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Abstract: In this paper, the exact analytical solutions are developed for the thermodynamic behavior
of an Euler-Bernoulli beam resting on an elastic foundation and exposed to a time decaying laser
pulse that scans over the beam with a uniform velocity. The governing equations, namely the heat
conduction equation and the vibration equation are solved using the Green’s function approach.
The temporal and special distributions of temperature, deflection, strain, and the energy absorbed by
the elastic foundation are calculated. The effects of the laser motion speed, the modulus of elastic
foundation reaction, and the laser pulse duration time are studied in detail.
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1. Introduction

Lasers are now widely utilized in engineering applications because of their super processing
efficiency, adaptability to local treatment and high operation precision. Some companies have done
a lot of researches and developments on laser manufacturing techniques. For example, HGTECH,
a company of China, is now trying to develop high-efficiency intelligent laser hardening equipment,
which is expected to be used in key components of railways and aircrafts. It is predicted that the
service life of steel rails can be increased by 10 times, and the frequencies of rail replacement can be
decreased by 50%. In some laser technique applications, such as laser marking, laser heat treating, and
so on, the target object need to be put on a foundation, and the laser moves at a specific speed over the
surface of the object.

Considerable studies have been carried out to obtain the solutions of workpieces irradiated
by moving laser beams. Among them, in 1977, Cline and Anthony [1] presented a for heating and
melting of materials subjected to a moving heat source. Mercier et al. [2] studied the thermoelastic
stresses arising of a semi-infinite medium caused by a moving band source of heat on the surface by
using the analytical temperature solutions and a numerical calculation of stress. Nguyen et al. [3]
derived the theoretical solution of a semi-infinite body, which is exposed to a movable heat source with
double-ellipsoidal power density. Van Elsen et al. [4] studied the temperature field of a semi-infinite
structure irradiated by a uniform heating source. Sun et al. [5] investigated the thermoelastic response
of a semi-infinite rod exposed to a time attenuating laser pulse.

The above literatures treated the infinite or semi-infinite structures. It is obvious that the
thermoelastic problem of finite region is more complicated to be solved, for which the analytical
solutions are less in existing literatures. Among them, Ootao and Tanigawa [6] derived the expression
for the rectangular plate through adopting the Laplace and finite cosine transformations. Yang et al. [7]
investigated the thermoslastic behavior of a clamped beam that is heated by a movable laser pulse.
Sun et al. [8] studied the heating process of a circular plate composed of two layers by applying Green’s
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function approach. Abbas [9] investigated the generalized thermoelastic behavior of a thin slim strip
by applying Green and Lindsay theory.

In geotechnical engineering, beams on elastic foundation are widely used. A lot of research has
focused on the dynamic behaviors of beams induced by moving loads. In 1954, Kenney [10] first
obtained the solution to an infinite beam on Winkler spring foundation applied to a concentrated force
scanning at a uniform speed. Sun [11] and Kim [12] presented more works about the solutions of
beams on viscoelastic foundation and on Winkler foundation. Basu and Rao [13] derived expressions
for the static response of an infinite beam which is set on a visco-elastic foundation and applied to a
concentrated force scanning at a uniform speed.

As a beam is irradiated by a laser pulse, its temperature will increase, and thermal strains will be
generated at specific locations because of the thermal impulses. As a result, vibrations will be generated
by the laser-induced thermal impulses which generate impulsive local thermal strains. For the beam
set on a foundation, the vibration of the beam is restricted, and it shows behaviors different from a free
beam. On the other hand, when the laser pulse moves, the induced strain also moves along the beam
in the form of a strain wave. Many works have been done about wave propagations. For example,
Brown et al. [14] studied the wave propagation in a viscoelastic medium. They considered both the
classical and fractional differentiation of the Zener, Maxwell, and Voigt models, in which the coupling
of different models inside the same medium are also covered.

The Green’s function approach is a helpful mathematical tool in solving partial differential
equations. Many researchers have applied it in heat conduction problems and mechanics of structural
members. The methods of obtaining of the specific diverse Green’s functions for structural members
with homogeneous or nonhomogeneous material, uniform or non-uniform thickness, additional
discrete elements, etc., have been reported. For example, Żur [15–19] presented a series of work
over the free vibration analysis of thin circular plates and elastically supported functionally graded
annular plates using the Green’s functions. Zhao et al. [20–22] analytically studied the vibration of
a cracked Euler-Bernoulli beam induced by a heat flux or a harmonic force and that of Timoshenko
beams due to a heat flux together with an external load. Chen et al. [23] studied the dynamic behavior
of an axially forced Timoshenko beam under different boundary conditions. The Green’s functions
were obtained by using the techniques of separation of variables and the Laplace transformation.
Hozhabrossadati et al. [24] analyzed the Bernoulli beams under the resonant condition and they
developed a Green’s function procedure by constructing the proper Green’s function and adopting the
pertinent boundary conditions. Mohammad et al. [25] studied the thermoelastic static behaviors of a
curved circular beam through Green’s function technique. Li and Yuan [26] applied the quasi-Green’s
function technique to solve the free vibration problem of thin plates on the Winkler foundation.
Sun et al. [27] studied the thermomechanical response of a beam induced by a movable laser pulse.
They derived the Green’s function for the fourth-order vibration equation and derived the deflection
of a heated beam. Ma et al. [28,29] utilized the Green’s function technique to present a general
solution for the dual-phase-lag heat conduction equations of a two-dimensional square plate and a
three-dimensional skin model.

In the work, a Bernoulli beam setting on an elastic foundation is considered, and its dynamic
response is studied when it is exposed to a moving laser pulse. The nonhomogeneous heat conduction
equation and vibration equation are solved analytically to derive the temperature, deflection and strain.

2. Basic Formulations of the Problem

Assume that a Bernoulli beam is exposed to a moving laser pulse which is decaying exponentially
with time. Due to the irradiation of the laser pulse, the temperature of the beam will increase, and
vibrations will be generated by thermal impulses generated by laser which generate impulsive local
thermal strains. The beam is put on an elastic foundation and is simply supported on both ends.
The Winkler model is selected to describe the vibration of the beam resting on the elastic foundation.
The laser pulse moves on the top surface of the beam, which is illustrated in Figure 1. Assume that the
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beam material is isotropic and linear elastic and the deflection is small. The Cartesian coordinate is
used to study the temperature rise and vibration of the beam. Then the laser pulse scans towards right
from the left end at uniform speed v. The dimensions of the beam are shown in Figure 1, that is, the
length is L, the width is b, and the thickness is h.
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Figure 1. Sketch map of the beam resting on elastic foundation. 
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The heat conduction is described by the following equation [30]:

∂2T
∂x2 +

∂2T
∂z2 +

1
k

Q(x, z, t) =
1
α

∂T
∂t

(1)

where t is time, T the temperature rise, α the thermal diffusivity, k the thermal conductivity. And
Q(x, z, t) is the thermal source function as expressed by [7]

Q(x, z, t) =
RaL0t

Bt2
p

exp
(
− t

tp
+

z− h/2
B

)
δ(x− vt) (2)

where, L0 and tp are the power intensity and duration time of the laser, Ra the energy absorption
coefficient, B the energy absorption depth, and δ() the Dirac delta function.

The vibration equation of the beam on elastic foundation is [31,32]

EI
∂4w
∂x4 + cw + ρA

∂2w
∂t2 = −EIαT

∂2MT

∂x2 (3)

where w is the deflection, c the modulus of elastic foundation reaction, ρ the density, E the Young’s
modulus, I the moment of inertial, A the cross section area, αT the linear thermal expansion coefficient.
MT = 12

h3

∫ h/2
−h/2 Tzdz is the thermal moment.

The beam is set to be isothermal on the two ends and the bottom surface, while adiabatic on the
top surface, so the thermal boundary conditions are T|x=0 = T|x=L = 0,

T|z=− h
2
= 0, ∂T

∂z

∣∣∣
z= h

2

= 0 (4)

Since the beam is simply supported on both ends, the supporting conditions are

w|x=0 = w|x=L = 0,
(

∂2w
∂x2 + αT MT

)∣∣∣∣
x=0

=

(
∂2w
∂x2 + αT MT

)∣∣∣∣
x=L

= 0 (5)
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And the initial conditions are

T|t=0 = 0, w|t=0 = 0,
∂w
∂t

∣∣∣∣
t=0

= 0 (6)

3. Derivation of Temperature Rise

The heat conduction equation is solved by adopting the Green’s function approach. Based on
the approach of separation of variables, the following auxiliary problem for the same problem is
considered [30]

∂2G(x,z,t/x′ ,z′ ,τ)
∂x2 + ∂2G(x,z,t/x′ ,z′ ,τ)

∂z2

+ 1
α δ(x− x′)δ(z− z′)δ(t− τ) = 1

α
∂G(x,z,t/x′ ,z′ ,τ)

∂t , t > τ
(7)

G|x=0 = G|x=L = 0, G|z=− h
2
=

∂G
∂z

∣∣∣∣
z= h

2

= 0, t > τ (8)

and applied to the following condition

G
(

x, z, t/x′, z′, τ
)
= 0 if t < τ (9)

So, the proper Green’s function satisfying Equations (1), (2), (4) and (6) are obtained as

G
(

x, z, t/x′, z′, τ
)
=

∞

∑
m=1

∞

∑
n=1

4
Lh

e−µmn(t−τ)Xm
(

x′
)
Zn
(
z′
)
Xm(x)Zn(z) (10)

where, µmn = α
(
η2

m + γ2
n
)

and Xm(x) and Zn(z) are the eigenfunctions of the homogeneous heat
conduction equation related to the boundary conditions, which are given as{

Xm(x) = sin(ηmx)
Zn(z) = sin

(
hγn

2

)
cos(γnz) + cos

(
hγn

2

)
sin(γnz)

(11)

where ηm = mπ
L , γn = (2n−1)π

2h , m, n = 1, 2, . . ..
The temperature function can be obtained as [30]

T(x, y, t) =
α

k

∫ t

τ=0

∫ L

x′=0

∫ h/2

z′=−h/2
G
(

x, z, t/x′, z′, τ
)
Q
(
x′, z′, τ

)
dx′dz′dτ (12)

Substitute Equations (2) and (10) into Equation (12), and the temperature can be obtained as

T(x, z, t) =
∞

∑
m=1

∞

∑
n=1

4αRaL0

kLhBtp2 Xm(x)Zn(z)GnFmn(t) (13)

where

Gn =
∫ h/2

z=−h/2
Zn(z) exp

(
z− h/2

B

)
dz (14)

Fmn(t) =
∫ t

τ=0
sin(ηmvτ)e−µmn(t−τ)τ exp

(
− τ

tp

)
dτ (15)

4. Solution of Vibration Equation

Substitution of Equation (12) into MT yields

MT =
∞

∑
m=1

∞

∑
n=1

A1EnGnXm(x)Fmn(t) (16)
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where A1 = 48αRa L0
kLh4Btp2 and En =

∫ h/2
−h/2 Zn(z)zdz.

It is obvious that Xm(x)|x=0,L = 0 , so MT |x=0,L = 0 . In such a case, the supporting conditions
Equation (6) residues to

w|x=0 = w|x=L = 0,
∂2w
∂x2

∣∣∣∣
x=0

= 0,
∂2w
∂x2

∣∣∣∣
x=L

= 0 (17)

Equation (3) could be rearranged as

ϕ
∂4w
∂x4 + c0w +

∂2w
∂t2 = f (x, t) (18)

where, ϕ = Eh2

12ρ , c0 = c
ρA and f (x, t) = −ϕαT

∂2 MT
∂x2 .

Substitution of Equation (16) into f (x, t) yields

f (x, t) =
∞

∑
m=1

∞

∑
n=1

ϕαTη2
m A1EnGnXm(x)Fmn(t) (19)

The free transverse vibration of a beam setting on an elastic foundation is given by

ϕ
∂4w
∂x4 + c0w +

∂2w
∂t2 = 0 (20)

The solution of this equation is gained through the approach of separation of variables. In this
case, we assume a solution in the form

w =
∞

∑
s=1

Ws(x)qs(t) (21)

where Ws(x) depends on space and qs(t) is a temporal function.
Consider the general case that the initial conditions are

w|t=0 = w0(x),
∂w
∂t

∣∣∣∣
t=0

=
.

w0(x) (22)

The solution of Equation (20) for the homogeneous boundary conditions can be obtained as

w(x, t) =
∞

∑
s=1

Ws(x)

[
1

Ms
cos(Ωst)

∫ L
0 w0(x)Ws(x)dx

+ 1
Ωs Ms

sin(Ωst)
∫ L

0
.

w0(x)Ws(x)dx

]
(23)

where the vibration mode function Ws(x) satisfying the boundary conditions is

Ws(x) = sin(psx) (24)

where ps = πs/L (s = 1, 2, 3, . . . ), Ωs =
√

p4
s ϕ + c0, and Ms =

∫ L
0 [Ws(x)]2dx.

The solution of Equation (20) by Green’s function approach is [33]

w(x, t) =
L∫

0

G1
(

x, x′, t
)

F1
(

x′
)
dx′ +

L∫
0

G2
(

x, x′, t
)

F2
(
x′
)
dx′ (25)

Comparison between Equations (23) and (25) gives

G1
(

x, x′, t
)
=

∞

∑
s=1

1
Ms

Ws(x)Ws
(

x′
)

cos(Ωst) (26)
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G2
(

x, x′, t
)
=

∞

∑
s=1

1
Ms

Ws(x)Ws
(
x′
)

sin(Ωst) (27)

Since the above two expresses satisfy the following relationship:

∂G2(x, x′, t)
∂t

= G1
(
x, x′, t

)
(28)

the Green’s function for Equation (20) can be taken as G2(x, x′, t).
The authors [27] have derived the Green’s function for the fourth-order vibration equation of a

simple supported beam. Following the procedures of Ref. [27], the Green’s function of Equation (18)
could be derived as G2(x, x′, t− τ), so the deflection of the beam can be expressed by [27]

w(x, t) =
t∫

τ=0

L∫
x′=0

G2
(
x, x′, t− τ

)
f
(
x′, τ

)
dx′dτ (29)

The defection is achieved from Equations (19), (27) and (29) as

w(x, t) =
∞

∑
m=1

∞

∑
n=1

∞

∑
s=1

ξmns∆msWs(x)Ψmns(t) (30)

where,

ξmns =
12η2

m ϕαT A1EnGn

MsΩsh3 (31)

∆ms =
∫ L

x′=0
Xm
(
x′
)
Ws
(

x′
)
dx′ (32)

Ψmns(t) =
∫ t

τ=0
Fmn(τ) sin[Ωs(t− τ)]dτ (33)

One can find that

∆ms =

{
L/2 m = s

0 m 6= s
(34)

So only take the items of m = s in Equation (30), and the expression of deflection could be
simplified as

w(x, t) =
∞

∑
m=1

∞

∑
n=1

6Lη2
m ϕαT A1EnGn

MmΩmh3 Wm(x)Ψmn(t) (35)

where

Ψmn(t) =
∫ t

τ=0
Fmn(τ) sin[Ωm(t− τ)]dτ (36)

The total strain induced in the beam is

εx = −z
∂2w
∂x2 (37)

Substitute Equation (35) into Equation (37), and the expression of strain could be gained as

εx(x, t) =
∞

∑
m=1

∞

∑
n=1

6Lη2
m p2

s ϕαT A1EnGn

MmΩmh3 zWm(x)Ψmn(t) (38)
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5. Results and Discussions

Take a copper beam as an example in the following calculations. The used parameters are [34]:
ρ = 8900 kg m−3, α = 1.164× 10−4 m2s−1, E = 1.2× 1011 Pa, αT = 2× 10−5 K−1, k = 400 W m−1 K−1,
L0 = 1000 J m−2, Ra = 0.93, B = 1.53× 10−8 m, L = 0.1 m, h = 0.01 m, b = 0.01m.

5.1. Example Results of Temperature, Deflection and Strain

Figure 2 shows the time histories and spatial distributions of the temperature, deflection, and
strain of the beam under the laser pulse velocity of 20 m/s. The other parameters in the calculation
are c = 1× 108 N/m2 and tp = 1× 10−3 s. The propagations of thermal wave and strain wave are
obvious in the figures.
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vs. time; (b) Temperature increment vs. location; (c) Deflection vs. time; (d) Deflection vs. location;
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Figure 2a shows the time histories of temperature increments on the top surface (z = 0.005 m)
at various axial locations and Figure 2b its spatial distribution at several moments. The temperature
is zero at the beginning. It rises to the peak value soon and then declines to a steady value instantly.
As the distance away from the left side enlarges, it needs a longer time for the temperature to begin
rising. The steady value of temperature increment is almost the same at different locations, which
is sure because the laser pulse decays after about 2tp and there is no heat input or loss under the
condition of this problem. It could be found from Figure 2a,b that the peak temperature increment
takes the maximum value at the location of x = vtp and the highest value occurs at the moment of
t = 0.001 s. This is because the power density of the laser pulse takes the maximum value at the
moment of t = 0.001 s.

Figure 2c,d show the time histories and spatial distributions of deflection. Figure 2e,f show a the
temporal and special distributions of strains on the top surface. It can be found that the deflection is
not symmetric about the midspan of the beam. Instead, it takes the maximum deflection at a location
near to the left end. This is the result of the motion of laser pulse. In addition, the propagation of
the strain wave can be observed in Figure 2f. The vibrations are induced by thermal impulses which
generate thermal strains at specific locations. Since the laser pulse, or the thermal impulse moves along
the axis direction, the front of the strain wave propagates towards right as time passes.

In the following, the influences of the laser pulse speed, the modulus of elastic foundation reaction
and the duration time of laser pulse on the thermal behaviors of the beam are evaluated.

5.2. Influence of Laser Pulse Speed

First of all, the effect of the laser speed is discussed. Four velocities are taken in the calculation,
that is, v = 2, 5, 10, and 20 m/s, respectively. The values of c and tp keep as c = 1× 108 N/m2 and
tp = 1× 10−3 s, respectively. Table 1 shows the maximum results of the temperature increment on the
top surface (z = 0.005 m) under the four laser speeds. It is obvious that when the velocity of laser
pulse grows, the peak value of temperature increment drops.

Table 1. Maximum temperature increment under different laser speed.

Velocity (m/s) 2 5 10 20

Tmax (K) 537.65 336.78 227.14 151.93

Figure 3 shows the maximum deflection of the beam and the corresponding location at which the
maximum deflection occurs at several moments under the four laser velocities of 2, 5, 10, and 20 m/s,
respectively. It can be seen that both the maximum deflection as well as the corresponding location
enlarge with the rise of laser pulse speed. Under a low laser speed, the maximum deflection occurs
at a location close to the left end. As the scanning speed rises, this location moves toward the right.
These responses are because the deflection is induced by the thermal loading, which depends on the
motion of the laser pulse.

Figure 4 shows the strain on the top surface along the axis of the beam when the motion velocities
of laser pulse are 2, 5, and 10 m/s. Comparing with Figure 2f, it could be found that the velocity of
laser pulse is important for the strain. The front of strain wave can be seen clearly in the figures. When
the laser moves slowly, there is mainly tension stress close to the original point of the beam. However,
as the laser pulse moves faster, the strain wave propagates a longer distance and the portion with
positive strain becomes larger along the beam axis. Furthermore, the maximum value of strain drops
as the laser velocity increases. At the same time, negative strain occurs, and its magnitude increases at
the right part of the beam.
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Two parameters are used to describe the energy absorbed by the foundation: (a) Linear density of
energy, defined as EL(x, t), which describes the energy density absorbed by the foundation along x-axis;
(b) Relative density of energy, defined as ER(x, t), which describes the percent of energy absorbed at
each location to the total energy absorbed by the foundation over the beam span. The two parameters
are defined as

EL(x, t) =
1
2

c[w(x, t)]2 (39)

ER(x, t) =
EL(x, t)
Ea(x, t)

(40)
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where Ea(x, t) is the total energy absorbed by the foundation over the beam span.
To examine the influences of the laser velocity on EL and ER, the distribution of them along x-axis

under four different laser speeds are calculated with the results shown in Figure 5. In the calculation,
the time is t = 0.002 s. It can be found from Figure 5 that the scanning speed of laser pulse can
affect the energy absorption properties greatly. As the scanning speed increases, the linear density of
energy, EL, increases while the relative density of energy, ER, decreases. And the locations where the
maximum values of EL and ER occur move towards right. This behavior is due to the laser motion.
When the laser pulse moves slowly, only a small region of the beam is exposed to the laser pulse. So,
the temperature of the small area can rise to a high level, but the other regions are hardly heated.
As a result, the beam deflection is small, and the uniformity is low. However, when the speed of laser
pulse increases, a larger region of the beam is heated, and the beam deflection increases. Meantime,
the maximum value of temperature decreases, so the uniformity of deflection along the beam span
increases. Consequently, we can find that EL increases while ER decreases with the increment of
laser speed.
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5.3. Influence of Modulus of Elastic Foundation Reaction

The influences of modulus of elastic foundation reaction, c, on the thermoelastic responses are
studied. Four values of c are taken, namely 0, 107, 108, and 109 N/m2. The values of v and tp remain
20 m/s and 1 ms, respectively. Figure 6a shows the maximum deflection vs. c at several moments.
And the relationship between the corresponding location where the maximum deflection occurs and
the value of c is also shown in Figure 6b. The distribution of strain on the top surface of the beam
for c = 1× 108 N/m2 has been shown in Figure 2f, and the results for the other three values of c are
shown in Figure 7. It is known that a small c means flexible foundation, while a large one stands
for rigid foundation. As c increases, more energy can be absorbed by the elastic foundation, so both
the maximum deflection and the peak strain of the beam decrease. It is clear that the corresponding
location of maximum deflection declines with the rise of c. In addition, the vibration properties are
quite different in the four cases. When c is large, say 109 N/m2, negative strain follows the peak value,
and the absolute value of the negative strain first increases and then decreases as time passes. However,
as c is small, the negative strain also is small. Especially, when c is 0, the strain is almost 0 after the
wave front.

The influences of the modulus of elastic foundation reaction c on EL and ER are shown in Figure 8.
It is clear that as c inclines, both E f and Er increase.

It is easy to find in Figure 8 that there are two peaks in the curves when c = 1× 109 N/m2. This
is because there is negative deflection in such a case. The deflection curves at the moment t = 0.002 s
under three values of c are shown in Figure 9.
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5.4. Influence of Duration Time of Laser Pulse

Three duration times of laser pulse are selected, namely, tp = 8× 10−4, 1.2× 10−3 and 1.5× 10−3 s.
The laser velocity is 20 m/s and the other parameters are the same as those in Figure 2. Since the
strain distribution is similar to that of Figure 2f, only the maximum strain, εmax, and the corresponding
location are given in Table 2. It is shown that εmax decreases while the corresponding location moves
toward the right when tp increases.

Table 2. Influence of duration time on strain.

tp (ms) εmax (µ) Location (m)

0.8 39.1766 0.014
1 29.7347 0.014

1.2 25.0138 0.018
1.5 19.3491 0.028

The energy absorption characteristics can vary with different duration time of laser pulse tp.
The variations of EL and ER vs. x are shown in Figure 10. Since the laser pulse disappears at the time
of t = 2tp, the curves of EL and ER at the moment of 2tp are shown in Figure 10. It can be found that as
tp increases, the peak value of EL first increases and then decreases, while ER continues decreasing.
Furthermore, the locations where the peak values of EL and ER occur moves toward the right as
tp increases.Symmetry 2018, 10, x FOR PEER REVIEW  14 of 16 
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6. Conclusions

The thermal behavior of a simply supported beam setting on an elastic foundation and irradiated
by a moving laser pulse is studied. The analytical solutions of temperature, deflection, and strain were
obtained through adopting the Green’s function technique.

The effects of the laser velocity, the modulus of elastic foundation reaction, and the duration time
of the laser pulse are studied in detail. The following conclusions are drawn:

When the velocity of laser pulse rises, the peak values of temperature increment, strain, and
the relative density of energy decrease, while the maximum deflection and the linear density of
energy increases.

As the modulus of elastic foundation reaction increases, more energy can be absorbed by the
elastic foundation, so the maximum deflection, the peak values of strain, the linear density of energy
and the relative density of energy of the beam decrease. When c is large enough, negative strain occurs
following the wave front.

As tp rises, the maximum strain declines, and the corresponding location moves toward the right.
Meanwhile, the peak value of EL first increases and then decreases, while ER continues decreasing.
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