

Article

A Dynamic Adjusting Novel Global Harmony Search for Continuous Optimization Problems

Chui-Yu Chiu¹, Po-Chou Shih^{2,*} and Xuechao Li³

- ¹ Industrial Engineering and Management, National Taipei University of Technology, Taipei 10632, Taiwan; cychiu@ntut.edu.tw
- ² College of Management, National Taipei University of Technology, Taipei 10632, Taiwan
- ³ Department of Computer Science, Concordia University Chicago, Chicago, IL 60305, USA; Xuechao.Li@cuchicago.edu
- * Correspondence: pojo0701@hotmail.com; Tel.: +886-921-942-200

Received: 10 July 2018; Accepted: 8 August 2018; Published: 12 August 2018

Abstract: A novel global harmony search (NGHS) algorithm, as proposed in 2010, is an improved algorithm that combines the harmony search (HS), particle swarm optimization (PSO), and a genetic algorithm (GA). Moreover, the fixed parameter of mutation probability was used in the NGHS algorithm. However, appropriate parameters can enhance the searching ability of a metaheuristic algorithm, and their importance has been described in many studies. Inspired by the adjustment strategy of the improved harmony search (IHS) algorithm, a dynamic adjusting novel global harmony search (DANGHS) algorithm, which combines NGHS and dynamic adjustment strategies for genetic mutation probability, is introduced in this paper. Moreover, extensive computational experiments and comparisons are carried out for 14 benchmark continuous optimization problems. The results show that the proposed DANGHS algorithm has better performance in comparison with other HS algorithms in most problems. In addition, the proposed algorithm is more efficient than previous methods. Finally, different strategies are suitable for different situations. Among these strategies, the most interesting and exciting strategy is the periodic dynamic adjustment strategy. For a specific problem, the periodic dynamic adjustment strategy could have better performance in comparison with other decreasing or increasing strategies. These results inspire us to further investigate this kind of periodic dynamic adjustment strategy in future experiments.

Keywords: metaheuristic; global optimization; harmony search algorithm; dynamic adjustment strategy

1. Introduction

The last two decades have seen a significant increase in research into metaheuristic algorithms. The procedure of a metaheuristic algorithm can be divided into four steps: initialization, movement, replacement, and iteration [1]. The most popular metaheuristic algorithms to date are the particle swarm optimization (PSO) [2,3], genetic algorithm (GA) [4–6], and ant colony optimization (ACO) [7–9].

PSO was introduced by Kennedy and Eberhart in 1995 [10,11]. It imitates the foraging behavior of birds and fish, and provides a population-based search procedure, where each individual is abstracted as a "particle" that flies around in a multidimensional search space. The best positions encountered by a particle and its neighbors determine the particle's trajectory, along with other PSO parameters. In other words, a PSO system attempts to balance exploration and exploitation by combining global and local search methods [12].

The GA has been widely investigated since Holland proposed it in 1960 [13,14]. The GA was developed from Darwinian evolution. Based on the concept of natural genetics and evolutionary

principles, GA is a stochastic search technique that can search the near optimum solution in a large and complicated space. As Gordini [15] points out, "the GA differs from other non-linear optimization techniques in that it searches by maintaining a population of solutions from which better solutions are created, rather than making incremental changes to a single solution to a problem." The GA is consisted of three operators: reproduction, crossover, and mutation [16]. Reproduction is a process of survival-of-the-fittest selection. Crossover is the partial swap between two parent strings in order to produce two offspring strings. Mutation is the occasional random inversion of bit values in order to generate a non-recursive offspring. One importance of the GA is that several metaheuristic algorithms have been developed from the GA, such as the honey-bee mating optimization (HBMO) algorithm [17] and the harmony search (HS) algorithm [16].

The harmony search (HS) algorithm is a modern metaheuristic intelligent evolution algorithm [18], and was inspired by the music improvisation process where musicians improvise their instruments' pitches searching for a perfect state of harmony [19]. The HS algorithm simulates the principle of the music improvisation process in the same way that the GA simulates biological evolution, the simulated annealing algorithm (SA) [20] simulates physical annealing, and the PSO algorithm simulates the swarm behavior of birds and fish [18], etc. The HS algorithm has excellent exploitation capabilities. However, the HS algorithm suffers a very serious limitation of premature convergence if one or more initially generated harmonies are in the vicinity of local optimal [21]. As Assad and Deep [22] point out, "The efficiency of evolutionary algorithms depends on the extent of balance between diversification and intensification during the course of the search. Intensification, also called exploration, is the ability of an algorithm to exploit the search space in the vicinity of the current good solution, whereas diversification, also called exploration, is the process of exploring the new regions of a large search space and thus allows dissemination of the new information into the population. Proper balance between these two contradicting characteristics is a must to enhance the performance of the algorithm."

Therefore, in order to eradicate the aforementioned limitation, several improved HS algorithms have been proposed, such as the improved harmony search (IHS) algorithm [23], the self-adaptive global best harmony search (SHGS) [24], the novel global harmony search (NGHS) [25], the intelligent global harmony search (IGHS) algorithm [19], and so on. Of these algorithms, the IHS algorithm is the first to propose using the adjustment strategy to tune the pitch adjusting rate (PAR) and bandwidth (BW) parameters. In the HS algorithm, according to the value of PAR, the musicians will determine to adjust their instruments' pitches or not. Besides, the musicians will adjust the pitches within the BW distance. The PAR and BW values change dynamically with generation number, as shown in Figure 1. In Mahdavi's paper [23], the adjustment strategy was proofed; it can enhance the searching ability of the harmony search algorithm. In other words, the importance of the appropriate parameters was proofed in his paper.

Figure 1. (a) Variation of pitch adjusting rate (PAR) versus iteration number; (b) Variation of bandwidth (BW) versus iteration number.

Appropriate parameters can enhance the searching ability of a metaheuristic algorithm; their importance has been described in many studies. First, Pan et al. demonstrated that a good set of parameters can enhance an algorithm's ability to search for the global optimum or near optimum region with a high convergence rate [19,24]. Second, in the NGHS algorithm, the new trial solutions are generated by the parameter *step*_j. Therefore, Zou et al. [25,26] showed that the most reasonable design for *step*_j in the NGHS algorithm can guarantee that the proposed algorithm has strong global search ability in the early optimization stage, and strong local search ability in the late optimization stage. In addition, a dynamically adjusted *step*_j maintains a balance between the global search and the local search. In another paper, Zou et al. [27] demonstrated that an appropriate harmony memory considering rate (HMCR) and PAR value in the SGHS algorithm can be gradually learned to suit the particular problem and the particular phases of the search process. In addition, there is no single choice for the genetic mutation probability (p_m) in the NGHS algorithm; it should be adjusted according to practical optimization problems. Last, Valian, Tavakoli, and Mohanna [28] observed that there can be no single choice for HMCR in the IGHS algorithm, and it should be adjusted according to the given optimization problems.

However, in the NGHS algorithm, the value of the genetic mutation probability (p_m) is a fixed value that is given in the initialization step. According to the result of Mahdavi's paper [23], we supposed that the adjustment strategy could enhance the searching ability. Therefore, a dynamic adjusting novel global harmony search (DANGHS) algorithm was proposed in this paper. In the DANGHS algorithm, the mutation probability adjusts dynamically with the generation number by the adjustment strategy. However, we can adjust the mutation probability using different strategies. Therefore, this paper used 16 different strategies in the DANGHS algorithm in 14 well-known benchmark optimization problems. In other words, the performance of different strategies in the DANGHS algorithm for different problems was investigated. Besides, in general, one important characteristic of the metaheuristic algorithm is to be fast and efficient. A better metaheuristic algorithm cannot only search the more exact solution but also use less iterations than other algorithms. Therefore, we discuss the efficiency of the DANGHS algorithm in this paper. According to the numerical results, the DANGHS algorithm had better searching performance in comparison with other HS algorithms in most problems.

The remainder of this paper is arranged as follows. In Section 2, the HS, IHS, SGHS, and NGHS algorithms are introduced. Section 3 describes the DANGHS algorithm. A large number of experiments are carried out to test and compare the performance of 16 different strategies in the DANGHS algorithm in Section 4. Conclusions and suggestions for future research are given in Section 5.

2. HS, IHS, SGHS, and NGHS

In this section, the HS, the IHS, the SGHS, and the NGHS are reviewed.

2.1. Harmony Search Algorithm

The HS algorithm was proposed by Geem, Kim, and Loganathan in 2001 [16]. HS is similar in concept to other metaheuristic algorithms such as GA, PSO, and ACO in terms of combining the rules of randomness to imitate the process that inspired it. However, HS draws its inspiration not from biological or physical processes but from the improvisation process of musicians, such as that found in a Jazz trio [19,29].

In the musical improvisation process, each musician sounds any pitch within a possible range, and then together they make a single harmony. If all the pitches make a pleasing harmony, the experience is stored in each player's memory, and the possibility of making a more pleasing harmony the next time is increased [30]. Similarly, in engineering optimization, each decision variable initially chooses any value within a possible range, together making one solution vector [27]. In the HS algorithm, each harmony, which means the trial solution for the problem, is represented by a D-dimension real vector, and a pleasing harmony means the good trial solution for the problem [19].

If all the decision variable values make a good solution, then that experience is stored in each variable's memory, and the possibility of making a good solution the next time is also increased [27]. Figure 2 shows the comparison between music improvisation and engineering optimization. In Figure 2, there is a Jazz trio consisting of three musicians. Each musician plays an instrument at the same time to make a single harmony. The pitches of the three instruments mean the values of the three decision variables.

Figure 2. Comparison between music improvisation and engineering optimization.

In general, the HS algorithm works as follows [27]:

Step 1. Initialization: the algorithm and problem parameters

In this step, the parameters of the HS algorithm are determined. The parameters are the harmony memory size (m), the harmony memory considering rate (HMCR), the pitch adjusting rate (PAR), the bandwidth (BW), the current iteration (k = 1), and the maximum number of iterations (NI). Furthermore, the D-dimensional optimization problem is defined as Minimize f(x) subject to $x_{jL} \le x_j \le x_{jU}$ (j = 1, 2, ..., D). x_{jL} and x_{jU} are the lower and upper bounds for decision variables x_j .

Step 2. Initialization: the decision variable values and the harmony memory

The initial decision variable values $x_{ij}^{k=0}$ (i = 1, 2, ..., m) are generated by Equation (1). The harmony memory (HM) is as shown in Equation (2).

$$x_{ij}^{0} = x_{jL} + r \times (x_{jU} - x_{jL})$$
(1)

$$HM = \begin{bmatrix} x_{11}^{0} & x_{12}^{0} & \cdots & x_{1D}^{0} \\ x_{21}^{0} & x_{22}^{0} & \cdots & x_{2D}^{0} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1}^{0} & x_{m2}^{0} & \cdots & x_{mD}^{0} \end{bmatrix}$$
(2)

In Equation (1), *r* is the uniformly generated random numbers in the region of [0, 1].

Step 3. Movement: improvise a new harmony

Movement step is the most important step of any algorithm. The performance of global exploration and local exploitation are related to the design of the movement step. In the HS algorithm, the movement step is improvisation. The new harmony vector $x^{k+1} = (x_1^{k+1}, x_2^{k+1}, \ldots, x_D^{k+1})$ is generated by memory consideration, pitch adjustment, and random selection mechanisms in this step. The HS movement steps (Pseudocode 1) are shown in Algorithm 1.

1:	For $j = 1$ to D do
2:	If $r_1 \leq HMCR$ then
3:	$\mathbf{x}_{\mathbf{j}}^{\mathbf{k}+1} = \mathbf{x}_{\mathbf{ij}}^{\mathbf{k}}$ % memory consideration
4:	If $r_2 \leq PAR$ then
5:	$\mathbf{x}_j^{k+1} = \mathbf{x}_j^{k+1} - BW + \mathbf{r}_3 imes 2 imes BW$ % pitch adjustment
6:	If $x_j^{k+1} > x_{jU}$ then
7:	$\mathbf{x}_{i}^{k+1} = \mathbf{x}_{i\mathbf{U}}$
8:	Else if $x_j^{k+1} < x_{jL}$ then
9:	$x_j^{k+1} = x_{iL}$
10:	End
11:	End
12:	Else
13:	$\mathbf{x}_{j}^{k+1} = \mathbf{x}_{jL} + \mathbf{r}_{4} imes \left(\mathbf{x}_{jU} - \mathbf{x}_{jL} ight)$ % random selection
14:	End
15:	End

Here, x_j^{k+1} is the jth component of x^{k+1} . *i* is an uniformly generated random number in [1, m], and x_{ij}^k is the jth component of the ith candidate solution vector in the HM. r_1 , r_2 , r_3 and r_4 are the uniformly generated random numbers in the region of [0, 1], and BW is a given distance bandwidth.

Step 4. Replacement: update harmony memory

If the fitness value of the new harmony vector x^{k+1} is better than that of the worst harmony in the HM, replace the worst harmony vector by x^{k+1} .

Step 5. Iteration: check the stopping criterion

If the stopping criterion (maximum number of iterations NI) is satisfied, the computation is terminated; otherwise, the current iteration k = k + 1 and go back to step 3.

2.2. Improved Harmony Search Algorithm

The IHS algorithm was proposed by Mahdavi, Fesanghary, and Damangir in 2007 for solving optimization problems [23]. In their paper, they noted that PAR and BW are very important parameters in the HS algorithm when fine-tuning optimized solution vectors, and can be potentially useful in adjusting the convergence rate of the algorithm to the optimal solution. Fine adjustment of these parameters is therefore of particular interest. The key difference between the IHS and the traditional HS method is thus in the way PAR and BW are adjusted in each iteration by Equations (3) and (4):

$$PAR^{k} = PAR_{min} + \frac{(PAR_{max} - PAR_{min})}{NI} \times k$$
(3)

$$BW^{k} = BW_{max} \times e^{\left(\ln\left(\frac{BW_{min}}{BW_{max}}\right) \times k/NI\right)}$$
(4)

In Equation (3), PAR^k is the pitch adjustment rate in the current iteration k; PAR_{min} and PAR_{max} are the minimum and maximum adjustment rates, respectively. In Equation (4), BW^k is the distance bandwidth in current iteration k, BW_{min} is the minimum bandwidth, and BW_{max} is the maximum bandwidth. Figure 1 shows that the PAR and BW values change dynamically with the iteration number.

2.3. Self-Adaptive Global Best Harmony Search Algorithm

The SGHS algorithm was presented by Pan et al. in 2010 for continuous optimization problems [24].

and the BW was adjusted in each iteration. The value of $HMCR^k$ was generated by the mean $HMCR_m$ and the standard deviation. In the same way, the value of PAR^k was generated by the mean PAR_m and the standard deviation. Pan et al. assumed that the dynamic mean $HMCR_m$ is in the range of [0.9, 1.0] and the static standard deviation is 0.01; the dynamic mean PAR_m . is in the range of [0.0, 1.0] and the static standard deviation is 0.05. Furthermore, the $HMCR^k$ and PAR^k were recorded by their historic values when the generated harmony successfully replaced the worst harmony in the harmony memory. After a specified learning period (LP), the $HMCR_m$ and PAR_m were recalculated by averaging all the recorded $HMCR^k$ and PAR^k values during this period respectively. In the subsequent iterations, new $HMCR^k$ and PAR^k values were generated with the new mean $HMCR_m$ and PAR_m and the given standard deviation. In addition, the BW^k is decreased in each iteration by Equation (5).

$$BW^{k} = \begin{cases} BW_{max} - \frac{BW_{max} - BW_{min}}{NI} \times 2k & if \ k < NI/2, \\ BW_{min} & if \ k \ge NI/2, \end{cases}$$
(5)

In general, the SGHS algorithm works as follows:

Step 1. Initialization: the problem and algorithm parameters

Set parameters m, LP, NI, BW_{max} , BW_{min} , $HMCR_m$, PAR_m , the current iteration k = 1, and iteration counter lp = 1.

Step 2. Initialization: the decision variable values and the harmony memory

The initial decision variable values $x_{ij}^{k=0}$ (i = 1, 2, ..., m) is generated by Equation (1). The harmony memory (HM) is as shown in Equation (2).

Step 3. Movement: generate the algorithm parameters

Generate $HMCR^k$ and PAR^k with $HMCR_m$ and PAR_m by the normal distribution respectively. Generate BW^k with BW_{max} and BW_{min} by Equation (5).

Step 4. Movement: improvise a new harmony

Improvise a new harmony x^{k+1} . The SGHS movement step (Pseudocode 2) is shown in Algorithm 2.

Algorithm 2 The Movement Steps of SGHS (Pseudocode 2) [24]

1:	For $\mathbf{j} = 1$ to D do
2:	If $r_1 \leq HMCR^k$ then
3:	$\mathbf{x}_{\mathbf{j}}^{\mathbf{k}+1} = \mathbf{x}_{\mathbf{ij}}^{\mathbf{k}} - \mathrm{BW}^{\mathbf{k}} + \mathbf{r}_{2} imes 2 imes \mathrm{BW}^{\mathbf{k}}$
4:	If $x_i^{k+1} > x_{jU}$ then
5:	$x_i^{k+1} = x_{iU}$
6:	Else if $x_j^{k+1} < x_{jL}$ then
7:	$\mathbf{x}_{\mathbf{i}}^{\mathbf{k}+1} = \mathbf{x}_{\mathbf{i}\mathbf{L}}$
8:	End
9:	If $r_3 \leq PAR^k$ then
10:	$\mathbf{x}_{\mathbf{j}}^{\mathbf{k}+1} = \mathbf{x}_{\mathrm{best},\mathbf{j}}^{\mathbf{k}}$
11:	End
12:	Else
13:	$x_{j}^{k+1} = x_{jL} + r_4 \times \left(x_{jU} - x_{jL} \right) \text{\% random selection}$
14:	End
15:	End

Here, x_j^{k+1} is the jth component of x^{k+1} . *i* is an uniformly generated random number in [1, m], and x_{ij}^k is the jth component of the ith candidate solution vector in the HM. $x_{best,j}^k$ is the jth component of the best candidate solution vector in the HM. r_1 , r_2 , r_3 and r_4 are uniformly generated random numbers in [0, 1]. r_1 is used for position updating, r_2 determines the distance of the BW, r_3 is used for pitch adjustment, and r_4 is used for random selection.

Step 5. Replacement: update harmony memory

If the fitness value of the new harmony vector x^{k+1} is better than that of the worst harmony in the HM, replace the worst harmony vector by x^{k+1} and record the values of $HMCR^k$ and PAR^k .

Step 6. Replacement: update $HMCR_m$ and PAR_m

If lp = LP, recalculate $HMCR_m$ and PAR_m by averaging all the recorded $HMCR^k$ and PAR^k values respectively and reset lp = 1; otherwise, lp = lp + 1.

Step 7. Iteration: check the stopping criterion

If NI is completed, return the best harmony vector x_{best} in the HM; otherwise, the current iteration k = k + 1 and go back to step 3.

2.4. Novel Global Harmony Search Algorithm

The NGHS algorithm [25,26] is an improved algorithm that combines HS, PSO, and GA. A prominent characteristic of PSO is that individual particles attempt to imitate the social experience. It means the particles are affected by other better particles in the PSO algorithm. A prominent characteristic of GA is that it is possible for the trial solution to escape from the local optimum by mutation. In other words, NGHS tries to generate a new solution by moving the worst solution toward the best solution or by mutation.

Figure 3 is used to illustrate the principle of position updating. $step_j = |x_{best,j}^k - x_{worst,j}^k|$ is defined as an adaptive step of the jth decision variable. This adaptive step can dynamically balance the performance of global exploration and local exploitation in the NGHS algorithm. As Zou et al. [26] points out, "In the early stage of optimization, all solution vectors are sporadic in the solution space, so most adaptive steps are large, and most trust regions are wide, which is beneficial to the global search of NGHS. However, in the late stage of optimization, all non-best solution vectors are inclined to move to the global best solution vector, so most solution vectors are close to each other. In this case, most adaptive steps are small and most trust regions are narrow, which is beneficial to the local search of NGHS."

Figure 3. Schematic diagram of position updating.

According to this prominent characteristic, NGHS modifies the movement step of HS therefore the NGHS algorithm can imitate the current best harmony in the HM. In general, the NGHS algorithm works as follows:

Step 1. Initialization: the algorithm and problem parameters

11:

12:

End End

- (1) Set parameters m, NI, and the current iteration k = 1.
- The genetic mutation probability (p_m) is included in NGHS, while the harmony memory (2)considering rate (HMCR), pitch adjusting rate (PAR) and the bandwidth (BW) are excluded from NGHS.

Step 2. Initialization: the decision variable values and the harmony memory

The initial decision variable values $x_{ii}^{k=0}$ (i = 1, 2, ..., m) are generated by Equation (1). The HM is as shown in Equation (2).

Step 3. Movement: improvise a new harmony

NGHS modifies the movement step in HS. The NGHS movement step (Pseudocode 3) is shown in Algorithm 3.

Algorithm 3 The Movement Steps of NGHS (Pseudocode 3) [25–27].						
1: For $j = 1$ to D do						
2: $x_{\rm R} = 2 \times x_{\rm best,i}^k - x_{\rm worst,i}^k$						
3: If $x_R > x_{jU}$ then						
4: $x_{\rm R} = x_{\rm jU}$						
5: Else if $x_R < x_{jL}$ then						
6: $x_{\rm R} = x_{\rm jL}$						
7: End						
8: $x_j^{k+1} = x_{\text{worst},j}^k + r_1 \times (x_R - x_{\text{worst},j}^k)$ % position updating						
9: If $r_2 \le p_m$ then						
10: $x_j^{k+1} = x_{jL} + r_3 \times (x_{jU} - x_{jL})$ % genetic mutation						
11. End						

Here, $x_{best,i}^k$ and $x_{worst,i}^k$ are the best harmony and the worst harmony in the HM, respectively. r_1 , r_2 and r_3 are uniformly generated random numbers in [0, 1]. r_1 is used for position updating, r_2 determines whether NGHS should carry out genetic mutation, and r_3 is used for genetic mutation.

Genetic mutation with a small probability is carried out for the current worst harmony in the HM after position updating [25–27].

Step 4. Replacement: update harmony memory

NGHS replaces the worst harmony $x_{worst,i}^{k}$ (j = 1, 2, ..., D) in the HM by the new harmony x^{k+1} , even if the new harmony is worse than the worst harmony.

Step 5. Iteration: check the stopping criterion

If the stopping criterion (maximum number of iterations NI) is satisfied, the computation is terminated; otherwise, the current iteration k = k + 1 and go back to step 3.

3. Dynamic Adjusting Novel Global Harmony Search (DANGHS) Algorithm

Appropriate parameters can enhance the searching ability of a metaheuristic algorithm. Inspired by this concept, a dynamic adjusting NGHS (DANGHS) is presented in this section. In the DANGHS, the genetic mutation probability (p_m) is dynamically adjusted in each iteration. However, we can enhance the searching ability of the NGHS algorithm by many kinds of dynamic adjustment strategies. Therefore, we introduced 16 dynamic adjustment strategies in this paper. All 16 strategies are shown as follows, and Figures 4-6 are used to illustrate the 16 strategies.

(1) Straight linear increasing strategy (Straight_1): The genetic mutation probability is increased by Equation (6), which is a linear function.

$$p_m^k = p_{m_min} + \frac{(p_{m_max} - p_{m_min})}{NI} \times k.$$
(6)

Here, p_{m_min} is the minimum genetic mutation probability, and p_{m_max} is the maximum genetic mutation probability.

(2) Straight linear decreasing strategy (Straight_2):

The genetic mutation probability is decreased by Equation (7), which is a linear function.

$$p_m^k = p_{m_max} + \frac{(p_{m_min} - p_{m_max})}{NI} \times k \tag{7}$$

(3) Threshold linear prior increasing strategy (Threshold_1):

The genetic mutation probability is increased by Equation (8), which is a linear function with a threshold. The genetic mutation probability is raised before the threshold, but the genetic mutation probability is a fixed maximum value after the threshold.

$$p_m^k = \begin{cases} p_{m_min} + \frac{P_{m_max} - P_{m_min}}{NI} \times 2k & if \ k < NI/2\\ p_{m_max} & if \ k \ge NI/2 \end{cases}$$
(8)

(4) Threshold linear prior decreasing strategy (Threshold_2):

The genetic mutation probability is decreased by Equation (9), which is a linear function with a threshold. The genetic mutation probability is reduced before the threshold, but the genetic mutation probability is a fixed minimum value after the threshold.

$$p_m^k = \begin{cases} p_{m_max} + \frac{P_{m_min} - P_{m_max}}{NI} \times 2k & if \ k < NI/2\\ p_{m_min} & if \ k \ge NI/2 \end{cases}$$
(9)

(5) Threshold linear posterior increasing strategy (Threshold_3):

The genetic mutation probability is increased by Equation (10), which is a linear function with a threshold. The genetic mutation probability is a fixed minimum value before the threshold, but the genetic mutation probability is raised after the threshold.

$$p_m^k = \begin{cases} p_{m_min} & if \ k < NI/2\\ p_{m_min} + \frac{P_{m_max} - P_{m_min}}{NI} \times 2k & if \ k \ge NI/2 \end{cases}$$
(10)

(6) Threshold linear posterior decreasing strategy (Threshold_4):

The genetic mutation probability is decreased by Equation (11), which is a linear function with a threshold. The genetic mutation probability is a fixed maximum value before the threshold, but the genetic mutation probability is reduced after the threshold.

$$p_m^k = \begin{cases} p_{m_max} & if \ k < NI/2\\ p_{m_max} + \frac{P_{m_min} - P_{m_max}}{NI} \times 2k & if \ k \ge NI/2 \end{cases}$$
(11)

(7) Natural exponential increasing strategy (Exponential_1):

The genetic mutation probability is increased by Equation (12), which is a non-linear function.

$$p_m^k = p_{m_min} \times e^{\left(\ln\left(\frac{p_m_max}{p_m_min}\right) \times k/NI\right)}$$
(12)

(8) Natural exponential decreasing strategy (Exponential_2):

The genetic mutation probability is decreased by Equation (13), which is a non-linear function.

$$p_m^k = p_{m_max} \times e^{\left(\ln\left(\frac{m_min}{p_{m_max}}\right) \times k/NI\right)}$$
(13)

(9) Exponential increasing strategy:

The genetic mutation probability is increased by Equation (14), which is a non-linear function. We can control the increasing rate by the modification rate (mr).

$$p_m^k = p_{m_min} + (p_{m_max} - p_{m_min}) \times mr^{(NI-k)/NI}$$
(14)

In this paper, the *mr* is equal to 0.01 or 0.001. Therefore, in this paper, the 9th strategy (Exponential_3) is the exponential increasing strategy with mr = 0.01, and the 10th strategy (Exponential_5) is the exponential increasing strategy with mr = 0.001.

(10) Exponential decreasing strategy:

The genetic mutation probability is decreased by Equation (15), which is a non-linear function. We can control the decreasing rate by the modification rate (mr).

$$p_m^k = p_{m_{min}} + (p_{m_{max}} - p_{m_{min}}) \times mr^{k/NI}$$
(15)

In this paper, the *mr* is equal to 0.01 or 0.001. Therefore, in this paper, the 11th strategy (Exponential_4) is the exponential decreasing strategy with mr = 0.01, and the 12th strategy (Exponential_6) is the exponential decreasing strategy with mr = 0.001.

(11) Concave cosine strategy:

The genetic mutation probability is changed by Equation (16), which is a periodic function. The shape of this function is a concave, and we can control the cycle time of this function by the coefficient of cycle (cc).

$$p_m^k = \frac{p_{m_max} + p_{m_min}}{2} + \frac{p_{m_max} - p_{m_min}}{2} \times \cos\frac{k \times cc \times 2\pi}{NI}$$
(16)

In this paper, the *cc* is equal to 1 or 3. Therefore, in this paper, the 13th strategy (Cosine_1) is the concave cosine strategy with cc = 1, and the 14th strategy (Cosine_3) is the concave cosine strategy with cc = 3.

(12) Convex cosine strategy:

The genetic mutation probability is changed by Equation (17), which is a periodic function. The shape of this function is a convex, and we can control the cycle time of this function by the coefficient of cycle (cc).

$$p_m^k = \frac{p_{m_max} + p_{m_min}}{2} - \frac{p_{m_max} - p_{m_min}}{2} \times \cos\frac{k \times cc \times 2\pi}{NI}$$
(17)

In this paper, the *cc* is equal to 1 or 3. Therefore, in this paper, the 15th strategy (Cosine_2) is the convex cosine strategy with cc = 1, and the 16th strategy (Cosine_4) is the convex cosine strategy with cc = 3.

Figure 4. Straight linear and threshold linear strategies.

Figure 5. Exponential strategies.

Figure 6. Concave cosine and convex cosine strategies.

Step 1. Initialization: the problem and algorithm parameters

The parameters are the harmony memory size (m), the current iteration k = 1, and the maximum number of iterations (NI).

Step 2. Initialization: the decision variable values and the harmony memory

The initial decision variable values $x_{ij}^{k=0}$ (i = 1, 2, ..., m) is generated by Equation (1). The HM is as shown in Equation (2).

Step 3. Movement: generate the algorithm parameters

Generate the genetic mutation probability (p_m^k) in each iteration by dynamic adjustment strategies.

Step 4. Movement: improvise a new harmony

The DANGHS movement step (Pseudocode 4) is shown in Algorithm 4.

Algorithm 4 The	Movement Step	ps of DANGHS ((Pseudocode 4)
-----------------	---------------	----------------	----------------

1:	For $j = 1$ to D do
2:	If $r_1 > p_m^k$ then
3:	$\mathbf{x_{R}} = 2 imes \mathbf{x}_{ ext{best}, j}^{k} - \mathbf{x}_{ ext{worst}, j}^{k}$
4:	If $x_R > x_{jU}$ then
5:	$x_{R} = x_{jU}$
6:	Else if $x_R < x_{jL}$ then
7:	$x_R = x_{jL}$
8:	End
9:	$x_j^{k+1} = x_{worst,j}^k + r_2 \times (x_R - x_{worst,j}^k) \text{\% position updating}$
10:	Else
11:	$\mathrm{x}_{j}^{k+1} = \mathrm{x}_{j\mathrm{L}} + \mathrm{r}_{3} imes \left(\mathrm{x}_{j\mathrm{U}} - \mathrm{x}_{j\mathrm{L}} ight)$ % genetic mutation
12:	End
13:	End

Here, $x_{best,j}^k$ and $x_{worst,j}^k$ are the best harmony and the worst harmony in the HM, respectively. r_1 , r_2 and r_3 are uniformly generated random numbers in [0, 1]. r_1 determines whether DANGHS should carry out genetic mutation, r_2 is used for position updating, and r_3 is used for genetic mutation.

Step 5. Replacement: update harmony memory

DANGHS replaces the worst harmony $x_{worst,j}^k$ (j = 1, 2, ..., D) in the HM by the new harmony x^{k+1} , even if the new harmony is worse than the worst harmony.

Step 6. Iteration: check the stopping criterion

If the stopping criterion (maximum number of iterations NI) is satisfied, terminate the computation and return the best harmony vector x_{best} in the HM; otherwise, the current iteration k = k + 1 and go back to step 3.

4. Experiments and Analysis

In order to verify the performance of the 16 dynamic adjustment strategies in the DANGHS algorithm, 14 well-known benchmark optimization problems [24,28,31] are considered, as shown in Table 1. This study used Python 3.6.2 (64-bit) as the complier to write the program for finding the solution. The solution-finding equipment was an Intel Core (TM) i7-4720HQ (2.6 GHz) CPU, 8G of memory, and Windows 10 home edition (64-bit) OS.

Name	Function	Search Space	Optimum
f_1 Sphere function	$\min f(x_i) = \sum_{i=1}^N x_i^2$	[-100, 100] ⁿ	0
f_2 Step function	$\min f(x_i) = \sum_{i=1}^{N} \left(\lfloor x_i + 0.5 \rfloor \right)^2$	[-100, 100] ⁿ	0
f_3 Schwefel's problem 2.22	$\min f(x_i) = \sum_{i=1}^{N} x_i + \prod_{i=1}^{N} x_i $	[-10, 10] ⁿ	0
f_4 Rotated hyper-ellipsoid function	$\min f(x_i) = \sum_{i=1}^{N} \left(\sum_{j=1}^{i} x_j\right)^2$	[-100, 100] ⁿ	0
f_5 Griewank function	$\min f(x_i) = \frac{1}{4000} \sum_{i=1}^{N} x_i^2 - \prod_{i=1}^{N} \cos\left(\frac{x_i}{\sqrt{i}}\right) + 1$	[-600, 600] ⁿ	0
f_6 Ackley's function	$\min f(x_i) = 20 + e - 20 \exp\left(-0.2\sqrt{\sum_{i=1}^{N} x_i^2/n}\right) - \exp\left(\sum_{i=1}^{N} \cos(2\pi x_i)/n\right)$	[-32, 32] ⁿ	0
f_7 Rosenbrock function	$\min f(x_i) = \sum_{i=1}^{N-1} \left(100 \left(x_{i+1} - x_i^2 \right)^2 + (1 - x_i)^2 \right)$	[-30, 30] ⁿ	0
f_8 Rastrigin function	$\min f(x_i) = \sum_{i=1}^{N} (x_i^2 - 10\cos(2\pi x_i) + 10)$	[-5.12, 5.12] ⁿ	0
f_9 Schwefel's problem 2.26	$\min f(x_i) = 418.9829N - \sum_{i=1}^{N} \left(x_i \sin\left(\sqrt{ x_i }\right) \right)$	$[-500, 500]^n$	0
f_{10} Shifted Sphere function	$\min f(x_i) = \sum_{i=1}^{N} z_i^2 - 450$	$[-100, 100]^{n}$	-450
f_{11} Shifted Rotated hyper-ellipsoid function	$\min f(x_i) = \sum_{i=1}^{N} \left(\sum_{j=1}^{i} z_j\right)^2 - 450$	$[-100, 100]^{n}$	-450
f_{12} Shifted Rotated Griewank function	$\min f(x_i) = \frac{1}{4000} \sum_{i=1}^{N} z_i^2 - \prod_{i=1}^{N} \cos\left(\frac{z_i}{\sqrt{i}}\right) + 1 - 180$	$[-600, 600]^{n}$	-180
f_{13} Shifted Rosenbrock function	$\min f(x_i) = \sum_{i=1}^{N-1} \left(100 \left(z_{i+1} - z_i^2 \right)^2 + \left(1 - z_i \right)^2 \right) + 390$	$[-30, 30]^n$	390
f_{14} Shifted Rastrigin function	$\min f(x_i) = \sum_{i=1}^{N} \left(z_i^2 - 10\cos(2\pi z_i) + 10 \right) - 330$	[-5.12, 5.12] ⁿ	-330

Table 1. 14 well-known benchmark optimization problems.

Problems 1-4, 10 and 11, which are Sphere function, Step function, Schwefel's problem 2.22, Rotated hyper-ellipsoid function, Shifted Sphere function, and Shifted Rotated hyper-ellipsoid function, are unimodal problems. Problems 5–9 and 12–14, which are Griewank function, Ackley's function, Rosenbrock function, Rastrigin function, Schwefel's problem 2.26, Shifted Rotated Griewank function, Shifted Rosenbrock function, and Shifted Rastrigin function, are difficult multimodal problems; i.e., there are several local optima in these problems and the number of local optima increases with the problem dimension (D) [24].

In order to verify the performance of the DANGHS algorithm, this paper compared the extensive experiment results of the DANGHS algorithm with other different HS algorithms. In the experiments, the parameters of the compared HS algorithms are shown in Table 2 [28].

Algorithm	m ¹	HMCR ²	PAR ³	BW ⁴	LP ⁵	p_m^{6}
HS	5	0.9	0.3	0.01	-	-
IHS	5	0.9	$PAR_{min} = 0.01$ $PAR_{max} = 0.99$	$BW_{max} = \left(x_{jU} - x_{jL}\right)/20$ $BW_{min} = 0.0001$	-	-
SGHS	5	$HMCR_m = 0.98$	$PAR_m = 0.9$	$BW_{max} = \left(x_{jU} - x_{jL}\right) / 10$ $BW_{min} = 0.0005$	100	-
NGHS	5	-	_	_	-	0.005
DANGHS	5	_	-	-	-	$P_{min} = 0.001$ $P_{max} = 0.010.$

Table 2. Parameters of compared harmony search (HS) algorithms.

¹ m: the harmony memory size; ² HMCR: the harmony memory considering rate; ³ PAR: the pitch adjusting rate; ⁴ BW: the bandwidth; ⁵ LP: the learning period; ⁶ p_m : the genetic mutation probability.

14 of 30

In all HS algorithms, the harmony memory size (m) is 5. For each problem, two different dimension sizes (D) are tested, and they are equal to 30 and 100. Therefore, the iteration number are equal to 60,000 and 150,000, respectively. Thirty independent experiments (n) are carried out for each problem. The experimental results obtained using the 16 proposed adjustment strategies in the DANGHS algorithms and those obtained using different HS algorithms are shown in Tables 3 and 4, respectively. In the two tables, SD represents the standard deviation.

In Table 3, several experimental results are given. First of all, the best results given by the same strategy for different dimension sizes are obtained for problems 1, 3, 6, 9 and 13. Among these problems, the decreasing strategy can find the best objective function value for problems 1, 3, 6, and 9. According to the experimental results, the exponential decreasing strategy with mr = 0.001 (Exponential_6) can find the best objective function value for problems 1 (1.8344 × 10⁻³¹; 1.2209 × 10⁻¹⁴), 3 (1.9511 × 10⁻¹⁸ 7.9778 × 10⁻⁹) and 6 (9.6308 × 10⁻¹⁴; 9.3030 × 10⁻⁹); the threshold linear prior decreasing strategy (Threshold_2) can find the best objective function value for problem 9 (3.8183 × 10⁻⁴; 1.2728 × 10⁻³). More specifically, the convex cosine strategy with k = 3 (Cosine_4), which is the periodic strategy, can find the best objective function value for problem 13 (3.9875 × 10²; 5.3644 × 10²).

On the other hand, the best results given by different strategies for different dimension sizes are obtained for problems 4, 5, 7, 8, 10, 11, 12, and 14. Among these problems, the increasing strategy can find the best objective function value for problem 7. According to the experimental results, the straight linear increasing strategy (Straight_1) can find the best objective function value for problem 7 with $D = 30 (1.0089 \times 10^1)$. However, the threshold linear posterior increasing strategy (Threshold_3) can find the best objective function value for problem 7 with D = 100 (6.1559 \times 10¹). Besides, the decreasing strategy can find the best objective function value for problems 4, 5, 10, 11, 12, and 14. According to the experimental results, the threshold linear posterior decreasing strategy (Threshold_4) can find the best objective function value for problems 4 (6.0249 \times 10¹), 5 (3.1209 \times 10⁻²) and 11 (-3.7419 \times 10²) with D = 30. However, the natural exponential decreasing strategy (Exponential_2) can find the best objective function value for problems 4 (8.6301 \times 10³), 5 (6.4754 \times 10⁻³), and 11 (1.1471 \times 10⁴) with D = 100. The natural exponential decreasing strategy (Exponential _2) can find the best objective function value for problem 10 with D = 30 (-4.5000×10^2). However, the threshold linear prior decreasing strategy (Threshold_2) can find the best objective function value for problem 10 with $D = 100 (-4.5000 \times 10^2)$. The straight linear decreasing strategy (Straight_2) can find the best objective function value for problem 12 with D = 30 (-1.7821×10^2). However, the exponential decreasing strategy with mr = 0.001 (Exponential_6) can find the best objective function value for problem 12 with $D = 100 (-1.6037 \times 10^2)$. The straight linear decreasing strategy (Straight_2) can find the best objective function value for problem 14 with D = 30 (-3.3000×10^2). However, the exponential decreasing strategy with mr = 0.01 (Exponential_4) can find the best objective function value for problem 14 with $D = 100 \ (-3.2997 \times 10^2).$

Particularly, for problem 8, the decreasing strategy can find the best objective function value when D = 30, however the increasing strategy can find the best objective function value when D = 100. In other words, the threshold linear prior decreasing strategy (Threshold_2) can find the best objective function value for problem 8 with D = 30 (0.0000). However, the exponential increasing strategy with mr = 0.01 (Exponential_3) can find the best objective function value for problem 8 with D = 100 (2.7729 × 10⁻²).

In Table 3, the best results are presented by the boldface type. For example, the Threshold_2 strategy had the best minimum objective function value for problems 1 with D = 30 (7.1381 × 10⁻³⁹). The Exponential_6 strategy had the best maximum objective function value (3.7601×10^{-30}) and had the minimum standard deviation value (7.0604×10^{-31}) for problems 1 with D = 30.

In Table 4, among all problems for D = 30, the DANGHS algorithm can find the best objective function value for problems 1–3, 6–10, and 14. The SGHS algorithm can find the best objective function value for problems 2, 4, and 11. The NGHS algorithm can find the best objective function value for

On the other hand, among all problems for D = 100, the DANGHS algorithm can find the best objective function value for problems 1–14. The NGHS algorithm can find the best objective function value for problem 2.

Figure 7 presents a typical solution history graph of five different algorithms along iterations for problems 1 to 8 with D = 30, and Figure 8 presents a typical solution history graph of five different algorithms along iterations for problems 9 to 14 with D = 30. Figure 9 presents a typical solution history graph of five different algorithms along iterations for problems 1 to 8 with D = 100, and Figure 10 presents a typical solution history graph of five different algorithms along iterations for problems 9 to 14 with D = 100, and Figure 9 to 14 with D = 100.

Finally, we will discuss and analyze the efficiency of the DANGHS algorithm. In Figures 7–10, we can easily find out that the DANGHS algorithm obviously had the better searching performance and convergence ability than other algorithms in most low-dimensional problems and in all high-dimensional problems. In other words, the DANGHS algorithm can use the less iterations to solve the problem and is more efficient than other HS algorithms. Besides, according to the experimental results, the DANGHS with Pseudocode 3 spent 603.5025 seconds to run 30 experiments; while the DANGHS with Pseudocode 4 spent 532.7705 seconds only to run 30 experiments. The DANGHS algorithm with Pseudocode 4 reduces 11.72% of the running time, as compared with Pseudocode 3. Therefore, the DANGHS algorithm with the proposed Pseudocode 4 is more efficient than with Pseudocode 3.

No.

 f_1

 f_2

Exponential_5

Exponential_6

Cosine_1

Cosine_2

Cosine_3

Cosine_4

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

	Dir	mension (D) = 30			Dimension (D) = 100					
Adjustment strategy	Min	Max	Mean	SD	Adjustment strategy	Min	Max	Mean	SD	
Straight_1	$1.0461 imes 10^{-17}$	$4.3759 imes 10^{-15}$	$6.7177 imes 10^{-16}$	$1.1026 imes 10^{-15}$	Straight_1	$7.4075 imes 10^{-6}$	$3.1563 imes10^{-4}$	$3.3196 imes 10^{-5}$	$5.3403 imes 10^{-5}$	
Straight_2	$3.1999 imes 10^{-23}$	$2.5783 imes 10^{-18}$	$3.6341 imes 10^{-19}$	$6.7121 imes 10^{-19}$	Straight_2	$1.0715 imes 10^{-7}$	$7.1045 imes10^{-6}$	$8.4864 imes 10^{-7}$	$1.2362 imes 10^{-6}$	
Threshold_1	$1.5431 imes 10^{-13}$	$7.3069 imes 10^{-11}$	$6.6315 imes 10^{-12}$	$1.3094 imes 10^{-11}$	Threshold_1	$1.0024 imes10^{-3}$	$9.1452 imes 10^{-3}$	$2.7025 imes 10^{-3}$	$1.6455 imes 10^{-3}$	
Threshold_2	$7.1381 imes 10^{-39}$	$2.0446 imes 10^{-26}$	$6.8264 imes 10^{-28}$	$3.6700 imes 10^{-27}$	Threshold_2	$3.9739 imes 10^{-16}$	$8.5814 imes 10^{-14}$	$1.7158 imes 10^{-14}$	$2.2275 imes 10^{-14}$	
Threshold_3	1.5233×10^{-32}	1.4639×10^{-22}	$4.9489 imes 10^{-24}$	2.6266×10^{-23}	Threshold_3	$5.5110 imes 10^{-15}$	4.3556×10^{-12}	$3.2639 imes 10^{-13}$	7.8921×10^{-13}	
Threshold_4	$3.3374 imes 10^{-18}$	$4.3038 imes 10^{-12}$	$1.4919 imes 10^{-13}$	$7.7155 imes 10^{-13}$	Threshold_4	$3.2962 imes 10^{-5}$	$1.8976 imes10^{-4}$	$8.5947 imes 10^{-5}$	$4.0524 imes10^{-5}$	
Exponential_1	$1.5745 imes 10^{-24}$	$1.0309 imes 10^{-18}$	$4.3948 imes 10^{-20}$	$1.8663 imes 10^{-19}$	Exponential_1	$2.6917 imes10^{-9}$	$4.3964 imes10^{-8}$	$1.3508 imes10^{-8}$	$9.5937 imes 10^{-9}$	
Exponential_2	$1.9177 imes 10^{-30}$	9.0711×10^{-23}	$4.0772 imes 10^{-24}$	1.6377×10^{-23}	Exponential_2	$3.3307 imes 10^{-11}$	$2.2886E \times 10^{-9}$	$4.9657 imes 10^{-10}$	$5.7327 imes 10^{-10}$	
Exponential_3	$1.4165 imes 10^{-30}$	$2.0068 imes 10^{-23}$	$9.8918 imes 10^{-25}$	$3.6255 imes 10^{-24}$	Exponential_3	$4.3579 imes 10^{-12}$	$9.8204 imes 10^{-11}$	$3.2054 imes 10^{-11}$	$2.5181 imes 10^{-11}$	
Exponential_4	$6.4644 imes 10^{-35}$	$4.5295 imes 10^{-25}$	$1.7018 imes 10^{-26}$	$8.1269 imes 10^{-26}$	Exponential_4	$9.8540 imes 10^{-14}$	$7.9844 imes 10^{-12}$	$1.7156 imes 10^{-12}$	$1.8932 imes 10^{-12}$	
Exponential_5	2.5044×10^{-34}	$1.9318 imes 10^{-25}$	$6.4846 imes 10^{-27}$	$3.4669 imes 10^{-26}$	Exponential_5	$1.0612 imes 10^{-14}$	$6.4803 imes 10^{-12}$	$3.7018 imes 10^{-13}$	$1.1689 imes 10^{-12}$	
Exponential_6	$2.3735 imes 10^{-38}$	$3.7601 imes 10^{-30}$	$1.8344 imes10^{-31}$	$7.0604 imes10^{-31}$	Exponential_6	$1.6615 imes 10^{-16}$	$8.0332 imes10^{-14}$	$1.2209 imes10^{-14}$	$1.9706 imes10^{-14}$	
Cosine_1	1.0929×10^{-25}	$2.6839 imes 10^{-19}$	$1.2194 imes 10^{-20}$	4.8268×10^{-20}	Cosine_1	$1.3660 imes 10^{-9}$	$8.8086 imes10^{-8}$	$1.7253 imes 10^{-8}$	$2.0154 imes10^{-8}$	
Cosine_2	$4.4254 imes 10^{-21}$	$3.5110 imes 10^{-16}$	$2.1719 imes 10^{-17}$	$7.1432 imes 10^{-17}$	Cosine_2	$5.6587 imes10^{-8}$	$2.9214 imes10^{-6}$	$5.8827 imes 10^{-7}$	$7.8914 imes10^{-7}$	
Cosine_3	$1.2834 imes 10^{-22}$	$1.3530 imes 10^{-17}$	$7.1008 imes 10^{-19}$	$2.4622 imes 10^{-18}$	Cosine_3	$1.9881 imes 10^{-9}$	$2.8788 imes10^{-7}$	$5.6503 imes10^{-8}$	$6.6569 imes 10^{-8}$	
Cosine_4	2.2000×10^{-22}	$6.3880 imes 10^{-16}$	3.4309×10^{-17}	1.1748×10^{-16}	Cosine_4	$1.7535 imes 10^{-8}$	2.7122×10^{-6}	2.0647×10^{-7}	$4.7558 imes 10^{-7}$	
Straight_1	0.0000	0.0000	0.0000	0.0000	Straight_1	0.0000	0.0000	0.0000	0.0000	
Straight_2	0.0000	0.0000	0.0000	0.0000	Straight_2	0.0000	0.0000	0.0000	0.0000	
Threshold_1	0.0000	0.0000	0.0000	0.0000	Threshold_1	0.0000	0.0000	0.0000	0.0000	
Threshold_2	0.0000	0.0000	0.0000	0.0000	Threshold_2	0.0000	0.0000	0.0000	0.0000	
Threshold_3	0.0000	0.0000	0.0000	0.0000	Threshold_3	0.0000	0.0000	0.0000	0.0000	
Threshold_4	0.0000	0.0000	0.0000	0.0000	Threshold_4	0.0000	0.0000	0.0000	0.0000	
Exponential_1	0.0000	0.0000	0.0000	0.0000	Exponential_1	0.0000	0.0000	0.0000	0.0000	
Exponential_2	0.0000	0.0000	0.0000	0.0000	Exponential_2	0.0000	0.0000	0.0000	0.0000	
Exponential_3	0.0000	0.0000	0.0000	0.0000	Exponential_3	0.0000	0.0000	0.0000	0.0000	
Exponential_4	0.0000	0.0000	0.0000	0.0000	Exponential_4	0.0000	0.0000	0.0000	0.0000	

Exponential_5

Exponential_6

Cosine_1

Cosine_2

Cosine_3

Cosine_4

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Table 3. Experimental results of 16 strategies in the DANGHS algorithms.

Table 3. Cont.

NT		Di	mension (D) = 30			Dimension (D) = 100						
N0.	Adjustment strategy	Min	Max	Mean	SD	Adjustment strategy	Min	Max	Mean	SD		
f_3	Straight_1	$7.6101 imes 10^{-11}$	$2.1913 imes 10^{-8}$	$1.4051 imes 10^{-9}$	$3.9001 imes 10^{-9}$	Straight_1	$8.8188 imes10^{-4}$	$2.8473 imes 10^{-3}$	$1.4467 imes 10^{-3}$	$4.5882 imes 10^{-4}$		
	Straight_2	$6.3744 imes 10^{-14}$	$8.2891 imes 10^{-10}$	$5.6932 imes 10^{-11}$	$1.5070 imes 10^{-10}$	Straight_2	$1.0465 imes10^{-4}$	$3.6867 imes 10^{-4}$	2.0451×10^{-4}	7.2735×10^{-5}		
	Threshold_1	$4.6938 imes10^{-8}$	$1.3461 imes10^{-6}$	$2.1964 imes 10^{-7}$	$2.5585 imes 10^{-7}$	Threshold_1	1.4060×10^{-2}	$3.5936 imes 10^{-2}$	1.9850×10^{-2}	$4.3707 imes 10^{-3}$		
	Threshold_2	$5.6623 imes 10^{-23}$	$8.2711 imes 10^{-17}$	$2.9440 imes 10^{-18}$	$1.4815 imes 10^{-17}$	Threshold_2	$2.5513 imes10^{-9}$	$4.2922 imes 10^{-8}$	$1.0152 imes10^{-8}$	$8.0648 imes10^{-9}$		
	Threshold_3	$4.7815 imes 10^{-20}$	$5.0811 imes 10^{-11}$	$1.7085 imes 10^{-12}$	$9.1183 imes 10^{-12}$	Threshold_3	$7.0365 imes 10^{-9}$	$1.3972 imes 10^{-7}$	$4.1610 imes10^{-8}$	$3.3889 imes 10^{-8}$		
	Threshold_4	$1.7455 imes 10^{-10}$	1.3321×10^{-7}	$1.7945 imes 10^{-8}$	$3.2820 imes 10^{-8}$	Threshold_4	$1.3864 imes10^{-3}$	$6.5341 imes 10^{-3}$	$3.0170 imes 10^{-3}$	$1.0805 imes 10^{-3}$		
	Exponential_1	$9.8893 imes 10^{-15}$	$8.8305 imes 10^{-11}$	6.3308×10^{-12}	$1.8435 imes 10^{-11}$	Exponential_1	$8.0177 imes 10^{-6}$	7.4683×10^{-5}	2.0822×10^{-5}	1.1771×10^{-5}		
	Exponential_2	1.7782×10^{-17}	$6.9813 imes 10^{-12}$	$3.7142 imes 10^{-13}$	$1.4030 imes 10^{-12}$	Exponential_2	$7.3854 imes10^{-7}$	$6.7228 imes 10^{-6}$	3.3092×10^{-6}	1.5847×10^{-6}		
	Exponential_3	$7.5286 imes 10^{-18}$	$4.4195 imes 10^{-13}$	$2.0483 imes 10^{-14}$	$7.9637 imes 10^{-14}$	Exponential_3	$2.6791 imes 10^{-7}$	$1.9304 imes 10^{-6}$	6.8633×10^{-7}	3.3018×10^{-7}		
	Exponential_4	2.5827×10^{-20}	1.1413×10^{-14}	4.3303×10^{-16}	2.0473×10^{-15}	Exponential_4	$3.1645 imes 10^{-8}$	1.2139×10^{-6}	2.0931×10^{-7}	2.3506×10^{-7}		
	Exponential_5	1.5957×10^{-20}	3.0055×10^{-15}	1.1154×10^{-16}	5.3828×10^{-16}	Exponential_5	9.3641×10^{-9}	1.3374×10^{-7}	3.2879×10^{-8}	$2.5806 imes 10^{-8}$		
	Exponential_6	$5.1270 imes 10^{-23}$	$2.5548 imes 10^{-17}$	$1.9511 imes 10^{-18}$	$5.5869 imes 10^{-18}$	Exponential_6	$1.7326 imes 10^{-9}$	$2.2346 imes 10^{-8}$	$7.9778 imes 10^{-9}$	$5.9706 imes 10^{-9}$		
	Cosine_1	8.2615×10^{-15}	$4.1648 imes 10^{-10}$	1.9989×10^{-11}	7.5562×10^{-11}	Cosine_1	7.5681×10^{-6}	9.0058×10^{-5}	2.7007×10^{-5}	1.7485×10^{-5}		
	Cosine_2	2.2087×10^{-12}	1.3549×10^{-9}	1.5788×10^{-10}	2.9202×10^{-10}	Cosine_2	5.0087×10^{-5}	$2.4876 imes 10^{-4}$	1.1495×10^{-4}	4.8700×10^{-5}		
	Cosine_3	8.7106×10^{-14}	4.3784×10^{-11}	6.6558×10^{-12}	1.0409×10^{-11}	Cosine_3	1.1137×10^{-5}	1.2211×10^{-4}	4.6150×10^{-5}	2.7857×10^{-5}		
	Cosine_4	1.7511×10^{-13}	4.2184×10^{-10}	3.9035×10^{-11}	8.5768×10^{-11}	Cosine_4	1.6561×10^{-5}	4.1825×10^{-4}	8.5160×10^{-5}	7.5082×10^{-5}		
f_4	Straight_1	$3.8707 imes 10^1$	2.0746×10^2	$9.2469 imes 10^1$	$4.2467 imes 10^1$	Straight_1	7.4364×10^3	1.5798×10^4	$1.2838 imes 10^4$	$2.0788 imes 10^3$		
	Straight_2	$2.9107 imes 10^1$	2.9786×10^{2}	$7.7546 imes10^1$	$5.2474 imes10^1$	Straight_2	$6.1981 imes 10^3$	$1.2256 imes10^4$	$9.9557 imes 10^3$	$1.5833 imes10^3$		
	Threshold_1	2.5223×10^1	2.4305×10^{2}	$6.8420 imes 10^1$	$4.2239 imes 10^1$	Threshold_1	1.2769×10^{4}	2.1277×10^{4}	1.6990×10^{4}	2.1766×10^{3}		
	Threshold_2	8.2738×10^{1}	4.8897×10^{2}	2.4674×10^{2}	1.0081×10^2	Threshold_2	7.0477×10^{3}	1.6115×10^{4}	1.0330×10^{4}	1.9585×10^{3}		
	Threshold_3	1.6962×10^{2}	7.4402×10^{2}	3.4890×10^{2}	1.5861×10^{2}	Threshold_3	7.9459×10^{3}	2.0032×10^{4}	1.3965×10^{4}	2.6464×10^{3}		
	Threshold_4	$1.5038 imes10^1$	$1.5980 imes 10^{2}$	$6.0249 imes 10^{1}$	$3.5686 imes 10^{1}$	Threshold_4	8.9389×10^{3}	1.9386×10^{4}	1.3070×10^{4}	2.9327×10^{3}		
	Exponential_1	5.2571×10^{1}	3.3140×10^{2}	1.7427×10^{2}	7.7406×10^{1}	Exponential_1	7.8519×10^{3}	1.5283×10^{4}	1.1462×10^{4}	2.1096×10^{3}		
	Exponential_2	3.7816×10^{1}	2.9649×10^2	1.4459×10^2	6.2181×10^{1}	Exponential_2	$4.6763 imes 10^{3}$	1.3135×10^4	$8.6301 imes 10^{3}$	1.9698×10^{3}		
	Exponential_3	9.1368×10^{1}	7.9952×10^{2}	3.4719×10^{2}	1.6819×10^{2}	Exponential_3	8.0589×10^{3}	1.7800×10^{4}	1.1645×10^{4}	2.4428×10^{3}		
	Exponential_4	5.2605×10^{1}	6.6496×10^2	2.5585×10^{2}	1.3827×10^{2}	Exponential_4	6.8390×10^{3}	1.4895×10^{4}	9.8522×10^{3}	1.6440×10^{3}		
	Exponential_5	1.9773×10^2	1.0629×10^{3}	5.5626×10^2	2.1853×10^2	Exponential_5	7.2667×10^{3}	1.7819×10^{4}	1.2364×10^{4}	2.4484×10^{3}		
	Exponential_6	1.1519×10^{2}	1.1733×10^{3}	5.4639×10^{2}	2.6598×10^{2}	Exponential_6	7.0572×10^{3}	1.4985×10^{4}	1.0313×10^{4}	1.8035×10^{3}		
	Cosine_1	2.2677×10^{1}	1.6215×10^{2}	8.4233×10^{1}	3.8116×10^{1}	Cosine_1	8.5285×10^{3}	1.6216×10^{4}	1.1657×10^{4}	2.0568×10^{3}		
	Cosine_2	3.5648×10^{1}	2.5791×10^{2}	1.0386×10^{2}	4.7531×10^{1}	Cosine_2	7.3675×10^{3}	1.6256×10^4	1.1952×10^4	2.1374×10^{3}		
	Cosine_3	3.9845×10^{1}	2.5401×10^{2}	1.0903×10^{2}	5.1737×10^{1}	Cosine_3	8.7901×10^{3}	1.5058×10^4	1.2176×10^4	1.5990×10^{3}		
	Cosine_4	$4.0827 imes 10^1$	1.9696×10^{2}	9.1923×10^{1}	$4.1878 imes10^1$	Cosine_4	8.2399×10^{3}	1.4967×10^{4}	1.1576×10^{4}	1.6474×10^{3}		

Table 3. Cont.

		Di	mension (D) = 30				Dimension (D) = 100					
No.	Adjustment strategy	Min	Max	Mean	SD	Adjustment strategy	Min	Max	Mean	SD		
f_5	Straight_1	1.2321×10^{-2}	$2.7805 imes 10^{-1}$	1.0051×10^{-1}	$6.7510 imes 10^{-2}$	Straight_1	4.1360×10^{-6}	$3.5617 imes 10^{-1}$	1.0453×10^{-1}	9.3265×10^{-2}		
	Straight_2	0.0000	$2.0030 imes 10^{-1}$	$4.1983 imes 10^{-2}$	$4.2581 imes 10^{-2}$	Straight_2	$5.1016 imes10^{-8}$	$6.3390 imes 10^{-2}$	1.1625×10^{-2}	$1.5055 imes 10^{-2}$		
	Threshold_1	$1.7855 imes 10^{-8}$	$2.6377 imes 10^{-1}$	$9.8336 imes 10^{-2}$	$6.8880 imes 10^{-2}$	Threshold_1	$8.8364 imes10^{-4}$	$2.8092 imes 10^{-1}$	$7.3770 imes 10^{-2}$	$6.8845 imes 10^{-2}$		
	Threshold_2	0.0000	$1.8867 imes 10^{-1}$	$4.0923 imes 10^{-2}$	$4.6115 imes10^{-2}$	Threshold_2	$1.4433 imes 10^{-15}$	$9.4723 imes 10^{-2}$	1.7078×10^{-2}	$2.3582 imes10^{-2}$		
	Threshold_3	$3.6320 imes 10^{-6}$	$2.2197 imes 10^{-1}$	$1.1814 imes10^{-1}$	$6.0107 imes 10^{-2}$	Threshold_3	$1.3545 imes 10^{-14}$	$3.6928 imes 10^{-1}$	$1.0457 imes 10^{-1}$	$9.8452 imes 10^{-2}$		
	Threshold_4	$6.6613 imes 10^{-16}$	$8.0817 imes10^{-2}$	$3.1209 imes 10^{-2}$	$2.3482 imes 10^{-2}$	Threshold_4	$1.7774 imes 10^{-5}$	$3.6827 imes10^{-2}$	$9.0876 imes 10^{-3}$	$9.4618 imes10^{-3}$		
	Exponential_1	0.0000	$2.4379 imes 10^{-1}$	$7.9307 imes 10^{-2}$	5.8015×10^{-2}	Exponential_1	$2.4888 imes 10^{-9}$	$4.4986 imes 10^{-1}$	$1.2518 imes 10^{-1}$	$9.4176 imes 10^{-2}$		
	Exponential_2	0.0000	$1.7609 imes 10^{-1}$	4.5556×10^{-2}	4.1760×10^{-2}	Exponential_2	$3.5352 imes 10^{-11}$	$4.8906 imes 10^{-2}$	$6.4754 imes 10^{-3}$	$9.8313 imes10^{-3}$		
	Exponential_3	$4.2099 imes 10^{-10}$	$3.2955 imes 10^{-1}$	$1.1643 imes 10^{-1}$	8.0421×10^{-2}	Exponential_3	$3.6280 imes 10^{-12}$	$3.2945 imes 10^{-1}$	$1.0033 imes 10^{-1}$	$9.5541 imes 10^{-2}$		
	Exponential_4	0.0000	2.0253×10^{-1}	4.8723×10^{-2}	4.6463×10^{-2}	Exponential_4	$8.5154 imes 10^{-14}$	$1.6488 imes 10^{-1}$	1.2543×10^{-2}	3.0277×10^{-2}		
	Exponential_5	$8.8818 imes 10^{-16}$	$2.5708 imes 10^{-1}$	8.4472×10^{-2}	6.4674×10^{-2}	Exponential_5	$1.2990 imes 10^{-14}$	$4.9613 imes 10^{-1}$	1.2331×10^{-1}	$1.0636 imes 10^{-1}$		
	Exponential_6	0.0000	$1.6595 imes 10^{-1}$	4.9137×10^{-2}	3.9865×10^{-2}	Exponential_6	$2.2204 imes 10^{-16}$	8.3124×10^{-2}	1.2513×10^{-2}	1.8702×10^{-2}		
	Cosine_1	0.0000	$1.4149 imes 10^{-1}$	4.2637×10^{-2}	4.3674×10^{-2}	Cosine_1	$8.3748 imes 10^{-10}$	5.4050×10^{-2}	1.0821×10^{-2}	1.5102×10^{-2}		
	Cosine_2	1.6653×10^{-15}	$3.3647 imes 10^{-1}$	$1.1985 imes 10^{-1}$	8.0014×10^{-2}	Cosine_2	$6.3283 imes 10^{-8}$	$4.0323 imes 10^{-1}$	9.7344×10^{-2}	9.0742×10^{-2}		
	Cosine_3	0.0000	1.3191×10^{-1}	5.2162×10^{-2}	3.7768×10^{-2}	Cosine_3	$2.6663 imes 10^{-9}$	$1.7983 imes 10^{-1}$	3.1360×10^{-2}	$4.5413 imes 10^{-2}$		
	Cosine_4	1.1102×10^{-16}	2.7598×10^{-1}	9.9773×10^{-2}	6.7164×10^{-2}	Cosine_4	1.6227×10^{-8}	2.4487×10^{-1}	5.5685×10^{-2}	6.5963×10^{-2}		
f_6	Straight_1	4.4632×10^{-9}	2.1372×10^{-7}	$3.9100 imes 10^{-8}$	4.0940×10^{-8}	Straight_1	$9.1269 imes10^{-4}$	$3.1804 imes 10^{-3}$	1.6518×10^{-3}	$5.3523 imes 10^{-4}$		
	Straight_2	3.7761×10^{-12}	$8.6966 imes 10^{-10}$	$1.0236 imes 10^{-10}$	$2.0891 imes 10^{-10}$	Straight_2	$4.2112 imes 10^{-5}$	$3.8837 imes10^{-4}$	$1.1886 imes10^{-4}$	$7.9706 imes 10^{-5}$		
	Threshold_1	$9.1029 imes 10^{-7}$	$8.0166 imes 10^{-6}$	2.4129×10^{-6}	1.5101×10^{-6}	Threshold_1	1.2113×10^{-2}	$2.5585 imes 10^{-2}$	1.9902×10^{-2}	$3.4669 imes 10^{-3}$		
	Threshold_2	$7.4163 imes 10^{-14}$	6.3549×10^{-13}	1.6938×10^{-13}	1.0610×10^{-13}	Threshold_2	1.7921×10^{-9}	$6.5055 imes 10^{-8}$	1.2631×10^{-8}	$1.2902 imes 10^{-8}$		
	Threshold_3	1.0014×10^{-12}	$5.2655 imes 10^{-10}$	$6.8025 imes 10^{-11}$	1.2657×10^{-10}	Threshold_3	2.5582×10^{-8}	1.5023×10^{-6}	2.2886×10^{-7}	$2.7137 imes 10^{-7}$		
	Threshold_4	1.4622×10^{-9}	$2.7494 imes 10^{-7}$	$3.1953 imes 10^{-8}$	$4.9739 imes 10^{-8}$	Threshold_4	$5.3312 imes 10^{-4}$	$3.8584 imes 10^{-3}$	1.5894×10^{-3}	$7.9124 imes 10^{-4}$		
	Exponential_1	$1.8744 imes 10^{-11}$	4.9544×10^{-9}	$4.4463 imes 10^{-10}$	8.7649×10^{-10}	Exponential_1	1.7624×10^{-5}	9.1723×10^{-5}	4.3472×10^{-5}	$1.7983 imes 10^{-5}$		
	Exponential_2	$1.1324 imes 10^{-13}$	$4.9805 imes 10^{-12}$	$9.3889 imes 10^{-13}$	1.1256×10^{-12}	Exponential_2	$6.4716 imes 10^{-7}$	$6.8428 imes 10^{-6}$	$2.1846 imes 10^{-6}$	$1.3670 imes 10^{-6}$		
	Exponential_3	4.9338×10^{-13}	5.5745×10^{-11}	6.6129×10^{-12}	1.1049×10^{-11}	Exponential_3	6.0042×10^{-7}	6.0591×10^{-6}	2.4126×10^{-6}	1.5002×10^{-6}		
	Exponential_4	$7.4163 imes 10^{-14}$	1.1862×10^{-12}	1.7826×10^{-13}	1.9564×10^{-13}	Exponential_4	3.8729×10^{-8}	3.1068×10^{-7}	1.2811×10^{-7}	6.7689×10^{-8}		
	Exponential_5	1.5588×10^{-13}	4.0887×10^{-12}	8.2758×10^{-13}	8.0931×10^{-13}	Exponential_5	$3.9803 imes 10^{-8}$	5.7158×10^{-7}	1.4832×10^{-7}	$1.2402 imes 10^{-7}$		
	Exponential_6	$4.9294 imes 10^{-14}$	$2.2338 imes 10^{-13}$	$9.6308 imes 10^{-14}$	$3.4392 imes 10^{-14}$	Exponential_6	$1.0897 imes 10^{-9}$	$2.9882 imes 10^{-8}$	$9.3030 imes 10^{-9}$	$7.9441 imes 10^{-9}$		
	Cosine_1	1.1506×10^{-12}	9.2267×10^{-11}	2.2030×10^{-11}	2.6803×10^{-11}	Cosine_1	2.3571×10^{-6}	$1.0218 imes10^{-4}$	$1.8274 imes 10^{-5}$	1.7509×10^{-5}		
	Cosine_2	1.7620×10^{-10}	$5.8307 imes 10^{-8}$	6.5754×10^{-9}	1.2324×10^{-8}	Cosine_2	6.1209×10^{-5}	$5.0676 imes 10^{-4}$	1.8226×10^{-4}	1.1078×10^{-4}		
	Cosine_3	5.0302×10^{-12}	7.4329×10^{-10}	1.1653×10^{-10}	1.6314×10^{-10}	Cosine_3	8.4419×10^{-6}	8.5649×10^{-5}	2.7943×10^{-5}	1.8587×10^{-5}		
	Cosine_4	$7.7018 imes 10^{-12}$	5.7757×10^{-9}	$5.7647 imes 10^{-10}$	1.2234×10^{-9}	Cosine_4	2.9068×10^{-5}	$1.9156 imes10^{-4}$	$6.7917 imes 10^{-5}$	4.2305×10^{-5}		

Table 3. Cont.

Dimension (D) = 30Dimension (D) = 100										
NO.	Adjustment strategy	Min	Max	Mean	SD	Adjustment strategy	Min	Max	Mean	SD
f_7	Straight_1	$9.3515 imes 10^{-3}$	$2.2089 imes10^1$	$1.0089 imes10^1$	8.7452	Straight_1	1.1325	5.6386×10^{2}	1.0620×10^{2}	1.2570×10^{2}
	Straight_2	8.6741×10^{-3}	5.1406×10^{2}	$4.4419 imes 10^1$	$9.3454 imes10^1$	Straight_2	1.0018×10^2	6.9565×10^{2}	2.6307×10^{2}	1.3802×10^{2}
	Threshold_1	$7.9026 imes 10^{-2}$	$4.7147 imes 10^2$	$2.5678 imes 10^1$	$8.3161 imes 10^1$	Threshold_1	$3.4344 imes 10^1$	2.3308×10^3	3.2695×10^{2}	$5.9498 imes 10^2$
	Threshold_2	$1.4559 imes 10^{-3}$	$6.1627 imes 10^2$	$8.4192 imes10^1$	1.6666×10^{2}	Threshold_2	$1.1503 imes 10^2$	$5.1947 imes10^2$	2.3270×10^2	$9.2809 imes10^1$
	Threshold_3	$4.4533 imes 10^{-2}$	3.9917×10^{2}	$3.9657 imes 10^1$	$9.6881 imes 10^1$	Threshold_3	$5.6804 imes 10^{-2}$	1.1562×10^{3}	$6.1559 imes10^1$	2.0554×10^2
	Threshold_4	$1.5343 imes10^{-3}$	1.6611×10^{2}	3.2721×10^1	$4.3985 imes10^1$	Threshold_4	1.8240×10^2	7.1746×10^2	2.8865×10^2	1.1583×10^{2}
	Exponential_1	$8.0795 imes10^{-4}$	$2.2094 imes 10^1$	$1.2282 imes 10^1$	8.8145	Exponential_1	$2.3784 imes 10^{-1}$	1.2901×10^{3}	1.0700×10^{2}	2.5169×10^{2}
	Exponential_2	$1.2988 imes 10^{-2}$	2.2802×10^{2}	$4.6231 imes 10^1$	$5.4244 imes 10^1$	Exponential_2	1.1174×10^2	$6.4584 imes 10^2$	2.2362×10^{2}	$9.2963 imes 10^1$
	Exponential_3	$5.6146 imes10^{-3}$	9.7058×10^{2}	$5.8068 imes 10^1$	1.8542×10^2	Exponential_3	4.0212×10^{-2}	1.0768×10^3	1.0022×10^2	2.1852×10^{2}
	Exponential_4	$5.5288 imes10^{-3}$	$9.3064 imes10^1$	$2.6240 imes 10^1$	$3.2270 imes 10^1$	Exponential_4	$7.6558 imes 10^1$	$2.8626 imes 10^2$	2.0961×10^{2}	$5.1587 imes10^1$
	Exponential_5	$2.7747 imes 10^{-3}$	1.6422×10^3	1.3893×10^{2}	3.7163×10^{2}	Exponential_5	$1.2275 imes10^{-3}$	1.5623×10^{3}	$9.0305 imes10^1$	2.8689×10^{2}
	Exponential_6	$1.2831 imes10^{-5}$	4.9205×10^{2}	$4.0422 imes 10^1$	$9.0413 imes10^1$	Exponential_6	$5.8594 imes 10^1$	6.3056×10^{2}	2.1990×10^{2}	$9.4453 imes10^1$
	Cosine_1	$1.8015 imes10^{-3}$	1.3748×10^{2}	$2.9047 imes10^1$	$3.8603 imes 10^1$	Cosine_1	1.0997×10^{2}	1.2606×10^{3}	2.6362×10^{2}	2.0716×10^{2}
	Cosine_2	$4.4398 imes 10^{-3}$	5.3878×10^{2}	$3.6644 imes 10^1$	1.0520×10^{2}	Cosine_2	$8.8583 imes 10^{-1}$	1.6674×10^3	1.5580×10^{2}	3.2284×10^{2}
	Cosine_3	$1.1943 imes 10^{-1}$	3.6476×10^{2}	$3.5174 imes10^1$	$6.8477 imes10^1$	Cosine_3	1.4076×10^{2}	1.7107×10^3	3.5751×10^{2}	3.8108×10^{2}
	Cosine_4	8.0777×10^{-3}	$8.0590 imes 10^1$	$1.4814 imes 10^1$	1.8135×10^1	Cosine_4	1.0177	1.7477×10^{3}	1.9765×10^{2}	3.2461×10^{2}
f_8	Straight_1	3.1974×10^{-14}	3.3089×10^{-7}	1.1716×10^{-8}	$5.9285 imes 10^{-8}$	Straight_1	2.0388×10^{-3}	3.3216	$6.6242 imes 10^{-1}$	$8.8988 imes 10^{-1}$
	Straight_2	0.0000	$3.5527 imes 10^{-15}$	$5.9212 imes 10^{-16}$	$1.1543 imes 10^{-15}$	Straight_2	$1.9115 imes10^{-7}$	2.9849	$3.9804 imes 10^{-1}$	$7.9594 imes 10^{-1}$
	Threshold_1	$3.6512 imes 10^{-10}$	$2.1702 imes 10^{-7}$	$4.1154 imes10^{-8}$	$6.3766 imes 10^{-8}$	Threshold_1	2.2994	8.4160	5.4959	1.4385
	Threshold_2	0.0000	0.0000	0.0000	0.0000	Threshold_2	$1.4211 imes 10^{-14}$	1.9899	$1.9909 imes 10^{-1}$	$4.7366 imes 10^{-1}$
	Threshold_3	0.0000	$9.9496 imes 10^{-1}$	$6.6407 imes 10^{-2}$	$2.4817 imes10^{-1}$	Threshold_3	$3.2097 imes 10^{-10}$	1.9918	$4.5307 imes 10^{-1}$	$6.0607 imes 10^{-1}$
	Threshold_4	0.0000	$8.8285 imes 10^{-13}$	$1.0646 imes 10^{-13}$	$2.0045 imes 10^{-13}$	Threshold_4	$9.9507 imes 10^{-1}$	7.9637	3.2612	1.7811
	Exponential_1	5.3291×10^{-15}	$7.1937 imes 10^{-8}$	9.0557×10^{-9}	$2.0970 imes 10^{-8}$	Exponential_1	6.3110×10^{-6}	$9.9714 imes 10^{-1}$	$1.4900 imes 10^{-1}$	$3.3483 imes 10^{-1}$
	Exponential_2	0.0000	1.7764×10^{-15}	1.7764×10^{-16}	5.3291×10^{-16}	Exponential_2	$1.1186 imes 10^{-10}$	$9.9496 imes 10^{-1}$	9.9549×10^{-2}	$2.9847 imes 10^{-1}$
	Exponential_3	0.0000	$6.4209 imes 10^{-6}$	$3.3419 imes 10^{-7}$	1.2242×10^{-6}	Exponential_3	$3.5170 imes 10^{-8}$	$5.9362 imes10^{-1}$	$2.7729 imes 10^{-2}$	$1.0943 imes10^{-1}$
	Exponential_4	0.0000	1.9899	9.9496×10^{-2}	$3.9382 imes 10^{-1}$	Exponential_4	1.3145×10^{-13}	$9.9496 imes 10^{-1}$	9.9497×10^{-2}	2.9849×10^{-1}
	Exponential_5	0.0000	$9.9496 imes 10^{-1}$	9.9534×10^{-2}	$2.9848 imes 10^{-1}$	Exponential_5	1.9582×10^{-10}	1.0029	1.3296×10^{-1}	3.3892×10^{-1}
	Exponential_6	0.0000	$2.6645 imes 10^{-14}$	1.0066×10^{-15}	$4.7815 imes 10^{-15}$	Exponential_6	$1.0658 imes 10^{-14}$	1.9899	6.6332×10^{-2}	3.5720×10^{-1}
	Cosine_1	0.0000	$4.7731 imes 10^{-10}$	1.5911×10^{-11}	$8.5680 imes 10^{-11}$	Cosine_1	$4.0101 imes 10^{-7}$	2.9978	$6.8374 imes 10^{-1}$	$8.4558 imes 10^{-1}$
	Cosine_2	0.0000	8.7041×10^{-14}	1.0836×10^{-14}	1.6641×10^{-14}	Cosine_2	7.9506×10^{-7}	1.9900	$9.2880 imes 10^{-1}$	$7.2337 imes 10^{-1}$
	Cosine_3	0.0000	$4.4409 imes 10^{-13}$	$2.6053 imes 10^{-14}$	$8.0975 imes 10^{-14}$	Cosine_3	$9.6632 imes 10^{-6}$	2.0318	$6.9709 imes 10^{-1}$	$6.1734 imes 10^{-1}$
	Cosine_4	0.0000	7.4181×10^{-9}	$3.8545 imes 10^{-10}$	1.4870×10^{-9}	Cosine_4	$3.2724 imes 10^{-5}$	2.9858	$7.9728 imes 10^{-1}$	$8.2825 imes 10^{-1}$

Table 3. Cont.

		Dir	mension (D) = 30				Din	nension (D) = 100		
No.	Adjustment strategy	Min	Max	Mean	SD	Adjustment strategy	Min	Max	Mean	SD
f_9	Straight_1	$3.8183 imes10^{-4}$	$3.8184 imes10^{-4}$	$3.8184 imes10^{-4}$	$2.3807 imes 10^{-9}$	Straight_1	8.5055×10^{-3}	2.7732×10^1	1.5810	5.5711
	Straight_2	$3.8183 imes10^{-4}$	$3.8183 imes10^{-4}$	$3.8183 imes10^{-4}$	$1.5953 imes 10^{-13}$	Straight_2	1.2731×10^{-3}	$1.3293 imes 10^{-3}$	1.2773×10^{-3}	$1.0150 imes10^{-5}$
	Threshold_1	$3.8183 imes10^{-4}$	$3.8229 imes10^{-4}$	$3.8190 imes10^{-4}$	$9.3441 imes10^{-8}$	Threshold_1	$6.0293 imes 10^{-1}$	1.3343×10^{2}	$1.6668 imes 10^1$	3.6662×10^{1}
	Threshold_2	$3.8183 imes10^{-4}$	$3.8183 imes10^{-4}$	$3.8183 imes10^{-4}$	$1.3763 imes10^{-13}$	Threshold_2	$1.2728 imes10^{-3}$	$1.2728 imes10^{-3}$	$1.2728 imes10^{-3}$	$1.4537 imes10^{-9}$
	Threshold_3	$3.8183 imes10^{-4}$	$4.0474 imes10^{-4}$	$3.8314 imes10^{-4}$	$4.2676 imes 10^{-6}$	Threshold_3	$1.2728 imes10^{-3}$	1.1844×10^{2}	4.6076	2.1276×10^{1}
	Threshold_4	$3.8183 imes10^{-4}$	$3.8183 imes10^{-4}$	$3.8183 imes10^{-4}$	$2.0629 imes 10^{-12}$	Threshold_4	$1.3933 imes10^{-3}$	1.1844×10^2	7.9095	$2.9541 imes 10^1$
	Exponential_1	$3.8183 imes10^{-4}$	$1.5644 imes10^{-4}$	$4.2241 imes 10^{-4}$	$2.1212 imes 10^{-4}$	Exponential_1	$1.2781 imes 10^{-3}$	$1.7045 imes 10^{-2}$	2.7552×10^{-3}	$3.2908 imes 10^{-3}$
	Exponential_2	$3.8183 imes10^{-4}$	$3.8183 imes10^{-4}$	$3.8183 imes10^{-4}$	$1.4555 imes 10^{-13}$	Exponential_2	$1.2728 imes10^{-3}$	$1.2728 imes 10^{-3}$	1.2728×10^{-3}	$4.9514 imes10^{-9}$
	Exponential_3	$3.8183 imes10^{-4}$	$3.9497 imes 10^{-4}$	$3.8261 imes 10^{-4}$	2.8259×10^{-6}	Exponential_3	$1.2728 imes10^{-3}$	$4.6522 imes 10^{-3}$	$1.4855 imes 10^{-3}$	$6.7891 imes 10^{-4}$
	Exponential_4	$3.8183 imes10^{-4}$	$3.8183 imes10^{-4}$	$3.8183 imes10^{-4}$	$1.6171 imes 10^{-13}$	Exponential_4	$1.2728 imes10^{-3}$	$1.3827 imes10^{-3}$	1.2764×10^{-3}	$1.9734 imes10^{-5}$
	Exponential_5	$3.8183 imes10^{-4}$	$4.2990 imes 10^{-4}$	$3.8366 imes 10^{-4}$	$8.6277 imes 10^{-6}$	Exponential_5	$1.2728 imes10^{-3}$	1.1844×10^2	6.9547	2.6270×10^{1}
	Exponential_6	$3.8183 imes10^{-4}$	1.1844×10^{2}	3.9483	$2.1260 imes 10^{1}$	Exponential_6	$1.2728 imes10^{-3}$	$1.2730 imes 10^{-3}$	$1.2728 imes10^{-3}$	$4.1256 imes 10^{-8}$
	Cosine_1	$3.8183 imes10^{-4}$	$3.8231 imes 10^{-4}$	$3.8184 imes10^{-4}$	$8.6835 imes 10^{-8}$	Cosine_1	$1.2728 imes 10^{-3}$	1.1844×10^2	4.1934	2.1251×10^{1}
	Cosine_2	$3.8183 imes10^{-4}$	$3.8183 imes10^{-4}$	$3.8183 imes10^{-4}$	$5.5438 imes 10^{-13}$	Cosine_2	$1.2765 imes 10^{-3}$	$1.4798 imes10^{-3}$	1.3277×10^{-3}	$5.8337 imes 10^{-5}$
	Cosine_3	$3.8183 imes10^{-4}$	$3.8183 imes10^{-4}$	$3.8183 imes10^{-4}$	$8.8412 imes 10^{-13}$	Cosine_3	$1.2731 imes 10^{-3}$	$1.5879 imes 10^{-3}$	1.3274×10^{-3}	$8.8845 imes 10^{-5}$
	Cosine_4	$3.8183 imes 10^{-4}$	$3.8183 imes 10^{-4}$	$3.8183 imes 10^{-4}$	3.6890×10^{-13}	Cosine_4	1.2732×10^{-3}	4.8779×10^{-2}	3.7520×10^{-3}	8.8272×10^{-3}
f_{10}	Straight_1	$-4.5000 imes10^2$	$-4.5000 imes 10^2$	$-4.5000 imes10^2$	1.0008×10^{-13}	Straight_1	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	1.1952×10^{-5}
- 10	Straight_2	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$7.3385 imes 10^{-14}$	Straight_2	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$1.4478 imes10^{-6}$
	Threshold_1	$-4.5000 imes10^2$	-4.4999×10^{2}	-4.4999×10^{2}	8.3459×10^{-12}	Threshold_1	$-4.5000 imes10^2$	-4.4999×10^{2}	-4.4999×10^{2}	1.7050×10^{-3}
	Threshold_2	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$6.3128 imes 10^{-14}$	Threshold_2	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$2.4117 imes 10^{-13}$
	Threshold_3	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$9.7356 imes 10^{-14}$	Threshold_3	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$4.6932 imes 10^{-13}$
	Threshold_4	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$1.9443 imes 10^{-13}$	Threshold_4	$-4.5000 imes10^2$	$-4.4999 imes 10^{2}$	$-4.4999 imes 10^{2}$	$9.0431 imes10^{-5}$
	Exponential_1	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$7.4115 imes 10^{-14}$	Exponential_1	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$1.1789 imes 10^{-8}$
	Exponential_2	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$5.4916 imes10^{-14}$	Exponential_2	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$4.2493 imes 10^{-10}$
	Exponential_3	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$7.4838 imes 10^{-14}$	Exponential_3	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	2.2269×10^{-10}
	Exponential_4	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$6.8841 imes 10^{-14}$	Exponential_4	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	1.5991×10^{-12}
	Exponential_5	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$7.3385 imes 10^{-14}$	Exponential_5	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	5.9672×10^{-13}
	Exponential_6	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$7.1149 imes 10^{-14}$	Exponential_6	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	2.8686×10^{-13}
	Cosine_1	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$9.0475 imes 10^{-14}$	Cosine_1	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$1.9650 imes10^{-8}$
	Cosine_2	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$9.0475 imes 10^{-14}$	Cosine_2	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$1.1307 imes 10^{-6}$
	Cosine_3	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$8.3025 imes 10^{-14}$	Cosine_3	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$2.3531 imes10^{-7}$
	Cosine_4	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$8.5580 imes 10^{-14}$	Cosine_4	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	1.5911×10^{-7}

Table 3. Cont.

NT		Dimension (D) = 100								
N0.	Adjustment strategy	Min	Max	Mean	SD	Adjustment strategy	Min	Max	Mean	SD
f ₁₁	Straight_1	-4.2165×10^{2}	-1.3296×10^{2}	-3.0000×10^{2}	$7.4536 imes 10^1$	Straight_1	1.1767×10^4	2.3516×10^{4}	1.6891×10^4	3.1744×10^3
, 11	Straight_2	-4.3444×10^{2}	-1.0722×10^{2}	-3.2701×10^{2}	$8.4417 imes 10^1$	Straight_2	8.4226×10^{3}	1.8619×10^4	1.2552×10^{4}	$2.2028 imes 10^3$
	Threshold_1	-4.0106×10^{2}	-1.4896×10^{2}	$-3.3088 imes10^2$	5.8709×10^{1}	Threshold_1	1.5199×10^{4}	2.8379×10^{4}	2.1552×10^{4}	3.2507×10^{3}
	Threshold_2	$-3.4901 imes10^2$	2.5368×10^2	$-6.2125 imes10^1$	1.5696×10^2	Threshold_2	$8.7977 imes 10^3$	$1.7870 imes10^4$	$1.3695 imes 10^4$	$2.2976 imes 10^3$
	Threshold_3	-3.3390×10^{2}	9.3989×10^{2}	1.2263×10^{2}	3.1892×10^2	Threshold_3	1.2026×10^4	$3.1616 imes 10^4$	$2.1121 imes 10^4$	$4.5467 imes 10^3$
	Threshold_4	$-4.4289 imes10^2$	$-2.5392 imes10^2$	$-3.7419 imes10^2$	$4.4269 imes10^1$	1.4269×10^1 Threshold_4		2.5277×10^4	$1.6287 imes 10^4$	3.1871×10^3
	Exponential_1	-3.1846×10^{2}	2.1908×10^{2}	$-9.9376 imes10^1$	$1.4315 imes 10^2$	Exponential_1	$1.0395 imes 10^4$	$2.1639 imes 10^4$	1.5861×10^4	$3.1550 imes 10^3$
	Exponential_2	-3.8982×10^{2}	3.1632×10^{2}	-1.6371×10^{2}	1.6523×10^{2}	Exponential_2	$6.9718 imes10^3$	$1.7181 imes10^4$	$1.1471 imes10^4$	$2.4981 imes 10^3$
	Exponential_3	-3.0139×10^{2}	2.1120×10^3	1.5585×10^2	$4.5585 imes 10^2$	Exponential_3	$1.2034 imes 10^4$	$2.4924 imes 10^4$	1.7356×10^4	$2.6542 imes 10^3$
	Exponential_4	-3.3706×10^{2}	2.7787×10^{2}	$-5.1714 imes10^1$	1.6504×10^2	Exponential_4	8.1868×10^{3}	1.8387×10^4	1.2757×10^{4}	2.9393×10^{3}
	Exponential_5	-2.5225×10^{2}	1.5514×10^3	5.6252×10^{2}	4.1866×10^{2}	Exponential_5	$1.2930 imes 10^4$	2.3952×10^{4}	1.8058×10^4	2.9540×10^{3}
	Exponential_6	-2.8287×10^{2}	9.9251×10^{2}	2.6238×10^{2}	3.3327×10^2	Exponential_6	9.7956×10^{3}	$2.0311 imes 10^4$	1.3953×10^4	$2.4149 imes 10^3$
	Cosine_1	-4.1764×10^{2}	-1.8561×10^{1}	-2.6591×10^{2}	$9.4610 imes10^1$	Cosine_1	9.0379×10^{3}	2.5832×10^{4}	1.5303×10^{4}	3.5867×10^{3}
	Cosine_2	-4.2366×10^{2}	$-4.9167 imes 10^{1}$	-2.7333×10^{2}	$9.0290 imes 10^{1}$	Cosine_2	1.2007×10^{4}	2.5142×10^{4}	1.7464×10^{4}	3.3184×10^3
	Cosine_3	$-4.2193 imes 10^2$	8.5517×10^1	-2.2015×10^{2}	1.2019×10^{2}	Cosine_3	Cosine_3 1.0444×10^4		1.4526×10^4	2.5147×10^3
	Cosine_4	-4.0935×10^{2}	4.8281×10^1	-2.5462×10^{2}	1.2357×10^{2}	Cosine_4	1.0484×10^4	2.3679×10^{4}	1.6049×10^4	3.3138×10^3
f_{12}	Straight_1	-1.7895×10^{2}	-1.7527×10^{2}	-1.7807×10^{2}	$9.8257 imes10^{-1}$	Straight_1	-1.5655×10^{2}	$-9.8500 imes 10^1$	$-1.3288 imes 10^2$	$1.5417 imes 10^1$
	Straight_2	-1.7894×10^{2}	-1.7562×10^{2}	$-1.7821 imes10^2$	$7.6813 imes 10^{-1}$	Straight_2	-1.6750×10^{2}	-1.2621×10^{2}	$-1.4904 imes10^2$	$1.1365 imes 10^1$
	Threshold_1	-1.7886×10^{2}	-1.7403×10^{2}	-1.7782×10^{2}	1.0687	Threshold_1	-1.3312×10^{2}	$-5.8638 imes10^1$	$-9.9192 imes10^1$	$2.1166 imes 10^1$
	Threshold_2	-1.7891×10^{2}	-1.7361×10^{2}	-1.7769×10^{2}	1.0980	Threshold_2	-1.6995×10^{2}	-1.2583×10^{2}	-1.5366×10^{2}	$1.0233 imes 10^1$
	Threshold_3	-1.7883×10^{2}	-1.7150×10^{2}	-1.7711×10^{2}	1.4020	Threshold_3	-1.6505×10^{2}	-1.2822×10^{2}	-1.4608×10^{2}	$1.0842 imes 10^1$
	Threshold_4	-1.7888×10^{2}	-1.7563×10^{2}	-1.7812×10^{2}	$7.7099 imes 10^{-1}$	Threshold_4	-1.6802×10^{2}	-1.0750×10^{2}	-1.3614×10^{2}	$1.5041 imes 10^1$
	Exponential_1	-1.7881×10^{2}	$-1.7636 imes10^2$	-1.7781×10^{2}	$7.2018 imes 10^{-1}$	Exponential_1	-1.6142×10^{2}	-1.1356×10^{2}	-1.4376×10^{2}	1.2858×10^1
	Exponential_2	-1.7883×10^{2}	$-1.7565 imes 10^{2}$	$-1.7788 imes10^2$	$9.6280 imes 10^{-1}$	Exponential_2	$-1.6950 imes 10^{2}$	$-1.4032 imes10^2$	$-1.5798 imes 10^{2}$	6.6526
	Exponential_3	$-1.7909 imes10^2$	-1.7556×10^{2}	-1.7747×10^{2}	$9.0208 imes 10^{-1}$	Exponential_3	-1.6515×10^{2}	-1.2713×10^{2}	-1.5275×10^{2}	9.8056
	Exponential_4	-1.7890×10^{2}	-1.7505×10^{2}	-1.7780×10^{2}	$8.8838 imes 10^{-1}$	Exponential_4	-1.7101×10^{2}	-1.4042×10^{2}	-1.5931×10^{2}	7.7148
	Exponential_5	-1.7882×10^{2}	-1.7400×10^{2}	-1.7725×10^{2}	1.2914	Exponential_5	$-1.7364 imes10^2$	-1.2751×10^{2}	-1.5552×10^{2}	$1.0491 imes 10^1$
	Exponential_6	-1.7892×10^{2}	-1.7468×10^{2}	-1.7757×10^{2}	1.0984	Exponential_6	-1.7066×10^{2}	$-1.4082 imes10^2$	$-1.6037 imes10^2$	6.8764
	Cosine_1	-1.7889×10^{2}	-1.7626×10^{2}	$-1.7804 imes10^2$	$6.7941 imes 10^{-1}$	Cosine_1	-1.7102×10^{2}	-9.7261×10^{1}	-1.4361×10^{2}	$1.5506 imes 10^1$
	Cosine_2	-1.7888×10^{2}	-1.7610×10^{2}	-1.7807×10^{2}	$6.4727 imes10^{-1}$	Cosine_2	-1.6466×10^{2}	-1.1821×10^{2}	-1.4021×10^{2}	$1.3072 imes 10^1$
	Cosine_3	-1.7891×10^{2}	-1.7571×10^{2}	-1.7791×10^{2}	$8.9066 imes 10^{-1}$	Cosine_3	-1.6130×10^{2}	-1.1206×10^{2}	-1.4392×10^{2}	$1.3861 imes 10^1$
	Cosine_4	-1.7873×10^{2}	-1.7465×10^{2}	-1.7780×10^{2}	$8.3139 imes 10^{-1}$	Cosine_4	-1.6327×10^{2}	-1.0337×10^{2}	-1.3840×10^{2}	$1.5854 imes10^1$

Table 3. Cont.

NT		Dimension (D) = 100								
N0.	Adjustment strategy	Min	Max	Mean	SD	Adjustment strategy	Min	Max	Mean	SD
f_{13}	Straight_1	$3.9000 imes 10^2$	4.5949×10^{2}	3.9958×10^{2}	1.3088×10^1	Straight_1	3.9280×10^2	3.6620×10^{3}	5.7871×10^{2}	5.8225×10^2
- 10	Straight_2	3.9002×10^{2}	4.8656×10^{2}	4.0653×10^{2}	2.5520×10^1	Straight_2	5.5729×10^{2}	2.9468×10^{3}	8.3659×10^{2}	5.4759×10^{2}
	Threshold_1	3.9007×10^2	4.0876×10^{2}	3.9979×10^{2}	7.3298	Threshold_1	$4.2763 imes 10^2$	3.9501×10^{3}	8.1099×10^{2}	$8.3480 imes 10^2$
	Threshold_2	$3.9000 imes 10^2$	$7.9400 imes 10^2$	$4.2759 imes 10^2$	$7.5937 imes10^1$	Threshold_2	$4.9760 imes 10^2$	2.2597×10^3	$6.9290 imes 10^2$	$3.1747 imes 10^2$
	Threshold_3	3.9012×10^{2}	6.7882×10^{2}	$4.0955 imes 10^2$	$5.0771 imes 10^1$	Threshold_3	3.9002×10^{2}	2.8846×10^{3}	8.5966×10^{2}	7.8665×10^{2}
	Threshold_4	$3.9000 imes 10^2$	4.7366×10^{2}	4.1236×10^{2}	$3.1291 imes 10^1$	Threshold_4	4.8872×10^{2}	3.5299×10^{3}	9.3974×10^{2}	7.2954×10^{2}
	Exponential_1	3.9001×10^{2}	7.8965×10^{2}	$4.1481 imes 10^2$	$7.3227 imes 10^1$	Exponential_1	3.9200×10^{2}	2.8106×10^{3}	6.1515×10^{2}	4.9085×10^{2}
	Exponential_2	3.9007×10^{2}	7.3063×10^{2}	4.1744×10^{2}	$6.3802 imes10^1$	Exponential_2	4.7908×10^{2}	$8.1095 imes10^2$	6.1817×10^{2}	$7.2382 imes10^1$
	Exponential_3	$3.9000 imes 10^2$	9.0772×10^{2}	4.2429×10^{2}	$9.6564 imes10^1$	Exponential_3	3.9006×10^{2}	2.9396×10^{3}	6.9200×10^{2}	6.6627×10^{2}
	Exponential_4	3.9013×10^{2}	5.4184×10^2	4.1655×10^{2}	$3.5768 imes 10^1$	Exponential_4	4.8828×10^{2}	1.1518×10^3	6.4499×10^{2}	1.5060×10^{2}
	Exponential_5	$3.9000 imes 10^{2}$	1.0517×10^{3}	4.4257×10^{2}	1.4997×10^{2}	Exponential_5	$3.9001 imes 10^2$	2.7678×10^{3}	6.7424×10^{2}	6.4280×10^{2}
	Exponential_6	3.9004×10^{2}	4.7407×10^{2}	4.0836×10^{2}	$2.6488 imes10^1$	Exponential_6	4.6519×10^{2}	2.0147×10^3	6.5145×10^{2}	2.8388×10^{2}
	Cosine_1	$3.9000 imes 10^2$	6.1903×10^{2}	4.2205×10^{2}	$4.8758 imes10^1$	Cosine_1	4.5850×10^{2}	2.3449×10^{3}	7.1282×10^{2}	3.4454×10^2
	Cosine_2	3.9002×10^{2}	8.5583×10^{2}	4.1202×10^{2}	$8.2736 imes 10^{1}$	Cosine_2	3.9079×10^2	3.2281×10^{3}	7.6770×10^{2}	8.2332×10^{2}
	Cosine_3	3.9010×10^{2}	8.8341×10^{2}	4.2415×10^{2}	$8.8994 imes10^1$	Cosine_3	5.1242×10^{2}	1.8003×10^3	7.3318×10^{2}	2.8816×10^{2}
	Cosine_4	3.9001×10^2	$4.0870 imes 10^2$	$3.9875 imes 10^2$	7.7194	Cosine_4	3.9074×10^2	1.1216×10^{3}	$5.3644 imes 10^2$	1.8263×10^{2}
f ₁₄	Straight_1	$-3.3000 imes 10^2$	-3.2999×10^{2}	-3.2999×10^{2}	$2.3198 imes 10^{-8}$	Straight_1	-3.2999×10^{2}	-3.2784×10^{2}	-3.2924×10^{2}	$7.3617 imes 10^{-1}$
	Straight_2	$-3.3000 imes 10^2$	$-3.3000 imes10^2$	$-3.3000 imes10^2$	$6.0514 imes 10^{-14}$	Straight_2	$-3.3000 imes 10^2$	-3.2801×10^{2}	-3.2962×10^{2}	$5.9806 imes 10^{-1}$
	Threshold_1	$-3.3000 imes10^2$	-3.2999×10^{2}	-3.2999×10^{2}	1.1729×10^{-7}	Threshold_1	-3.2877×10^{2}	-3.2057×10^{2}	$-3.2511 imes10^2$	1.7985
	Threshold_2	$-3.3000 imes10^2$	-3.2901×10^{2}	-3.2997×10^{2}	$1.7860 imes 10^{-1}$	Threshold_2	$-3.3000 imes10^2$	$-3.2901 imes10^2$	-3.2977×10^{2}	$4.2082 imes 10^{-1}$
	Threshold_3	$-3.3000 imes10^2$	$-3.2901 imes 10^2$	-3.2997×10^{2}	$1.7859 imes 10^{-1}$	Threshold_3	$-3.3000 imes10^2$	-3.2801×10^2	$-3.2974 imes10^2$	$4.9350 imes 10^{-1}$
	Threshold_4	$-3.3000 imes10^2$	$-3.3000 imes10^2$	$-3.3000 imes10^2$	$1.4154 imes 10^{-13}$	Threshold_4	$-3.3000 imes10^2$	-3.2303×10^{2}	$-3.2718 imes10^2$	1.5641
	Exponential_1	$-3.3000 imes10^2$	-3.2999×10^{2}	-3.2999×10^{2}	$3.0646 imes 10^{-8}$	Exponential_1	$-3.3000 imes10^2$	-3.2897×10^{2}	-3.2988×10^{2}	$3.1104 imes10^{-1}$
	Exponential_2	$-3.3000 imes10^2$	$-3.3000 imes10^2$	$-3.3000 imes10^2$	$1.0062 imes 10^{-13}$	Exponential_2	$-3.3000 imes10^2$	$-3.2901 imes10^2$	$-3.2983 imes10^2$	$3.7070 imes 10^{-1}$
	Exponential_3	$-3.3000 imes10^2$	-3.2999×10^{2}	-3.2999×10^{2}	$1.8858 imes10^{-6}$	Exponential_3	$-3.3000 imes10^2$	-3.2900×10^{2}	-3.2990×10^{2}	$2.9728 imes 10^{-1}$
	Exponential_4	$-3.3000 imes10^2$	$-3.3000 imes10^2$	$-3.3000 imes10^2$	$1.0934 imes 10^{-13}$	Exponential_4	$-3.3000 imes10^2$	$-3.2901 imes10^2$	$-3.2997 imes10^2$	$1.7860 imes 10^{-1}$
	Exponential_5	$-3.3000 imes10^2$	-3.2901×10^{2}	-3.2997×10^{2}	1.7852×10^{-1}	Exponential_5	$-3.3000 imes10^2$	-3.2891×10^{2}	-3.2980×10^{2}	$3.8883 imes 10^{-1}$
	Exponential_6	$-3.3000 imes10^2$	-3.2901×10^{2}	-3.2997×10^{2}	$1.7860 imes 10^{-1}$	Exponential_6	$-3.3000 imes10^2$	$-3.2901 imes10^2$	-3.2987×10^{2}	3.3822×10^{-1}
	Cosine_1	$-3.3000 imes10^2$	-3.2999×10^{2}	-3.2999×10^{2}	4.0641×10^{-9}	Cosine_1	$-3.3000 imes10^2$	-3.2777×10^{2}	-3.2947×10^{2}	$6.9220 imes 10^{-1}$
	Cosine_2	$-3.3000 imes10^2$	$-3.3000 imes10^2$	$-3.3000 imes10^2$	$2.9464 imes 10^{-13}$	Cosine_2	$-3.3000 imes10^2$	-3.2702×10^{2}	-3.2920×10^{2}	1.0082
	Cosine_3	$-3.3000 imes10^2$	-3.2999×10^{2}	-3.2999×10^{2}	1.5012×10^{-11}	Cosine_3	$-3.3000 imes10^2$	-3.2747×10^{2}	-3.2933×10^{2}	$7.1582 imes 10^{-1}$
	Cosine_4	$-3.3000 imes 10^2$	$-3.3000 imes10^2$	$-3.3000 imes10^2$	2.0231×10^{-13}	Cosine_4	$-3.3000 imes10^2$	-3.2701×10^{2}	-3.2924×10^{2}	$9.1373 imes 10^{-1}$

Table 4. Experimenta	results of difference	HS algorithms.
----------------------	-----------------------	----------------

	Dimension (D) = 30							Dimension (D) = 100						
No.	Algorithm	Strategy	Min	Max	Mean	SD	Algorithm	Strategy	Min	Max	Mean	SD		
1	HS	-	$9.5152 imes 10^{-1}$	7.2900	3.9526	1.8888	HS	-	9.8221×10^3	$1.4318 imes 10^4$	$1.2247 imes 10^4$	1.1304×10^3		
	IHS	-	1.8017×10^{-7}	4.5253×10^{-7}	3.4508×10^{-7}	$6.9069 imes 10^{-8}$	IHS	-	9.3279×10^{3}	1.5282×10^4	$1.2496 imes 10^4$	1.2772×10^{3}		
	SGHS	-	$7.6930 imes 10^{-10}$	$1.5045 imes10^{-8}$	5.0535×10^{-9}	3.1296×10^{-9}	SGHS	-	$6.6607 imes 10^{-1}$	2.7569	1.5343	$4.7765 imes 10^{-1}$		
	NGHS	-	$1.7413 imes 10^{-17}$	2.3048×10^{-15}	$3.4620 imes 10^{-16}$	$4.7004 imes 10^{-16}$	NGHS	-	$3.0447 imes10^{-4}$	1.3603×10^{-3}	$7.4741 imes10^{-4}$	$2.1074 imes10^{-4}$		
	DANGHS	Exponential_6	$2.3735 imes 10^{-38}$	$3.7601 imes 10^{-30}$	$1.8344 imes 10^{-31}$	$7.0604 imes 10^{-31}$	DANGHS	Exponential_6	$1.6615 imes 10^{-16}$	$8.0332 imes 10^{-14}$	$1.2209 imes 10^{-14}$	$1.9706 imes 10^{-14}$		
2	HS	-	3.0000	1.7000×10^1	9.3000	3.7162	HS	-	$8.4840 imes 10^3$	1.6381×10^4	1.2242×10^4	1.6586×10^3		
	IHS	-	0.0000	3.0000	$9.3333 imes 10^{-1}$	1.0306	IHS	-	1.0060×10^4	1.5588×10^4	1.2560×10^4	1.3116×10^3		
	SGHS	-	0.0000	0.0000	0.0000	0.0000	SGHS	-	3.0000	1.8000×10^1	8.7667	3.1271		
	NGHS	-	0.0000	0.0000	0.0000	0.0000	NGHS	-	0.0000	0.0000	0.0000	0.0000		
	DANGHS	Exponential_2	0.0000	0.0000	0.0000	0.0000	DANGHS	Exponential_2	0.0000	0.0000	0.0000	0.0000		
3	HS	-	3.8826×10^{-2}	2.1547×10^{-1}	8.3000×10^{-2}	$3.9484 imes 10^{-2}$	HS	-	$5.2475 imes 10^1$	$6.6253 imes 10^1$	$6.0705 imes 10^1$	4.1892		
	IHS	-	$1.8454 imes10^{-3}$	$2.7586 imes 10^{-2}$	$3.1832 imes 10^{-3}$	$4.5541 imes10^{-3}$	IHS	-	$5.1429 imes 10^1$	$6.9346 imes 10^1$	$6.0238 imes 10^1$	4.2859		
	SGHS	-	$1.2406 imes10^{-4}$	$2.3354 imes10^{-4}$	$1.6844 imes10^{-4}$	2.7009×10^{-5}	SGHS	-	$6.9687 imes 10^{-2}$	$4.0539 imes 10^{-1}$	$2.2004 imes10^{-1}$	$7.5524 imes 10^{-2}$		
	NGHS	-	$2.8122 imes 10^{-10}$	4.8894×10^{-9}	1.3786×10^{-9}	$9.1666 imes 10^{-10}$	NGHS	-	$8.0120 imes 10^{-3}$	1.8302×10^{-2}	1.4477×10^{-2}	2.3050×10^{-3}		
	DANGHS	Exponential_6	$5.1270 imes 10^{-23}$	$2.5548 imes 10^{-17}$	$1.9511 imes 10^{-18}$	$5.5869 imes 10^{-18}$	DANGHS	Exponential_6	$1.7326 imes 10^{-9}$	$2.2346 imes 10^{-8}$	$7.9778 imes 10^{-9}$	$5.9706 imes 10^{-9}$		
4	HS	-	1.3615×10^3	8.1756×10^3	3.7966×10^3	1.4524×10^3	HS	-	1.2355×10^5	2.2504×10^5	1.8030×10^5	2.0587×10^4		
	IHS	-	1.5474×10^{3}	6.0226×10^{3}	3.8475×10^{3}	1.1754×10^{3}	IHS	-	1.2992×10^{5}	2.3481×10^{5}	1.7522×10^{5}	2.7139×10^{4}		
	SGHS	-	2.0150×10^{1}	$1.0642 imes10^2$	$5.2245 imes10^1$	$2.2107 imes 10^1$	SGHS	-	1.7856×10^{4}	3.1133×10^{4}	2.2834×10^{4}	2.8349×10^{3}		
	NGHS	-	2.8355×10^{1}	1.4013×10^{2}	6.5269×10^{1}	3.3421×10^{1}	NGHS	-	7.4976×10^{3}	$1.2945 imes10^4$	9.7007×10^{3}	$1.6021 imes 10^3$		
	DANGHS	Threshold_4	$1.5038 imes 10^1$	1.5980×10^{2}	6.0249×10^{1}	3.5686×10^{1}	DANGHS	Exponential_2	$4.6763 imes 10^{3}$	1.3135×10^{4}	$8.6301 imes 10^{3}$	1.9698×10^{3}		
5	HS	-	1.0212	1.1106	1.0591	2.2096×10^{-2}	HS	-	$9.5506 imes 10^1$	1.4758×10^2	1.1631×10^2	1.1240×10^1		
	IHS	-	1.2959×10^{-7}	$3.4241 imes 10^{-2}$	$7.5274 imes 10^{-3}$	$9.2294 imes 10^{-3}$	IHS	-	7.5548×10^{1}	1.4827×10^{2}	1.0997×10^{2}	1.4826×10^{1}		
	SGHS	-	1.7833×10^{-2}	2.3440×10^{-1}	1.0043×10^{-1}	5.1304×10^{-2}	SGHS	-	$4.4296 imes 10^{-1}$	8.8847×10^{-1}	6.8599×10^{-1}	9.9379×10^{-2}		
	NGHS	-	$3.3307 imes 10^{-16}$	2.5387×10^{-1}	6.1311×10^{-2}	4.9633×10^{-2}	NGHS	-	1.5343×10^{-4}	9.9663×10^{-2}	1.7168×10^{-2}	2.2003×10^{-2}		
	DANGHS	Threshold_4	6.6613×10^{-16}	8.0817×10^{-2}	3.1209×10^{-2}	2.3482×10^{-2}	DANGHS	Exponential_2	3.5352×10^{-11}	$4.8906 imes 10^{-2}$	$6.4754 imes 10^{-3}$	$9.8313 imes 10^{-3}$		
6	HS	-	1.9421×10^{-2}	1.3050	$4.9617 imes 10^{-1}$	$4.2318 imes 10^{-1}$	HS	-	1.0882×10^{1}	1.2567×10^{1}	1.1743×10^{1}	$3.8517 imes 10^{-1}$		
	IHS	-	$3.4980 imes 10^{-4}$	1.3915	$2.2199 imes 10^{-1}$	$3.4543 imes 10^{-1}$	IHS	-	1.0987×10^{1}	1.2722×10^{1}	1.1852×10^{1}	$4.3446 imes 10^{-1}$		
	SGHS	-	1.7703×10^{-5}	4.5526×10^{-5}	3.0830×10^{-5}	$6.1683 imes 10^{-6}$	SGHS	-	6.3791×10^{-2}	$4.5729 imes 10^{-1}$	$2.4057 imes 10^{-1}$	$1.2018 imes 10^{-1}$		
	NGHS	-	$7.7839 imes 10^{-10}$	$2.0025 imes 10^{-8}$	$5.7085 imes 10^{-9}$	5.2959×10^{-9}	NGHS	-	$2.6973 imes 10^{-3}$	$5.3184 imes 10^{-3}$	3.6500×10^{-3}	$5.4706 imes 10^{-4}$		
	DANGHS	Exponential_6	$4.9294 imes 10^{-14}$	$2.2338 imes 10^{-13}$	$9.6308 imes 10^{-14}$	$3.4392 imes 10^{-14}$	DANGHS	Exponential_6	$1.0897 imes 10^{-9}$	$2.9882 imes 10^{-8}$	$9.3030 imes 10^{-9}$	$7.9441 imes 10^{-9}$		
7	HS	-	$9.6358 imes 10^1$	3.9298×10^2	1.8204×10^2	$5.9631 imes 10^1$	HS	-	3.2565×10^6	$9.1894 imes10^6$	$5.9320 imes 10^6$	1.2941×10^6		
	IHS	-	$1.7586 imes 10^1$	2.1565×10^{3}	3.6705×10^{2}	5.5299×10^{2}	IHS	-	$4.1100 imes 10^6$	8.2424×10^{6}	5.7186×10^{6}	$1.0494 imes 10^6$		
	SGHS	-	9.0932	2.0293×10^3	1.7534×10^2	3.7957×10^2	SGHS	-	1.0832×10^2	2.8592×10^3	$5.1645 imes 10^2$	4.7866×10^2		
	NGHS	-	$6.6756 imes10^{-4}$	2.3003×10^2	$1.4971 imes 10^1$	$4.0757 imes 10^1$	NGHS	-	$2.1179 imes 10^1$	1.4411×10^3	2.8501×10^2	2.8532×10^2		
	DANGHS	Straight_1	$9.3515 imes 10^{-3}$	$2.2089 imes 10^1$	$1.0089 imes 10^1$	8.7452	DANGHS	Threshold_3	$5.6804 imes10^{-2}$	$1.1562 imes 10^3$	$6.1559 imes10^1$	$2.0554 imes 10^2$		

Table 4. Cont.

No	Dimension (D) = 30							Dimension (D) = 100						
INO.	Algorithm	Strategy	Min	Max	Mean	SD	Algorithm	Strategy	Min	Max	Mean	SD		
8	HS	-	3.0572×10^{-2}	2.0546	$4.6448 imes 10^{-1}$	$6.5390 imes 10^{-1}$	HS	-	$2.1874 imes 10^2$	2.8758×10^2	2.5192×10^2	1.6481×10^{1}		
	IHS	-	$4.1948 imes10^{-5}$	4.5484	1.2420	$9.8291 imes 10^{-1}$	IHS	-	2.0838×10^{2}	2.8193×10^{2}	2.4294×10^2	$1.8844 imes 10^1$		
	SGHS	-	$3.7300 imes 10^{-7}$	$9.9498 imes 10^{-1}$	$1.3267 imes 10^{-1}$	3.3822×10^{-1}	SGHS	-	3.2260×10^{-2}	9.1200	4.5553	2.2588		
	NGHS	-	0.0000	$1.6069 imes 10^{-11}$	$9.3241 imes 10^{-13}$	$3.2209 imes 10^{-12}$	NGHS	-	$1.2729 imes 10^{-3}$	1.0102	$2.1542 imes 10^{-1}$	$3.9474 imes 10^{-1}$		
	DANGHS	Threshold_2	0.0000	0.0000	0.0000	0.0000	DANGHS	Exponential_3	$3.5170 imes 10^{-8}$	$5.9362 imes10^{-1}$	$2.7729 imes 10^{-2}$	$1.0943 imes10^{-1}$		
9	HS	-	6.9691	3.8058×10^1	1.8422×10^1	6.8471	HS	_	4.5568×10^3	6.9091×10^3	5.7964×10^{3}	5.5601×10^{2}		
	IHS	-	$3.8186 imes10^{-4}$	$5.2695 imes 10^{-1}$	$1.7934 imes 10^{-2}$	9.4522×10^{-2}	IHS	-	4.2297×10^{3}	6.4098×10^{3}	5.4659×10^{3}	5.5784×10^{2}		
	SGHS	-	2.3563×10^{-3}	3.6545×10^{-2}	1.3771×10^{-2}	7.5711×10^{-3}	SGHS	-	7.2936	$3.8640 imes 10^1$	1.5981×10^1	7.4744		
	NGHS	-	$3.8183 imes10^{-4}$	$3.8183 imes10^{-4}$	$3.8183 imes10^{-4}$	$5.5493 imes 10^{-13}$	NGHS	-	3.3819×10^{-3}	6.8492×10^{-2}	1.1069×10^{-2}	1.3684×10^{-2}		
	DANGHS	Threshold_2	$3.8183 imes 10^{-4}$	$3.8183 imes 10^{-4}$	$3.8183 imes 10^{-4}$	$1.3763 imes10^{-13}$	DANGHS	Threshold_2	$1.2728 imes 10^{-3}$	$1.2728 imes 10^{-3}$	$1.2728 imes10^{-3}$	$1.4537 imes10^{-9}$		
10	HS	-	-4.4898×10^{2}	-4.3989×10^{2}	-4.4573×10^{2}	2.2745	HS	-	1.0055×10^4	1.6736×10^4	$1.2963 imes 10^4$	$1.7748 imes 10^3$		
	IHS	-	$-4.5000 imes10^2$	-4.4999×10^{2}	-4.4999×10^{2}	1.1657×10^{-7}	IHS	-	1.0425×10^4	$1.4910 imes 10^4$	1.2856×10^{4}	1.2084×10^3		
	SGHS	-	$-4.5000 imes10^2$	-4.4999×10^{2}	-4.4999×10^{2}	2.7913×10^{-9}	SGHS	-	$-4.4918 imes10^2$	-4.4701×10^{2}	-4.4841×10^{2}	$5.8573 imes 10^{-1}$		
	NGHS	-	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$-4.5000 imes10^2$	$6.9619 imes 10^{-14}$	NGHS	-	$-4.5000 imes10^2$	-4.4999×10^{2}	-4.4999×10^{2}	$3.0551 imes 10^{-4}$		
	DANGHS	Exponential_2	$-4.5000 imes 10^2$	$-4.5000 imes 10^2$	-4.5000×10^{2}	$5.4916 imes 10^{-14}$	DANGHS	Threshold_2	$-4.5000 imes 10^2$	-4.5000×10^{2}	$-4.5000 imes 10^2$	$2.4117 imes 10^{-13}$		
11	HS	-	1.5142×10^3	7.6068×10^3	3.4157×10^3	1.2671×10^3	HS	-	1.4921×10^5	2.5525×10^5	1.9430×10^5	$2.3256 imes 10^4$		
	IHS	-	1.0412×10^3	7.3312×10^{3}	3.3180×10^{3}	1.3292×10^{3}	IHS	-	1.4941×10^{5}	2.7307×10^{5}	2.0189×10^{5}	$2.7108 imes 10^4$		
	SGHS	-	$-4.3194 imes10^2$	$-3.2048 imes10^2$	$-3.9763 imes10^2$	$2.7006 imes10^1$	SGHS	-	$1.5646 imes 10^4$	$3.5936 imes10^4$	$2.6350 imes 10^4$	$4.0064 imes 10^3$		
	NGHS	-	-4.2591×10^{2}	-1.9340×10^{2}	-3.3680×10^{2}	$6.4820 imes10^1$	NGHS	-	9.0685×10^{3}	1.7976×10^{4}	1.1950×10^{4}	$2.0823 imes 10^3$		
	DANGHS	Threshold_4	$-4.4289 imes 10^2$	-2.5392×10^{2}	-3.7419×10^2	4.4269×10^{1}	DANGHS	Exponential_2	$6.9718 imes 10^3$	$1.7181 imes 10^4$	$1.1471 imes 10^4$	2.4981×10^{3}		
12	HS	_	$-1.7016 imes 10^2$	$-1.3324 imes 10^2$	$-1.5876 imes10^2$	9.4348	HS	_	3.2343×10^3	$5.9684 imes 10^3$	4.7002×10^3	$6.7476 imes 10^2$		
	IHS	-	-1.7607×10^{2}	-1.3892×10^{2}	-1.5831×10^{2}	7.7527	IHS	-	3.4934×10^{3}	6.5826×10^{3}	4.8855×10^{3}	8.4393×10^{2}		
	SGHS	-	-1.7830×10^{2}	$-1.7149 imes10^2$	-1.7583×10^{2}	1.6385	SGHS	-	-1.3057×10^{2}	-1.5099×10^{1}	-7.2944×10^{1}	$2.8794 imes 10^1$		
	NGHS	-	$-1.7913 imes10^2$	$-1.7532 imes10^2$	$-1.7829 imes10^2$	$6.4615 imes10^{-1}$	NGHS	-	$-1.5784 imes10^2$	$-1.1939 imes10^2$	$-1.4231 imes10^2$	$1.0814 imes10^1$		
	DANGHS	Straight_2	-1.7894×10^{2}	$-1.7562 imes 10^{2}$	-1.7821×10^{2}	$7.6813 imes 10^{-1}$	DANGHS	Exponential_6	$-1.7066 imes 10^{2}$	$-1.4082 imes 10^{2}$	$-1.6037 imes10^2$	6.8764		
13	HS	-	$4.7650 imes 10^2$	$2.5184 imes 10^3$	$6.6765 imes 10^2$	3.6290×10^2	HS	-	$4.0732 imes 10^6$	8.7806×10^6	6.0785×10^{6}	1.0919×10^6		
	IHS	-	$4.1262 imes 10^2$	1.7487×10^3	$5.7845 imes 10^2$	2.3203×10^2	IHS	-	$4.5479 imes10^6$	$8.5517 imes10^6$	$6.3527 imes 10^6$	$1.2268 imes 10^6$		
	SGHS	-	3.9001×10^{2}	5.6058×10^{2}	4.6408×10^{2}	$4.0896 imes 10^1$	SGHS	-	6.4618×10^{2}	2.5249×10^{3}	9.7963×10^{2}	4.0336×10^{2}		
	NGHS	-	$3.9000 imes10^2$	4.0874×10^{2}	$3.9494 imes10^2$	5.7399	NGHS	-	4.6424×10^{2}	1.6001×10^{3}	7.1517×10^{2}	2.9163×10^{2}		
	DANGHS	Cosine_4	3.9001×10^2	$4.0870 imes 10^2$	$3.9875 imes 10^2$	7.7194	DANGHS	Cosine_4	$3.9074 imes 10^2$	$1.1216 imes 10^3$	$5.3644 imes 10^2$	$1.8263 imes 10^2$		
14	HS	-	$-3.2997 imes 10^2$	$-3.2788 imes 10^2$	$-3.2938 imes10^2$	7.4966×10^{-1}	HS	-	-9.3948×10^{1}	-6.2235	$-5.1541 imes 10^1$	$2.2413 imes 10^1$		
	IHS	-	$-3.2999 imes 10^2$	$-3.2749 imes10^2$	$-3.2897 imes10^2$	$6.9697 imes 10^{-1}$	IHS	-	$-1.1215 imes 10^2$	$-3.3592 imes 10^1$	-6.5372×10^{1}	1.6227×10^1		
	SGHS	-	$3.9000 imes 10^2$	$-3.2901 imes10^2$	$-3.2993 imes10^2$	$2.4813 imes10^{-1}$	SGHS	-	$-3.2900 imes 10^2$	-3.2101×10^{2}	$-3.2614 imes10^2$	2.2502		
	NGHS	-	$3.9000 imes 10^2$	-3.2999×10^{2}	-3.2999×10^{2}	$1.1444 imes 10^{-12}$	NGHS	-	$3.9000 imes 10^2$	-3.2798×10^{2}	-3.2979×10^{2}	$5.4096 imes 10^{-1}$		
	DANGHS	Straight_2	$3.9000 imes 10^2$	$3.9000 imes 10^2$	$3.9000 imes 10^2$	$6.0514 imes10^{-14}$	DANGHS	Exponential_4	$3.9000 imes 10^2$	$-3.2901 imes10^2$	$-3.2997 imes10^2$	$1.7860 imes10^{-1}$		

Figure 7. Typical convergence graph of five different algorithms for problems 1 to 8 (D = 30). (a) Problem 1; (b) Problem 2; (c) Problem 3; (d) Problem 4; (e) Problem 5; (f) Problem 6; (g) Problem 7; (h) Problem 8.

Figure 8. Typical convergence graph of five different algorithms for problems 9 to 14 (D = 30). (a) Problem 9; (b) Problem 10; (c) Problem 11; (d) Problem 12; (e) Problem 13; (f) Problem 14.

Figure 9. Typical convergence graph of five different algorithms for problems 1 to 8 (D = 100). (a) Problem 1; (b) Problem 2; (c) Problem 3; (d) Problem 4; (e) Problem 5; (f) Problem 6; (g) Problem 7; (h) Problem 8.

Figure 10. Typical convergence graph of five different algorithms for problems 9 to 14 (D = 100). (a) Problem 9; (b) Problem 10; (c) Problem 11; (d) Problem 12; (e) Problem 13; (f) Problem 14.

5. Conclusions

We presented a DANGHS algorithm, which combines NGHS and the dynamic adjustment strategy for genetic mutation probability. Moreover, the extensive computational experiments and comparisons were carried out for 14 benchmark continuous optimization problems. According to the extensive computational results, there are several findings in this paper worth summarizing.

First, different strategies are suitable for different problems.

- 1. The decreasing dynamic adjustment strategies should be applied to some problems in which the DANGHS algorithm needs a larger, p_m , in the early iterations, in order to have a larger probability of finding a better trial solution around the current one.
- 2. The increasing dynamic adjustment strategies should be applied to other problems. For these problems, if the current solution is trapped in a local optimum, the DANGHS algorithm requires a larger probability, p_m , in later iterations in order to avoid the local optima.

3. The periodic dynamic adjustment strategy can find the best objective function value for problem 13. These particular results show that there are not only two kinds of adjustment strategies, decreasing and increasing strategies, which are suitable for all problems. This viewpoint is different from the common views: the adjustment strategy is as small as possible or as large as possible with a generation number. For a specific problem, the periodic dynamic adjustment strategy could have better performance in comparison with other decreasing or increasing strategies. Therefore, these results inspire us to further investigate this kind of periodic dynamic adjustment strategy in future experiments.

Second, the extensive experimental results showed that the DANGHS algorithm had better searching performance in comparison with other HS algorithms for D = 30 and 100 in most problems. Particularly for D = 100, the DANGHS algorithm could search the best objective function value in all 14 problems. In other words, the DANGHS had superior searching performance in high-dimensional problems. According to the numerical results, we proofed that algorithms with dynamic parameters, such as the DANGHS algorithm and the IHS algorithm, could have better searching performance than algorithms without dynamic parameters, such as the NGHS algorithm and the HS algorithm. Moreover, according to these results, we proofed that the viewpoint presented in previous studies is suitable for the NGHS algorithm. This viewpoint states that appropriate parameters can enhance the searching ability of a metaheuristic algorithm.

Finally, the DANGHS algorithm using Pseudocode 4 was more efficient than that using Pseudocode 3. In Pseudocode 3, the algorithm generates a new harmony, and then with p_m probability, the algorithm abandoned it to generate a mutated harmony. Obviously, it was redundant and inefficient. Therefore, we modified the procedure in Pseudocode 3 and presented a more efficient Pseudocode 4 in this paper. In conclusion, the DANGHS algorithm is a more efficient and effective algorithm.

Author Contributions: P.-C.S. designed the algorithm, conducted the experiments, analyzed the experimental results, wrote the paper and polished the English; C.-Y.C. and X.L. supervised the research work and provided helpful suggestions.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank all the reviewers for their constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Chiu, C.Y.; Fan, S.K.S.; Shih, P.C.; Weng, Y.H. Applying HBMO-based SOM in predicting the Taiwan steel price fluctuation. *Int. J. Electron. Bus. Manag.* **2014**, *12*, 1–14.
- Chen, K.H.; Chen, L.F.; Su, C.T. A new particle swarm feature selection method for classification. J. Intell. Inf. Syst. 2014, 42, 507–530. [CrossRef]
- 3. Petrović, M.; Vuković, N.; Mitić, M.; Miljković, Z. Integration of process planning and scheduling using chaotic particle swarm optimization algorithm. *Expert Syst. Appl.* **2016**, *64*, 569–588. [CrossRef]
- 4. Khaled, N.; Hemayed, E.E.; Fayek, M.B. A GA-based approach for epipolar geometry estimation. *Int. J. Pattern Recognit. Artif. Intell.* **2013**, *27*, 1355014. [CrossRef]
- Metawaa, N.; Hassana, M.K.; Elhoseny, M. Genetic algorithm based model for optimizing bank lending decisions. *Expert Syst. Appl.* 2017, *80*, 75–82. [CrossRef]
- Song, S. Design of distributed database systems: an iterative genetic algorithm. J. Intell. Inf. Syst. 2015, 45, 29–59. [CrossRef]
- 7. Gambardella, L.M.; Montemanni, R.; Weyland, D. Coupling ant colony systems with strong local searches. *Eur. J. Oper. Res.* **2012**, *220*, 831–843. [CrossRef]
- D'Andreagiovanni, F.; Mett, F.; Nardin, A.; Pulaj, J. Integrating LP-guided variable fixing with MIP heuristics in the robust design of hybrid wired-wireless FTTx access networks. *Appl. Soft. Comput.* 2017, 61, 1074–1087. [CrossRef]
- 9. D'Andreagiovanni, F.; Nardin, A. Towards the fast and robust optimal design of wireless body area networks. *Appl. Soft. Comput.* **2015**, *37*, 971–982. [CrossRef]

- 10. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995.
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43.
- 12. Ozcan, E.; Mohan, C.K. Analysis of a simple particle swarm optimization system. *Intell. Eng. Syst. Artif. Neural Netw.* **1998**, *8*, 253–258.
- 13. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence; University of Michigan Press: Ann Arbor, MI, USA, 1975.
- 14. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992.
- 15. Gordini, N. A genetic algorithm approach for SMEs bankruptcy prediction: Empirical evidence from Italy. *Expert Syst. Appl.* **2014**, *41*, 6433–6445. [CrossRef]
- 16. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: harmony search. *Simulation* **2001**, *76*, 60–68. [CrossRef]
- 17. Haddad, O.B.; Afshar, A.; Marino, M.A. Honey-bees mating optimization (HBMO) algorithm: A new heuristic approach for water resources optimization. *Water Resour. Manag.* **2006**, *20*, 661–680. [CrossRef]
- 18. Ouyang, A.; Peng, X.; Liu, Y.; Fan, L.; Li, K. An efficient hybrid algorithm based on HS and SFLA. *Int. J. Pattern Recognit. Artif. Intell.* **2016**, *30*, 1659012. [CrossRef]
- 19. Tavakoli, S.; Valian, E.; Mohanna, S. Feedforward neural network training using intelligent global harmony search. *Evol. Syst.* **2012**, *3*, 125–131. [CrossRef]
- 20. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. *Science* **1983**, 220, 671–680. [CrossRef] [PubMed]
- 21. Assad, A.; Deep, K. A Hybrid Harmony search and Simulated Annealing algorithm for continuous optimization. *Inf. Sci.* 2018, 450, 246–266. [CrossRef]
- Assad, A.; Deep, K. A two-phase harmony search algorithm for continuous optimization. *Comput. Intell.* 2017, 33, 1038–1075. [CrossRef]
- 23. Mahdavi, M.; Fesanghary, M.; Damangir, E. An improved harmony search algorithm for solving optimization problems. *Appl. Math. Comput.* **2007**, *188*, 1567–1579. [CrossRef]
- 24. Pan, Q.K.; Suganthan, P.N.; Tasgetiren, M.F.; Liang, J.J. A self-adaptive global best harmony search algorithm for continuous optimization problems. *Appl. Math. Comput.* **2010**, *216*, 830–848. [CrossRef]
- 25. Zou, D.; Gao, L.; Li, S.; Wu, J.; Wang, X. A novel global harmony search algorithm for task assignment problem. *J. Syst. Softw.* **2010**, *83*, 1678–1688. [CrossRef]
- 26. Zou, D.; Gao, L.; Wu, J.; Li, S.; Li, Y. A novel global harmony search algorithm for reliability problems. *Comput. Ind. Eng.* **2010**, *58*, 307–316. [CrossRef]
- 27. Zou, D.; Gao, L.; Wu, J.; Li, S. Novel global harmony search algorithm for unconstrained problems. *Neurocomputing* **2010**, *73*, 3308–3318. [CrossRef]
- 28. Valian, E.; Tavakoli, S.; Mohanna, S. An intelligent global harmony search approach to continuous optimization problems. *Appl. Math. Comput.* **2014**, *232*, 670–684. [CrossRef]
- 29. Kattan, A.; Abdullah, R. Training of feed-forward neural networks for pattern-classification applications using music inspired algorithm. *Inter. J. Comput. Sci. Inf. Secur.* **2011**, *9*, 44–57.
- 30. Lee, K.S.; Geem, Z.W. A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. *Comput. Method Appl. Mech. Eng.* **2005**, *194*, 3902–3933. [CrossRef]
- 31. Omran, M.G.H.; Mahdavi, M. Global-best harmony search. *Appl. Math. Comput.* **2008**, *198*, 643–656. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).