), respectively.

Proof. See Appendix B.4.

Let K(ω) = B(0, r(ω)); based on Lemma 8, it can be obtained that, for any non-random bounded
set B ⊂ E1, there exists TB(ω) > 0, such that, for ∀T1 ≥ TB(ω), the following holds

SA(T1, θ−T1 ω)B ⊂ K(ω).

The coming lemma plays a key role in verifying the condition in Theorem 5 that “for any
nonrandom bounded set B ⊂ E1, lim

t→+∞
φ(t, θ−tω)B is relative compact P-a.s.” which is significant to

prove the existence of the global random attractors for SAVKPT1.

Lemma 9. Suppose {U(0)
n }+∞

n=1 is any given bounded sequence in any given non-random bounded set B ⊂ E1,
T0 ∈ [0, ∞) is a any given constant, n, m ∈ N. Then, for ∀ε > 0, there exist TB(ω, ε) ≥ TB(ω) and
T = max {TB(ω, ε), T0} such that

‖SA(T, θ−Tω)U(0)
m − SA(T, θ−Tω)U(0)

n ‖E1 ≤ ε + KA
ε,B,T,ω(U

(0)
m , U(0)

n ), (59)

and

lim inf
n→+∞

lim inf
m→+∞

KA
ε,B,T,ω(U

(0)
m , U(0)

n ) = 0.

Proof. See the Appendix B.5.

3.2.2. Main Estimates Only Be Valid in Situation of Multiplicative White Noise

For any given T > 0, τ ∈ R, ∀U, V ∈ E1, ‖U‖E1 ≤ M, ‖V‖E1 ≤ M, M is constant, take account
into z(θtω) is continuous in [τ, τ + T], merging with Equation (50), we have that there exists a constant
C(T, τ, ω, M) such that

‖F2(U, θtω) + F3(U)− F2(V, θtω, )− F3(V)‖E1
≤ C(T, τ, ω, M)‖U−V‖E1 , (60)
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which indicates that F2(U, θtω) + F3(U) : E1 → E1 satisfies Lipschtiz condition.
Let Φ = [Φ1, Φ2]

T = [u, v]T ∈ E2; the following estimates should be frequently used.

(σz(θtω)u, u)2 ≤ |σz(θtω)|‖u‖2
2, (61)

(−σz(θtω)v, v) ≤ |σz(θtω)|‖v‖2
2, (62)(

σ2z2(θtω)u, v
)
≤ σ2|z(θtω)|2

2
√

λ1

(
‖Au‖2 + ‖v‖2

)
. (63)

∫
D
[F (u), u]vdx

=− 1
2

∫
D
(∆2F (u))tF (u)dx− ε

∫
D

∆2F (u)F (u)dx + σz(θtω)
∫

D
[u, u]F (u)dx

=− 1
4

d
dt
‖∆F (u)‖2 − ε‖∆F (u)‖2 + σz(θtω)‖∆F (u)‖2

(64)

∫
D
[F0, u]vdx

=
∫

D
[ut, u]F0dx + ε

∫
D
[u, u]F0dx− σz(θtω)

∫
D
[u, u]F0dx

=− 1
2

d
dt

Υ(F , F0)− εΥ(F , F0) + σz(θtω)Υ(F , F0)dx

(65)

where Υ(F , F0) is defined by Equation (44).
Let the value of η in Equation (45) be 1

8 and 3
2 , respectively, and the following can be satisfied

4
(

2|σz(θtω)|+ σ2|z(θtω)|2√
Λ1

)
kΥ(F , F0)

≤ 1
2

(
2|σz(θtω)|+ σ2|z(θtω)|2√

Λ1

)
k‖∆F‖2

+4
(

2|σz(θtω)|+ σ2|z(θtω)|2√
Λ1

)
kC(

1
8

, C1, C2)‖F0‖2
2, (66)

εkΥ(F , F0) ≤
3
2

εk‖∆F‖2 + εkC(
3
2

, C1, C2)‖F0‖2
2, (67)

The coming Lemma asserts that SM(t, ω) possesses global random absorbing set in E1.

Lemma 10. Let B ⊂ E1 be any given non-random bounded set, then there exists TB(ω) ≥ 0 such that

‖SM(t, θ−tω)B‖E1 ≤ r(ω), ∀t ≥ TB(ω), P− a.s.

and

E(ρ(ω)) ≤ M < ∞.

where ρ(ω), r(ω) is formulated by Equations (30) and (32), respectively. M is given in Theorem 4.

Proof. See Appendix B.6.

Let K(ω) = B(0, r(ω)), invoke Lemma 10, we have that for any given bounded set B ⊂ E1, there
exists TB(ω) > 0, such that for ∀T1 ≥ TB(ω), the coming holds

SM(T1, θ−T1 ω)B ⊂ K(ω).

Similar to the results presented in Lemma 9, the stabilization estimation of SMVKPT1 provided in
the next Lemma can be derived.
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Lemma 11. Suppose {U(0)
n }+∞

n=1 is any given bounded sequence in any given non-random bounded set B ⊂ E1,
T0 ∈ [0, ∞) is a any given constant, n, m ∈ N. Then, for ∀ε > 0, there exist TB(ω, ε) ≥ TB(ω) and
T = max {TB(ω, ε), T0} such that

‖SM(T, θ−Tω)U(0)
m − SM(T, θ−Tω)U(0)

n ‖E1 ≤ ε + KM
ε,B,T,ω(U

(0)
m , U(0)

n ), (68)

and

lim inf
n→+∞

lim inf
m→+∞

KM
ε,B,T,ω(U

(0)
m , U(0)

n ) = 0.

Proof. See Appendix B.7.

4. Proofs for Main Results

4.1. Proof for Theorem 1

Along with Lemmas 5–7, we have A1 can induce a linear semigroup of contractions denoted
by eA1t, t ∈ R+. Invoking Equation (51), we get F2(θtω) + F3(U) : E1 → E1 satisfies the Lipschtiz
condition. z(θtω) is continuous in [τ, t]. Hence, according to Theorem 2.5.1 in Reference [66], we
conclude that SAVKP possesses uniqueness (mild) solution with the form

ΦA(t, τ, ω; Φτ) = eA(t−τ)Φτ +
∫ t

τ
eA(t−s) (F2(θsω) + F3(Φ(s))) ds.

where,t ≥ τ, t, τ ∈ R. Thus,

ΦA(t− τ, 0, θτω; Φτ)

= eA(t−τ)Φτ +
∫ t−τ

0
eA(t−τ−s) (F2(θs+τω) + F3(Φ(s))) ds.

Let s + τ = T, we have

eA(t−τ)Φτ +
∫ t−τ

0
eA(t−τ−s) (F2(θs+τω) + F3(Φ(s))) ds

= eA(t−τ)Φτ +
∫ t

τ
eA(t−T) (F2(θTω) + F3(Φ(T − τ))) dT

Therefore,

ΦA(t− τ, 0, θτω; Φτ)

= eA(t−τ)Φτ +
∫ t

τ
eA(t−T) (F2(θTω) + F3(Φ)(T − τ)) dT.

Hence, ΦA(t − τ, 0, θτω; Φτ) is the value of a solution for Equation (10a) with initial value
t = τ, Φ = Φτ at time t. Then

ΦA(t− τ, 0, θτω; Φτ) = ΦA(t, τ, ω; Φτ).

Furthermore, the solution mapping ϕA(t, τ, ω) satisfies

ϕA(t, τ, ω) = ϕA(t− τ, 0, θτω).

On the other hand, ΦA(τ, τ, ω; Φτ) = Φτ which means ϕA(τ, τ, ω) = 0. Thus, the proof
is completedf.
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4.2. Proof for Theorem 2

It follows from Lemma 8 that the RDS S(t, ω) possesses global absorbing set in E1. The estimation
of expectation of radius of the global absorbing set is obtained in the proof for Lemma 8 if the condition
that “for any nonrandom bounded set B ⊂ E1, lim

t→+∞
SA(t, θ−tω)B is relative compact P-a.s.” can be

satisfied, which is achieved in the following. Then, according the Theorem 5, we can complete the
proof of this theorem.

Suppose ∀B ⊂ E1 is any bounded set, let T̃0 ≥ TP and

A B
n (ω) =

⋃
s≥nT̃0

SA(s, θ−sω)B, n ∈ N,

From Reference [67], we have

A B
n+1(ω) ⊂ A B

n (ω), n ∈ N, (69)

and A B
n (ω), ∀n ∈ N is nonempty closed set.

Let A B
∞ (ω) = lim

n→∞
A B

n (ω),AB(ω) = lim
T→+∞

SA(T, θ−Tω)B, then

AB
(ω) = A

B
∞(ω)

In the following, we verify AB(ω) is relative compact. It is enough to prove

lim
T→+∞

αK(SA(T, θ−Tω)B) = 0, (70)

where αK(·) denote the α−measure.
Taking advantage of the contradiction method, suppose Equation (70) is not true, then there exists

ε̂0 > 0, for ∀T1 ≥ 0 and T0 > T1 such that

αK(SA(T0, θ−T0
ω)B) ≥ 3ε̂0.

Let ε0 = ε̂0, T1 = TB(ε, ω), T0 = T0, T = max {TB(ε, ω), T0}, obviously, T = T0. Hence,
αK(S(T0, θ−T0

ω)B) ≥ 3ε0 which reveals that there exists sequence {U(0)}∞
n=1 ∈ B such that

sup
τ∈R
‖SA(T0, θ−T0

ω)U(0)
m − SA(T0, θ−T0

ω)U(0)
n ‖E1 ≥ 2ε0, m 6= n, n, m = 1, 2, · · ·

which contradicts Equation (59). Thus, the supposed assumption is invalid which means Equation (70)
holds. Then, αK

(
A B

∞ (ω)
)

= 0 which means lim
n→∞

αK(A
B

n (ω)) = 0, together with (69), by the

Proposition 3, we have
⋂

n≥1
A B

n (ω) is compact. On the other hand, since

⋂
n≥1

A B
n (ω) =

⋂
N≥0

⋃
n≥N

SA(nT̃0, θ−nT̃0
ω)B,

Let

ΛB(ω) =
⋂

N≥0

⋃
n≥N

SA(nT̃0, θ−nT̃0
ω)B,
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then ΛB(ω) is compact.
According to Theorem 5, it can be found that the RDS SA(t, ω) possesses random attractors

A (ω) ⊂ E1, ∀ω ∈ Ω defined by

A (ω) =
⋃

B⊂E1

ΛB(ω).

4.3. Proof for Theorem 3

By Equation (60), we have F2(U, θtω) + F3(U) : E1 → E1 satisfies Lipschtiz condition, and the
rest of proof is very similar to the Proof for Theorem 1 provided in Section 4.4. Thus, it is omitted here.

4.4. Proof for Theorem 4

This process of proof can be completed with replacing Lemma 8 by Lemma 10, Equation (59) by
Equation (68) and the RDS SA(t, ω) by RDS SM(t, ω) in the proof for Theorem 4. Thus, it is omitted
here.

5. Summary and Conclusions

The affirmation that expectation of radius of global random attractors for nonlinear stochastic
plates considered in the paper is in direct proportion to the intensity of white noise and F0 can
be derived by Theorem 2 and Theorem 4. On the other hand, it follows from Theorem 4 and the
assumption in Equation (28) that, for the clamped Von Karman plate without rotational inertia driven
by multiplicative white noise, values for the coefficient of the noise that are too large might result in the
non-existence of global random attractor for the system, the phenomenon of which cannot be obtained
in the status of additive white noise. The estimate of Equation (45) is derived in Section 3.2 to achieve
the existence of global absorbing set for the system, which can also accomplished by Inequality (9.1.17)
provided by Lemma 9.1.7 in Chueshov and Lasiecka [26]. However, the inequality in Equation (45)
gives a clear relationship between Υ(F , F0) defined by Equation (44) in Section 3.2 and the in-plane
force F0, which along with Equation (46) indicates that Υ(F , F0) is determined by the component of
the in-plane force on boundary along the direction x, y. This assertion can expounds the bucking
phenomenon from the theoretical results on global random attractors.

Compared with the results on global attractors provided by Chen et al. [36] in situation of
multiplicative noise, the investigation on existence of global random attractors for the systems, which
are carried out in this paper, do not need the assumption that coefficient of the damping is big enough.
This statement can be achieved by the process of proving the existence of global random absorbing
set for clamped Von Karman plate without rotational inertia driven by white noise (see Lemma 8
in Section 3.2.1 and Lemma 10 in Section 3.2.2) and attaining the stabilization estimation of the
systems(see Lemma 9 in Section 3.2.1 and Lemma 11 in Section 3.2.2). It is noticed that the condition
for the existence of global random attractors presented by Chen et al. [36] is so conservative that, once
there does not exist a steady ingredient of the loading, which means p = 0 in the governing equations
of Von Karman plate considered in [36], then the global random attractors only comprise the random
fixed points (even the trivial solution). It is led by the too big coefficient of damping. The results
obtained in this paper indicate that there exists global random attractors for the systems with the small
coefficient of weak damping. Moreover, the statement that global random attractors are composed of
more than a fixed random point is illustrated by the numerical results on global dynamics. On the
other hand, the conclusion that multiplicative white noise is more likely to result in the appearance
of global D-bifurcation and secondary global D-bifurcation in the motion of clamped Von Karman
without rotational inertia than additive noises can also be validated from the numerical results on
global dynamics of the systems.

In engineering applications, ( f1, f2) are the in-plane components of the external force that act on
the edge of the plate. In light of Equations (3) and (4) given in Section 2.1, with Equation (46) attained
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in Section 3.2.1, the boundary value of F0 and ∂F0
∂n are determined by ( f1, f2). Thus, the aforementioned

qualitative results on long time behavior for the two kinds of nonlinear stochastic Von Karman plates
are demonstrated by the numerical results on global dynamics. Big enough value of external force
that acts on the edge of the plate leads to the appearance of global D-bifurcation in the motion of the
simplified Von Karman plate without rotational inertia, which coincides with the phenomena named
bucking [1]. Furthermore, the fact mentioned above together with assertion that global D-bifurcation
would disappear with increasing the value of intensity of the white noise can give a reasonable
explanation of how the random snap-through [68] occurs in motion of the stochastic Von Karman plate
and how to eliminate it in the following manner. When the global random attractor only comprise a
fixed random point, then random snap-through occurs. Once the global D-bifurcation appears in the
motion of the Von Karman plate, the random snap-through will disappears. Alternatively, the large
value of the intensity of the white noise results in the occurring of the random snap-through which can
be eliminated by increasing the value of external force that act on the edge of the plate. As indicated
above, it can be concluded that the random snap-through which seems to be a complex dynamics
intuitively is essentially a simple dynamical behavior.
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Abbreviations

The following abbreviations are used in this manuscript:

RDS Random Dynamical System
SAVKP The system described by Equations (10a), (10c), (10e)–(10h)
SAVKPT1 The system described by Equations (10c), (15) and (10e)–(10h)
SAVAPT2 The system described by Equations (18), (10c) and (10e)–(10h)
SMVKP The system interpreted by Equations (10b), (10c), (10e)–(10h)
SMVKPT1 The system interpreted by Equations (20), (10c) and (10e)–(10f)
SMVAPT2 The system interpreted by Equations (21), (10c) and (10e)–(10f)

Appendix A. The Model Equation

Suppose u =
s
∑

i=1
li(t)wi,F =

s0
∑

i=1
ai(t)wi,s = s1 + s2, s0, s1, s2 ∈ N, where {wi}4

i=1 are eigenvectors

related to eigenvalues {Λi}k
i=1 of operator A. Taking the inner product of Equation (10e) by wi, i =

1, · · · , k in L2, we have

ai(t) = −
1

Λi

(
[

s

∑
i=1

li(t)wi,
s

∑
i=1

li(t)wi], wi

)
, i = 1, · · · , s0,

then

F =
s0

∑
i=1
− 1

Λi

(
[

s

∑
i=1

li(t)wi,
s

∑
i=1

li(t)wi], wi

)
wi.

Thus, the model equations associated with SAVKP have the following form

dm = (M1m + M2(m, m)) dt + σM3dW,
dm =

(
M2m + M2(m, m)

)
dt + σM3dW, t ∈ (τh− h, τh];

m = mτh−h, t 6∈ (τh− h, τh]
(A1)
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where l = (l1, · · · , lk1
)T = (l1, · · · , lk1)

T represents the low-frequency modal and the other is
high-frequency modal l = (l1, · · · , lk2)

T = (lk1 , · · · , lk1+k2)
T , li is the value of l at time i. g = lt, g =

lt, m = [l1, g
1
, · · · , lk, g

k1
]T , m = [l1, g1, · · · , lk, gk2

]T . h is step size of numerical integration. τ ∈ N is
an undetermined constant.

M1 =


0 1 0 0 0
−Λ1 −α 0 0 0

0 0
. . . 0 0

0 0 0 −Λs1 −α

 ,

M2(m, m) = −


0

F1(l)
...
0

Fs1(l)

 , M3 =


0

(q(x), w1)
...
0

(q(x), ws1)


and

M1 =


0 1 0 0 0

−Λk1+1 −α 0 0 0

0 0
. . . 0 0

0 0 0 −Λk −α

 ,

M2(m, m) = −


0

Fs1+1(l)
...
0

Fs(l)

 , M3(m) =


0(

q(x), ws1+1
)

...
0

(q(x), ws)


in which

F =

 F1
...

Fs

 =


(
σq(x)Ẇ, w1

)
...(

σq(x)Ẇ, ws
)


F(l) =

 F1(l)
...

F2(l)

 = k


−
(
[F ,

s
∑

i=1
liwi], w1

)
−
(
[F0,

s
∑

i=1
liwi], w1

)
...

−
(
[F ,

s
∑

i=1
liwi], ws

)
−
(
[F0,

s
∑

i=1
liwi], ws

)
 ,

(A2)

Furthermore, let

M̂3 =


0
l1
...
0

ls1

 , M̂3 =


0
l1
...
0

ls2

 ,

then, respectively, replacing M3, M3 in Equation (A1) by M̂3, M̂3 leads to the modal equations for
SMVKP.
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Appendix B. Proof of the Lemmas in Section 3

Appendix B.1. Proof of Lemma 2

Since ∫
D
F∆2F0dx =

∫
Γ

∂∆F0

∂n
F −

∫
D
∇(∆F0) · ∇Fdx,

=
∫

Γ

∂∆F0

∂n
Fds−

∫
Γ

∂F
∂n

∆F0ds +
∫

D
∆F∆F0dx,

together with Equation (10f) gives∫
D
F∆2F0dx =

∫
D

∆F∆F0dx.

Taking into account Equation (10g), we have∫
D

∆F∆F0dx = 0.

Appendix B.2. Proof of Lemma 6

Let E = (H4 × L2)(D), define

a(U, V) = < −A1U, V >, (A3)

where < �,� >=
∫

D � ·�dx. By Cauchy inequality, there exists M ≥ 0 such that

|< −A1U, V >|
= |(−εU1 + U2, U1) + (−AU1 + ε(α− ε)U1, U2)

−((α− ε)U2, U2)| ,
≤ M‖U‖E‖V‖E. ∀U, V ∈ E (A4)

From the Proofs of Lax–Milgram given by Temam [55], we have

−A1 ∈ L (E, E∗), (A5)

where E∗ is the conjugate space of E. Moreover, Equation (49) yields

(−A1U, U)E1 ≥ ε

2
‖U‖2

E1
, ∀U ∈ E2. (A6)

Let

D0 =
{

U
∣∣U ∈ E,−A1U ∈ E1

}
, (A7)

then D0 = E2. Since E1 ⊂ E∗, then (A5) yields −A1 ∈ L (E2, E1).
Furthermore, Invoking Equation (A6), this gives −A1 : E2 → E1 is injection. On the other hand,

since E1 ⊂ E∗, by applying (A5), we have −A1 : E2 → E1 is surjection. By open mapping theorem, we
obtain that the inverse of −A1 exists and (−A1)

−1 ∈ L (E1, E1).
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Appendix B.3. Proof of Lemma 7

Without loss of generality, suppose [wk, ek]
T , k ∈ N is eigenvector with respect to eigenvalues

λk, then

A1[wk, ek]
T = λk[wk, ek]

T ,

Thus,

−εwk + ek = λkwk, (A8)

−Awk + ε(α− ε)wk − (α− ε)ek = λkek. (A9)

Equation (A8) yields ek = (λk + ε)wk; substituting it into Equation (A9), we have

−Awk + ε(α− ε)wk − (α− ε)(lk + ε)wk = λk(λk + ε)wk,

then

−Awk − αλkwk = λ2
kwk.

Since Awk = Λkwk, we obtain

−Λkwk − αλkwk = λ2
kwk.

Hence,

λ
(+)
k =

−α +
√

α2 − 4Λk
2

, λ
(−)
k =

−α−
√

α2 − 4Λk
2

.

Appendix B.4. Proof of Lemma 8

Taking the inner product of Equation (18) by Φ in E1 gives

d
dt
‖Φ‖2

E1

= 2(A1Φ, Φ)E1 + 2
(

σA
1
2 q(x)z(θtω), A

1
2 Φ1

)
(A10)

2 (σ(µ− α + ε)q(x)z(θtω), Φ2) + 2k ([F (Φ1) + F0, Φ1], Φ2) .

According to Lemma 5, we find

2(A1Φ, Φ)E1 ≤ −ε‖Φ‖2
E1
− k0‖Φ2‖,

It follows from Equations (57) and (58) that the third and fourth term on the right of the inequality
sign in Equation (A11) can be controlled by

ε

4
‖A

1
2 Φ1‖2 +

k0

2
‖Φ2‖2 +

4σ2|z(θtω)|2
ε

‖A
1
2 q(x)‖2 +

(σ(µ− α + ε)q(x)z(θtω))2

k0
‖q(x)‖2,

Since Φ = [Φ1, Φ2]
T = [u, v]T , utilizing Equations (55) and (56), we have

2k ([F (Φ1) + F0, Φ1], Φ2)

≤ − k
2

d
dt
‖∆F (Φ1)‖2 − 2kε‖∆F (Φ1)‖2 + 2

√
k̄|σz(θtω)|‖q‖

(
‖A

1
2 Φ1‖2 +

k
4
‖∆F (Φ1)‖2

)
−kΥ(F , F0)− 2kεΥ(F , F0) +

ε

4
‖AΦ1‖2 +

4k2

ε
(|σz(θtω)|‖q‖1‖F0‖2)

2 .
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as indicated above, we get

d
dt
‖Φ‖2

E1
≤ −3ε

4
‖Φ‖2

E1
+

4σ2|z(θtω)|2
ε

‖A
1
2 q(x)‖2 +

(σ(µ− α + ε)q(x)z(θtω))2

k0
‖q(x)‖2

− k
2

d
dt
‖∆F (Φ1)‖2 − 2kε‖∆F (Φ1)‖2 + 2

√
k̄|σz(θtω)|‖q‖

(
‖A

1
2 Φ1‖2 +

k
4
‖∆F (Φ1)‖2

)
−k

d
dt

Υ(F , F0)− 2kεΥ(F , F0) +
ε

4
‖AΦ1‖2 +

4k2

ε
(|σz(θtω)|‖q‖1‖F0‖2)

2

≤ − ε

2
‖Φ‖2

E1
− k

2
d
dt
‖∆F (Φ1)‖2 − k

d
dt

Υ(F , F0)−
kε

4
‖∆F (Φ1)‖2 − kε

2
Υ(F , F0)

+2
√

k̄|σz(θtω)|‖q‖
(
‖A

1
2 Φ1‖2 +

k
4
‖∆F (Φ1)‖2

)
+

4k2

ε
(|σz(θtω)|‖q‖1‖F0‖2)

2

+
4σ2|z(θtω)|2

ε
‖A

1
2 q(x)‖2 +

(σ(µ− α + ε)q(x)z(θtω))2

k0
‖q(x)‖2

−7kε

4
ε‖∆F (Φ1)‖2 − 3kε

2
|Υ(F , F0)|.

By means of Equation (52), we catch

d
dt
‖Φ‖2

E1
≤ − k

2
d
dt
‖∆F (Φ1)‖2 − k

d
dt

Υ(F , F0)−
ε

2
‖Φ‖2

E1
− kε

4
ε‖∆F (Φ1)‖2 − kε

2
Υ(F , F0)

+2
√

k̄|σz(θtω)|‖q‖
(
‖A

1
2 Φ1‖2 +

k
4
‖∆F (Φ1)‖2

)
+

3kε

2
C(

7
6

, C1, C2)‖F0‖2
2 +

(σ(µ− α + ε)q(x)z(θtω))2

k0
‖q(x)‖2

+
4σ2|z(θtω)|2

ε
‖A

1
2 q(x)‖2 +

4k2

ε
(|σz(θtω)|‖q‖1‖F0‖2)

2 .

It can be derived from Equation (54) that

d
dt
‖Φ‖2

E1
≤− k

2
d
dt
‖∆F (Φ1)‖2 − k

d
dt

Υ(F , F0)−
ε

2
‖Φ‖2

E1
− kε

4
ε‖∆F (Φ1)‖2 − kε

2
Υ(F , F0)

+ 2
√

k̄|σz(θtω)|‖q‖
(
‖A

1
2 Φ1‖2 +

k
4
‖∆F (Φ1)‖2 + kΥ(F , F0)

)
+

(σ(µ− α + ε)q(x)z(θtω))2

k0
‖q(x)‖2 + 2

√
k̄k|σz(θtω)|‖q‖C(1

4
, C1, C2)‖F0‖2

2

+
4σ2|z(θtω)|2

ε
‖A

1
2 q(x)‖2 +

4k2

ε
(|σz(θtω)|‖q‖1‖F0‖2)

2

+
3kε

2
C(

7
6

, C1, C2)‖F0‖2
2.

(A11)

Let

E1(t, τ, ω) = E1(Φ1, Φ2, ω) =

(
‖Φ2‖2 + ‖A

1
2 Φ1‖2 +

k
2
‖∆F (Φ1)‖2 + kΥ(F , F0)

)
,

E(t, τ, ω) = E(Φ1, Φ2, ω) =

(
‖Φ2‖2 + ‖A

1
2 Φ1‖2 +

k
2
‖∆F (Φ1)‖2

)
,

Invoking Equation (53), we have

E(Φ1, Φ2, ω) ≤ E1(Φ1, Φ2, ω) + kC(
1
2

, C1, C2)‖F0‖2
2, (A12)
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which along with Equations (25) and (A11) gives

d
dt
‖E1(Φ1, Φ2, ω)‖2

E1
≤ − ε

2
E1(Φ1, Φ2, ω) + 2

√
k̄|σz(θtω)|‖q‖E1(Φ1, Φ2, ω) + K. (A13)

Setting ε = ε
2 and then employing Equation (A13), it can be asserted that, for any give τ ∈ R,∀t ≥

τ, the next holds

E1(t, τ, ω) ≤ e−ε(t−τ)+
∫ t

τ 2
√

k̄|σz(θsω)|‖q‖dsE1(τ, τ, ω) +
∫ t

τ
e−ε(t−s)+

∫ t
s 2
√

k̄|σz(θsω)|‖q‖dkKds.

which means that for any t < 0,

E1(0, t, ω) ≤ eεt+
∫ 0

t 2
√

k̄|σz(θsω)|‖q‖dsE1(t, t, ω) +
∫ 0

t
eεt+

∫ 0
t 2
√

k̄|σz(θsω)|‖q‖dkKds,

Incorporating Equation (A12), we obtain

E(0, t, ω) ≤ eεt+
∫ 0

t 2
√

k̄|σz(θsω)|‖q‖dsE1(t, t, ω) +
∫ 0

t
eεt+

∫ 0
t 2
√

k̄|σz(θsω)|‖q‖dkKds

+ kC(
1
2

, C1, C2)‖F0‖2
2.

(A14)

Since Φ = [Φ1, Φ2]
T = [u, v]T , v = ut + εu− σq(x)z(θtω), then(

‖A
1
2 u‖2 + ‖ut + εu‖2

)
(0, t, ω) ≤ eεt+

∫ 0
t 2
√

k̄|σz(θsω)|‖q‖dsE(t, t, ω)

+
∫ 0

t
eεt+

∫ 0
t 2
√

k̄|σz(θsω)|‖q‖dkKds

+ eεt+
∫ 0

t 2
√

k̄|σz(θsω)|‖q‖dsσ2‖q(x)‖2|z(θtω)|2

+ σ2‖q(x)‖2|z(ω)|2

(A15)

By Equation (34), we have that there exists T1 < 0, such that for ∀t < T1, the following holds(P-a.s.)

−1
t

∫ t

0
2
√

k̄|σz(θsω)|‖q‖ds ≥ −4
√

k̄|σ|‖q‖
√

πµ
,

furthermore, according to Equation (24), we find ε0 ≡ ε− 4
√

k̄|σ|‖q‖√
πµ > 0, then

(
ε− 1

t

∫ t

0
2
√

k̄|σz(θsω)|‖q‖ds
)

t ≤ ε0t, ∀t < T1. (A16)

Since z(ω) is tempered, we have

eεt+
∫ 0

t 2
√

k̄|σz(θsω)|‖q‖dsE(t, t, ω)→ 0, t→ −∞, (A17)

and

eεt+
∫ 0

t 2
√

k̄|σz(θsω)|‖q‖dsσ2‖q(x)‖2|z(θtω)|2 → 0, t→ −∞. (A18)
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Merging with Equation (25), we attain

∫ 0

−∞
eεt+

∫ 0
t 2
√

k̄|σz(θsω)|‖q‖dkKds

≤
∫ 0

T1

eεs+
∫ 0

s 2
√

k̄|σz(θsω)|‖q‖dkK0ds +
∫ T1

−∞
eε0sK0ds

+
∫ 0

T1

eεs+
∫ 0

s 2
√

k̄|σz(θsω)|‖q‖dk|z(θsω)|K1ds +
∫ T1

−∞
eε0s|z(θsω)|K1ds.

+
∫ 0

T1

eεs+
∫ 0

s 2
√

k̄|σz(θsω)|‖q‖dk|z(θsω)|2K2ds +
∫ T1

−∞
eε0s|z(θsω)|2K2ds.

(A19)

then ρ(ω) defined by Equation (26) is bounded(P-a.s.).
It follows from Equations (A15) to (A18) that there exists TB(ω) < 0, such that, for ∀t ≤ TB(ω),

the following holds (
‖A

1
2 u‖2 + ‖ut + εu‖2

)
(0, t, ω) ≤ ρ(ω). (A20)

On the other hand, since(
‖A

1
2 u‖2 + ‖ut + εu‖2

)
(0, t, ω) =

(
‖A

1
2 u‖2 + ‖ut + εu‖2

)
(−t, θtω),

let t = −t, TB(ω) = −TB(ω), then, for any non-random bounded set B ⊂ E1, there exists TB(ω) > 0,
such that, for ∀t > TB(ω), the following holds (P-a.s.)

‖SA(t, θ−tω)B‖E1 ≤ r(ω).

The rest is intended to estimate the expectation of ρ(ω). Invoking Equation (36), we have

E
(

eεs+
∫ 0

s 2
√

k̄|σz(θkω)|‖q‖dk
)
≤ eεs− 2

√
k̄|σ|‖q‖√

µ s,

on the other hand,

(
E
(
|z(θsω)|4

)) 1
2
=

(
Γ( 5

2 )

µ2
√

π

) 1
2

,
(
E
(
|z(θsω)|2

)) 1
2
=

(
Γ( 3

2 )

µ2
√

π

) 1
2

, (A21)

where Γ(·) is Γ function, which together with Equation (A21) and Cauchy equality gives

E
(

eεs+
∫ 0

s 2
√

k|σz(θkω)|‖q‖dk|z(θsω)|2
)
≤ eεs− 2

√
k‖σ|‖q‖√

µ s
(

Γ( 5
2 )

µ2
√

π

) 1
2

, (A22)

E
(

eεs+
∫ 0

s 2
√

k|σz(θkω)|‖q‖dk|z(θsω)|
)
≤ eεs− 2

√
k‖σ|‖q‖√

µ s
(

Γ( 3
2 )

µ2
√

π

) 1
2

. (A23)

Define

M = M0 + M1 + M2 + M3 + δ0, (A24)
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in which

M0 =
∫ 0

T1

eεs− 2
√

k‖σ|‖q‖√
µ sK0ds +

eε0T1 K0

ε0
,

M1 = K1

(
Γ( 3

2 )

µ2
√

π

) 1
2 ∫ 0

T1

eεs− 2
√

k‖σ|‖q‖√
µ sds +

eε0T1 K2

ε0
√

πµ
,

M2 = K2

(
Γ( 5

2 )

µ2
√

π

) 1
2 ∫ 0

T1

eεs− 2
√

k‖σ|‖q‖√
µ sds +

eε0T1 K3

2ε0µ
,

M3 =
σ2‖q(x)‖2

2µ
.

Obviously, M < ∞. In addition, merging with Equations (25) and (A21)–(A23), we have

E(ρ(ω)) ≤ M < ∞. (A25)

Appendix B.5. Proof of Lemma 9

For ∀t ≥ 0, let

{Un}+∞
n=1 = {φ(τ,−t, ω)U(0)

n }+∞
n=1 = {[un, vn]T}+∞

n=1, ∀τ ∈ [−t, 0],

By Lemma 8, we find {Un}+∞
n=1 has a weakly star subsequence in L∞([−t, 0], E1), still denoted by

{Un}+∞
n=1.

Taking the inner product of Equation (16) by Un −Um in E1, which, merging with Equation 5 and
v = ut + εu, gives

d
dt
‖Un −Um‖2

E1
≤ −ε‖Un −Um‖2

E1
+ 2K(Um, Un),

where
K(Um, Un) = ([F (un) + F0, un]− [F (um) + F0, um] , un

t − um
t )

+ ([F (un) + F0, un]− [F (um) + F0, um] , ε(un − um)) .
(A26)

Since φ(0,−t, ω) = S(t, θ−tω), ∀t ∈ R+, ω ∈ Ω, then

‖Un −Um‖2
E1
(t, θ−tω) ≤ e−εt‖U(0)

n −U(0)
m ‖2

E1
+ 2

∫ 0

−t
eεsK(Um, Un)(s)ds.

Notice that U(0)
n , U(0)

m ∈ B, then e−εt‖U(0)
n −U(0)

m ‖2
E1
→ 0, (t→ ∞). Let

TB(ε) = max

{
−1

ε
log

(
ε

2‖B‖2
E1

)
, TB(ω)

}
.

thus, for ∀ε > 0, there exists

T = max {TB(ε), T0} ,

such that

‖Un −Um‖2
E1
(T, θ−Tω) ≤ ε + 2

∫ 0

−T
eεsK(Um, Un)(s)ds.
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Set

KA
ε,B,T,ω(U

(0)
m , U(0)

n ) = 2
∫ 0

−T
eεsK(Um, Un)(s)ds,

Since eεs ∈ L∞([−T, 0]), along with Equation (A26), and Lemmas 3 and 4, we obtain

lim inf
n→+∞

lim inf
m→+∞

KA
ε,B,T,ω(U

(0)
m , U(0)

n ) = 0,

Appendix B.6. Proof of Lemma 10

Taking the inner product of Equation (21) by Φ = [Φ1, Φ2]
T = [u, v]T in E1, we have

d
dt
‖Φ‖2

E1
= 2(A1Φ, Φ)E1 + 2(F2 (Φ, θtω) + F3(Φ, θtω), Φ)E1

. (A27)

Invoking Lemma 5, we find

2(A1Φ, Φ)E1 ≤ −ε‖Φ‖2
E1
− k0‖Φ2‖. (A28)

Since

2(F2(Φ, θtω) + F3(Φ, θtω), Φ)E1

= 2 (σz(θtω)Φ1, Φ1)2 + 2(−σz(θtω)Φ2, Φ2) + 2
(

σ2z2(θtω)Φ1, Φ2

)
+2(N(Φ1), Φ2)

by Equations (61)–(65), it can be obtained that

(F2(Φ, θtω) + F3(Φ, θtω), Φ)E1

= 2|σz(θtω)|‖A
1
2 Φ1‖2 + 2|σz(θtω)|‖Φ2‖2 +

σ2|z(θtω)|2√
Λ1

(
‖A

1
2 Φ1‖2 + ‖Φ2‖2

)
− k

2
d
dt
‖∆F (Φ1)‖2 − 2kε‖∆F (Φ1)‖2 + 2kσz(θtω)‖∆F (Φ1)‖2

− k
d
dt

Υ(F (Φ1), F0)− 2kεΥ(F (Φ1), F0) + 2kσz(θtω)Υ(F (Φ1), F0).

(A29)

Substituting Equations (A28)–(A29) into Equation (A27), we obtain

d
dt

(
‖Φ1‖2

E1
+

k
2
‖∆F (Φ1)‖2 + kΥ(F (Φ1), F0)

)
≤ −ε‖Φ‖2

E1
− ε

k
2
‖∆F (Φ1)‖2 − 3εk

2
‖∆F (Φ1)‖2 − εkΥ(F (Φ1), F0)− εkΥ(F (Φ1), F0)(

2|σz(θtω)|+ σ2|z(θtω)|2√
Λ1

)(
‖A

1
2 Φ1‖2 + ‖Φ2‖2 + k‖∆F (Φ1)‖2 + 3kΥ(F (Φ1), F0)

)
+4
(

2|σz(θtω)|+ σ2|z(θtω)|2√
Λ1

)
k|Υ(F (Φ1), F0)|.
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along with Equations (66) and (67), we have

d
dt

(
‖Φ1‖2

E1
+

k
2
‖∆F (Φ1)‖2 + kΥ(F (Φ1), F0)

)
≤− ε

(
‖Φ1‖2

E1
+

k
2
‖∆F (Φ1)‖2 + kΥ(F (Φ1), F0)

)
+ 3

(
2|σz(θtω)|+ σ2|z(θtω)|2√

Λ1

)(
‖A

1
2 Φ1‖2 + ‖Φ2‖2 +

k
2
‖∆F (Φ1)‖2 + kΥ(F (Φ1), F0)

)
+ εkC(

3
2

, C1, C2)‖F0‖2
2 + 4k

(
2|σz(θtω)|+ σ2|z(θtω)|2√

Λ1

)
C(

1
8

, C1, C2)‖F0‖2
2

(A30)

Let

E1(t, τ, ω) = E1(Φ1, Φ2, ω) =

(
‖Φ2‖2 + ‖A

1
2 Φ1‖2 +

k
2
‖∆F (Φ1)‖2 + kΥ(F , F0)

)
,

E(t, τ, ω) = E(Φ1, Φ2, ω) =

(
‖Φ2‖2 + ‖A

1
2 Φ1‖2 +

k
2
‖∆F (Φ1)‖2

)
,

applying Equation (53), we attain

E(Φ1, Φ2, ω) ≤ E1(Φ1, Φ2, ω) + kC(
1
2

, C1, C2)‖F0‖2
2, (A31)

according to Equation (A30), we have

d
dt
E1(Φ1, Φ2, ω) ≤ −εE1(Φ1, Φ2, ω) + C0(θtω)E1(Φ1, Φ2, ω) + K (A32)

where C0(θtω) is given by Equation (29) and K is denoted by Equation (31).
It follows form Equation (A32) that

E1(Φ1, Φ2, ω) ≤ e−ε(t−τ)+
∫ t

τ C0(θsω)dsE1(Φ1, Φ2, ω) +
∫ t

τ
e−ε(t−s)+

∫ t
s C0(θkω)dkKds,

which means that for any given t ≥ τ, t, τ ∈ R, ω ∈ Ω, the following holds

E1(t, τ, ω) ≤ e−ε(t−τ)+
∫ t

τ C0(θsω)dsE1(τ, τ, ω) +
∫ t

τ
e−ε(t−s)+

∫ t
s C0(θkω)dkKds.

Since

lim
t→−∞

−1
t

∫ t

0
C0(θsω)ds = − 3σ2

2µ
√

λ1
− 6σ
√

πµ
, (A33)

then, there exits T1 < 0 such that for any t < T1, the ensuing can be satisfied

lim
t→−∞

−1
t

∫ t

0
C0(θsω)ds ≥ − 3σ2

µ
√

λ1
− 12σ
√

πµ
, (A34)

which together with Equation (28) gives that ε = ε− 3σ2

µ
√

λ1
− 12σ√

πµ > 0; hence, when t < T1,

εt +
∫ 0

t
C0(θsω)ds ≤ εt < 0, (A35)
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therefore

eεt+
∫ 0

t C0(θsω)dsE(t, t, ω)→ 0, t→ −∞. (A36)∫ 0

−∞
eεt+

∫ 0
t C0(θsω)dsK0dt

=
∫ 0

T1

eεt+
∫ 0

t C0(θsω)dsK0ds +
eεT1 K0

ε
, (A37)∫ 0

−∞
eεt+

∫ 0
t C0(θsω)ds|z(θtω)|K1dt

=
∫ 0

T1

eεt+
∫ 0

t C0(θsω)ds|z(θtω)|K1ds +
∫ T1

−∞
eεs|z(θsω)|K1ds. (A38)∫ t

−∞
eεt+

∫ 0
t C0(θsω)ds|z(θsω)|2K2dt

=
∫ t

T1

eεt+
∫ 0

t C0(θsω)ds|z(θtω)|2K2ds +
∫ T1

−∞
eεs|z(θsω)|2K2ds. (A39)

Combining Equation (31) with the fact that z(θtω) is tempered, we have that ρ0(ω) defined by
Equation (29) is a bounded random variable (P-a.s.). Furthermore, merging with Equation (A31), we
find the random variable ρ0(ω) in Equation (30) is also bounded.

Incorporating Equation (A40), it can be derived that. for any initial value Φ ∈ B, there exists
TB(ω) < 0 such that

E(0, t, ω) ≤
√

ρ(ω), ∀t ≤ TB(ω).

Based on the relationship between v and u, we have that. for any initial value [u, v]T ∈ E1,
the following holds

(
‖A

1
2 u‖2 + ‖ut + εu‖2

)
E1
(0, t, ω) ≤

(
|σz(ω)|2

Λ1
+ 1
)

ρ(ω), ∀t ≤ TB(ω). (A40)

Let t = −t, TB(ω) = −TB(ω); along with Equation (32), it can be asserted that, for any given
non-random bounded set B ⊂ E1, there exists TB(ω) > 0 such that for ∀t > TB(ω), the following
holds P-a.s.

‖S(t, θ−tω)B‖E1 ≤ r(ω).

Thus, S(t, ω) possesses global random absorbing set in E1.
The remainder of this proof is intended to estimate the expectation of ρ(ω). It follows from

Equations (35), (36) and (29) that

E
(

eεs+
∫ 0

s C0(θkω)dk
)
≤ e

εs− 6|σ|√
µ s− 3σ2

µ
√

Λ1
s
,

Merging with Equation (A21) and Cauchy inequality, we have

E
(

eεs+
∫ 0

s C0(θkω)dk|z(θsω)|2
)
≤ e

εs− 6|σ|√
µ s− 3σ2

µ
√

Λ1
s
(

Γ( 5
2 )

µ2
√

π

) 1
2

, (A41)

E
(

eεs+
∫ 0

s C0(θkω)dk|z(θsω)|
)
≤ e

εs− 6|σ|√
µ s− 3σ2

µ
√

Λ1
s
(

Γ( 3
2 )

µ2
√

π

) 1
2

. (A42)
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Let

M = M0 + M1 + M2 + kC(
1
2

, C1, C2)‖F0‖2
2 + δ0, (A43)

in which

M0 =
∫ 0

T1

e
εs− 6|σ|√

µ s− 3σ2

µ
√

Λ1
s
K0ds +

eε0T1 K0

ε
,

M1 = K1

(
Γ( 3

2 )

µ2
√

π

) 1
2 ∫ 0

T1

e
εs− 6|σ|√

µ s− 3σ2

µ
√

Λ1
s
ds +

eε0T1 K2

ε
√

πµ
,

M2 = K2

(
Γ( 5

2 )

µ2
√

π

) 1
2 ∫ 0

T1

e
εs− 6|σ|√

µ s− 3σ2

µ
√

Λ1
s
ds +

eε0T1 K3

2εµ
.

Together with Equations (30), (A41), (A42) and (A37)–(A39), we have

E(ρ(ω)) ≤ M < ∞.

Appendix B.7. Proof of Lemma 11

For ∀t ≥ 0, ∀τ ∈ [−t, 0], let {Φ(0)
n }+∞

n=1 = {T(θ−tω)U(0)
n }+∞

n=1,

{Un}+∞
n=1 = {φ(τ,−t, ω)U(0)

n }+∞
n=1 = {[un, vn]T}+∞

n=1,

{Φn}+∞
n=1 = {ϕ(τ,−t, ω)Φ

(0)
n }+∞

n=1 = {[un, vn]T}+∞
n=1.

By Lemma 10, we find that {Un}+∞
n=1, {Φn}+∞

n=1 have weakly star convergence in L∞([−t, 0], E1),
still denoted by {Un}+∞

n=1, {Φn}+∞
n=1. Obviously Φn −Φm satisfies Equation (22). Taking the inner

product of Equation (22) by Φn −Φm in E1, we have

d
dt
‖Φn −Φm‖2

E1
= 2(A1(Φn −Φm), Φn −Φm)E1

+ 2 (F2(Φn, θtω)− F2(Φm, θtω), Φn −Φm)E1

+ 2 (F3(Φn, θtω)− F3(Φm, θtω), Φn −Φm)E1

(A44)

In light of Lemma 5, we have

2 (A1(Φn −Φm), Φn −Φm)E1
≤ −ε‖Φn −Φm‖2

E1
− k0‖Φ2,n −Φ2,m‖. (A45)

In term of Equations (61)–(63), we find

2(F2(Φn, θtω)− F2(Φm, θtω) + F3(Φn, θtω)− F3(Φm, θtω), Φ)E1

≤ 2|σz(θtω)|‖A
1
2 Φ1‖2 + 2|σz(θtω)|‖Φ2‖2 +

σ2|z(θtω)|2√
Λ1

(
‖A

1
2 Φ1‖2 + ‖Φ2‖2

)
+((N(un)− N(um), vn − vm),

Merging with Equation (29), we obtain

2(F2(Φn, θtω)− F2(Φm, θtω) + F3(Φn, θtω)− F3(Φm, θtω), Φ)E1

≤ 1
3

C0(θtω)‖Φn −Φm‖2
E1

+ ((N(un)− N(um), vn − vm).
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Since v = ut + εut − σuz(θtω), then

2(F2(Φn, θtω)− F2(Φm, θtω) + F3(Φn, θtω)− F3(Φm, θtω), Φ)E1

≤ 1
3

C0(θtω)‖Φn −Φm‖2
E1

+ K(Um, Un) + σz(θtω)K̂(Um, Un).
(A46)

where K(Um, Un) is denoted by Equation (A26)

K̂(Um, Un) = ([F (un) + F0, un]− [F (um) + F0, um] , un − um) . (A47)

Substituting Equations (A45) and (A46) into Equation (A44), it can be obtained

d
dt
‖Φn −Φm‖2

E1
≤− ε‖Φn −Φm‖2

E1
+

2
3

C0(θtω)‖Φn −Φm‖2
E1

+ 2K(Um, Un) + 2σz(θtω)K̂(Um, Un),
(A48)

hence

‖Φn −Φm‖2
E1
(0,−t, ω)

≤ e−εt+
∫ 0
−t

2
3 C0(θkω)dk‖Φn −Φm‖2

E1
(−t,−t, ω) (A49)

+2
∫ 0

−t
e−εs+

∫ 0
−s

2
3 C0(θkω)dk

(
K(Um, Un) + σz(θtω)K̂(Um, Un)

)
ds.

By Equation (A35), we have that for any given T0 ≥ −T, ∀t > T0, the following holds

‖Φn −Φm‖2
E1
(0,−t, ω)

≤ e−εt‖Φn −Φm‖2
E1
(−t,−t, ω) (A50)

+2
∫ 0

−t
e−εs+

∫ 0
−s

2
3 C0(θkω)dk

(
K(Um, Un) + σz(θsω)K̂(Um, Un)

)
ds,

and

e−εt‖Φn −Φm‖2
E1
(−t,−t, ω)→ 0, t→ +∞. (A51)

Hence, for any ∀ε > 0, let

TB(ε) = max

−1
ε

log

 ε

4
(
|σz(ω)|2

Λ1
+ 1
)
‖B‖2

E1

 , TB(ω)

 .

then, it follows from Equations (A50) and (A51) that there exists

T = max {TB(ε), T0} ,

such that

‖Φn −Φm‖2
E1
(T, θ−Tω) ≤ ε(

|σz(ω)|2
Λ1

+ 1
) + 2

∫ 0

−T
e−εs+

∫ 0
−s

2
3 C0(θkω)dkK(s, Φm, Φn)ds.

where TB(ω) is defined in Lemma 10,

K(T, Φm, Φn) =
∫ 0

−T
e−εs+

∫ 0
−s

2
3 C0(θkω)dk

(
K(Um, Un) + σz(θsω)K̂(Um, Un)

)
ds,
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employ the relationship between {Un}+∞
n=1 and {Φn}+∞

n=1, we derive

‖Un −Um‖2
E1
(T, θ−Tω) ≤

(
|σz(ω)|2

Λ1
+ 1
) ε(

|σz(ω)|2
Λ1

+ 1
) +K(T, Φm, Φn)

 ,

= ε + 2
(
|σz(ω)|2

Λ1
+ 1
)
K(T, Φm, Φn).

Let

KM
ε,B,T,ω(U

(0)
m , U(0)

n ) = 2
(
|σz(ω)|2

Λ1
+ 1
)
K(T, Φm, Φn),

then

‖Un −Um‖2
E1
(T, θ−Tω) ≤ ε + KM

ε,B,T,ω(U
(0)
m , U(0)

n ).

along with Equation (1), we have e−εs+
∫ 0
−s

2
3 C0(θkω)dk ∈ L∞([−T, 0]), z(θtω) ∈ C([−T, 0]), which

together with Lemmas 3 and 4 gives

lim inf
n→+∞

lim inf
m→+∞

KM
ε,B,T,ω(U

(0)
m , U(0)

n ) = 0,
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