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1. Introduction

Let A be the class of analytic functions defined on the unit disk D := {z ∈ C : |z| < 1} and
having the form:

f (z) = z + a2z2 + a3z3 + · · · . (1)

The subclass of A consisting of univalent functions is denoted by S . An analytic function f is
subordinate to another analytic function g if there is an analytic function w with |w(z)| ≤ |z| and
w(0) = 0 such that f (z) = g(w(z)), and we write f ≺ g. If g is univalent, then f ≺ g if and only if
f (0) = g(0) and f (D) ⊆ g(D). The classes S∗ and K of star-like and convex functions, respectively,
are among the most studied subclasses of S . These classes are defined, respectively, as:

S∗ :=
{

f ∈ S : Re
(

z f ′(z)
f (z)

)
> 0, z ∈ D

}
and:

K :=
{

f ∈ S : Re
(

1 +
z f ′′(z)
f ′(z)

)
> 0, z ∈ D

}
.

The Koebe function k(z) = z/(1− z)2 ∈ S∗ and z/(1− z) ∈ K.
General forms of these classes were considered by Janowski [1]. For −1 ≤ B < A ≤ 1, these

classes are defined by:

S∗[A, B] :=
{

f ∈ S :
z f ′(z)

f (z)
≺ 1 + Az

1 + Bz

}
and K[A, B] :=

{
f ∈ S : 1 +

z f ′′(z)
f ′(z)

≺ 1 + Az
1 + Bz

}
.
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These classes are called the class of Janowski star-like and Janowski convex functions, respectively.
On specializing the parameters A and B, we get several well-known classes such as S∗ := S∗[1,−1]
and K := K[1,−1]. The functions h0 and k0 defined by:

h0(z) =

{
z(1 + Bz)

A
B−1, B 6= 0;

zeAz, B = 0,
(2)

and:

k0(z) =


1
A [(1 + Bz)

A
B − 1], B 6= 0, A 6= 0;

1
B log(1 + Bz), A = 0;
1
A [e

Az − 1], B = 0.
(3)

belong to the classes S∗[A, B] and K[A, B] (−1 ≤ B < A ≤ 1), respectively. In particular, 2z/(2− z) ∈
S∗[1/2,−1/2] and 4z/(2− z)2 ∈ K[1/2,−1/2].

The quantity a2
2 − a3 is associated with the Schwarzian derivative of function f ∈ S . Recall that

the Schwarzian derivative of a locally univalent function f is defined by:

S( f )(z) :=
(

f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2

which is an important quantity in univalent function theory. For example, the quantity a3 − µa2
2 =

( f ′′′(0) − 3µ( f ′′(0))2/2)/6 is called the Fekete–Szegö functional, and finding the sharp bound on
modulus of this quantity is popularly known as the Fekete–Szegö problem. Nehari [2] (see also [3])
proved that the necessary condition for an analytic function f to be in the class S is |S( f )(z)| ≤
6(1− |z|2)−2, and the sufficient condition is |S( f )(z)| ≤ 2(1− |z|2)−2. In both directions, the results
are the best possible in the sense that the constants two and six cannot be replaced by the smaller
numbers. The sharpness of the later condition was verified by Hille [4]. The first inequality is sharp
in the case of the Koebe function, whereas the sharpness in the second can be seen in the case of the
function f0(z) = (1/2) log((1 + z)/(1− z)). Later, Nehari [5] proved that if f is a convex function,
then |S( f )(z)| ≤ 2(1− |z|2)−2.

Aharanov and Harmelin [6] studied the higher order Schwarzian derivatives σn( f ) with
invariance under composition on the left by Möbius transformations T, σn(T ◦ f ) = σn( f ), and
their relation to univalence of the function f . The higher order Schwarzian derivative is defined as
follows (see [6,7]):

σ3( f ) = S( f )

and for any integer n ≥ 4, it is given by:

σn+1( f ) = (σn( f ))′ − (n− 1)σn( f )
f ′′

f ′
.

In particular,

σ4( f ) =
f (4)

f ′
− 6

f ′′′ f ′

f ′2
+

(
f ′′

f ′

)3

and for:

σ5( f ) =
f (5)

f ′
− 10

f (4) f ′′

f ′2
− 6

(
f ′′′

f ′

)2

+ 48
f ′′′ f ′2

f ′3
− 36

(
f ′′

f ′

)4

.

Schippers [7] derived the differential equation for the Loewner flow of the Schwarzian derivative
of univalent functions and used this to investigate the bounds on the modulus of higher order
Schwarzian derivatives. These bounds were shown to be sharp in the case of the Koebe function.
He also proved certain two-point distortion theorems for the higher order Schwarzian derivatives in
terms of the hyperbolic metric. Later, the higher order Schwarzian derivatives for convex functions
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were considered by Dorff and Szynal [8]. Since the class K is linearly invariant (see [9]), so there
is no loss in restricting consideration to σn( f )(0) =: Sn. From the above definition of σn( f ), we
see that S3 = σ3( f )(0) = 6(a3 − a2

2), S4 = σ4( f )(0) = 24(a4 − 3a2a3 + 2a3
2) and S5 = σ5( f )(0) =

24(5a5 − 20a2a4 − 9a2
3 + 48a3a2

2 − 24a4
2). Droff and Szynal proved that |S3| ≤ 2, |S4| ≤ 4 and |S5| ≤ 12

with inequality in the case of the function:

fn(z) =
∫ z

0
(1− tn−1)−

2
n−1 dt, n = 3, 4, 5.

They also conjectured that the maximal value of |Sn| for n = 6, 7, 8, · · · is attained in the case of
the function fn defined above.

In general, it is not so easy for researchers to deal with the higher order Schwarzian derivatives as
the methods in geometric function theory known at present time are not substantial enough. However,
they have a very important role in geometric/univalent function theory. In particular, Gal [10],
by using the powerful method of admissible functions of Miller and Mocanu [11], investigated
the geometric criterion of univalence, which combines higher order Schwarzian derivatives with
those of the Ruscheweyh and Sălăgean operators. Therefore, it is very natural to consider higher
order Schwarzian derivatives for various geometric results of analytic functions. In this direction,
Tamanoi [12], investigated various properties of higher Schwarzian derivatives and their relation
with combinatorial polynomials. Tamanoi also proved that the higher Schwarzian derivatives are
Möbius invariant; see [12] (p. 135 Theorems 3–3(ii)). Later, in 2011, Kim and Sugawa [13] investigated
relations between the Aharonov invariants ([13,14]) and Tamanoi’s Schwarzian derivatives of higher
order and gave a recursive formula for Tamanoi’s Schwarzians. In the same paper, they proposed a
new definition of invariant Schwarzian derivatives of a non-constant holomorphic function between
Riemann surfaces with conformal metrics. In 2011, Kim and Sugawa reviewed the Peschl–Minda
derivatives [15,16] and Schwarzian derivatives of higher order due to Aharonov [14], Tamanoi [12]
and Kim and Sugawa [13] for a non-constant holomorphic map between Riemann surfaces with
conformal metrics. They also proved that the higher-order Schwarzian derivatives of Aharonov
and Tamanoi cannot be extended to holomorphic functions between projective Riemann surfaces
unlike the classical Schwarzian derivatives. The higher order Schwarzian derivative are useful in the
study of the properties of non-linear dynamical system and has been studied extensively by several
researchers [17]. For many applications of the higher order Schwarzian derivatives related to the real
functions, the reader may refer to [17,18] and the references cited therein. Kwon and Sim [19], in
2017, using the theory of admissible functions investigated some sufficient conditions for normalized
analytic functions to be star-like, associated with Tamanoi’s Schwarzian derivative of third order.

Motivated by the works of Schippers [7] and Dorff and Szynal [8] and other related works
cited above, in this paper, we shall consider the higher order Schwarzian derivatives for Janowski
star-like and convex functions. The sharp bound on the first three consecutive Schwarzian derivatives
for Janowski star-like and convex functions is investigated. We shall also point out some relevant
connections of our results with the existing result. Several examples in support of our main results are
also given with explanations. To prove our results, we need the following results:

Let B be the class of Schwarz functions consisting of analytic functions of the form w(z) =

c1z + c2z2 + c3z3 + · · · (z ∈ D) and satisfying the condition |w(z)| < 1 for z ∈ D. Let P denote the
class of analytic functions of the form p(z) = 1+ p1z+ p2z2 + p3z3 + · · · for which Re p(z) > 0 (z ∈ D).
The following correspondence between the classes B and P holds:

p ∈ P if and only if w(z) =
p(z)− 1
p(z) + 1

∈ B. (4)
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Comparing coefficients in (4), we have:

c1 =
p1

2
, c2 =

2p2 − p2
1

4
, c3 =

4p3 − 4p1 p2 + p3
1

8
, c4 =

8p4 − 8p1 p3 − 4p2
2 + 6p2

1 p2 − p4
1

16
. (5)

Consider the functional Ψ(µ, ν) = |c3 + µc1c2 + νc3
1| for w ∈ B and µ, ν ∈ R.

Lemma 1. If w ∈ B [20] (p. 128 Lemma 2), then for any real numbers µ and ν, we have:

|Ψ(µ, ν)| ≤



1, (µ, ν) ∈ Ω1 ∪Ω2 ∪ {(2, 1)};

|ν|, (µ, ν) ∈
7⋃

k=3
Ωk;

2
3 (|µ|+ 1)

(
|µ|+1

3(|µ|+ν+1)

)1/2
, (µ, ν) ∈ Ω8 ∪Ω9;

1
3 ν
(

µ2−4
µ2−4ν

) (
µ2−4

3(ν−1)

)1/2
, (µ, ν) ∈ Ω10 ∪Ω11 − {(2, 1)};

2
3 (|µ| − 1)

(
|µ|−1

3(|µ|−ν−1)

)1/2
, (µ, ν) ∈ Ω12.

Here, the symbols Ωk’s are defined as follows:

Ω1 :=
{
(µ, ν) ∈ R2 : |µ| ≤ 1/2, |ν| ≤ 1

}
,

Ω2 :=
{
(µ, ν) ∈ R2 :

1
2
≤ |µ| ≤ 2,

4
27

(|µ|+ 1)3 − (|µ|+ 1) ≤ ν ≤ 1
}

,

Ω3 :=
{
(µ, ν) ∈ R2 : |µ| ≤ 1

2
, ν ≤ −1

}
, Ω4 :=

{
(µ, ν) ∈ R2 : |µ| ≥ 1/2, ν ≤ −2

3
(|µ|+ 1)

}
,

Ω5 :=
{
(µ, ν) ∈ R2 : |µ| ≤ 2, ν ≥ 1

}
, Ω6 :=

{
(µ, ν) ∈ R2 : 2 ≤ |µ| ≤ 4, ν ≥ 1

12
(µ2 + 8)

}
,

Ω7 :=
{
(µ, ν) ∈ R2 : |µ| ≥ 4, ν ≥ 2

3
(|µ| − 1)

}
,

Ω8 :=
{
(µ, ν) ∈ R2 :

1
2
≤ |µ| ≤ 2, −2

3
(|µ|+ 1) ≤ ν ≤ 4

27
(|µ|+ 1)3 − (|µ|+ 1)

}
,

Ω9 :=
{
(µ, ν) ∈ R2 : |µ| ≥ 2, −2

3
(|µ|+ 1) ≤ ν ≤ 2|µ|(|µ|+ 1)

µ2 + 2|µ|+ 4

}
,

Ω10 :=
{
(µ, ν) ∈ R2 : 2 ≤ |µ| ≤ 4,

2|µ|(|µ|+ 1)
µ2 + 2|µ|+ 4

≤ ν ≤ 1
12

(µ2 + 8)
}

,

Ω11 :=
{
(µ, ν) ∈ R2 : |µ| ≥ 4,

2|µ|(|µ|+ 1)
µ2 + 2|µ|+ 4

≤ ν ≤ 2|µ|(|µ| − 1)
µ2 − 2|µ|+ 4

}
,

Ω12 :=
{
(µ, ν) ∈ R2 : |µ| ≥ 4,

2|µ|(|µ| − 1)
µ2 − 2|µ|+ 4

≤ ν ≤ 2
3
(|µ| − 1)

}
.

The extremal functions, up to rotations, are of the form:

w1(z) = z3, w2(z) = z, w3(z) =
z(t1 − z)
1− t1z

, w4(z) =
z(t2 + z)
1 + t2z

and w5(z) = c1z + c2z2 + c3z3 + · · · , where the parameters t1, t2 and the coefficients ci are given by:

t1 =

(
|µ|+ 1

3(|µ|+ ν + 1)

)1/2

, t2 =

(
|µ| − 1

3(|µ| − ν− 1)

)1/2

, c1 =

(
2ν(µ2 + 2)− 3µ2

3(ν− 1)(µ2 − 4ν)

)1/2

,
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c2 = (1− c2
1)e

iθ0 , c3 = −c1c2eiθ0 , θ0 = ± arccos

[
µ

2

(
ν(µ2 + 8)− 2(µ2 + 2)

2ν(µ2 + 2)− 3µ2

)1/2]
.

Lemma 2. If w ∈ B [21](see also, [22]), then for any complex numbers τ, we have:

|c2 − τc2
1| ≤ max {1; |τ|} .

The result is sharp for the functions w(z) = z or w(z) = z2.

Lemma 3. Let α̂, β̂, γ̂ and â satisfy the inequalities [23] (p. 506 Lemma 2.1), 0 < α̂ < 1, 0 < â < 1 and:

8â(1− â)[(α̂β̂− 2γ̂)2 + (α̂(â + α̂)− β̂)2] + α̂(1− α̂)(β̂− 2âα̂)2 ≤ 4âα̂2(1− α̂)2(1− â). (6)

If p(z) = 1 + p1z + p2z2 + p3z3 + · · · ∈ P , then:

|γ̂p4
1 + âp2

2 + 2α̂p1 p3 − (3/2)β̂p2
1 p2 − p4| ≤ 2.

2. Main Results

The following theorem gives the sharp bound on the first three consecutive higher order
Schwarzian derivatives for Janowski convex functions. In fact, Theorem 1 is a generalization of
the result in [8] (p. 8 Theorem 1 ) due to Dorff and Szynal.

Theorem 1. Let f ∈ K[A, B]. Then, the following implications hold:

1. If −1 ≤ B < A ≤ 1, then |S3| ≤ (A− B).

2. (a) If either of the set of conditions:
|3A + B| ≤ 1

or 1 ≤ |3A + B| ≤ 4 and:

4
27

(∣∣∣∣3A + B
2

∣∣∣∣+ 1
)3
−
(∣∣∣∣3A + B

2

∣∣∣∣+ 1
)
≤ A(A + B)

2
≤ 1

hold, then |S4| ≤ 2(A− B).

(b) If 1 ≤ |3A + B| ≤ 4 and:

−2
3

(∣∣∣∣3A + B
2

∣∣∣∣+ 1
)
≤ A(A + B)

2
≤ 4

27

(∣∣∣∣3A + B
2

∣∣∣∣+ 1
)3
−
(∣∣∣∣3A + B

2

∣∣∣∣+ 1
)

hold, then:

|S4| ≤
4(A− B)

3

(∣∣∣∣3A + B
2

∣∣∣∣+ 1
)

∣∣∣ 3A+B
2

∣∣∣+ 1

3
(∣∣∣ 3A+B

2

∣∣∣+ A(A+B)
2 + 1

)
1/2

.

3. If −1 < B < A < 1 and:(
A2 − 2A + 2

)
(A− 1)2(A− B)2(A + B− 2)(A + B + 2)

− 36
(

A2 − 1
)2

(A + B− 2)(A + B) + 24(A + 1)(A− 1)2(A− B) ≥ 0 (7)

hold, then |S5| ≤ 6(A− B).
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All estimates are sharp.

Proof. Let f ∈ K[A, B]. For such a function f , by definition, we can write:

1 +
z f ′′(z)
f ′(z)

=
1 + Aw(z)
1 + Bw(z)

, (8)

where w(z) = c1z + c2z2 + c3z3 + · · · ∈ B. Comparing the coefficients of the like power terms in (8),
we have:

a2 =
1
2
(A− B)c1, a3 =

1
6
(A− B)

[
(A− 2B)c2

1 + c2

]
, (9)

a4 =
1
24

(A− B)
[
(A2 − 5AB + 6B2)c3

1 + (3A− 7B)c1c2 + 2c3

]
(10)

and:

a5 =
1

120
(A− B)[(A3 − 24B3 − 9A2B + 26B2 A)c4

1 + 2(3A2 − 17AB + 23B2)c2
1c2

+ 3(A− 3B)c2
2 + 4(2A− 5B)c1c3 + 6c4]. (11)

(1) From (9), we have:

S3 = 6(a3 − a2
2)

= (A− B)
[

c2 −
A + B

2
c2

1

]
. (12)

Now, an application of Lemma 2 in (12) gives the desired estimate on |S3|. The function for which
equality holds is given by (8) with the choice w(z) = z2.

(2) Next, we consider:

S4 = 24(a4 − 3a2a3 + 2a3
2)

= 2(A− B)
[
c3 + µc1c2 + νc3

1

]
= 2(A− B)Υ(µ, ν), (13)

where Υ(µ, ν) := c3 + µc1c2 + νc3
1 with µ := −(3A + B)/2 and ν := A(A + B)/2.

Assume that Ωi’s are as defined in Lemma 1 with µ and ν as given above. We observe that
ν = A(A+ B)/2 ≥ −1 as AB ≥ −2− A2, and so, (µ, ν) /∈ Ω3. Furthermore, |µ| = | − (3A+ B)/2| < 2
because −4 < 3A + B < 4. Therefore, we can conclude that (µ, ν) /∈ Ωi (i = 6, 7, 9, 10, 11, 12).
Moreover, ν < 1 as A2 + AB < 2. This reveals that (µ, ν) /∈ Ω5. We now claim that (µ, ν) /∈ Ω4. For
this, we first assume that µ ≤ 0. Then, |µ| ≥ 1/2 gives 3A + B ≥ 1. Furthermore, the condition
ν ≤ (−2/3)(|µ| + 1) holds if 3A(A + B)/2 ≤ −2(3A + B + 2) or equivalently if −3A(A + B) ≥
2(3A + B + 2) = 2(3A + B) + 4 ≥ 6, that is if −AB ≥ 2 + A2. Clearly, this is false. Similarly, in the
case when µ ≤ 0, the condition ν ≤ (−2/3)(|µ|+ 1) does not hold. Thus, we conclude that our claim
is true. Further, if |3A + B| ≤ 1, then (µ, ν) ∈ Ω1. Furthermore, if 1 ≤ |3A + B| ≤ 4 and:

4
27

(∣∣∣∣−3A + B
2

∣∣∣∣+ 1
)3
−
(∣∣∣∣−3A + B

2

∣∣∣∣+ 1
)
≤ A(A + B)

2
≤ 1,

then (µ, ν) ∈ Ω2. In view of Lemma 1, we see that if (µ, ν) ∈ Ω1 ∪Ω2, then |Υ(µ, ν)| ≤ 1, and hence,
|S4| ≤ 2(A− B). The function for which equality holds is given by (8) with the choice w(z) = z3.



Symmetry 2018, 10, 348 7 of 13

Now, if 1 ≤ |3A + B| ≤ 4 and:

−2
3

(∣∣∣∣3A + B
2

∣∣∣∣+ 1
)
≤ A(A + B)

2
≤ 4

27

(∣∣∣∣3A + B
2

∣∣∣∣+ 1
)3
−
(∣∣∣∣3A + B

2

∣∣∣∣+ 1
)

,

then (µ, ν) ∈ Ω8. Now, an application of Lemma 1, in this case, gives:

|Υ(µ, ν)| ≤ 2
3
(|µ|+ 1)

(
|µ|+ 1

3(|µ|+ ν + 1)

)1/2

=
2
3

(∣∣∣∣3A + B
2

∣∣∣∣+ 1
)

∣∣∣ 3A+B
2

∣∣∣+ 1

3
(∣∣∣ 3A+B

2

∣∣∣+ A(A+B)
2 + 1

)
1/2

.

This inequality together with (13) gives the desired bound on |S4|. To show the sharpness, we consider
the function f defined by (8) with the choice of the Schwarz function:

w(z) =
z(t1 − z)
1− t1z

,

where:

t1 :=


∣∣∣ 3A+B

2

∣∣∣+ 1

3
(∣∣∣ 3A+B

2

∣∣∣+ A(A+B)
2 + 1

)
1/2

.

For this Schwarz function w, we see that c1 = t1, c2 = t2
1 − 1, c3 = t3

1 − t1 and:

S4 = 2(A− B)
[

c3 +

∣∣∣∣3A + B
2

∣∣∣∣ c1c2 +
A(A + B)

2
c3

1

]
= 2(A− B)

[
t3
1 − t1 +

∣∣∣∣3A + B
2

∣∣∣∣ t1(t2
1 − 1) +

A(A + B)
2

t3
1

]
= 2(A− B)

[
t3
1

(∣∣∣∣3A + B
2

∣∣∣∣+ A(A + B)
2

+ 1
)
− t1

(∣∣∣∣3A + B
2

∣∣∣∣+ 1
)]

=
4(A− B)

3

(∣∣∣∣3A + B
2

∣∣∣∣+ 1
)

∣∣∣ 3A+B
2

∣∣∣+ 1

3
(∣∣∣ 3A+B

2

∣∣∣+ A(A+B)
2 + 1

)
1/2

.

This confirms the sharpness of the result.
(3) Now, it remains to find the estimate on |S5|. Using (5)–(11), we get:

S5 = 24(5a5 − 20a2a4 − 9a2
3 + 48a2

2a3 − 24a4
2)

= 3(A− B)
[
γ̂p4

1 + âp2
2 + 2α̂p1 p3 − (3/2)β̂p2

1 p2 − p4

]
= 3(A− B)Ψ(γ̂, â, α̂, β̂), (14)

where Ψ(γ̂, â, α̂, β̂) := γ̂p4
1 + âp2

2 + 2α̂p1 p3 − (3/2)β̂p2
1 p2 − p4 with the parameters γ̂, â, α̂ and β̂ given

by:

γ̂ :=
(A− 1)2(2− A− B)

16
, â :=

2− A− B
4

, α̂ :=
1− A

2
, β̂ :=

(1− A)(3− B− 2A)

6
.

Since the case A = 1, B = −1 was considered by Dorff and Szynal [8], we assume that A and B are
constrained as −1 < B < A < 1. Under these conditions, it is a simple matter to verify that 0 < α̂ < 1
and 0 < â < 1. Moreover, the condition (6) holds if and only if:



Symmetry 2018, 10, 348 8 of 13

(A− 1)2 (A2 − 2A + 2
)
(A− B)2(A + B− 2)(A + B + 2)

1152
+

1
48

(A− 1)2(A + 1)(A− B)

≥ 1
32

(
A2 − 1

)2
(A + B− 2)(A + B)

or equivalently, if and only if (7) holds. Therefore, in view of Lemma 3, we conclude that if the above
condition holds, then we must have |Ψ(γ̂, â, α̂, β̂)| ≤ 2, and thus, from (14), the result follows at once.
Equality holds in the case of the function f defined by (8) with the choice of the Schwarz function
w(z) = z4.

Remark 1. In particular, when A = 1 and B = −1, Theorem 1 reduces to the result in [8] (p. 8 Theorem 1 )
due to Dorff and Szynal.

Example 1. Setting A = 1/2 and B = −1 in Equation (3), we get the function f1 ∈ K defined by:

f1(z) =
2
(
1−
√

1− z
)

√
1− z

= z +
3z2

4
+

5z3

8
+

35z4

64
+

63z5

128
+ · · · .

Here, we see that, B = −1 < 1/2 = A, a2 = 3/4, a3 = 5/8, a4 = 35/64 and |S3| = 6|a3 − a2
2| = 3/8 <

3/2 = A− B. This supports Part (1) of Theorem 1. Now, for the function f1, we see that 3A + B = 1/2 < 1
and |S4| = 24|a4 − 3a2a3 + 2a3

2| = 3/8 < 2(A− B) = 3. This supports Part 2(a) of Theorem 1.

Example 2. Let A = 1/2 and B = −1 in Equation (3). Then, we get the function f2 ∈ K defined by:

f2(z) = ez − 1 = z +
z2

2
+

z3

6
+

z4

24
+

z5

120
+ · · · .

Here, 1 < |3A + B| = 3 < 4, a2 = 1/2, a3 = 1/6, a4 = 1/24 and |S4| = 24|a4 − 3a2a3 + 2a3
2| = 1 <

2(A− B) = 2. This supports Part 2(b) of Theorem 1. For an example satisfying Part (3) of Theorem 1, we set
A = 3/4 and B = 1/4 in Equation (3), and thus, we get the function f3 defined by:

f3(z) = z +
z2

4
+

z3

48
.

Here, a2 = 1/4, a3 = 1/48, a4 = 0, a5 = 0 and |S5| = 24|5a5 − 20a2a4 − 9a2
3 + 48a2

2a3 − 24a4
2| = 27/32 <

3 = 6(A− B).

Theorem 2. Let f ∈ S∗[A, B]. Then, the following inequalities hold:

1. If −1 ≤ B < A ≤ 1, then |S3| ≤ 3(A− B).
2. (a) If A and B satisfy either:

|B− 3A| ≤ 1/2 and |A(2A− B)| ≤ 1

or:
1/2 ≤ |B− 3A| ≤ 1 and

4
27

(|B− 3A|+ 1)3 − (|B− 3A|+ 1) ≤ A(2A− B) ≤ 1,

then |S4| ≤ 8(A− B).

(b) Let us denote:

T(A, B) := −2
3
(|B− 3A|+ 1).



Symmetry 2018, 10, 348 9 of 13

If either of the following sets of conditions:

1/2 ≤ |B− 3A| ≤ 2, T(A, B) ≤ A(2A− B) ≤ 4
27

(|B− 3A|+ 1)3 − (|B− 3A|+ 1),

or:

|B− 3A| ≥ 2, T(A, B) ≤ A(2A− B) ≤ 2|B− 3A|(|B− 3A|+ 1)
(B− 3A)2 + |B− 3A|+ 4

hold, then:

|S4| ≤
16(A− B)(|B− 3A|+ 1)3/2

3(3(|B− 3A|+ A(2A− B) + 1))1/2 .

(c) Moreover,

|S4| ≤
{

8(A− B)|A(2A− B)|, 2 ≤ |B− 3A| ≤ 4, A(2A− B) ≥ ((B− 3A)2 + 8)/12;
48, A = 1, B = −1.

3. If A and B satisfy the conditions 0 < (A + 1)
[
43A2 − 43A(B− 1) + 10B2 − 23B + 10

]
< 80, 0 <

13A− 3B + 10 < 20 and:

450(13A− 3B− 10)(13A− 3B + 10)
(

4A2 − 4AB + B2 − 1
)2
− 50(2A− B− 1)(2A− B + 1)(

8A2 + A(7− 9B) + (B− 7)B
)2
− (13A− 3B− 10)(13A− 3B+ 10)(1849A4− 172A3(23B− 20)

+ A2
(

2976B2 − 5916B + 2878
)
− 4A

(
230B3 − 798B2 + 928B− 231

)
+ 100B4 − 520B3 + 1177B2 − 630B + 98)(A− B)2 ≤ 0, (15)

then |S5| ≤ 15(A− B).

All estimates are sharp.

Proof. Since f ∈ S∗[A, B], it follows that there exists a Schwarz function w(z) = c1z+ c2z2 + c3z3 + · · ·
such that:

z f ′(z)
f (z)

=
1 + Aw(z)
1 + Bw(z)

. (16)

Comparing the coefficients on both sides of (16), we have:

a2 = (A− B)c1, a3 =
1
2
(A− B)

(
Ac2

1 − 2Bc2
1 + c2

)
, (17)

a4 =
1
6
(A− B)

[
(A− 2B)(A− 3B)c3

1 + (3A− 7B)c1c2 + 2c3

]
(18)

and:

a5 =
1
24

(A− B)[(A3 − 9A2B + 26AB2 − 24B3)c4
1 +

(
6A2 − 34AB + 46B2

)
c2

1c2

+ 4 (2A− 5B) c1c3 + 3 (A− 3B) c2
2 + 6c4]. (19)

As in the proof of Theorem 1, using (17)–(19), we get:

S3 = −3(A− B)
(

Ac2
1 − c2

)
, S4 = 8(A− B)

[
A(2A− B)c3

1 + (B− 3A) c1c2 + c3

]
(20)
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and:

S5 = − 3
16

(A− B)[(A + 1)
(

43A2 − 43A(B− 1) + 10B2 − 23B + 10
)

p4
1

− 4
(

43A2 + A(53− 33B) + 5B2 − 23B + 15
)

p2
1 p2 + 80(2A− B + 1)p1 p3

+ 4(13A− 3B + 10)p2
2 − 80p4]. (21)

(1) From (20), we have:

|S3| = 3(A− B)
∣∣∣Ac2

1 − c2

∣∣∣
≤ 3(A− B)max {1; |A|}
= 3(A− B).

This gives the required estimate on |S3|. The extremal function in this case is given by (16) with the
function w(z) = z2.

(2) Again, from (20), we get:

|S4| = 8(A− B)
∣∣∣A(2A− B)c3

1 + (B− 3A)c1c2 + c3

∣∣∣
≤ 8(A− B)

∣∣∣c3 + µc1c2 + νc3
1

∣∣∣ , (22)

where µ := B− 3A and ν := A(2A− B). Assume that Ω′is are as defined in Lemma 1 with the setting
µ and ν mentioned above. In particular, |µ| 6> 4 and |µ| = 4 if and only if A = 1 and B = −1. It can be
easily verified that for A = 1 and B = −1, (µ, ν) /∈ Ω11 ∪Ω12. Now, in view of Lemma 1, from (22),
we see that if A and B satisfy either:

|B− 3A| ≤ 1
2

and |A(2A− B)| ≤ 1

or:
1
2
≤ |B− 3A| ≤ 1 and

4
27

(|B− 3A|+ 1)3 − (|B− 3A|+ 1) ≤ A(2A− B) ≤ 1,

then |S4| ≤ 8(A− B). The extremal function in this case is given by (16) with the choice of the function
w(z) = z3.

Further, since ν > −1, it follows that (µ, ν) /∈ Ω3. Moreover, a computation reveals that (µ, ν) /∈
Ω4 ∪Ω5. Furthermore, it can be verified that (µ, ν) ∈ Ω7 if and only if A = 1 and B = −1. Now, an
application of Lemma 1 gives:

|S4| ≤
{

8(A− B)|A(2A− B)|, 2 ≤ |B− 3A| ≤ 4, A(2A− B) ≥ ((B− 3A)2 + 8)/12;
48, A = 1, B = −1.

The extremal function in this case is given by (16) with the choice of the function w(z) = z.
Similarly, we can prove that if either of the sets of following conditions:

1/2 ≤ |B− 3A| ≤ 2, −2
3
(|B− 3A|+ 1) ≤ A(2A− B) ≤ 4

27
(|B− 3A|+ 1)3 − (|B− 3A|+ 1),

or:

|B− 3A| ≥ 2, −2
3
(|B− 3A|+ 1) ≤ A(2A− B) ≤ 2|B− 3A|(|B− 3A|+ 1)

(B− 3A)2 + |B− 3A|+ 4

hold, then

|S4| ≤
16(A− B)(|B− 3A|+ 1)3/2

3(3(|B− 3A|+ A(2A− B) + 1))1/2 .
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To show the sharpness, we consider the function f defined by (16) with the choice of the Schwarz
function w(z) = z(t2 − z)/(1− t2z), where:

t2 :=
(

|B− 3A|+ 1
3 (|B− 3A|+ A(2A− B) + 1)

)1/2
.

For the Schwarz function w, given above, we see that c1 = t2, c2 = t2
2 − 1, c3 = t3

2 − t2 and:

S4 = 8(A− B)
(

A(2A− B)c3
1 + |B− 3A|c1c2 + c3

)
= 8(A− B)

(
A(2A− B)t3 + |B− 3A|t2(t2

2 − 1) + t3
2 − t2

)
= 8(A− B)

(
[A(2A− B) + |B− 3A|+ 1]t3

2 − (|B− 3A|+ 1)t2

)
= −16(A− B)

3
(|B− 3A|+ 1)3/2

(3(|B− 3A|+ A(2A− B) + 1))1/2 .

This confirms the sharpness of the result.
(3) Finally, it remains to find the estimate on |S5|. The expression for S5 given in (21) can be

written as:
S5 = −15

2
(A− B)[γ̂p4

1 + âp2
2 + 2α̂p1 p3 − (3/2)β̂p2

1 p2 − p4], (23)

where:

γ̂ := (A + 1)
(

43A2 − 43A(B− 1) + 10B2 − 23B + 10
)

/80, â := (13A− 3B + 10)/20

α̂ := (2A− B + 1)/2, β̂ :=
(

43A2 + A(53− 33B) + 5B2 − 23B + 15
)

/30.

In order to apply Lemma 3, we assume that the parameters A and B satisfy the conditions 0 <

(A + 1)
[
43A2 − 43A(B− 1) + 10B2 − 23B + 10

]
< 80 and 0 < (13A− 3B + 10) < 20 together with

the condition:

(13A− 3B− 10)(13A− 3B + 10)(A− B)2(1849A4 − 172A3(23B− 20)

+ A2(2976B2 − 5916B + 2878)− 4A(230B3 − 798B2 + 928B− 231)

+ 100B4 − 520B3 + 1177B2 − 630B + 98)

+ 50(2A− B− 1)(2A− B + 1)
(

8A2 + A(7− 9B) + (B− 7)B
)2

≥ 450(13A− 3B− 10)(13A− 3B + 10)
(

4A2 − 4AB + B2 − 1
)2

,

or equivalently, if (15) holds.
Thus, all conditions of Lemma 3 are fulfilled. Therefore, we have |S5| ≤ 15(A− B). The function

f defined by (16) with the choice of the Schwarz function w(z) = z4 shows that the result is sharp.
This completes the proof.

Example 3. Let A = 1/2 and B = −1. Then, from Equation (2), we get the function f4 defined by:

f4(z) =
z

(1− z)3/2 = z +
3z2

2
+

15z3

8
+

35z4

16
+

315z5

128
+

693z6

256
+ · · · .

The function f4 ∈ S∗ and satisfies the assertion in Part (1) of Theorem 2, as for this function, we have
a2 = 3/2, a3 = 15/8, a4 = 35/16 and |S3| = 6|a3 − a2

2| = 9/4 < 9/2 = 3(A− B).
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Example 4. (i) Let A = 1/2 and B = −1 in Equation (2). Then, we get the function f5 ∈ S∗ defined by:

f5(z) = zez/4 = z +
z2

4
+

z3

32
+

z4

384
+

z5

6144
+ · · · .

Here, we have |B− 3A| = 3/4 < 1/2 and |A(2A− B)| = 1/8 < 1, a2 = 1/4, a3 = 1/32, a4 = 1/384 and
|S4| = 1/4 < 2 = 8(A− B). This verifies the result asserted in Part 2(a) of Theorem 2.

(ii) Let A = 0 and B = −1. Then, we have:

T(A, B) := −2
3
(|B− 3A|+ 1) = −4

3
1/2 < |B− 3A| = 1 < 2

and
T(A, B) = −4

3
< A(2A− B) = 0 <

4
27

(|B− 3A|+ 1)3 − (|B− 3A|+ 1) = 12.

For A = 0 and B = −1, we get the function f6 from Equation (2) defined by:

f6(z) =
z

1− z
= z + z2 + z3 + z4 + z5 + · · · .

Now, a computation gives

|S4| = 0 <
32

3
√

3
=

16(A− B)(|B− 3A|+ 1)3/2

3[3(|B− 3A|+ A(2A− B) + 1)]1/2 .

This confirms the correctness of the assertion in 2(b) of Theorem 2.
(iii) For an example of a function satisfying the assertion in 2(c) of Theorem 2, we take A = 1 and B = −1

in Equation (2). Then, we get the function f7 defined by:

f7(z) =
z

(1− z)2 = z + 2z2 + 3z3 + 4z4 + · · · .

For this function, it can be verified that |S4| = 48.
(iv) For A = −1/4 and B = −1/2, computations show that 0 < 13A− 3B + 10 = 33/4 < 20:

0 < (A + 1)
[
43A2 − 43A(B− 1) + 10B2 − 23B + 10

]
=

507
64

< 80

and Inequality (15) becomes −2777538049/65536 < 0. Setting A = −1/4 and B = −1/2 in (2), we get the
function f8 defined by:

f8(z) = z +
z2

4
+

5z4

128
+

35z5

2048
+ · · · .

For this function, we see that S4 = 0 < 15/4 = 15(A− B). This verifies the assertion in Part (3) of Theorem 2.

3. Conclusion

In Theorems 1 and 2, the sharp bounds on the first three consecutive derivatives for Janowski
convex and star-like functions are investigated. Examples 1 and 2 support the conclusions of Theorem 1,
whereas Examples 3 and 4 validate the assertions in Theorem 2. The results obtained in this paper
generalize several existing results in this direction, and they are pointed out. It would be interesting
to investigate the estimation on other higher order Schwarzian derivatives and their applications to
study the properties of a non-linear dynamical system.
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