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Abstract: A novel global harmony search (NGHS) algorithm, as proposed in 2010, is an improved
algorithm that combines the harmony search (HS), particle swarm optimization (PSO), and a genetic
algorithm (GA). Moreover, the fixed parameter of mutation probability was used in the NGHS
algorithm. However, appropriate parameters can enhance the searching ability of a metaheuristic
algorithm, and their importance has been described in many studies. Inspired by the adjustment
strategy of the improved harmony search (IHS) algorithm, a dynamic adjusting novel global harmony
search (DANGHS) algorithm, which combines NGHS and dynamic adjustment strategies for genetic
mutation probability, is introduced in this paper. Moreover, extensive computational experiments
and comparisons are carried out for 14 benchmark continuous optimization problems. The results
show that the proposed DANGHS algorithm has better performance in comparison with other HS
algorithms in most problems. In addition, the proposed algorithm is more efficient than previous
methods. Finally, different strategies are suitable for different situations. Among these strategies,
the most interesting and exciting strategy is the periodic dynamic adjustment strategy. For a specific
problem, the periodic dynamic adjustment strategy could have better performance in comparison
with other decreasing or increasing strategies. These results inspire us to further investigate this kind
of periodic dynamic adjustment strategy in future experiments.

Keywords: metaheuristic; global optimization; harmony search algorithm; dynamic adjustment
strategy

1. Introduction

The last two decades have seen a significant increase in research into metaheuristic algorithms.
The procedure of a metaheuristic algorithm can be divided into four steps: initialization, movement,
replacement, and iteration [1]. The most popular metaheuristic algorithms to date are the particle
swarm optimization (PSO) [2,3], genetic algorithm (GA) [4–6], and ant colony optimization (ACO) [7–9].

PSO was introduced by Kennedy and Eberhart in 1995 [10,11]. It imitates the foraging behavior of
birds and fish, and provides a population-based search procedure, where each individual is abstracted
as a “particle” that flies around in a multidimensional search space. The best positions encountered
by a particle and its neighbors determine the particle’s trajectory, along with other PSO parameters.
In other words, a PSO system attempts to balance exploration and exploitation by combining global
and local search methods [12].

The GA has been widely investigated since Holland proposed it in 1960 [13,14]. The GA was
developed from Darwinian evolution. Based on the concept of natural genetics and evolutionary
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principles, GA is a stochastic search technique that can search the near optimum solution in a large
and complicated space. As Gordini [15] points out, “the GA differs from other non-linear optimization
techniques in that it searches by maintaining a population of solutions from which better solutions
are created, rather than making incremental changes to a single solution to a problem.” The GA is
consisted of three operators: reproduction, crossover, and mutation [16]. Reproduction is a process of
survival-of-the-fittest selection. Crossover is the partial swap between two parent strings in order to
produce two offspring strings. Mutation is the occasional random inversion of bit values in order to
generate a non-recursive offspring. One importance of the GA is that several metaheuristic algorithms
have been developed from the GA, such as the honey-bee mating optimization (HBMO) algorithm [17]
and the harmony search (HS) algorithm [16].

The harmony search (HS) algorithm is a modern metaheuristic intelligent evolution algorithm [18],
and was inspired by the music improvisation process where musicians improvise their instruments’
pitches searching for a perfect state of harmony [19]. The HS algorithm simulates the principle
of the music improvisation process in the same way that the GA simulates biological evolution,
the simulated annealing algorithm (SA) [20] simulates physical annealing, and the PSO algorithm
simulates the swarm behavior of birds and fish [18], etc. The HS algorithm has excellent exploitation
capabilities. However, the HS algorithm suffers a very serious limitation of premature convergence
if one or more initially generated harmonies are in the vicinity of local optimal [21]. As Assad and
Deep [22] point out, “The efficiency of evolutionary algorithms depends on the extent of balance
between diversification and intensification during the course of the search. Intensification, also called
exploitation, is the ability of an algorithm to exploit the search space in the vicinity of the current good
solution, whereas diversification, also called exploration, is the process of exploring the new regions
of a large search space and thus allows dissemination of the new information into the population.
Proper balance between these two contradicting characteristics is a must to enhance the performance
of the algorithm.”

Therefore, in order to eradicate the aforementioned limitation, several improved HS algorithms
have been proposed, such as the improved harmony search (IHS) algorithm [23], the self-adaptive
global best harmony search (SHGS) [24], the novel global harmony search (NGHS) [25], the intelligent
global harmony search (IGHS) algorithm [19], and so on. Of these algorithms, the IHS algorithm is the
first to propose using the adjustment strategy to tune the pitch adjusting rate (PAR) and bandwidth
(BW) parameters. In the HS algorithm, according to the value of PAR, the musicians will determine to
adjust their instruments’ pitches or not. Besides, the musicians will adjust the pitches within the BW
distance. The PAR and BW values change dynamically with generation number, as shown in Figure 1.
In Mahdavi’s paper [23], the adjustment strategy was proofed; it can enhance the searching ability of
the harmony search algorithm. In other words, the importance of the appropriate parameters was
proofed in his paper.
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Appropriate parameters can enhance the searching ability of a metaheuristic algorithm;
their importance has been described in many studies. First, Pan et al. demonstrated that a good
set of parameters can enhance an algorithm’s ability to search for the global optimum or near optimum
region with a high convergence rate [19,24]. Second, in the NGHS algorithm, the new trial solutions
are generated by the parameter stepj. Therefore, Zou et al. [25,26] showed that the most reasonable
design for stepj in the NGHS algorithm can guarantee that the proposed algorithm has strong global
search ability in the early optimization stage, and strong local search ability in the late optimization
stage. In addition, a dynamically adjusted stepj maintains a balance between the global search and
the local search. In another paper, Zou et al. [27] demonstrated that an appropriate harmony memory
considering rate (HMCR) and PAR value in the SGHS algorithm can be gradually learned to suit the
particular problem and the particular phases of the search process. In addition, there is no single choice
for the genetic mutation probability (pm) in the NGHS algorithm; it should be adjusted according to
practical optimization problems. Last, Valian, Tavakoli, and Mohanna [28] observed that there can be
no single choice for HMCR in the IGHS algorithm, and it should be adjusted according to the given
optimization problems.

However, in the NGHS algorithm, the value of the genetic mutation probability (pm) is a
fixed value that is given in the initialization step. According to the result of Mahdavi’s paper [23],
we supposed that the adjustment strategy could enhance the searching ability. Therefore, a dynamic
adjusting novel global harmony search (DANGHS) algorithm was proposed in this paper. In the
DANGHS algorithm, the mutation probability adjusts dynamically with the generation number by the
adjustment strategy. However, we can adjust the mutation probability using different strategies.
Therefore, this paper used 16 different strategies in the DANGHS algorithm in 14 well-known
benchmark optimization problems. In other words, the performance of different strategies in the
DANGHS algorithm for different problems was investigated. Besides, in general, one important
characteristic of the metaheuristic algorithm is to be fast and efficient. A better metaheuristic algorithm
cannot only search the more exact solution but also use less iterations than other algorithms. Therefore,
we discuss the efficiency of the DANGHS algorithm in this paper. According to the numerical results,
the DANGHS algorithm had better searching performance in comparison with other HS algorithms in
most problems.

The remainder of this paper is arranged as follows. In Section 2, the HS, IHS, SGHS, and NGHS
algorithms are introduced. Section 3 describes the DANGHS algorithm. A large number of experiments
are carried out to test and compare the performance of 16 different strategies in the DANGHS algorithm
in Section 4. Conclusions and suggestions for future research are given in Section 5.

2. HS, IHS, SGHS, and NGHS

In this section, the HS, the IHS, the SGHS, and the NGHS are reviewed.

2.1. Harmony Search Algorithm

The HS algorithm was proposed by Geem, Kim, and Loganathan in 2001 [16]. HS is similar in
concept to other metaheuristic algorithms such as GA, PSO, and ACO in terms of combining the rules
of randomness to imitate the process that inspired it. However, HS draws its inspiration not from
biological or physical processes but from the improvisation process of musicians, such as that found in
a Jazz trio [19,29].

In the musical improvisation process, each musician sounds any pitch within a possible
range, and then together they make a single harmony. If all the pitches make a pleasing harmony,
the experience is stored in each player’s memory, and the possibility of making a more pleasing
harmony the next time is increased [30]. Similarly, in engineering optimization, each decision variable
initially chooses any value within a possible range, together making one solution vector [27]. In the
HS algorithm, each harmony, which means the trial solution for the problem, is represented by a
D-dimension real vector, and a pleasing harmony means the good trial solution for the problem [19].
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If all the decision variable values make a good solution, then that experience is stored in each variable’s
memory, and the possibility of making a good solution the next time is also increased [27]. Figure 2
shows the comparison between music improvisation and engineering optimization. In Figure 2, there is
a Jazz trio consisting of three musicians. Each musician plays an instrument at the same time to make
a single harmony. The pitches of the three instruments mean the values of the three decision variables.
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In general, the HS algorithm works as follows [27]:

Step 1. Initialization: the algorithm and problem parameters

In this step, the parameters of the HS algorithm are determined. The parameters are the
harmony memory size (m), the harmony memory considering rate (HMCR), the pitch adjusting
rate (PAR), the bandwidth (BW), the current iteration (k = 1), and the maximum number of iterations
(NI). Furthermore, the D-dimensional optimization problem is defined as Minimize f(x) subject to
xjL ≤ xj ≤ xjU (j = 1, 2, . . . , D). xjL and xjU are the lower and upper bounds for decision variables xj.

Step 2. Initialization: the decision variable values and the harmony memory

The initial decision variable values xk=0
ij (i = 1, 2, . . . , m) are generated by Equation (1).

The harmony memory (HM) is as shown in Equation (2).

x0
ij = xjL + r×

(
xjU − xjL

)
(1)

HM =


x0

11 x0
12

x0
21 x0

22

· · · x0
1D

· · · x0
2D

...
...

x0
m1 x0

m2

. . .
...

· · · x0
mD

 (2)

In Equation (1), r is the uniformly generated random numbers in the region of [0, 1].

Step 3. Movement: improvise a new harmony

Movement step is the most important step of any algorithm. The performance of global
exploration and local exploitation are related to the design of the movement step. In the HS algorithm,
the movement step is improvisation. The new harmony vector xk+1 =

(
xk+1

1 , xk+1
2 , . . . , xk+1

D

)
is

generated by memory consideration, pitch adjustment, and random selection mechanisms in this step.
The HS movement steps (Pseudocode 1) are shown in Algorithm 1.
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Algorithm 1 The Movement Steps of HS (Pseudocode 1)

1: For j = 1 to D do
2: If r1 ≤ HMCR then
3: xk+1

j = xk
ij % memory consideration

4: If r2 ≤ PAR then
5: xk+1

j = xk+1
j − BW + r3 × 2× BW % pitch adjustment

6: If xk+1
j > xjU then

7: xk+1
j = xiU

8: Else if xk+1
j < xjL then

9: xk+1
j = xiL

10: End
11: End
12: Else
13: xk+1

j = xjL + r4 ×
(
xjU − xjL

)
% random selection

14: End
15: End

Here, xk+1
j is the jth component of xk+1. i is an uniformly generated random number in [1, m],

and xk
ij is the jth component of the ith candidate solution vector in the HM. r1, r2, r3 and r4 are the

uniformly generated random numbers in the region of [0, 1], and BW is a given distance bandwidth.

Step 4. Replacement: update harmony memory

If the fitness value of the new harmony vector xk+1 is better than that of the worst harmony in the
HM, replace the worst harmony vector by xk+1.

Step 5. Iteration: check the stopping criterion

If the stopping criterion (maximum number of iterations NI) is satisfied, the computation is
terminated; otherwise, the current iteration k = k + 1 and go back to step 3.

2.2. Improved Harmony Search Algorithm

The IHS algorithm was proposed by Mahdavi, Fesanghary, and Damangir in 2007 for solving
optimization problems [23]. In their paper, they noted that PAR and BW are very important parameters
in the HS algorithm when fine-tuning optimized solution vectors, and can be potentially useful in
adjusting the convergence rate of the algorithm to the optimal solution. Fine adjustment of these
parameters is therefore of particular interest. The key difference between the IHS and the traditional
HS method is thus in the way PAR and BW are adjusted in each iteration by Equations (3) and (4):

PARk = PARmin +
(PARmax − PARmin)

NI
× k (3)

BWk = BWmax × e(ln (
BWmin
BWmax )×k/NI) (4)

In Equation (3), PARk is the pitch adjustment rate in the current iteration k; PARmin and PARmax

are the minimum and maximum adjustment rates, respectively. In Equation (4), BWk is the distance
bandwidth in current iteration k, BWmin is the minimum bandwidth, and BWmax is the maximum
bandwidth. Figure 1 shows that the PAR and BW values change dynamically with the iteration number.

2.3. Self-Adaptive Global Best Harmony Search Algorithm

The SGHS algorithm was presented by Pan et al. in 2010 for continuous optimization
problems [24].
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In the SGHS algorithm, the HMCR and PAR were dynamically adapted by the normal distribution
and the BW was adjusted in each iteration. The value of HMCRk was generated by the mean HMCRm

and the standard deviation. In the same way, the value of PARk was generated by the mean PARm and
the standard deviation. Pan et al. assumed that the dynamic mean HMCRm is in the range of [0.9, 1.0]
and the static standard deviation is 0.01; the dynamic mean PARm. is in the range of [0.0, 1.0] and the
static standard deviation is 0.05. Furthermore, the HMCRk and PARk were recorded by their historic
values when the generated harmony successfully replaced the worst harmony in the harmony memory.
After a specified learning period (LP), the HMCRm and PARm were recalculated by averaging all
the recorded HMCRk and PARk values during this period respectively. In the subsequent iterations,
new HMCRk and PARk values were generated with the new mean HMCRm and PARm and the given
standard deviation. In addition, the BWk is decreased in each iteration by Equation (5).

BWk =

{
BWmax − BWmax−BWmin

NI × 2k i f k < NI/2,

BWmin i f k ≥ NI/2,
(5)

In general, the SGHS algorithm works as follows:

Step 1. Initialization: the problem and algorithm parameters

Set parameters m, LP, NI, BWmax, BWmin, HMCRm, PARm, the current iteration k = 1, and iteration
counter lp = 1.

Step 2. Initialization: the decision variable values and the harmony memory

The initial decision variable values xk=0
ij (i = 1, 2, . . . , m) is generated by Equation (1). The harmony

memory (HM) is as shown in Equation (2).

Step 3. Movement: generate the algorithm parameters

Generate HMCRk and PARk with HMCRm and PARm by the normal distribution respectively.
Generate BWk with BWmax and BWmin by Equation (5).

Step 4. Movement: improvise a new harmony

Improvise a new harmony xk+1. The SGHS movement step (Pseudocode 2) is shown in
Algorithm 2.

Algorithm 2 The Movement Steps of SGHS (Pseudocode 2) [24]

1: For j = 1 to D do
2: If r1 ≤ HMCRk then
3: xk+1

j = xk
ij − BWk + r2 × 2× BWk

4: If xk+1
j > xjU then

5: xk+1
j = xiU

6: Else if xk+1
j < xjL then

7: xk+1
j = xiL

8: End
9: If r3 ≤ PARk then
10: xk+1

j = xk
best,j

11: End
12: Else
13: xk+1

j = xjL + r4 ×
(
xjU − xjL

)
% random selection

14: End
15: End
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Here, xk+1
j is the jth component of xk+1. i is an uniformly generated random number in [1, m],

and xk
ij is the jth component of the ith candidate solution vector in the HM. xk

best,j is the jth component
of the best candidate solution vector in the HM. r1, r2, r3 and r4 are uniformly generated random
numbers in [0, 1]. r1 is used for position updating, r2 determines the distance of the BW, r3 is used for
pitch adjustment, and r4 is used for random selection.

Step 5. Replacement: update harmony memory

If the fitness value of the new harmony vector xk+1 is better than that of the worst harmony in the
HM, replace the worst harmony vector by xk+1 and record the values of HMCRk and PARk.

Step 6. Replacement: update HMCRm and PARm

If lp = LP, recalculate HMCRm and PARm by averaging all the recorded HMCRk and PARk values
respectively and reset lp = 1; otherwise, lp = lp +1.

Step 7. Iteration: check the stopping criterion

If NI is completed, return the best harmony vector xbest in the HM; otherwise, the current iteration
k = k + 1 and go back to step 3.

2.4. Novel Global Harmony Search Algorithm

The NGHS algorithm [25,26] is an improved algorithm that combines HS, PSO, and GA.
A prominent characteristic of PSO is that individual particles attempt to imitate the social experience.
It means the particles are affected by other better particles in the PSO algorithm. A prominent
characteristic of GA is that it is possible for the trial solution to escape from the local optimum by
mutation. In other words, NGHS tries to generate a new solution by moving the worst solution toward
the best solution or by mutation.

Figure 3 is used to illustrate the principle of position updating. stepj =
∣∣∣xk

best,j − xk
worst,j

∣∣∣ is defined

as an adaptive step of the jth decision variable. This adaptive step can dynamically balance the
performance of global exploration and local exploitation in the NGHS algorithm. As Zou et al. [26]
points out, “In the early stage of optimization, all solution vectors are sporadic in the solution space,
so most adaptive steps are large, and most trust regions are wide, which is beneficial to the global
search of NGHS. However, in the late stage of optimization, all non-best solution vectors are inclined
to move to the global best solution vector, so most solution vectors are close to each other. In this case,
most adaptive steps are small and most trust regions are narrow, which is beneficial to the local search
of NGHS.”
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According to this prominent characteristic, NGHS modifies the movement step of HS therefore
the NGHS algorithm can imitate the current best harmony in the HM. In general, the NGHS algorithm
works as follows:

Step 1. Initialization: the algorithm and problem parameters
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(1) Set parameters m, NI, and the current iteration k = 1.
(2) The genetic mutation probability (pm) is included in NGHS, while the harmony memory

considering rate (HMCR), pitch adjusting rate (PAR) and the bandwidth (BW) are excluded
from NGHS.

Step 2. Initialization: the decision variable values and the harmony memory

The initial decision variable values xk=0
ij (i = 1, 2, . . . , m) are generated by Equation (1). The HM

is as shown in Equation (2).

Step 3. Movement: improvise a new harmony

NGHS modifies the movement step in HS. The NGHS movement step (Pseudocode 3) is shown
in Algorithm 3.

Algorithm 3 The Movement Steps of NGHS (Pseudocode 3) [25–27].

1: For j = 1 to D do
2: xR = 2× xk

best,j − xk
worst,j

3: If xR > xjU then
4: xR = xjU

5: Else if xR < xjL then
6: xR = xjL

7: End
8: xk+1

j = xk
worst,j + r1 × (xR − xk

worst,j) % position updating

9: If r2 ≤ pm then
10: xk+1

j = xjL + r3 ×
(
xjU − xjL

)
% genetic mutation

11: End
12: End

Here, xk
best,j and xk

worst,j are the best harmony and the worst harmony in the HM, respectively.
r1, r2 and r3 are uniformly generated random numbers in [0, 1]. r1 is used for position updating,
r2 determines whether NGHS should carry out genetic mutation, and r3 is used for genetic mutation.

Genetic mutation with a small probability is carried out for the current worst harmony in the HM
after position updating [25–27].

Step 4. Replacement: update harmony memory

NGHS replaces the worst harmony xk
worst,j(j = 1, 2, . . . , D) in the HM by the new harmony xk+1,

even if the new harmony is worse than the worst harmony.

Step 5. Iteration: check the stopping criterion

If the stopping criterion (maximum number of iterations NI) is satisfied, the computation is
terminated; otherwise, the current iteration k = k + 1 and go back to step 3.

3. Dynamic Adjusting Novel Global Harmony Search (DANGHS) Algorithm

Appropriate parameters can enhance the searching ability of a metaheuristic algorithm.
Inspired by this concept, a dynamic adjusting NGHS (DANGHS) is presented in this section. In the
DANGHS, the genetic mutation probability (pm) is dynamically adjusted in each iteration. However,
we can enhance the searching ability of the NGHS algorithm by many kinds of dynamic adjustment
strategies. Therefore, we introduced 16 dynamic adjustment strategies in this paper. All 16 strategies
are shown as follows, and Figures 4–6 are used to illustrate the 16 strategies.

(1) Straight linear increasing strategy (Straight_1):
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The genetic mutation probability is increased by Equation (6), which is a linear function.

pk
m = pm_min +

(pm_max − pm_min)

NI
× k. (6)

Here, pm_min is the minimum genetic mutation probability, and pm_max is the maximum genetic
mutation probability.

(2) Straight linear decreasing strategy (Straight_2):

The genetic mutation probability is decreased by Equation (7), which is a linear function.

pk
m = pm_max +

(pm_min − pm_max)

NI
× k (7)

(3) Threshold linear prior increasing strategy (Threshold_1):

The genetic mutation probability is increased by Equation (8), which is a linear function with
a threshold. The genetic mutation probability is raised before the threshold, but the genetic
mutation probability is a fixed maximum value after the threshold.

pk
m =

{
pm_min +

Pm_max−Pm_min
NI × 2k i f k < NI/2

pm_max i f k ≥ NI/2
(8)

(4) Threshold linear prior decreasing strategy (Threshold_2):

The genetic mutation probability is decreased by Equation (9), which is a linear function with
a threshold. The genetic mutation probability is reduced before the threshold, but the genetic
mutation probability is a fixed minimum value after the threshold.

pk
m =

{
pm_max +

Pm_min−Pm_max
NI × 2k i f k < NI/2

pm_min i f k ≥ NI/2
(9)

(5) Threshold linear posterior increasing strategy (Threshold_3):

The genetic mutation probability is increased by Equation (10), which is a linear function with
a threshold. The genetic mutation probability is a fixed minimum value before the threshold,
but the genetic mutation probability is raised after the threshold.

pk
m =

{
pm_min i f k < NI/2

pm_min +
Pm_max−Pm_min

NI × 2k i f k ≥ NI/2
(10)

(6) Threshold linear posterior decreasing strategy (Threshold_4):

The genetic mutation probability is decreased by Equation (11), which is a linear function with
a threshold. The genetic mutation probability is a fixed maximum value before the threshold,
but the genetic mutation probability is reduced after the threshold.

pk
m =

{
pm_max i f k < NI/2

pm_max +
Pm_min−Pm_max

NI × 2k i f k ≥ NI/2
(11)

(7) Natural exponential increasing strategy (Exponential_1):
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The genetic mutation probability is increased by Equation (12), which is a non-linear function.

pk
m = pm_min × e

(ln (
pm_max
pm_min

)×k/NI)
(12)

(8) Natural exponential decreasing strategy (Exponential_2):

The genetic mutation probability is decreased by Equation (13), which is a non-linear function.

pk
m = pm_max × e(ln (

pm_min
pm_max )×k/NI) (13)

(9) Exponential increasing strategy:

The genetic mutation probability is increased by Equation (14), which is a non-linear function.
We can control the increasing rate by the modification rate (mr).

pk
m = pm_min + (pm_max − pm_min)×mr(NI−k)/NI (14)

In this paper, the mr is equal to 0.01 or 0.001. Therefore, in this paper, the 9th strategy
(Exponential_3) is the exponential increasing strategy with mr = 0.01, and the 10th strategy
(Exponential_5) is the exponential increasing strategy with mr = 0.001.

(10) Exponential decreasing strategy:

The genetic mutation probability is decreased by Equation (15), which is a non-linear function.
We can control the decreasing rate by the modification rate (mr).

pk
m = pm_min + (pm_max − pm_min)×mrk/NI (15)

In this paper, the mr is equal to 0.01 or 0.001. Therefore, in this paper, the 11th strategy
(Exponential_4) is the exponential decreasing strategy with mr = 0.01, and the 12th strategy
(Exponential_6) is the exponential decreasing strategy with mr = 0.001.

(11) Concave cosine strategy:

The genetic mutation probability is changed by Equation (16), which is a periodic function.
The shape of this function is a concave, and we can control the cycle time of this function by the
coefficient of cycle (cc).

pk
m =

pm_max + pm_min
2

+
pm_max − pm_min

2
× cos

k× cc× 2π

NI
(16)

In this paper, the cc is equal to 1 or 3. Therefore, in this paper, the 13th strategy (Cosine_1) is
the concave cosine strategy with cc = 1, and the 14th strategy (Cosine_3) is the concave cosine
strategy with cc = 3.

(12) Convex cosine strategy:

The genetic mutation probability is changed by Equation (17), which is a periodic function.
The shape of this function is a convex, and we can control the cycle time of this function by the
coefficient of cycle (cc).

pk
m =

pm_max + pm_min
2

− pm_max − pm_min
2

× cos
k× cc× 2π

NI
(17)

In this paper, the cc is equal to 1 or 3. Therefore, in this paper, the 15th strategy (Cosine_2) is the
convex cosine strategy with cc = 1, and the 16th strategy (Cosine_4) is the convex cosine strategy
with cc = 3.
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In general, the DANGHS algorithm works as follows:

Step 1. Initialization: the problem and algorithm parameters

The parameters are the harmony memory size (m), the current iteration k = 1, and the maximum
number of iterations (NI).

Step 2. Initialization: the decision variable values and the harmony memory

The initial decision variable values xk=0
ij (i = 1, 2, . . . , m) is generated by Equation (1). The HM

is as shown in Equation (2).

Step 3. Movement: generate the algorithm parameters

Generate the genetic mutation probability (pk
m) in each iteration by dynamic adjustment strategies.

Step 4. Movement: improvise a new harmony

The DANGHS movement step (Pseudocode 4) is shown in Algorithm 4.

Algorithm 4 The Movement Steps of DANGHS (Pseudocode 4)

1: For j = 1 to D do
2: If r1 > pk

m then
3: xR = 2× xk

best,j − xk
worst,j

4: If xR > xjU then
5: xR = xjU

6: Else if xR < xjL then
7: xR = xjL

8: End
9: xk+1

j = xk
worst,j + r2 × (xR − xk

worst,j) % position updating

10: Else
11: xk+1

j = xjL + r3 ×
(
xjU − xjL

)
% genetic mutation

12: End
13: End

Here, xk
best,j and xk

worst,j are the best harmony and the worst harmony in the HM, respectively. r1,
r2 and r3 are uniformly generated random numbers in [0, 1]. r1 determines whether DANGHS should
carry out genetic mutation, r2 is used for position updating, and r3 is used for genetic mutation.

Step 5. Replacement: update harmony memory

DANGHS replaces the worst harmony xk
worst,j(j = 1, 2, . . . , D) in the HM by the new harmony

xk+1, even if the new harmony is worse than the worst harmony.

Step 6. Iteration: check the stopping criterion

If the stopping criterion (maximum number of iterations NI) is satisfied, terminate the computation
and return the best harmony vector xbest in the HM; otherwise, the current iteration k = k + 1 and go
back to step 3.

4. Experiments and Analysis

In order to verify the performance of the 16 dynamic adjustment strategies in the DANGHS
algorithm, 14 well-known benchmark optimization problems [24,28,31] are considered, as shown in
Table 1. This study used Python 3.6.2 (64-bit) as the complier to write the program for finding the
solution. The solution-finding equipment was an Intel Core (TM) i7-4720HQ (2.6 GHz) CPU, 8G of
memory, and Windows 10 home edition (64-bit) OS.
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Table 1. 14 well-known benchmark optimization problems.

Name Function Search Space Optimum

f1 Sphere function min f (xi) =
N
∑

i=1
x2

i [−100, 100]n 0

f2 Step function min f (xi) =
N
∑

i=1
(bxi + 0.5c)2 [−100, 100]n 0

f3 Schwefel’s problem 2.22 min f (xi) =
N
∑

i=1
|xi|+

N
∏
i=1
|xi| [−10, 10]n 0

f4 Rotated
hyper-ellipsoid function min f (xi) =

N
∑

i=1
(

i
∑

j=1
xj)

2

[−100, 100]n 0

f5 Griewank function min f (xi) =
1

4000

N
∑

i=1
x2

i −
N
∏
i=1

cos
(

xi√
i

)
+ 1 [−600, 600]n 0

f6 Ackley’s function
min f (xi) = 20 + e − 20 exp

(
−0.2

√
N
∑

i=1
x2

i /n

)
− exp

(
N
∑

i=1
cos(2πxi)/n

) [−32, 32]n 0

f7 Rosenbrock function min f (xi) =
N−1
∑

i=1

(
100
(
xi+1 − x2

i
)2

+ (1− xi)
2
)

[−30, 30]n 0

f8 Rastrigin function min f (xi) =
N
∑

i=1

(
x2

i − 10 cos(2πxi) + 10
)

[−5.12, 5.12]n 0

f9 Schwefel’s problem 2.26 min f (xi) = 418.9829N −
N
∑

i=1

(
xi sin

(√
|xi|
))

[−500, 500]n 0

f10 Shifted Sphere function min f (xi) =
N
∑

i=1
z2

i − 450 [−100, 100]n −450

f11 Shifted Rotated
hyper-ellipsoid function min f (xi) =

N
∑

i=1
(

i
∑

j=1
zi)

2

− 450 [−100, 100]n −450

f12 Shifted Rotated
Griewank function min f (xi) =

1
4000

N
∑

i=1
z2

i −
N
∏
i=1

cos
(

zi√
i

)
+ 1− 180 [−600, 600]n −180

f13 Shifted
Rosenbrock function min f (xi) =

N−1
∑

i=1

(
100
(
zi+1 − z2

i
)2

+ (1− zi)
2
)
+ 390 [−30, 30]n 390

f14 Shifted Rastrigin function min f (xi) =
N
∑

i=1

(
z2

i − 10 cos(2πzi) + 10
)
− 330 [−5.12, 5.12]n −330

Problems 1–4, 10 and 11, which are Sphere function, Step function, Schwefel’s problem 2.22,
Rotated hyper-ellipsoid function, Shifted Sphere function, and Shifted Rotated hyper-ellipsoid function,
are unimodal problems. Problems 5–9 and 12–14, which are Griewank function, Ackley’s function,
Rosenbrock function, Rastrigin function, Schwefel’s problem 2.26, Shifted Rotated Griewank function,
Shifted Rosenbrock function, and Shifted Rastrigin function, are difficult multimodal problems;
i.e., there are several local optima in these problems and the number of local optima increases with the
problem dimension (D) [24].

In order to verify the performance of the DANGHS algorithm, this paper compared the extensive
experiment results of the DANGHS algorithm with other different HS algorithms. In the experiments,
the parameters of the compared HS algorithms are shown in Table 2 [28].

Table 2. Parameters of compared harmony search (HS) algorithms.

Algorithm m 1 HMCR 2 PAR 3 BW 4 LP 5 pm
6

HS 5 0.9 0.3 0.01 – –

IHS 5 0.9 PARmin = 0.01
PARmax = 0.99

BWmax =
(

xjU − xjL

)
/20

BWmin = 0.0001
– –

SGHS 5 HMCRm = 0.98 PARm = 0.9 BWmax =
(

xjU − xjL

)
/10

BWmin = 0.0005
100 –

NGHS 5 – – – – 0.005

DANGHS 5 – – – – Pmin = 0.001
Pmax = 0.010.

1 m: the harmony memory size; 2 HMCR: the harmony memory considering rate; 3 PAR: the pitch adjusting rate;
4 BW: the bandwidth; 5 LP: the learning period; 6 pm: the genetic mutation probability.
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In all HS algorithms, the harmony memory size (m) is 5. For each problem, two different
dimension sizes (D) are tested, and they are equal to 30 and 100. Therefore, the iteration number
are equal to 60,000 and 150,000, respectively. Thirty independent experiments (n) are carried out for
each problem. The experimental results obtained using the 16 proposed adjustment strategies in the
DANGHS algorithms and those obtained using different HS algorithms are shown in Tables 3 and 4,
respectively. In the two tables, SD represents the standard deviation.

In Table 3, several experimental results are given. First of all, the best results given by
the same strategy for different dimension sizes are obtained for problems 1, 3, 6, 9 and 13.
Among these problems, the decreasing strategy can find the best objective function value for problems
1, 3, 6, and 9. According to the experimental results, the exponential decreasing strategy with
mr = 0.001 (Exponential_6) can find the best objective function value for problems 1 (1.8344 × 10−31;
1.2209 × 10−14), 3 (1.9511 × 10−18 7.9778 × 10−9) and 6 (9.6308 × 10−14; 9.3030 × 10−9); the threshold
linear prior decreasing strategy (Threshold_2) can find the best objective function value for problem 9
(3.8183 × 10−4; 1.2728 × 10−3). More specifically, the convex cosine strategy with k = 3 (Cosine_4),
which is the periodic strategy, can find the best objective function value for problem 13 (3.9875 × 102;
5.3644 × 102).

On the other hand, the best results given by different strategies for different dimension sizes are
obtained for problems 4, 5, 7, 8, 10, 11, 12, and 14. Among these problems, the increasing strategy can
find the best objective function value for problem 7. According to the experimental results, the straight
linear increasing strategy (Straight_1) can find the best objective function value for problem 7 with
D = 30 (1.0089 × 101). However, the threshold linear posterior increasing strategy (Threshold_3) can
find the best objective function value for problem 7 with D = 100 (6.1559× 101). Besides, the decreasing
strategy can find the best objective function value for problems 4, 5, 10, 11, 12, and 14. According to
the experimental results, the threshold linear posterior decreasing strategy (Threshold_4) can find the
best objective function value for problems 4 (6.0249 × 101), 5 (3.1209 × 10−2) and 11 (−3.7419 × 102)
with D = 30. However, the natural exponential decreasing strategy (Exponential_2) can find the best
objective function value for problems 4 (8.6301 × 103), 5 (6.4754 × 10−3), and 11 (1.1471 × 104) with
D = 100. The natural exponential decreasing strategy (Exponential _2) can find the best objective
function value for problem 10 with D = 30 (−4.5000 × 102). However, the threshold linear prior
decreasing strategy (Threshold_2) can find the best objective function value for problem 10 with
D = 100 (−4.5000 × 102). The straight linear decreasing strategy (Straight_2) can find the best objective
function value for problem 12 with D = 30 (−1.7821 × 102). However, the exponential decreasing
strategy with mr = 0.001 (Exponential_6) can find the best objective function value for problem 12 with
D = 100 (−1.6037 × 102). The straight linear decreasing strategy (Straight_2) can find the best objective
function value for problem 14 with D = 30 (−3.3000 × 102). However, the exponential decreasing
strategy with mr = 0.01 (Exponential_4) can find the best objective function value for problem 14 with
D = 100 (−3.2997 × 102).

Particularly, for problem 8, the decreasing strategy can find the best objective function value
when D = 30, however the increasing strategy can find the best objective function value when D = 100.
In other words, the threshold linear prior decreasing strategy (Threshold_2) can find the best objective
function value for problem 8 with D = 30 (0.0000). However, the exponential increasing strategy
with mr = 0.01 (Exponential_3) can find the best objective function value for problem 8 with D = 100
(2.7729 × 10−2).

In Table 3, the best results are presented by the boldface type. For example, the Threshold_2
strategy had the best minimum objective function value for problems 1 with D = 30 (7.1381 × 10−39).
The Exponential_6 strategy had the best maximum objective function value (3.7601 × 10−30) and had
the minimum standard deviation value (7.0604 × 10−31) for problems 1 with D = 30.

In Table 4, among all problems for D = 30, the DANGHS algorithm can find the best objective
function value for problems 1–3, 6–10, and 14. The SGHS algorithm can find the best objective function
value for problems 2, 4, and 11. The NGHS algorithm can find the best objective function value for
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problems 2, 12, and 13. The IHS algorithm can find the best objective function value for problem 5.
The best algorithms and the best results are presented by the boldface type in Table 4.

On the other hand, among all problems for D = 100, the DANGHS algorithm can find the best
objective function value for problems 1–14. The NGHS algorithm can find the best objective function
value for problem 2.

Figure 7 presents a typical solution history graph of five different algorithms along iterations for
problems 1 to 8 with D = 30, and Figure 8 presents a typical solution history graph of five different
algorithms along iterations for problems 9 to 14 with D = 30. Figure 9 presents a typical solution history
graph of five different algorithms along iterations for problems 1 to 8 with D = 100, and Figure 10
presents a typical solution history graph of five different algorithms along iterations for problems 9 to
14 with D = 100.

Finally, we will discuss and analyze the efficiency of the DANGHS algorithm. In Figures 7–10,
we can easily find out that the DANGHS algorithm obviously had the better searching performance
and convergence ability than other algorithms in most low-dimensional problems and in all
high-dimensional problems. In other words, the DANGHS algorithm can use the less iterations to solve
the problem and is more efficient than other HS algorithms. Besides, according to the experimental
results, the DANGHS with Pseudocode 3 spent 603.5025 seconds to run 30 experiments; while the
DANGHS with Pseudocode 4 spent 532.7705 seconds only to run 30 experiments. The DANGHS
algorithm with Pseudocode 4 reduces 11.72% of the running time, as compared with Pseudocode 3.
Therefore, the DANGHS algorithm with the proposed Pseudocode 4 is more efficient than with
Pseudocode 3.
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Table 3. Experimental results of 16 strategies in the DANGHS algorithms.

No.
Dimension (D) = 30 Dimension (D) = 100

Adjustment strategy Min Max Mean SD Adjustment strategy Min Max Mean SD

f1 Straight_1 1.0461 × 10−17 4.3759 × 10−15 6.7177 × 10−16 1.1026 × 10−15 Straight_1 7.4075 × 10−6 3.1563 × 10−4 3.3196 × 10−5 5.3403 × 10−5

Straight_2 3.1999 × 10−23 2.5783 × 10−18 3.6341 × 10−19 6.7121 × 10−19 Straight_2 1.0715 × 10−7 7.1045 × 10−6 8.4864 × 10−7 1.2362 × 10−6

Threshold_1 1.5431 × 10−13 7.3069 × 10−11 6.6315 × 10−12 1.3094 × 10−11 Threshold_1 1.0024 × 10−3 9.1452 × 10−3 2.7025 × 10−3 1.6455 × 10−3

Threshold_2 7.1381 × 10−39 2.0446 × 10−26 6.8264 × 10−28 3.6700 × 10−27 Threshold_2 3.9739 × 10−16 8.5814 × 10−14 1.7158 × 10−14 2.2275 × 10−14

Threshold_3 1.5233 × 10−32 1.4639 × 10−22 4.9489 × 10−24 2.6266 × 10−23 Threshold_3 5.5110 × 10−15 4.3556 × 10−12 3.2639 × 10−13 7.8921 × 10−13

Threshold_4 3.3374 × 10−18 4.3038 × 10−12 1.4919 × 10−13 7.7155 × 10−13 Threshold_4 3.2962 × 10−5 1.8976 × 10−4 8.5947 × 10−5 4.0524 × 10−5

Exponential_1 1.5745 × 10−24 1.0309 × 10−18 4.3948 × 10−20 1.8663 × 10−19 Exponential_1 2.6917 × 10−9 4.3964 × 10−8 1.3508 × 10−8 9.5937 × 10−9

Exponential_2 1.9177 × 10−30 9.0711 × 10−23 4.0772 × 10−24 1.6377 × 10−23 Exponential_2 3.3307 × 10−11 2.2886E × 10−9 4.9657 × 10−10 5.7327 × 10−10

Exponential_3 1.4165 × 10−30 2.0068 × 10−23 9.8918 × 10−25 3.6255 × 10−24 Exponential_3 4.3579 × 10−12 9.8204 × 10−11 3.2054 × 10−11 2.5181 × 10−11

Exponential_4 6.4644 × 10−35 4.5295 × 10−25 1.7018 × 10−26 8.1269 × 10−26 Exponential_4 9.8540 × 10−14 7.9844 × 10−12 1.7156 × 10−12 1.8932 × 10−12

Exponential_5 2.5044 × 10−34 1.9318 × 10−25 6.4846 × 10−27 3.4669 × 10−26 Exponential_5 1.0612 × 10−14 6.4803 × 10−12 3.7018 × 10−13 1.1689 × 10−12

Exponential_6 2.3735 × 10−38 3.7601 × 10−30 1.8344 × 10−31 7.0604 × 10−31 Exponential_6 1.6615 × 10−16 8.0332 × 10−14 1.2209 × 10−14 1.9706 × 10−14

Cosine_1 1.0929 × 10−25 2.6839 × 10−19 1.2194 × 10−20 4.8268 × 10−20 Cosine_1 1.3660 × 10−9 8.8086 × 10−8 1.7253 × 10−8 2.0154 × 10−8

Cosine_2 4.4254 × 10−21 3.5110 × 10−16 2.1719 × 10−17 7.1432 × 10−17 Cosine_2 5.6587 × 10−8 2.9214 × 10−6 5.8827 × 10−7 7.8914 × 10−7

Cosine_3 1.2834 × 10−22 1.3530 × 10−17 7.1008 × 10−19 2.4622 × 10−18 Cosine_3 1.9881 × 10−9 2.8788 × 10−7 5.6503 × 10−8 6.6569 × 10−8

Cosine_4 2.2000 × 10−22 6.3880 × 10−16 3.4309 × 10−17 1.1748 × 10−16 Cosine_4 1.7535 × 10−8 2.7122 × 10−6 2.0647 × 10−7 4.7558 × 10−7

f2 Straight_1 0.0000 0.0000 0.0000 0.0000 Straight_1 0.0000 0.0000 0.0000 0.0000
Straight_2 0.0000 0.0000 0.0000 0.0000 Straight_2 0.0000 0.0000 0.0000 0.0000

Threshold_1 0.0000 0.0000 0.0000 0.0000 Threshold_1 0.0000 0.0000 0.0000 0.0000
Threshold_2 0.0000 0.0000 0.0000 0.0000 Threshold_2 0.0000 0.0000 0.0000 0.0000
Threshold_3 0.0000 0.0000 0.0000 0.0000 Threshold_3 0.0000 0.0000 0.0000 0.0000
Threshold_4 0.0000 0.0000 0.0000 0.0000 Threshold_4 0.0000 0.0000 0.0000 0.0000

Exponential_1 0.0000 0.0000 0.0000 0.0000 Exponential_1 0.0000 0.0000 0.0000 0.0000
Exponential_2 0.0000 0.0000 0.0000 0.0000 Exponential_2 0.0000 0.0000 0.0000 0.0000
Exponential_3 0.0000 0.0000 0.0000 0.0000 Exponential_3 0.0000 0.0000 0.0000 0.0000
Exponential_4 0.0000 0.0000 0.0000 0.0000 Exponential_4 0.0000 0.0000 0.0000 0.0000
Exponential_5 0.0000 0.0000 0.0000 0.0000 Exponential_5 0.0000 0.0000 0.0000 0.0000
Exponential_6 0.0000 0.0000 0.0000 0.0000 Exponential_6 0.0000 0.0000 0.0000 0.0000

Cosine_1 0.0000 0.0000 0.0000 0.0000 Cosine_1 0.0000 0.0000 0.0000 0.0000
Cosine_2 0.0000 0.0000 0.0000 0.0000 Cosine_2 0.0000 0.0000 0.0000 0.0000
Cosine_3 0.0000 0.0000 0.0000 0.0000 Cosine_3 0.0000 0.0000 0.0000 0.0000
Cosine_4 0.0000 0.0000 0.0000 0.0000 Cosine_4 0.0000 0.0000 0.0000 0.0000
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Table 3. Cont.

No.
Dimension (D) = 30 Dimension (D) = 100

Adjustment strategy Min Max Mean SD Adjustment strategy Min Max Mean SD

f3 Straight_1 7.6101 × 10−11 2.1913 × 10−8 1.4051 × 10−9 3.9001 × 10−9 Straight_1 8.8188 × 10−4 2.8473 × 10−3 1.4467 × 10−3 4.5882 × 10−4

Straight_2 6.3744 × 10−14 8.2891 × 10−10 5.6932 × 10−11 1.5070 × 10−10 Straight_2 1.0465 × 10−4 3.6867 × 10−4 2.0451 × 10−4 7.2735 × 10−5

Threshold_1 4.6938 × 10−8 1.3461 × 10−6 2.1964 × 10−7 2.5585 × 10−7 Threshold_1 1.4060 × 10−2 3.5936 × 10−2 1.9850 × 10−2 4.3707 × 10−3

Threshold_2 5.6623 × 10−23 8.2711 × 10−17 2.9440 × 10−18 1.4815 × 10−17 Threshold_2 2.5513 × 10−9 4.2922 × 10−8 1.0152 × 10−8 8.0648 × 10−9

Threshold_3 4.7815 × 10−20 5.0811 × 10−11 1.7085 × 10−12 9.1183 × 10−12 Threshold_3 7.0365 × 10−9 1.3972 × 10−7 4.1610 × 10−8 3.3889 × 10−8

Threshold_4 1.7455 × 10−10 1.3321 × 10−7 1.7945 × 10−8 3.2820 × 10−8 Threshold_4 1.3864 × 10−3 6.5341 × 10−3 3.0170 × 10−3 1.0805 × 10−3

Exponential_1 9.8893 × 10−15 8.8305 × 10−11 6.3308 × 10−12 1.8435 × 10−11 Exponential_1 8.0177 × 10−6 7.4683 × 10−5 2.0822 × 10−5 1.1771 × 10−5

Exponential_2 1.7782 × 10−17 6.9813 × 10−12 3.7142 × 10−13 1.4030 × 10−12 Exponential_2 7.3854 × 10−7 6.7228 × 10−6 3.3092 × 10−6 1.5847 × 10−6

Exponential_3 7.5286 × 10−18 4.4195 × 10−13 2.0483 × 10−14 7.9637 × 10−14 Exponential_3 2.6791 × 10−7 1.9304 × 10−6 6.8633 × 10−7 3.3018 × 10−7

Exponential_4 2.5827 × 10−20 1.1413 × 10−14 4.3303 × 10−16 2.0473 × 10−15 Exponential_4 3.1645 × 10−8 1.2139 × 10−6 2.0931 × 10−7 2.3506 × 10−7

Exponential_5 1.5957 × 10−20 3.0055 × 10−15 1.1154 × 10−16 5.3828 × 10−16 Exponential_5 9.3641 × 10−9 1.3374 × 10−7 3.2879 × 10−8 2.5806 × 10−8

Exponential_6 5.1270 × 10−23 2.5548 × 10−17 1.9511 × 10−18 5.5869 × 10−18 Exponential_6 1.7326 × 10−9 2.2346 × 10−8 7.9778 × 10−9 5.9706 × 10−9

Cosine_1 8.2615 × 10−15 4.1648 × 10−10 1.9989 × 10−11 7.5562 × 10−11 Cosine_1 7.5681 × 10−6 9.0058 × 10−5 2.7007 × 10−5 1.7485 × 10−5

Cosine_2 2.2087 × 10−12 1.3549 × 10−9 1.5788 × 10−10 2.9202 × 10−10 Cosine_2 5.0087 × 10−5 2.4876 × 10−4 1.1495 × 10−4 4.8700 × 10−5

Cosine_3 8.7106 × 10−14 4.3784 × 10−11 6.6558 × 10−12 1.0409 × 10−11 Cosine_3 1.1137 × 10−5 1.2211 × 10−4 4.6150 × 10−5 2.7857 × 10−5

Cosine_4 1.7511 × 10−13 4.2184 × 10−10 3.9035 × 10−11 8.5768 × 10−11 Cosine_4 1.6561 × 10−5 4.1825 × 10−4 8.5160 × 10−5 7.5082 × 10−5

f4 Straight_1 3.8707 × 101 2.0746 × 102 9.2469 × 101 4.2467 × 101 Straight_1 7.4364 × 103 1.5798 × 104 1.2838 × 104 2.0788 × 103

Straight_2 2.9107 × 101 2.9786 × 102 7.7546 × 101 5.2474 × 101 Straight_2 6.1981 × 103 1.2256 × 104 9.9557 × 103 1.5833 × 103

Threshold_1 2.5223 × 101 2.4305 × 102 6.8420 × 101 4.2239 × 101 Threshold_1 1.2769 × 104 2.1277 × 104 1.6990 × 104 2.1766 × 103

Threshold_2 8.2738 × 101 4.8897 × 102 2.4674 × 102 1.0081 × 102 Threshold_2 7.0477 × 103 1.6115 × 104 1.0330 × 104 1.9585 × 103

Threshold_3 1.6962 × 102 7.4402 × 102 3.4890 × 102 1.5861 × 102 Threshold_3 7.9459 × 103 2.0032 × 104 1.3965 × 104 2.6464 × 103

Threshold_4 1.5038 × 101 1.5980 × 102 6.0249 × 101 3.5686 × 101 Threshold_4 8.9389 × 103 1.9386 × 104 1.3070 × 104 2.9327 × 103

Exponential_1 5.2571 × 101 3.3140 × 102 1.7427 × 102 7.7406 × 101 Exponential_1 7.8519 × 103 1.5283 × 104 1.1462 × 104 2.1096 × 103

Exponential_2 3.7816 × 101 2.9649 × 102 1.4459 × 102 6.2181 × 101 Exponential_2 4.6763 × 103 1.3135 × 104 8.6301 × 103 1.9698 × 103

Exponential_3 9.1368 × 101 7.9952 × 102 3.4719 × 102 1.6819 × 102 Exponential_3 8.0589 × 103 1.7800 × 104 1.1645 × 104 2.4428 × 103

Exponential_4 5.2605 × 101 6.6496 × 102 2.5585 × 102 1.3827 × 102 Exponential_4 6.8390 × 103 1.4895 × 104 9.8522 × 103 1.6440 × 103

Exponential_5 1.9773 × 102 1.0629 × 103 5.5626 × 102 2.1853 × 102 Exponential_5 7.2667 × 103 1.7819 × 104 1.2364 × 104 2.4484 × 103

Exponential_6 1.1519 × 102 1.1733 × 103 5.4639 × 102 2.6598 × 102 Exponential_6 7.0572 × 103 1.4985 × 104 1.0313 × 104 1.8035 × 103

Cosine_1 2.2677 × 101 1.6215 × 102 8.4233 × 101 3.8116 × 101 Cosine_1 8.5285 × 103 1.6216 × 104 1.1657 × 104 2.0568 × 103

Cosine_2 3.5648 × 101 2.5791 × 102 1.0386 × 102 4.7531 × 101 Cosine_2 7.3675 × 103 1.6256 × 104 1.1952 × 104 2.1374 × 103

Cosine_3 3.9845 × 101 2.5401 × 102 1.0903 × 102 5.1737 × 101 Cosine_3 8.7901 × 103 1.5058 × 104 1.2176 × 104 1.5990 × 103

Cosine_4 4.0827 × 101 1.9696 × 102 9.1923 × 101 4.1878 × 101 Cosine_4 8.2399 × 103 1.4967 × 104 1.1576 × 104 1.6474 × 103
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Table 3. Cont.

No.
Dimension (D) = 30 Dimension (D) = 100

Adjustment strategy Min Max Mean SD Adjustment strategy Min Max Mean SD

f5 Straight_1 1.2321 × 10−2 2.7805 × 10−1 1.0051 × 10−1 6.7510 × 10−2 Straight_1 4.1360 × 10−6 3.5617 × 10−1 1.0453 × 10−1 9.3265 × 10−2

Straight_2 0.0000 2.0030 × 10−1 4.1983 × 10−2 4.2581 × 10−2 Straight_2 5.1016 × 10−8 6.3390 × 10−2 1.1625 × 10−2 1.5055 × 10−2

Threshold_1 1.7855 × 10−8 2.6377 × 10−1 9.8336 × 10−2 6.8880 × 10−2 Threshold_1 8.8364 × 10−4 2.8092 × 10−1 7.3770 × 10−2 6.8845 × 10−2

Threshold_2 0.0000 1.8867 × 10−1 4.0923 × 10−2 4.6115 × 10−2 Threshold_2 1.4433 × 10−15 9.4723 × 10−2 1.7078 × 10−2 2.3582 × 10−2

Threshold_3 3.6320 × 10−6 2.2197 × 10−1 1.1814 × 10−1 6.0107 × 10−2 Threshold_3 1.3545 × 10−14 3.6928 × 10−1 1.0457 × 10−1 9.8452 × 10−2

Threshold_4 6.6613 × 10−16 8.0817 × 10−2 3.1209 × 10−2 2.3482 × 10−2 Threshold_4 1.7774 × 10−5 3.6827 × 10−2 9.0876 × 10−3 9.4618 × 10−3

Exponential_1 0.0000 2.4379 × 10−1 7.9307 × 10−2 5.8015 × 10−2 Exponential_1 2.4888 × 10−9 4.4986 × 10−1 1.2518 × 10−1 9.4176 × 10−2

Exponential_2 0.0000 1.7609 × 10−1 4.5556 × 10−2 4.1760 × 10−2 Exponential_2 3.5352 × 10−11 4.8906 × 10−2 6.4754 × 10−3 9.8313 × 10−3

Exponential_3 4.2099 × 10−10 3.2955 × 10−1 1.1643 × 10−1 8.0421 × 10−2 Exponential_3 3.6280 × 10−12 3.2945 × 10−1 1.0033 × 10−1 9.5541 × 10−2

Exponential_4 0.0000 2.0253 × 10−1 4.8723 × 10−2 4.6463 × 10−2 Exponential_4 8.5154 × 10−14 1.6488 × 10−1 1.2543 × 10−2 3.0277 × 10−2

Exponential_5 8.8818 × 10−16 2.5708 × 10−1 8.4472 × 10−2 6.4674 × 10−2 Exponential_5 1.2990 × 10−14 4.9613 × 10−1 1.2331 × 10−1 1.0636 × 10−1

Exponential_6 0.0000 1.6595 × 10−1 4.9137 × 10−2 3.9865 × 10−2 Exponential_6 2.2204 × 10−16 8.3124 × 10−2 1.2513 × 10−2 1.8702 × 10−2

Cosine_1 0.0000 1.4149 × 10−1 4.2637 × 10−2 4.3674 × 10−2 Cosine_1 8.3748 × 10−10 5.4050 × 10−2 1.0821 × 10−2 1.5102 × 10−2

Cosine_2 1.6653 × 10−15 3.3647 × 10−1 1.1985 × 10−1 8.0014 × 10−2 Cosine_2 6.3283 × 10−8 4.0323 × 10−1 9.7344 × 10−2 9.0742 × 10−2

Cosine_3 0.0000 1.3191 × 10−1 5.2162 × 10−2 3.7768 × 10−2 Cosine_3 2.6663 × 10−9 1.7983 × 10−1 3.1360 × 10−2 4.5413 × 10−2

Cosine_4 1.1102 × 10−16 2.7598 × 10−1 9.9773 × 10−2 6.7164 × 10−2 Cosine_4 1.6227 × 10−8 2.4487 × 10−1 5.5685 × 10−2 6.5963 × 10−2

f6 Straight_1 4.4632 × 10−9 2.1372 × 10−7 3.9100 × 10−8 4.0940 × 10−8 Straight_1 9.1269 × 10−4 3.1804 × 10−3 1.6518 × 10−3 5.3523 × 10−4

Straight_2 3.7761 × 10−12 8.6966 × 10−10 1.0236 × 10−10 2.0891 × 10−10 Straight_2 4.2112 × 10−5 3.8837 × 10−4 1.1886 × 10−4 7.9706 × 10−5

Threshold_1 9.1029 × 10−7 8.0166 × 10−6 2.4129 × 10−6 1.5101 × 10−6 Threshold_1 1.2113 × 10−2 2.5585 × 10−2 1.9902 × 10−2 3.4669 × 10−3

Threshold_2 7.4163 × 10−14 6.3549 × 10−13 1.6938 × 10−13 1.0610 × 10−13 Threshold_2 1.7921 × 10−9 6.5055 × 10−8 1.2631 × 10−8 1.2902 × 10−8

Threshold_3 1.0014 × 10−12 5.2655 × 10−10 6.8025 × 10−11 1.2657 × 10−10 Threshold_3 2.5582 × 10−8 1.5023 × 10−6 2.2886 × 10−7 2.7137 × 10−7

Threshold_4 1.4622 × 10−9 2.7494 × 10−7 3.1953 × 10−8 4.9739 × 10−8 Threshold_4 5.3312 × 10−4 3.8584 × 10−3 1.5894 × 10−3 7.9124 × 10−4

Exponential_1 1.8744 × 10−11 4.9544 × 10−9 4.4463 × 10−10 8.7649 × 10−10 Exponential_1 1.7624 × 10−5 9.1723 × 10−5 4.3472 × 10−5 1.7983 × 10−5

Exponential_2 1.1324 × 10−13 4.9805 × 10−12 9.3889 × 10−13 1.1256 × 10−12 Exponential_2 6.4716 × 10−7 6.8428 × 10−6 2.1846 × 10−6 1.3670 × 10−6

Exponential_3 4.9338 × 10−13 5.5745 × 10−11 6.6129 × 10−12 1.1049 × 10−11 Exponential_3 6.0042 × 10−7 6.0591 × 10−6 2.4126 × 10−6 1.5002 × 10−6

Exponential_4 7.4163 × 10−14 1.1862 × 10−12 1.7826 × 10−13 1.9564 × 10−13 Exponential_4 3.8729 × 10−8 3.1068 × 10−7 1.2811 × 10−7 6.7689 × 10−8

Exponential_5 1.5588 × 10−13 4.0887 × 10−12 8.2758 × 10−13 8.0931 × 10−13 Exponential_5 3.9803 × 10−8 5.7158 × 10−7 1.4832 × 10−7 1.2402 × 10−7

Exponential_6 4.9294 × 10−14 2.2338 × 10−13 9.6308 × 10−14 3.4392 × 10−14 Exponential_6 1.0897 × 10−9 2.9882 × 10−8 9.3030 × 10−9 7.9441 × 10−9

Cosine_1 1.1506 × 10−12 9.2267 × 10−11 2.2030 × 10−11 2.6803 × 10−11 Cosine_1 2.3571 × 10−6 1.0218 × 10−4 1.8274 × 10−5 1.7509 × 10−5

Cosine_2 1.7620 × 10−10 5.8307 × 10−8 6.5754 × 10−9 1.2324 × 10−8 Cosine_2 6.1209 × 10−5 5.0676 × 10−4 1.8226 × 10−4 1.1078 × 10−4

Cosine_3 5.0302 × 10−12 7.4329 × 10−10 1.1653 × 10−10 1.6314 × 10−10 Cosine_3 8.4419 × 10−6 8.5649 × 10−5 2.7943 × 10−5 1.8587 × 10−5

Cosine_4 7.7018 × 10−12 5.7757 × 10−9 5.7647 × 10−10 1.2234 × 10−9 Cosine_4 2.9068 × 10−5 1.9156 × 10−4 6.7917 × 10−5 4.2305 × 10−5
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Table 3. Cont.

No.
Dimension (D) = 30 Dimension (D) = 100

Adjustment strategy Min Max Mean SD Adjustment strategy Min Max Mean SD

f7 Straight_1 9.3515 × 10−3 2.2089 × 101 1.0089 × 101 8.7452 Straight_1 1.1325 5.6386 × 102 1.0620 × 102 1.2570 × 102

Straight_2 8.6741 × 10−3 5.1406 × 102 4.4419 × 101 9.3454 × 101 Straight_2 1.0018 × 102 6.9565 × 102 2.6307 × 102 1.3802 × 102

Threshold_1 7.9026 × 10−2 4.7147 × 102 2.5678 × 101 8.3161 × 101 Threshold_1 3.4344 × 101 2.3308 × 103 3.2695 × 102 5.9498 × 102

Threshold_2 1.4559 × 10−3 6.1627 × 102 8.4192 × 101 1.6666 × 102 Threshold_2 1.1503 × 102 5.1947 × 102 2.3270 × 102 9.2809 × 101

Threshold_3 4.4533 × 10−2 3.9917 × 102 3.9657 × 101 9.6881 × 101 Threshold_3 5.6804 × 10−2 1.1562 × 103 6.1559 × 101 2.0554 × 102

Threshold_4 1.5343 × 10−3 1.6611 × 102 3.2721 × 101 4.3985 × 101 Threshold_4 1.8240 × 102 7.1746 × 102 2.8865 × 102 1.1583 × 102

Exponential_1 8.0795 × 10−4 2.2094 × 101 1.2282 × 101 8.8145 Exponential_1 2.3784 × 10−1 1.2901 × 103 1.0700 × 102 2.5169 × 102

Exponential_2 1.2988 × 10−2 2.2802 × 102 4.6231 × 101 5.4244 × 101 Exponential_2 1.1174 × 102 6.4584 × 102 2.2362 × 102 9.2963 × 101

Exponential_3 5.6146 × 10−3 9.7058 × 102 5.8068 × 101 1.8542 × 102 Exponential_3 4.0212 × 10−2 1.0768 × 103 1.0022 × 102 2.1852 × 102

Exponential_4 5.5288 × 10−3 9.3064 × 101 2.6240 × 101 3.2270 × 101 Exponential_4 7.6558 × 101 2.8626 × 102 2.0961 × 102 5.1587 × 101

Exponential_5 2.7747 × 10−3 1.6422 × 103 1.3893 × 102 3.7163 × 102 Exponential_5 1.2275 × 10−3 1.5623 × 103 9.0305 × 101 2.8689 × 102

Exponential_6 1.2831 × 10−5 4.9205 × 102 4.0422 × 101 9.0413 × 101 Exponential_6 5.8594 × 101 6.3056 × 102 2.1990 × 102 9.4453 × 101

Cosine_1 1.8015 × 10−3 1.3748 × 102 2.9047 × 101 3.8603 × 101 Cosine_1 1.0997 × 102 1.2606 × 103 2.6362 × 102 2.0716 × 102

Cosine_2 4.4398 × 10−3 5.3878 × 102 3.6644 × 101 1.0520 × 102 Cosine_2 8.8583 × 10−1 1.6674 × 103 1.5580 × 102 3.2284 × 102

Cosine_3 1.1943 × 10−1 3.6476 × 102 3.5174 × 101 6.8477 × 101 Cosine_3 1.4076 × 102 1.7107 × 103 3.5751 × 102 3.8108 × 102

Cosine_4 8.0777 × 10−3 8.0590 × 101 1.4814 × 101 1.8135 × 101 Cosine_4 1.0177 1.7477 × 103 1.9765 × 102 3.2461 × 102

f8 Straight_1 3.1974 × 10−14 3.3089 × 10−7 1.1716 × 10−8 5.9285 × 10−8 Straight_1 2.0388 × 10−3 3.3216 6.6242 × 10−1 8.8988 × 10−1

Straight_2 0.0000 3.5527 × 10−15 5.9212 × 10−16 1.1543 × 10−15 Straight_2 1.9115 × 10−7 2.9849 3.9804 × 10−1 7.9594 × 10−1

Threshold_1 3.6512 × 10−10 2.1702 × 10−7 4.1154 × 10−8 6.3766 × 10−8 Threshold_1 2.2994 8.4160 5.4959 1.4385
Threshold_2 0.0000 0.0000 0.0000 0.0000 Threshold_2 1.4211 × 10−14 1.9899 1.9909 × 10−1 4.7366 × 10−1

Threshold_3 0.0000 9.9496 × 10−1 6.6407 × 10−2 2.4817 × 10−1 Threshold_3 3.2097 × 10−10 1.9918 4.5307 × 10−1 6.0607 × 10−1

Threshold_4 0.0000 8.8285 × 10−13 1.0646 × 10−13 2.0045 × 10−13 Threshold_4 9.9507 × 10−1 7.9637 3.2612 1.7811
Exponential_1 5.3291 × 10−15 7.1937 × 10−8 9.0557 × 10−9 2.0970 × 10−8 Exponential_1 6.3110 × 10−6 9.9714 × 10−1 1.4900 × 10−1 3.3483 × 10−1

Exponential_2 0.0000 1.7764 × 10−15 1.7764 × 10−16 5.3291 × 10−16 Exponential_2 1.1186 × 10−10 9.9496 × 10−1 9.9549 × 10−2 2.9847 × 10−1

Exponential_3 0.0000 6.4209 × 10−6 3.3419 × 10−7 1.2242 × 10−6 Exponential_3 3.5170 × 10−8 5.9362 × 10−1 2.7729 × 10−2 1.0943 × 10−1

Exponential_4 0.0000 1.9899 9.9496 × 10−2 3.9382 × 10−1 Exponential_4 1.3145 × 10−13 9.9496 × 10−1 9.9497 × 10−2 2.9849 × 10−1

Exponential_5 0.0000 9.9496 × 10−1 9.9534 × 10−2 2.9848 × 10−1 Exponential_5 1.9582 × 10−10 1.0029 1.3296 × 10−1 3.3892 × 10−1

Exponential_6 0.0000 2.6645 × 10−14 1.0066 × 10−15 4.7815 × 10−15 Exponential_6 1.0658 × 10−14 1.9899 6.6332 × 10−2 3.5720 × 10−1

Cosine_1 0.0000 4.7731 × 10−10 1.5911 × 10−11 8.5680 × 10−11 Cosine_1 4.0101 × 10−7 2.9978 6.8374 × 10−1 8.4558 × 10−1

Cosine_2 0.0000 8.7041 × 10−14 1.0836 × 10−14 1.6641 × 10−14 Cosine_2 7.9506 × 10−7 1.9900 9.2880 × 10−1 7.2337 × 10−1

Cosine_3 0.0000 4.4409 × 10−13 2.6053 × 10−14 8.0975 × 10−14 Cosine_3 9.6632 × 10−6 2.0318 6.9709 × 10−1 6.1734 × 10−1

Cosine_4 0.0000 7.4181 × 10−9 3.8545 × 10−10 1.4870 × 10−9 Cosine_4 3.2724 × 10−5 2.9858 7.9728 × 10−1 8.2825 × 10−1
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Table 3. Cont.

No.
Dimension (D) = 30 Dimension (D) = 100

Adjustment strategy Min Max Mean SD Adjustment strategy Min Max Mean SD

f9 Straight_1 3.8183 × 10−4 3.8184 × 10−4 3.8184 × 10−4 2.3807 × 10−9 Straight_1 8.5055 × 10−3 2.7732 × 101 1.5810 5.5711
Straight_2 3.8183 × 10−4 3.8183 × 10−4 3.8183 × 10−4 1.5953 × 10−13 Straight_2 1.2731 × 10−3 1.3293 × 10−3 1.2773 × 10−3 1.0150 × 10−5

Threshold_1 3.8183 × 10−4 3.8229 × 10−4 3.8190 × 10−4 9.3441 × 10−8 Threshold_1 6.0293 × 10−1 1.3343 × 102 1.6668 × 101 3.6662 × 101

Threshold_2 3.8183 × 10−4 3.8183 × 10−4 3.8183 × 10−4 1.3763 × 10−13 Threshold_2 1.2728 × 10−3 1.2728 × 10−3 1.2728 × 10−3 1.4537 × 10−9

Threshold_3 3.8183 × 10−4 4.0474 × 10−4 3.8314 × 10−4 4.2676 × 10−6 Threshold_3 1.2728 × 10−3 1.1844 × 102 4.6076 2.1276 × 101

Threshold_4 3.8183 × 10−4 3.8183 × 10−4 3.8183 × 10−4 2.0629 × 10−12 Threshold_4 1.3933 × 10−3 1.1844 × 102 7.9095 2.9541 × 101

Exponential_1 3.8183 × 10−4 1.5644 × 10−4 4.2241 × 10−4 2.1212 × 10−4 Exponential_1 1.2781 × 10−3 1.7045 × 10−2 2.7552 × 10−3 3.2908 × 10−3

Exponential_2 3.8183 × 10−4 3.8183 × 10−4 3.8183 × 10−4 1.4555 × 10−13 Exponential_2 1.2728 × 10−3 1.2728 × 10−3 1.2728 × 10−3 4.9514 × 10−9

Exponential_3 3.8183 × 10−4 3.9497 × 10−4 3.8261 × 10−4 2.8259 × 10−6 Exponential_3 1.2728 × 10−3 4.6522 × 10−3 1.4855 × 10−3 6.7891 × 10−4

Exponential_4 3.8183 × 10−4 3.8183 × 10−4 3.8183 × 10−4 1.6171 × 10−13 Exponential_4 1.2728 × 10−3 1.3827 × 10−3 1.2764 × 10−3 1.9734 × 10−5

Exponential_5 3.8183 × 10−4 4.2990 × 10−4 3.8366 × 10−4 8.6277 × 10−6 Exponential_5 1.2728 × 10−3 1.1844 × 102 6.9547 2.6270 × 101

Exponential_6 3.8183 × 10−4 1.1844 × 102 3.9483 2.1260 × 101 Exponential_6 1.2728 × 10−3 1.2730 × 10−3 1.2728 × 10−3 4.1256 × 10−8

Cosine_1 3.8183 × 10−4 3.8231 × 10−4 3.8184 × 10−4 8.6835 × 10−8 Cosine_1 1.2728 × 10−3 1.1844 × 102 4.1934 2.1251 × 101

Cosine_2 3.8183 × 10−4 3.8183 × 10−4 3.8183 × 10−4 5.5438 × 10−13 Cosine_2 1.2765 × 10−3 1.4798 × 10−3 1.3277 × 10−3 5.8337 × 10−5

Cosine_3 3.8183 × 10−4 3.8183 × 10−4 3.8183 × 10−4 8.8412 × 10−13 Cosine_3 1.2731 × 10−3 1.5879 × 10−3 1.3274 × 10−3 8.8845 × 10−5

Cosine_4 3.8183 × 10−4 3.8183 × 10−4 3.8183 × 10−4 3.6890 × 10−13 Cosine_4 1.2732 × 10−3 4.8779 × 10−2 3.7520 × 10−3 8.8272 × 10−3

f10 Straight_1 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 1.0008 × 10−13 Straight_1 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 1.1952 × 10−5

Straight_2 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 7.3385 × 10−14 Straight_2 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 1.4478 × 10−6

Threshold_1 −4.5000 × 102 −4.4999 × 102 −4.4999 × 102 8.3459 × 10−12 Threshold_1 −4.5000 × 102 −4.4999 × 102 −4.4999 × 102 1.7050 × 10−3

Threshold_2 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 6.3128 × 10−14 Threshold_2 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 2.4117 × 10−13

Threshold_3 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 9.7356 × 10−14 Threshold_3 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 4.6932 × 10−13

Threshold_4 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 1.9443 × 10−13 Threshold_4 −4.5000 × 102 −4.4999 × 102 −4.4999 × 102 9.0431 × 10−5

Exponential_1 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 7.4115 × 10−14 Exponential_1 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 1.1789 × 10−8

Exponential_2 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 5.4916 × 10−14 Exponential_2 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 4.2493 × 10−10

Exponential_3 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 7.4838 × 10−14 Exponential_3 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 2.2269 × 10−10

Exponential_4 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 6.8841 × 10−14 Exponential_4 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 1.5991 × 10−12

Exponential_5 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 7.3385 × 10−14 Exponential_5 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 5.9672 × 10−13

Exponential_6 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 7.1149 × 10−14 Exponential_6 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 2.8686 × 10−13

Cosine_1 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 9.0475 × 10−14 Cosine_1 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 1.9650 × 10−8

Cosine_2 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 9.0475 × 10−14 Cosine_2 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 1.1307 × 10−6

Cosine_3 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 8.3025 × 10−14 Cosine_3 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 2.3531 × 10−7

Cosine_4 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 8.5580 × 10−14 Cosine_4 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 1.5911 × 10−7
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Table 3. Cont.

No.
Dimension (D) = 30 Dimension (D) = 100

Adjustment strategy Min Max Mean SD Adjustment strategy Min Max Mean SD

f11 Straight_1 −4.2165 × 102 −1.3296 × 102 −3.0000 × 102 7.4536 × 101 Straight_1 1.1767 × 104 2.3516 × 104 1.6891 × 104 3.1744 × 103

Straight_2 −4.3444 × 102 −1.0722 × 102 −3.2701 × 102 8.4417 × 101 Straight_2 8.4226 × 103 1.8619 × 104 1.2552 × 104 2.2028 × 103

Threshold_1 −4.0106 × 102 −1.4896 × 102 −3.3088 × 102 5.8709 × 101 Threshold_1 1.5199 × 104 2.8379 × 104 2.1552 × 104 3.2507 × 103

Threshold_2 −3.4901 × 102 2.5368 × 102 −6.2125 × 101 1.5696 × 102 Threshold_2 8.7977 × 103 1.7870 × 104 1.3695 × 104 2.2976 × 103

Threshold_3 −3.3390 × 102 9.3989 × 102 1.2263 × 102 3.1892 × 102 Threshold_3 1.2026 × 104 3.1616 × 104 2.1121 × 104 4.5467 × 103

Threshold_4 −4.4289 × 102 −2.5392 × 102 −3.7419 × 102 4.4269 × 101 Threshold_4 9.0435 × 103 2.5277 × 104 1.6287 × 104 3.1871 × 103

Exponential_1 −3.1846 × 102 2.1908 × 102 −9.9376 × 101 1.4315 × 102 Exponential_1 1.0395 × 104 2.1639 × 104 1.5861 × 104 3.1550 × 103

Exponential_2 −3.8982 × 102 3.1632 × 102 −1.6371 × 102 1.6523 × 102 Exponential_2 6.9718 × 103 1.7181 × 104 1.1471 × 104 2.4981 × 103

Exponential_3 −3.0139 × 102 2.1120 × 103 1.5585 × 102 4.5585 × 102 Exponential_3 1.2034 × 104 2.4924 × 104 1.7356 × 104 2.6542 × 103

Exponential_4 −3.3706 × 102 2.7787 × 102 −5.1714 × 101 1.6504 × 102 Exponential_4 8.1868 × 103 1.8387 × 104 1.2757 × 104 2.9393 × 103

Exponential_5 −2.5225 × 102 1.5514 × 103 5.6252 × 102 4.1866 × 102 Exponential_5 1.2930 × 104 2.3952 × 104 1.8058 × 104 2.9540 × 103

Exponential_6 −2.8287 × 102 9.9251 × 102 2.6238 × 102 3.3327 × 102 Exponential_6 9.7956 × 103 2.0311 × 104 1.3953 × 104 2.4149 × 103

Cosine_1 −4.1764 × 102 −1.8561 × 101 −2.6591 × 102 9.4610 × 101 Cosine_1 9.0379 × 103 2.5832 × 104 1.5303 × 104 3.5867 × 103

Cosine_2 −4.2366 × 102 −4.9167 × 101 −2.7333 × 102 9.0290 × 101 Cosine_2 1.2007 × 104 2.5142 × 104 1.7464 × 104 3.3184 × 103

Cosine_3 −4.2193 × 102 8.5517 × 101 −2.2015 × 102 1.2019 × 102 Cosine_3 1.0444 × 104 2.0965 × 104 1.4526 × 104 2.5147 × 103

Cosine_4 −4.0935 × 102 4.8281 × 101 −2.5462 × 102 1.2357 × 102 Cosine_4 1.0484 × 104 2.3679 × 104 1.6049 × 104 3.3138 × 103

f12 Straight_1 −1.7895 × 102 −1.7527 × 102 −1.7807 × 102 9.8257 × 10−1 Straight_1 −1.5655 × 102 −9.8500 × 101 −1.3288 × 102 1.5417 × 101

Straight_2 −1.7894 × 102 −1.7562 × 102 −1.7821 × 102 7.6813 × 10−1 Straight_2 −1.6750 × 102 −1.2621 × 102 −1.4904 × 102 1.1365 × 101

Threshold_1 −1.7886 × 102 −1.7403 × 102 −1.7782 × 102 1.0687 Threshold_1 −1.3312 × 102 −5.8638 × 101 −9.9192 × 101 2.1166 × 101

Threshold_2 −1.7891 × 102 −1.7361 × 102 −1.7769 × 102 1.0980 Threshold_2 −1.6995 × 102 −1.2583 × 102 −1.5366 × 102 1.0233 × 101

Threshold_3 −1.7883 × 102 −1.7150 × 102 −1.7711 × 102 1.4020 Threshold_3 −1.6505 × 102 −1.2822 × 102 −1.4608 × 102 1.0842 × 101

Threshold_4 −1.7888 × 102 −1.7563 × 102 −1.7812 × 102 7.7099 × 10−1 Threshold_4 −1.6802 × 102 −1.0750 × 102 −1.3614 × 102 1.5041 × 101

Exponential_1 −1.7881 × 102 −1.7636 × 102 −1.7781 × 102 7.2018 × 10−1 Exponential_1 −1.6142 × 102 −1.1356 × 102 −1.4376 × 102 1.2858 × 101

Exponential_2 −1.7883 × 102 −1.7565 × 102 −1.7788 × 102 9.6280 × 10−1 Exponential_2 −1.6950 × 102 −1.4032 × 102 −1.5798 × 102 6.6526
Exponential_3 −1.7909 × 102 −1.7556 × 102 −1.7747 × 102 9.0208 × 10−1 Exponential_3 −1.6515 × 102 −1.2713 × 102 −1.5275 × 102 9.8056
Exponential_4 −1.7890 × 102 −1.7505 × 102 −1.7780 × 102 8.8838 × 10−1 Exponential_4 −1.7101 × 102 −1.4042 × 102 −1.5931 × 102 7.7148
Exponential_5 −1.7882 × 102 −1.7400 × 102 −1.7725 × 102 1.2914 Exponential_5 −1.7364 × 102 −1.2751 × 102 −1.5552 × 102 1.0491 × 101

Exponential_6 −1.7892 × 102 −1.7468 × 102 −1.7757 × 102 1.0984 Exponential_6 −1.7066 × 102 −1.4082 × 102 −1.6037 × 102 6.8764
Cosine_1 −1.7889 × 102 −1.7626 × 102 −1.7804 × 102 6.7941 × 10−1 Cosine_1 −1.7102 × 102 −9.7261 × 101 −1.4361 × 102 1.5506 × 101

Cosine_2 −1.7888 × 102 −1.7610 × 102 −1.7807 × 102 6.4727 × 10−1 Cosine_2 −1.6466 × 102 −1.1821 × 102 −1.4021 × 102 1.3072 × 101

Cosine_3 −1.7891 × 102 −1.7571 × 102 −1.7791 × 102 8.9066 × 10−1 Cosine_3 −1.6130 × 102 −1.1206 × 102 −1.4392 × 102 1.3861 × 101

Cosine_4 −1.7873 × 102 −1.7465 × 102 −1.7780 × 102 8.3139 × 10−1 Cosine_4 −1.6327 × 102 −1.0337 × 102 −1.3840 × 102 1.5854 × 101
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Table 3. Cont.

No.
Dimension (D) = 30 Dimension (D) = 100

Adjustment strategy Min Max Mean SD Adjustment strategy Min Max Mean SD

f13 Straight_1 3.9000 × 102 4.5949 × 102 3.9958 × 102 1.3088 × 101 Straight_1 3.9280 × 102 3.6620 × 103 5.7871 × 102 5.8225 × 102

Straight_2 3.9002 × 102 4.8656 × 102 4.0653 × 102 2.5520 × 101 Straight_2 5.5729 × 102 2.9468 × 103 8.3659 × 102 5.4759 × 102

Threshold_1 3.9007 × 102 4.0876 × 102 3.9979 × 102 7.3298 Threshold_1 4.2763 × 102 3.9501 × 103 8.1099 × 102 8.3480 × 102

Threshold_2 3.9000 × 102 7.9400 × 102 4.2759 × 102 7.5937 × 101 Threshold_2 4.9760 × 102 2.2597 × 103 6.9290 × 102 3.1747 × 102

Threshold_3 3.9012 × 102 6.7882 × 102 4.0955 × 102 5.0771 × 101 Threshold_3 3.9002 × 102 2.8846 × 103 8.5966 × 102 7.8665 × 102

Threshold_4 3.9000 × 102 4.7366 × 102 4.1236 × 102 3.1291 × 101 Threshold_4 4.8872 × 102 3.5299 × 103 9.3974 × 102 7.2954 × 102

Exponential_1 3.9001 × 102 7.8965 × 102 4.1481 × 102 7.3227 × 101 Exponential_1 3.9200 × 102 2.8106 × 103 6.1515 × 102 4.9085 × 102

Exponential_2 3.9007 × 102 7.3063 × 102 4.1744 × 102 6.3802 × 101 Exponential_2 4.7908 × 102 8.1095 × 102 6.1817 × 102 7.2382 × 101

Exponential_3 3.9000 × 102 9.0772 × 102 4.2429 × 102 9.6564 × 101 Exponential_3 3.9006 × 102 2.9396 × 103 6.9200 × 102 6.6627 × 102

Exponential_4 3.9013 × 102 5.4184 × 102 4.1655 × 102 3.5768 × 101 Exponential_4 4.8828 × 102 1.1518 × 103 6.4499 × 102 1.5060 × 102

Exponential_5 3.9000 × 102 1.0517 × 103 4.4257 × 102 1.4997 × 102 Exponential_5 3.9001 × 102 2.7678 × 103 6.7424 × 102 6.4280 × 102

Exponential_6 3.9004 × 102 4.7407 × 102 4.0836 × 102 2.6488 × 101 Exponential_6 4.6519 × 102 2.0147 × 103 6.5145 × 102 2.8388 × 102

Cosine_1 3.9000 × 102 6.1903 × 102 4.2205 × 102 4.8758 × 101 Cosine_1 4.5850 × 102 2.3449 × 103 7.1282 × 102 3.4454 × 102

Cosine_2 3.9002 × 102 8.5583 × 102 4.1202 × 102 8.2736 × 101 Cosine_2 3.9079 × 102 3.2281 × 103 7.6770 × 102 8.2332 × 102

Cosine_3 3.9010 × 102 8.8341 × 102 4.2415 × 102 8.8994 × 101 Cosine_3 5.1242 × 102 1.8003 × 103 7.3318 × 102 2.8816 × 102

Cosine_4 3.9001 × 102 4.0870 × 102 3.9875 × 102 7.7194 Cosine_4 3.9074 × 102 1.1216 × 103 5.3644 × 102 1.8263 × 102

f14 Straight_1 −3.3000 × 102 −3.2999 × 102 −3.2999 × 102 2.3198 × 10−8 Straight_1 −3.2999 × 102 −3.2784 × 102 −3.2924 × 102 7.3617 × 10−1

Straight_2 −3.3000 × 102 −3.3000 × 102 −3.3000 × 102 6.0514 × 10−14 Straight_2 −3.3000 × 102 −3.2801 × 102 −3.2962 × 102 5.9806 × 10−1

Threshold_1 −3.3000 × 102 −3.2999 × 102 −3.2999 × 102 1.1729 × 10−7 Threshold_1 −3.2877 × 102 −3.2057 × 102 −3.2511 × 102 1.7985
Threshold_2 −3.3000 × 102 −3.2901 × 102 −3.2997 × 102 1.7860 × 10−1 Threshold_2 −3.3000 × 102 −3.2901 × 102 −3.2977 × 102 4.2082 × 10−1

Threshold_3 −3.3000 × 102 −3.2901 × 102 −3.2997 × 102 1.7859 × 10−1 Threshold_3 −3.3000 × 102 −3.2801 × 102 −3.2974 × 102 4.9350 × 10−1

Threshold_4 −3.3000 × 102 −3.3000 × 102 −3.3000 × 102 1.4154 × 10−13 Threshold_4 −3.3000 × 102 −3.2303 × 102 −3.2718 × 102 1.5641
Exponential_1 −3.3000 × 102 −3.2999 × 102 −3.2999 × 102 3.0646 × 10−8 Exponential_1 −3.3000 × 102 −3.2897 × 102 −3.2988 × 102 3.1104 × 10−1

Exponential_2 −3.3000 × 102 −3.3000 × 102 −3.3000 × 102 1.0062 × 10−13 Exponential_2 −3.3000 × 102 −3.2901 × 102 −3.2983 × 102 3.7070 × 10−1

Exponential_3 −3.3000 × 102 −3.2999 × 102 −3.2999 × 102 1.8858 × 10−6 Exponential_3 −3.3000 × 102 −3.2900 × 102 −3.2990 × 102 2.9728 × 10−1

Exponential_4 −3.3000 × 102 −3.3000 × 102 −3.3000 × 102 1.0934 × 10−13 Exponential_4 −3.3000 × 102 −3.2901 × 102 −3.2997 × 102 1.7860 × 10−1

Exponential_5 −3.3000 × 102 −3.2901 × 102 −3.2997 × 102 1.7852 × 10−1 Exponential_5 −3.3000 × 102 −3.2891 × 102 −3.2980 × 102 3.8883 × 10−1

Exponential_6 −3.3000 × 102 −3.2901 × 102 −3.2997 × 102 1.7860 × 10−1 Exponential_6 −3.3000 × 102 −3.2901 × 102 −3.2987 × 102 3.3822 × 10−1

Cosine_1 −3.3000 × 102 −3.2999 × 102 −3.2999 × 102 4.0641 × 10−9 Cosine_1 −3.3000 × 102 −3.2777 × 102 −3.2947 × 102 6.9220 × 10−1

Cosine_2 −3.3000 × 102 −3.3000 × 102 −3.3000 × 102 2.9464 × 10−13 Cosine_2 −3.3000 × 102 −3.2702 × 102 −3.2920 × 102 1.0082
Cosine_3 −3.3000 × 102 −3.2999 × 102 −3.2999 × 102 1.5012 × 10−11 Cosine_3 −3.3000 × 102 −3.2747 × 102 −3.2933 × 102 7.1582 × 10−1

Cosine_4 −3.3000 × 102 −3.3000 × 102 −3.3000 × 102 2.0231 × 10−13 Cosine_4 −3.3000 × 102 −3.2701 × 102 −3.2924 × 102 9.1373 × 10−1
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Table 4. Experimental results of difference HS algorithms.

No.
Dimension (D) = 30 Dimension (D) = 100

Algorithm Strategy Min Max Mean SD Algorithm Strategy Min Max Mean SD

1 HS – 9.5152 × 10−1 7.2900 3.9526 1.8888 HS – 9.8221 × 103 1.4318 × 104 1.2247 × 104 1.1304 × 103

IHS – 1.8017 × 10−7 4.5253 × 10−7 3.4508 × 10−7 6.9069 × 10−8 IHS – 9.3279 × 103 1.5282 × 104 1.2496 × 104 1.2772 × 103

SGHS – 7.6930 × 10−10 1.5045 × 10−8 5.0535 × 10−9 3.1296 × 10−9 SGHS – 6.6607 × 10−1 2.7569 1.5343 4.7765 × 10−1

NGHS – 1.7413 × 10−17 2.3048 × 10−15 3.4620 × 10−16 4.7004 × 10−16 NGHS – 3.0447 × 10−4 1.3603 × 10−3 7.4741 × 10−4 2.1074 × 10−4

DANGHS Exponential_6 2.3735 × 10−38 3.7601 × 10−30 1.8344 × 10−31 7.0604 × 10−31 DANGHS Exponential_6 1.6615 × 10−16 8.0332 × 10−14 1.2209 × 10−14 1.9706 × 10−14

2 HS – 3.0000 1.7000 × 101 9.3000 3.7162 HS – 8.4840 × 103 1.6381 × 104 1.2242 × 104 1.6586 × 103

IHS – 0.0000 3.0000 9.3333 × 10−1 1.0306 IHS – 1.0060 × 104 1.5588 × 104 1.2560 × 104 1.3116 × 103

SGHS – 0.0000 0.0000 0.0000 0.0000 SGHS – 3.0000 1.8000 × 101 8.7667 3.1271
NGHS – 0.0000 0.0000 0.0000 0.0000 NGHS – 0.0000 0.0000 0.0000 0.0000

DANGHS Exponential_2 0.0000 0.0000 0.0000 0.0000 DANGHS Exponential_2 0.0000 0.0000 0.0000 0.0000

3 HS – 3.8826 × 10−2 2.1547 × 10−1 8.3000 × 10−2 3.9484 × 10−2 HS – 5.2475 × 101 6.6253 × 101 6.0705 × 101 4.1892
IHS – 1.8454 × 10−3 2.7586 × 10−2 3.1832 × 10−3 4.5541 × 10−3 IHS – 5.1429 × 101 6.9346 × 101 6.0238 × 101 4.2859

SGHS – 1.2406 × 10−4 2.3354 × 10−4 1.6844 × 10−4 2.7009 × 10−5 SGHS – 6.9687 × 10−2 4.0539 × 10−1 2.2004 × 10−1 7.5524 × 10−2

NGHS – 2.8122 × 10−10 4.8894 × 10−9 1.3786 × 10−9 9.1666 × 10−10 NGHS – 8.0120 × 10−3 1.8302 × 10−2 1.4477 × 10−2 2.3050 × 10−3

DANGHS Exponential_6 5.1270 × 10−23 2.5548 × 10−17 1.9511 × 10−18 5.5869 × 10−18 DANGHS Exponential_6 1.7326 × 10−9 2.2346 × 10−8 7.9778 × 10−9 5.9706 × 10−9

4 HS – 1.3615 × 103 8.1756 × 103 3.7966 × 103 1.4524 × 103 HS – 1.2355 × 105 2.2504 × 105 1.8030 × 105 2.0587 × 104

IHS – 1.5474 × 103 6.0226 × 103 3.8475 × 103 1.1754 × 103 IHS – 1.2992 × 105 2.3481 × 105 1.7522 × 105 2.7139 × 104

SGHS – 2.0150 × 101 1.0642 × 102 5.2245 × 101 2.2107 × 101 SGHS – 1.7856 × 104 3.1133 × 104 2.2834 × 104 2.8349 × 103

NGHS - 2.8355 × 101 1.4013 × 102 6.5269 × 101 3.3421 × 101 NGHS – 7.4976 × 103 1.2945 × 104 9.7007 × 103 1.6021 × 103

DANGHS Threshold_4 1.5038 × 101 1.5980 × 102 6.0249 × 101 3.5686 × 101 DANGHS Exponential_2 4.6763 × 103 1.3135 × 104 8.6301 × 103 1.9698 × 103

5 HS – 1.0212 1.1106 1.0591 2.2096 × 10−2 HS – 9.5506 × 101 1.4758 × 102 1.1631 × 102 1.1240 × 101

IHS – 1.2959 × 10−7 3.4241 × 10−2 7.5274 × 10−3 9.2294 × 10−3 IHS – 7.5548 × 101 1.4827 × 102 1.0997 × 102 1.4826 × 101

SGHS – 1.7833 × 10−2 2.3440 × 10−1 1.0043 × 10−1 5.1304 × 10−2 SGHS – 4.4296 × 10−1 8.8847 × 10−1 6.8599 × 10−1 9.9379 × 10−2

NGHS – 3.3307 × 10−16 2.5387 × 10−1 6.1311 × 10−2 4.9633 × 10−2 NGHS – 1.5343 × 10−4 9.9663 × 10−2 1.7168 × 10−2 2.2003 × 10−2

DANGHS Threshold_4 6.6613 × 10−16 8.0817 × 10−2 3.1209 × 10−2 2.3482 × 10−2 DANGHS Exponential_2 3.5352 × 10−11 4.8906 × 10−2 6.4754 × 10−3 9.8313 × 10−3

6 HS - 1.9421 × 10−2 1.3050 4.9617 × 10−1 4.2318 × 10−1 HS – 1.0882 × 101 1.2567 × 101 1.1743 × 101 3.8517 × 10−1

IHS – 3.4980 × 10−4 1.3915 2.2199 × 10−1 3.4543 × 10−1 IHS – 1.0987 × 101 1.2722 × 101 1.1852 × 101 4.3446 × 10−1

SGHS – 1.7703 × 10−5 4.5526 × 10−5 3.0830 × 10−5 6.1683 × 10−6 SGHS – 6.3791 × 10−2 4.5729 × 10−1 2.4057 × 10−1 1.2018 × 10−1

NGHS – 7.7839 × 10−10 2.0025 × 10−8 5.7085 × 10−9 5.2959 × 10−9 NGHS – 2.6973 × 10−3 5.3184 × 10−3 3.6500 × 10−3 5.4706 × 10−4

DANGHS Exponential_6 4.9294 × 10−14 2.2338 × 10−13 9.6308 × 10−14 3.4392 × 10−14 DANGHS Exponential_6 1.0897 × 10−9 2.9882 × 10−8 9.3030 × 10−9 7.9441 × 10−9

7 HS – 9.6358 × 101 3.9298 × 102 1.8204 × 102 5.9631 × 101 HS – 3.2565 × 106 9.1894 × 106 5.9320 × 106 1.2941 × 106

IHS - 1.7586 × 101 2.1565 × 103 3.6705 × 102 5.5299 × 102 IHS – 4.1100 × 106 8.2424 × 106 5.7186 × 106 1.0494 × 106

SGHS – 9.0932 2.0293 × 103 1.7534 × 102 3.7957 × 102 SGHS – 1.0832 × 102 2.8592 × 103 5.1645 × 102 4.7866 × 102

NGHS – 6.6756 × 10−4 2.3003 × 102 1.4971 × 101 4.0757 × 101 NGHS – 2.1179 × 101 1.4411 × 103 2.8501 × 102 2.8532 × 102

DANGHS Straight_1 9.3515 × 10−3 2.2089 × 101 1.0089 × 101 8.7452 DANGHS Threshold_3 5.6804 × 10−2 1.1562 × 103 6.1559 × 101 2.0554 × 102
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Table 4. Cont.

No.
Dimension (D) = 30 Dimension (D) = 100

Algorithm Strategy Min Max Mean SD Algorithm Strategy Min Max Mean SD

8 HS – 3.0572 × 10−2 2.0546 4.6448 × 10−1 6.5390 × 10−1 HS – 2.1874 × 102 2.8758 × 102 2.5192 × 102 1.6481 × 101

IHS – 4.1948 × 10−5 4.5484 1.2420 9.8291 × 10−1 IHS – 2.0838 × 102 2.8193 × 102 2.4294 × 102 1.8844 × 101

SGHS – 3.7300 × 10−7 9.9498 × 10−1 1.3267 × 10−1 3.3822 × 10−1 SGHS – 3.2260 × 10−2 9.1200 4.5553 2.2588
NGHS - 0.0000 1.6069 × 10−11 9.3241 × 10−13 3.2209 × 10−12 NGHS – 1.2729 × 10−3 1.0102 2.1542 × 10−1 3.9474 × 10−1

DANGHS Threshold_2 0.0000 0.0000 0.0000 0.0000 DANGHS Exponential_3 3.5170 × 10−8 5.9362 × 10−1 2.7729 × 10−2 1.0943 × 10−1

9 HS – 6.9691 3.8058 × 101 1.8422 × 101 6.8471 HS – 4.5568 × 103 6.9091 × 103 5.7964 × 103 5.5601 × 102

IHS – 3.8186 × 10−4 5.2695 × 10−1 1.7934 × 10−2 9.4522 × 10−2 IHS – 4.2297 × 103 6.4098 × 103 5.4659 × 103 5.5784 × 102

SGHS – 2.3563 × 10−3 3.6545 × 10−2 1.3771 × 10−2 7.5711 × 10−3 SGHS – 7.2936 3.8640 × 101 1.5981 × 101 7.4744
NGHS – 3.8183 × 10−4 3.8183 × 10−4 3.8183 × 10−4 5.5493 × 10−13 NGHS – 3.3819 × 10−3 6.8492 × 10−2 1.1069 × 10−2 1.3684 × 10−2

DANGHS Threshold_2 3.8183 × 10−4 3.8183 × 10−4 3.8183 × 10−4 1.3763 × 10−13 DANGHS Threshold_2 1.2728 × 10−3 1.2728 × 10−3 1.2728 × 10−3 1.4537 × 10−9

10 HS – −4.4898 × 102 −4.3989 × 102 −4.4573 × 102 2.2745 HS – 1.0055 × 104 1.6736 × 104 1.2963 × 104 1.7748 × 103

IHS – −4.5000 × 102 −4.4999 × 102 −4.4999 × 102 1.1657 × 10−7 IHS – 1.0425 × 104 1.4910 × 104 1.2856 × 104 1.2084 × 103

SGHS – −4.5000 × 102 −4.4999 × 102 −4.4999 × 102 2.7913 × 10−9 SGHS – −4.4918 × 102 −4.4701 × 102 −4.4841 × 102 5.8573 × 10−1

NGHS – −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 6.9619 × 10−14 NGHS – −4.5000 × 102 −4.4999 × 102 −4.4999 × 102 3.0551 × 10−4

DANGHS Exponential_2 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 5.4916 × 10−14 DANGHS Threshold_2 −4.5000 × 102 −4.5000 × 102 −4.5000 × 102 2.4117 × 10−13

11 HS – 1.5142 × 103 7.6068 × 103 3.4157 × 103 1.2671 × 103 HS – 1.4921 × 105 2.5525 × 105 1.9430 × 105 2.3256 × 104

IHS – 1.0412 × 103 7.3312 × 103 3.3180 × 103 1.3292 × 103 IHS – 1.4941 × 105 2.7307 × 105 2.0189 × 105 2.7108 × 104

SGHS – −4.3194 × 102 −3.2048 × 102 −3.9763 × 102 2.7006 × 101 SGHS – 1.5646 × 104 3.5936 × 104 2.6350 × 104 4.0064 × 103

NGHS – −4.2591 × 102 −1.9340 × 102 −3.3680 × 102 6.4820 × 101 NGHS – 9.0685 × 103 1.7976 × 104 1.1950 × 104 2.0823 × 103

DANGHS Threshold_4 −4.4289 × 102 −2.5392 × 102 −3.7419 × 102 4.4269 × 101 DANGHS Exponential_2 6.9718 × 103 1.7181 × 104 1.1471 × 104 2.4981 × 103

12 HS – −1.7016 × 102 −1.3324 × 102 −1.5876 × 102 9.4348 HS – 3.2343 × 103 5.9684 × 103 4.7002 × 103 6.7476 × 102

IHS – −1.7607 × 102 −1.3892 × 102 −1.5831 × 102 7.7527 IHS – 3.4934 × 103 6.5826 × 103 4.8855 × 103 8.4393 × 102

SGHS – −1.7830 × 102 −1.7149 × 102 −1.7583 × 102 1.6385 SGHS – −1.3057 × 102 −1.5099 × 101 −7.2944 × 101 2.8794 × 101

NGHS – −1.7913 × 102 −1.7532 × 102 −1.7829 × 102 6.4615 × 10−1 NGHS – −1.5784 × 102 −1.1939 × 102 −1.4231 × 102 1.0814 × 101

DANGHS Straight_2 −1.7894 × 102 −1.7562 × 102 −1.7821 × 102 7.6813 × 10−1 DANGHS Exponential_6 −1.7066 × 102 −1.4082 × 102 −1.6037 × 102 6.8764

13 HS – 4.7650 × 102 2.5184 × 103 6.6765 × 102 3.6290 × 102 HS – 4.0732 × 106 8.7806 × 106 6.0785 × 106 1.0919 × 106

IHS – 4.1262 × 102 1.7487 × 103 5.7845 × 102 2.3203 × 102 IHS – 4.5479 × 106 8.5517 × 106 6.3527 × 106 1.2268 × 106

SGHS – 3.9001 × 102 5.6058 × 102 4.6408 × 102 4.0896 × 101 SGHS – 6.4618 × 102 2.5249 × 103 9.7963 × 102 4.0336 × 102

NGHS – 3.9000 × 102 4.0874 × 102 3.9494 × 102 5.7399 NGHS – 4.6424 × 102 1.6001 × 103 7.1517 × 102 2.9163 × 102

DANGHS Cosine_4 3.9001 × 102 4.0870 × 102 3.9875 × 102 7.7194 DANGHS Cosine_4 3.9074 × 102 1.1216 × 103 5.3644 × 102 1.8263 × 102

14 HS – −3.2997 × 102 −3.2788 × 102 −3.2938 × 102 7.4966 × 10−1 HS – −9.3948 × 101 −6.2235 −5.1541 × 101 2.2413 × 101

IHS – −3.2999 × 102 −3.2749 × 102 −3.2897 × 102 6.9697 × 10−1 IHS – −1.1215 × 102 −3.3592 × 101 −6.5372 × 101 1.6227 × 101

SGHS – 3.9000 × 102 −3.2901 × 102 −3.2993 × 102 2.4813 × 10−1 SGHS – −3.2900 × 102 −3.2101 × 102 −3.2614 × 102 2.2502
NGHS – 3.9000 × 102 −3.2999 × 102 −3.2999 × 102 1.1444 × 10−12 NGHS – 3.9000 × 102 −3.2798 × 102 −3.2979 × 102 5.4096 × 10−1

DANGHS Straight_2 3.9000 × 102 3.9000 × 102 3.9000 × 102 6.0514 × 10−14 DANGHS Exponential_4 3.9000 × 102 −3.2901 × 102 −3.2997 × 102 1.7860 × 10−1



Symmetry 2018, 10, 337 25 of 30

Symmetry 2018, 10, x FOR PEER REVIEW  26 of 31 

Symmetry 2018, 10, 337; doi:10.3390/sym10080337 www.mdpi.com/journal/symmetry 

(a) Problem 1 (b) Problem 2 

(c) Problem 3 (d) Problem 4 

(e) Problem 5 (f) Problem 6 

(g) Problem 7 (h) Problem 8 
Figure 7. Typical convergence graph of five different algorithms for problems 1 to 8 (D = 30). (a) 
Problem 1; (b) Problem 2; (c) Problem 3; (d) Problem 4; (e) Problem 5; (f) Problem 6; (g) Problem 7; (h) 
Problem 8. 

Figure 7. Typical convergence graph of five different algorithms for problems 1 to 8 (D = 30).
(a) Problem 1; (b) Problem 2; (c) Problem 3; (d) Problem 4; (e) Problem 5; (f) Problem 6; (g) Problem 7;
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Figure 9. Typical convergence graph of five different algorithms for problems 1 to 8 (D = 100). (a) 
Problem 1; (b) Problem 2; (c) Problem 3; (d) Problem 4; (e) Problem 5; (f) Problem 6; (g) Problem 7; (h) 
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Figure 9. Typical convergence graph of five different algorithms for problems 1 to 8 (D = 100).
(a) Problem 1; (b) Problem 2; (c) Problem 3; (d) Problem 4; (e) Problem 5; (f) Problem 6; (g) Problem 7;
(h) Problem 8.
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We presented a DANGHS algorithm, which combines NGHS and the dynamic adjustment 
strategy for genetic mutation probability. Moreover, the extensive computational experiments and 
comparisons were carried out for 14 benchmark continuous optimization problems. According to the 
extensive computational results, there are several findings in this paper worth summarizing.  

First, different strategies are suitable for different problems. 

1. The decreasing dynamic adjustment strategies should be applied to some problems in which the 
DANGHS algorithm needs a larger, , in the early iterations, in order to have a larger 
probability of finding a better trial solution around the current one.  

2. The increasing dynamic adjustment strategies should be applied to other problems. For these 
problems, if the current solution is trapped in a local optimum, the DANGHS algorithm requires 
a larger probability, , in later iterations in order to avoid the local optima. 

Figure 10. Typical convergence graph of five different algorithms for problems 9 to 14 (D = 100).
(a) Problem 9; (b) Problem 10; (c) Problem 11; (d) Problem 12; (e) Problem 13; (f) Problem 14.

5. Conclusions

We presented a DANGHS algorithm, which combines NGHS and the dynamic adjustment strategy
for genetic mutation probability. Moreover, the extensive computational experiments and comparisons
were carried out for 14 benchmark continuous optimization problems. According to the extensive
computational results, there are several findings in this paper worth summarizing.

First, different strategies are suitable for different problems.

1. The decreasing dynamic adjustment strategies should be applied to some problems in which the
DANGHS algorithm needs a larger, pm, in the early iterations, in order to have a larger probability
of finding a better trial solution around the current one.

2. The increasing dynamic adjustment strategies should be applied to other problems. For these
problems, if the current solution is trapped in a local optimum, the DANGHS algorithm requires
a larger probability, pm, in later iterations in order to avoid the local optima.
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3. The periodic dynamic adjustment strategy can find the best objective function value for problem 13.
These particular results show that there are not only two kinds of adjustment strategies,
decreasing and increasing strategies, which are suitable for all problems. This viewpoint is
different from the common views: the adjustment strategy is as small as possible or as large as
possible with a generation number. For a specific problem, the periodic dynamic adjustment
strategy could have better performance in comparison with other decreasing or increasing
strategies. Therefore, these results inspire us to further investigate this kind of periodic dynamic
adjustment strategy in future experiments.

Second, the extensive experimental results showed that the DANGHS algorithm had better
searching performance in comparison with other HS algorithms for D = 30 and 100 in most problems.
Particularly for D = 100, the DANGHS algorithm could search the best objective function value in all
14 problems. In other words, the DANGHS had superior searching performance in high-dimensional
problems. According to the numerical results, we proofed that algorithms with dynamic parameters,
such as the DANGHS algorithm and the IHS algorithm, could have better searching performance
than algorithms without dynamic parameters, such as the NGHS algorithm and the HS algorithm.
Moreover, according to these results, we proofed that the viewpoint presented in previous studies is
suitable for the NGHS algorithm. This viewpoint states that appropriate parameters can enhance the
searching ability of a metaheuristic algorithm.

Finally, the DANGHS algorithm using Pseudocode 4 was more efficient than that using
Pseudocode 3. In Pseudocode 3, the algorithm generates a new harmony, and then with pm probability,
the algorithm abandoned it to generate a mutated harmony. Obviously, it was redundant and inefficient.
Therefore, we modified the procedure in Pseudocode 3 and presented a more efficient Pseudocode 4 in
this paper. In conclusion, the DANGHS algorithm is a more efficient and effective algorithm.
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