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Abstract: The concept of a commutative generalized neutrosophic ideal in a BCK-algebra is proposed,
and related properties are proved. Characterizations of a commutative generalized neutrosophic
ideal are considered. Also, some equivalence relations on the family of all commutative generalized
neutrosophic ideals in BCK-algebras are introduced, and some properties are investigated.
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1. Introduction

In 1965, Zadeh introduced the concept of fuzzy set in which the degree of membership is expressed
by one function (that is, truth or t). The theory of fuzzy set is applied to many fields, including fuzzy
logic algebra systems (such as pseudo-BCI-algebras by Zhang [1]). In 1986, Atanassov introduced
the concept of intuitionistic fuzzy set in which there are two functions, membership function (t) and
nonmembership function (f). In 1995, Smarandache introduced the new concept of neutrosophic
set in which there are three functions, membership function (t), nonmembership function (f) and
indeterminacy/neutrality membership function (i), that is, there are three components (t, i, f) =
(truth, indeterminacy, falsehood) and they are independent components.

Neutrosophic algebraic structures in BCK/BCI-algebras are discussed in the papers [2–10].
Moreover, Zhang et al. studied totally dependent-neutrosophic sets, neutrosophic duplet semi-group
and cancellable neutrosophic triplet groups (see [11,12]). Song et al. proposed the notion of generalized
neutrosophic set and applied it to BCK/BCI-algebras.

In this paper, we propose the notion of a commutative generalized neutrosophic ideal in a
BCK-algebra, and investigate related properties. We consider characterizations of a commutative
generalized neutrosophic ideal. Using a collection of commutative ideals in BCK-algebras, we obtain
a commutative generalized neutrosophic ideal. We also establish some equivalence relations on the
family of all commutative generalized neutrosophic ideals in BCK-algebras, and discuss related basic
properties of these ideals.

2. Preliminaries

A set X with a constant element 0 and a binary operation ∗ is called a BCI-algebra, if it satisfies
(∀x, y, z ∈ X):
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(I) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(II) (x ∗ (x ∗ y)) ∗ y = 0,
(III) x ∗ x = 0,
(IV) x ∗ y = 0, y ∗ x = 0 ⇒ x = y.

A BCI-algebra X is called a BCK-algebra, if it satisfies (∀x ∈ X):

(V) 0 ∗ x = 0,

For any BCK/BCI-algebra X, the following conditions hold (∀x, y, z ∈ X):

x ∗ 0 = x, (1)

x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x, (2)

(x ∗ y) ∗ z = (x ∗ z) ∗ y, (3)

(x ∗ z) ∗ (y ∗ z) ≤ x ∗ y (4)

where the relation ≤ is defined by: x ≤ y ⇐⇒ x ∗ y = 0. If the following assertion is valid for a
BCK-algebra X, ∀x, y ∈ X,

x ∗ (x ∗ y) = y ∗ (y ∗ x). (5)

then X is called a commutative BCK-algebra.
Assume I is a subset of a BCK/BCI-algebra X. If the following conditions are valid, then we call

I is an ideal of X:

0 ∈ I, (6)

(∀x ∈ X) (∀y ∈ I) (x ∗ y ∈ I ⇒ x ∈ I) . (7)

A subset I of a BCK-algebra X is called a commutative ideal of X if it satisfies (6) and

(∀x, y, z ∈ X) ((x ∗ y) ∗ z ∈ I, z ∈ I ⇒ x ∗ (y ∗ (y ∗ x)) ∈ I) . (8)

Recall that any commutative ideal is an ideal, but the inverse is not true in general (see [7]).

Lemma 1 ([7]). Let I be an ideal of a BCK-algebra X. Then I is commutative ideal of X if and only if it satisfies
the following condition for all x, y in X:

x ∗ y ∈ I ⇒ x ∗ (y ∗ (y ∗ x)) ∈ I. (9)

For further information regarding BCK/BCI-algebras, please see the books [7,13].

Let X be a nonempty set. A fuzzy set in X is a function µ : X → [0, 1], and the complement of
µ, denoted by µc, is defined by µc(x) = 1− µ(x), ∀x ∈ X. A fuzzy set µ in a BCK/BCI-algebra X is
called a fuzzy ideal of X if

(∀x ∈ X)(µ(0) ≥ µ(x)), (10)

(∀x, y ∈ X)(µ(x) ≥ min{µ(x ∗ y), µ(y))}. (11)

Assume that X is a non-empty set. A neutrosophic set (NS) in X (see [14]) is a structure of
the form:

A := {〈x; AT(x), AI(x), AF(x)〉 | x ∈ X}
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where AT : X → [0, 1] , AI : X → [0, 1] , and AF : X → [0, 1] . We shall use the symbol A = (AT , AI , AF)

for the neutrosophic set

A := {〈x; AT(x), AI(x), AF(x)〉 | x ∈ X}.

A generalized neutrosophic set (GNS) in a non-empty set X is a structure of the form (see [15]):

A := {〈x; AT(x), AIT(x), AIF(x), AF(x)〉 | x ∈ X, AIT(x) + AIF(x) ≤ 1}

where AT : X → [0, 1], AF : X → [0, 1] , AIT : X → [0, 1] , and AIF : X → [0, 1] .
We shall use the symbol A = (AT , AIT , AIF, AF) for the generalized neutrosophic set

A := {〈x; AT(x), AIT(x), AIF(x), AF(x)〉 | x ∈ X, AIT(x) + AIF(x) ≤ 1}.

Note that, for every GNS A = (AT , AIT , AIF, AF) in X, we have (for all x in X)

(∀x ∈ X) (0 ≤ AT(x) + AIT(x) + AIF(x) + AF(x) ≤ 3) .

If A = (AT , AIT , AIF, AF) is a GNS in X, then �A = (AT , AIT , Ac
IT , Ac

T) and ♦A = (Ac
F, Ac

IF,
AIF, AF) are also GNSs in X.

Given a GNS A = (AT , AIT , AIF, AF) in a BCK/BCI-algebra X and αT , αIT , βF, β IF ∈ [0, 1],
we define four sets as follows:

UA(T, αT) := {x ∈ X | AT(x) ≥ αT},
UA(IT, αIT) := {x ∈ X | AIT(x) ≥ αIT},
LA(F, βF) := {x ∈ X | AF(x) ≤ βF},
LA(IF, β IF) := {x ∈ X | AIF(x) ≤ β IF}.

A GNS A = (AT , AIT , AIF, AF) in a BCK/BCI-algebra X is called a generalized neutrosophic
ideal of X (see [15]) if

(∀x ∈ X)

(
AT(0) ≥ AT(x), AIT(0) ≥ AIT(x)

AIF(0) ≤ AIF(x), AF(0) ≤ AF(x)

)
, (12)

(∀x, y ∈ X)


AT(x) ≥ min{AT(x ∗ y), AT(y)}
AIT(x) ≥ min{AIT(x ∗ y), AIT(y)}
AIF(x) ≤ max{AIF(x ∗ y), AIF(y)}
AF(x) ≤ max{AF(x ∗ y), AF(y)}

 . (13)

3. Commutative Generalized Neutrosophic Ideals

Unless specified, X will always represent a BCK-algebra in the following discussion.

Definition 1. A GNS A = (AT , AIT , AIF, AF) in X is called a commutative generalized neutrosophic ideal
of X if it satisfies the condition (12) and

(∀x, y, z ∈ X)


AT(x ∗ (y ∗ (y ∗ x))) ≥ min{AT((x ∗ y) ∗ z), AT(z)}
AIT(x ∗ (y ∗ (y ∗ x))) ≥ min{AIT((x ∗ y) ∗ z), AIT(z)}
AIF(x ∗ (y ∗ (y ∗ x))) ≤ max{AIF((x ∗ y) ∗ z), AIF(z)}
AF(x ∗ (y ∗ (y ∗ x))) ≤ max{AF((x ∗ y) ∗ z), AF(z)}

 . (14)

Example 1. Denote X = {0, a, b, c}. The binary operation ∗ on X is defined in Table 1.
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Table 1. The operation “∗”.

∗ 0 a b c

0 0 0 0 0
a a 0 0 a
b b a 0 b
c c c c 0

We can verify that (X, ∗, 0) is a BCK-algebra (see [7]). Define a GNS A = (AT , AIT , AIF, AF) in X by
Table 2.

Table 2. GNS A = (AT , AIT , AIF, AF).

X AT(x) AIT(x) AIF(x) AF(x)

0 0.7 0.6 0.1 0.3
a 0.5 0.5 0.2 0.4
b 0.3 0.2 0.4 0.6
c 0.3 0.2 0.4 0.6

Then A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic ideal of X.

Theorem 1. Every commutative generalized neutrosophic ideal is a generalized neutrosophic ideal.

Proof. Assume that A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic ideal of X.
∀x, z ∈ X, we have

AT(x) = AT(x ∗ (0 ∗ (0 ∗ x))) ≥ min{AT((x ∗ 0) ∗ z), AT(z)} = min{AT(x ∗ z), AT(z)},

AIT(x) = AIT(x ∗ (0 ∗ (0 ∗ x))) ≥ min{AIT((x ∗ 0) ∗ z), AIT(z)} = min{AIT(x ∗ z), AIT(z)},

AIF(x) = AIF(x ∗ (0 ∗ (0 ∗ x))) ≤ max{AIF((x ∗ 0) ∗ z), AIF(z)} = max{AIF(x ∗ z), AIF(z)},

and

AF(x) = AF(x ∗ (0 ∗ (0 ∗ x))) ≤ max{AF((x ∗ 0) ∗ z), AF(z)} = max{AF(x ∗ z), AF(z)}.

Therefore A = (AT , AIT , AIF, AF) is a generalized neutrosophic ideal.

The following example shows that the inverse of Theorem 1 is not true.

Example 2. Let X = {0, 1, 2, 3, 4} be a set with the binary operation ∗ which is defined in Table 3.

Table 3. The operation “∗”.

∗ 0 1 2 3 4

0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 3 3 0 0
4 4 4 4 3 0

We can verify that (X, ∗, 0) is a BCK-algebra (see [7]). We define a GNS A = (AT , AIT , AIF, AF) in X
by Table 4.
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Table 4. GNS A = (AT , AIT , AIF, AF).

X AT(x) AIT(x) AIF(x) AF(x)

0 0.7 0.6 0.1 0.3
1 0.5 0.4 0.2 0.6
2 0.3 0.5 0.4 0.4
3 0.3 0.4 0.4 0.6
4 0.3 0.4 0.4 0.6

It is routine to verify that A = (AT , AIT , AIF, AF) is a generalized neutrosophic ideal of X, but A is not
a commutative generalized neutrosophic ideal of X since

AT(2 ∗ (3 ∗ (3 ∗ 2))) = AT(2) = 0.3 � min{AT((2 ∗ 3) ∗ 0), AT(0)}

and/or

AIF(2 ∗ (3 ∗ (3 ∗ 2))) = AIF(2) = 0.4 � max{AIF((2 ∗ 3) ∗ 0), AIF(0)}.

Theorem 2. Suppose that A = (AT , AIT , AIF, AF) is a generalized neutrosophic ideal of X. Then A = (AT ,
AIT , AIF, AF) is commutative if and only if it satisfies the following condition.

(∀x, y ∈ X)


AT(x ∗ y) ≤ AT(x ∗ (y ∗ (y ∗ x)))

AIT(x ∗ y) ≤ AIT(x ∗ (y ∗ (y ∗ x)))

AIF(x ∗ y) ≥ AIF(x ∗ (y ∗ (y ∗ x)))

AF(x ∗ y) ≥ AF(x ∗ (y ∗ (y ∗ x)))

 . (15)

Proof. Assume that A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic ideal of X.
Taking z = 0 in (14) and using (12) and (1) induces (15).

Conversely, let A = (AT , AIT , AIF, AF) be a generalized neutrosophic ideal of X satisfying the
condition (15). Then

AT(x ∗ (y ∗ (y ∗ x))) ≥ AT(x ∗ y) ≥ min{AT((x ∗ y) ∗ z), AT(z)},

AIT(x ∗ (y ∗ (y ∗ x))) ≥ AIT(x ∗ y) ≥ min{AIT((x ∗ y) ∗ z), AIT(z)},

AIF(x ∗ (y ∗ (y ∗ x))) ≤ AIF(x ∗ y) ≤ max{AIF((x ∗ y) ∗ z), AIF(z)}

and

AF(x ∗ (y ∗ (y ∗ x))) ≤ AF(x ∗ y) ≤ max{AF((x ∗ y) ∗ z), AF(z)}

for all x, y, z ∈ X. Therefore A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic ideal
of X.

Lemma 2 ([15]). Any generalized neutrosophic ideal A = (AT , AIT , AIF, AF) of X satisfies:

(∀x, y, z ∈ X)

x ∗ y ≤ z ⇒


AT(x) ≥ min{AT(y), AT(z)}
AIT(x) ≥ min{AIT(y), AIT(z)}
AIF(x) ≤ max{AIF(y), AIF(z)}
AF(x) ≤ max{AF(y), AF(z)}

 . (16)

We provide a condition for a generalized neutrosophic ideal to be commutative.
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Theorem 3. For any commutative BCK-algebra, every generalized neutrosophic ideal is commutative.

Proof. Assume that A = (AT , AIT , AIF, AF) is a generalized neutrosophic ideal of a commutative
BCK-algebra X. Note that

((x ∗ (y ∗ (y ∗ x))) ∗ ((x ∗ y) ∗ z)) ∗ z = ((x ∗ (y ∗ (y ∗ x))) ∗ z) ∗ ((x ∗ y) ∗ z)

≤ (x ∗ (y ∗ (y ∗ x))) ∗ (x ∗ y)

= (x ∗ (x ∗ y)) ∗ (y ∗ (y ∗ x)) = 0,

thus, (x ∗ (y ∗ (y ∗ x))) ∗ ((x ∗ y) ∗ z) ≤ z, ∀x, y, z ∈ X. By Lemma 2 we get

AT(x ∗ (y ∗ (y ∗ x))) ≥ min{AT((x ∗ y) ∗ z), AT(z)},
AIT(x ∗ (y ∗ (y ∗ x))) ≥ min{AIT((x ∗ y) ∗ z), AIT(z)},
AIF(x ∗ (y ∗ (y ∗ x))) ≤ max{AIF((x ∗ y) ∗ z), AIF(z)},
AF(x ∗ (y ∗ (y ∗ x))) ≤ max{AF((x ∗ y) ∗ z), AF(z)}.

Therefore A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic ideal of X.

Lemma 3 ([15]). If a GNS A = (AT , AIT , AIF, AF) in X is a generalized neutrosophic ideal of X, then the
sets UA(T, αT), UA(IT, αIT), LA(F, βF) and LA(IF, β IF) are ideals of X for all αT , αIT , βF, β IF ∈ [0, 1]
whenever they are non-empty.

Theorem 4. If a GNS A = (AT , AIT , AIF, AF) in X is a commutative generalized neutrosophic ideal of X,
then the sets UA(T, αT), UA(IT, αIT), LA(F, βF) and LA(IF, β IF) are commutative ideals of X for all αT , αIT ,
βF, β IF ∈ [0, 1] whenever they are non-empty.

The commutative ideals UA(T, αT), UA(IT, αIT), LA(F, βF) and LA(IF, β IF) are called level
neutrosophic commutative ideals of A = (AT , AIT , AIF, AF).

Proof. Assume that A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic ideal
of X. Then A = (AT , AIT , AIF, AF) is a generalized neutrosophic ideal of X. Thus UA(T, αT),
UA(IT, αIT), LA(F, βF) and LA(IF, β IF) are ideals of X whenever they are non-empty applying
Lemma 3. Suppose that x, y ∈ X and x ∗ y ∈ UA(T, αT) ∩UA(IT, αIT). Using (15),

AT(x ∗ (y ∗ (y ∗ x))) ≥ AT(x ∗ y) ≥ αT ,

AIT(x ∗ (y ∗ (y ∗ x))) ≥ AIT(x ∗ y) ≥ αIT ,

and so x ∗ (y ∗ (y ∗ x)) ∈ UA(T, αT) and x ∗ (y ∗ (y ∗ x)) ∈ UA(IT, αIT). Suppose that a, b ∈ X and
a ∗ b ∈ LA(IF, β IF) ∩ LA(F, βF). It follows from (15) that AIF(a ∗ (b ∗ (b ∗ a))) ≤ AIF(a ∗ b) ≤ β IF and
AF(a ∗ (b ∗ (b ∗ a))) ≤ AF(a ∗ b) ≤ βF. Hence a ∗ (b ∗ (b ∗ a)) ∈ LA(IF, β IF) and a*(b*(b*a)) ∈
LA(F, βF). Therefore UA(T, αT), UA(IT, αIT), LA(F, βF) and LA(IF, β IF) are commutative ideals
of X.

Lemma 4 ([15]). Assume that A = (AT , AIT , AIF, AF) is a GNS in X and UA(T, αT), UA(IT, αIT),
LA(F, βF) and LA(IF, β IF) are ideals of X, ∀αT , αIT , βF, β IF ∈ [0, 1]. Then A = (AT , AIT , AIF, AF) is a
generalized neutrosophic ideal of X.

Theorem 5. Let A = (AT , AIT , AIF, AF) be a GNS in X such that UA(T, αT), UA(IT, αIT), LA(F, βF) and
LA(IF, β IF) are commutative ideals of X for all αT , αIT , βF, β IF ∈ [0, 1]. Then A = (AT , AIT , AIF, AF) is a
commutative generalized neutrosophic ideal of X.
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Proof. Let αT , αIT , βF, β IF ∈ [0, 1] be such that the non-empty sets UA(T, αT), UA(IT, αIT), LA(F, βF)

and LA(IF, β IF) are commutative ideals of X. Then UA(T, αT), UA(IT, αIT), LA(F, βF) and LA(IF, β IF)

are ideals of X. Hence A = (AT , AIT , AIF, AF) is a generalized neutrosophic ideal of X applying
Lemma 4. For any x, y ∈ X, let AT(x ∗ y) = αT . Then x ∗ y ∈ UA(T, αT), and so x ∗ (y ∗ (y ∗ x)) ∈
UA(T, αT) by (9). Hence AT(x ∗ (y ∗ (y ∗ x))) ≥ αT = AT(x ∗ y). Similarly, we can show that

(∀x, y ∈ X)(AIT(x ∗ (y ∗ (y ∗ x))) ≥ AIT(x ∗ y)).

For any x, y, a, b,∈ X, let AF(x ∗ y) = βF and AIF(a ∗ b) = β IF. Then x ∗ y ∈ LA(F, βF) and a ∗ b ∈
LA(IF, β IF). Using Lemma 1 we have x ∗ (y ∗ (y ∗ x)) ∈ LA(F, βF) and a ∗ (b ∗ (b ∗ a)) ∈ LA(IF, β IF).
Thus AF(x ∗ y) = βF ≥ AF(x ∗ (y ∗ (y ∗ x))) and AIF(a ∗ b) = β IF ≥ AIF((a ∗ b) ∗ b). Therefore
A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic ideal of X.

Theorem 6. Every commutative generalized neutrosophic ideal can be realized as level neutrosophic
commutative ideals of some commutative generalized neutrosophic ideal of X.

Proof. Given a commutative ideal C of X, define a GNS A = (AT , AIT , AIF, AF) as follows

AT(x) =
{

αT if x ∈ C ,
0 otherwise,

AIT(x) =
{

αIT if x ∈ C ,
0 otherwise,

AIF(x) =
{

β IF if x ∈ C ,
1 otherwise,

AF(x) =
{

βF if x ∈ C ,
1 otherwise,

where αT , αIT ∈ (0, 1] and βF, β IF ∈ [0, 1). Let x, y, z ∈ X. If (x ∗ y) ∗ z ∈ C and z ∈ C,
then x ∗ (y ∗ (y ∗ x)) ∈ C. Thus

AT(x ∗ (y ∗ (y ∗ x))) = αT = min{AT((x ∗ y) ∗ z), AT(z)},
AIT(x ∗ (y ∗ (y ∗ x))) = αIT = min{AIT((x ∗ y) ∗ z), AIT(z)},
AIF(x ∗ (y ∗ (y ∗ x))) = β IF = max{AIF((x ∗ y) ∗ z), AIF(z)},
AF(x ∗ (y ∗ (y ∗ x))) = βF = max{AF((x ∗ y) ∗ z), AF(z)}.

Assume that (x ∗ y) ∗ z /∈ C and z /∈ C. Then AT((x ∗ y) ∗ z) = 0, AT(z) = 0, AIT((x ∗ y) ∗ z) = 0,
AIT(z) = 0, AIF((x ∗ y) ∗ z) = 1, AIF(z) = 1, and AF((x ∗ y) ∗ z) = 1, AF(z) = 1. It follows that

AT(x ∗ (y ∗ (y ∗ x))) ≥ min{AT((x ∗ y) ∗ z), AT(z)},
AIT(x ∗ (y ∗ (y ∗ x))) ≥ min{AIT((x ∗ y) ∗ z), AIT(z)},
AIF(x ∗ (y ∗ (y ∗ x))) ≤ max{AIF((x ∗ y) ∗ z), AIF(z)},
AF(x ∗ (y ∗ (y ∗ x))) ≤ max{AF((x ∗ y) ∗ z), AF(z)}.

If exactly one of (x ∗ y) ∗ z and z belongs to C, then exactly one of AT((x ∗ y) ∗ z) and AT(z) is
equal to 0; exactly one of AIT((x ∗ y) ∗ z) and AIT(z) is equal to 0; exactly one of AF((x ∗ y) ∗ z) and
AF(z) is equal to 1 and exactly one of AIF((x ∗ y) ∗ z) and AIF(z) is equal to 1. Hence

AT(x ∗ (y ∗ (y ∗ x))) ≥ min{AT((x ∗ y) ∗ z), AT(z)},
AIT(x ∗ (y ∗ (y ∗ x))) ≥ min{AIT((x ∗ y) ∗ z), AIT(z)},
AIF(x ∗ (y ∗ (y ∗ x))) ≤ max{AIF((x ∗ y) ∗ z), AIF(z)},
AF(x ∗ (y ∗ (y ∗ x))) ≤ max{AF((x ∗ y) ∗ z), AF(z)}.

It is clear that AT(0) ≥ AT(x), AIT(0) ≥ AIT(x), AIF(0) ≤ AIF(x) and AF(0) ≤ AF(x) for all
x ∈ X. Therefore A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic ideal of X.
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Obviously, UA(T, αT) = C, UA(IT, αIT) = C, LA(F, βF) = C and LA(IF, β IF) = C. This completes
the proof.

Theorem 7. Let {Ct | t ∈ Λ} be a collection of commutative ideals of X such that

(1) X =
⋃

t∈Λ
Ct,

(2) (∀s, t ∈ Λ) (s > t ⇐⇒ Cs ⊂ Ct)

where Λ is any index set. Let A = (AT , AIT , AIF, AF) be a GNS in X given by

(∀x ∈ X)

(
AT(x) = sup{t ∈ Λ | x ∈ Ct} = AIT(x)

AIF(x) = inf{t ∈ Λ | x ∈ Ct} = AF(x)

)
. (17)

Then A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic ideal of X.

Proof. According to Theorem 5, it is sufficient to show that U(T, t), U(IT, t), L(F, s) and L(IF, s) are
commutative ideals of X for every t ∈ [0, AT(0) = AIT(0)] and s ∈ [AIF(0) = AF(0), 1]. In order to
prove U(T, t) and U(IT, t) are commutative ideals of X, we consider two cases:

(i) t = sup{q ∈ Λ | q < t},
(ii) t 6= sup{q ∈ Λ | q < t}.

For the first case, we have

x ∈ U(T, t)⇐⇒ (∀q < t)(x ∈ Cq)⇐⇒ x ∈
⋂
q<t

Cq,

x ∈ U(IT, t)⇐⇒ (∀q < t)(x ∈ Cq)⇐⇒ x ∈
⋂
q<t

Cq.

Hence U(T, t) =
⋂

q<t
Cq = U(IT, t), and so U(T, t) and U(IT, t) are commutative ideals of X.

For the second case, we claim that U(T, t) =
⋃

q≥t
Cq = U(IT, t). If x ∈ ⋃

q≥t
Cq, then x ∈ Cq for

some q ≥ t. It follows that AIT(x) = AT(x) ≥ q ≥ t and so that x ∈ U(T, t) and x ∈ U(IT, t).
This shows that

⋃
q≥t

Cq ⊆ U(T, t) and
⋃

q≥t
Cq ⊆ U(IT, t). Now, suppose x /∈ ⋃

q≥t
Cq. Then x /∈ Cq, ∀q ≥ t.

Since t 6= sup{q ∈ Λ | q < t}, there exists ε > 0 such that (t− ε, t) ∩Λ = ∅. Thus x /∈ Cq, ∀q > t− ε,
this means that if x ∈ Cq, then q ≤ t − ε. So AIT(x) = AT(x) ≤ t − ε < t, and so x /∈ U(T, t) =

U(IT, t). Therefore U(T, t) = U(IT, t) ⊆ ⋃
q≥t

Cq. Consequently, U(T, t) = U(IT, t) =
⋃

q≥t
Cq which

is a commutative ideal of X. Next we show that L(F, s) and L(IF, s) are commutative ideals of X.
We consider two cases as follows:

(iii) s = inf{r ∈ Λ | s < r},
(iv) s 6= inf{r ∈ Λ | s < r}.

Case (iii) implies that

x ∈ L(IF, s)⇐⇒ (∀s < r)(x ∈ Cr)⇐⇒ x ∈
⋂
s<r

Cr,

x ∈ U(F, s)⇐⇒ (∀s < r)(x ∈ Cr)⇐⇒ x ∈
⋂
s<r

Cr.

It follows that L(IF, s) = L(F, s) =
⋂

s<r
Cr, which is a commutative ideal of X. Case (iv) induces

(s, s + ε) ∩Λ = ∅ for some ε > 0. If x ∈ ⋃
s≥r

Cr, then x ∈ Cr for some r ≤ s, and so AIF(x) = AF(x) ≤

r ≤ s, that is, x ∈ L(IF, s) and x ∈ L(F, s). Hence
⋃

s≥r
Cr ⊆ L(IF, s) = L(F, s). If x /∈ ⋃

s≥r
Cr, then x /∈ Cr
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for all r ≤ s which implies that x /∈ Cr for all r ≤ s + ε, that is, if x ∈ Cr then r ≥ s + ε. Hence AIF(x) =
AF(x) ≥ s + ε > s, and so x /∈ L(AIF, s) = L(AF, s). Hence L(AIF, s) = L(AF, s) =

⋃
s≥r

Cr which is a

commutative ideal of X. This completes the proof.

Assume thta f : X → Y is a homomorphism of BCK/BCI-algebras ([7]). For any GNS A = (AT ,
AIT , AIF, AF) in Y, we define a new GNS A f = (A f

T , A f
IT , A f

IF, A f
F) in X, which is called the induced

GNS, by

(∀x ∈ X)

(
A f

T(x) = AT( f (x)), A f
IT(x) = AIT( f (x))

A f
IF(x) = AIF( f (x)), A f

F(x) = AF( f (x))

)
. (18)

Lemma 5 ([15]). Let f : X → Y be a homomorphism of BCK/BCI-algebras. If a GNS A = (AT , AIT , AIF,
AF) in Y is a generalized neutrosophic ideal of Y, then the new GNS A f = (A f

T , A f
IT , A f

IF, A f
F) in X is a

generalized neutrosophic ideal of X.

Theorem 8. Let f : X → Y be a homomorphism of BCK-algebras. If a GNS A = (AT , AIT , AIF, AF) in Y
is a commutative generalized neutrosophic ideal of Y, then the new GNS A f = (A f

T , A f
IT , A f

IF, A f
F) in X is a

commutative generalized neutrosophic ideal of X.

Proof. Suppose that A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic ideal of Y.
Then A = (AT , AIT , AIF, AF) is a generalized neutrosophic ideal of Y by Theorem 1, and so A f = (A f

T ,

A f
IT , A f

IF, A f
F) is a generalized neutrosophic ideal of Y by Lemma 5. For any x, y ∈ X, we have

A f
T(x ∗ (y ∗ (y ∗ x))) = AT( f (x ∗ (y ∗ (y ∗ x))))

= AT( f (x) ∗ ( f (y) ∗ ( f (y) ∗ f (x))))

≥ AT( f (x) ∗ f (y))

= AT( f (x ∗ y)) = A f
T(x ∗ y),

A f
IT(x ∗ (y ∗ (y ∗ x))) = AIT( f (x ∗ (y ∗ (y ∗ x))))

= AIT( f (x) ∗ ( f (y) ∗ ( f (y) ∗ f (x))))

≥ AIT( f (x) ∗ f (y))

= AIT( f (x ∗ y)) = A f
IT(x ∗ y),

A f
IF(x ∗ (y ∗ (y ∗ x))) = AIF( f (x ∗ (y ∗ (y ∗ x))))

= AIF( f (x) ∗ ( f (y) ∗ ( f (y) ∗ f (x))))

≤ AIF( f (x) ∗ f (y))

= AIF( f (x ∗ y)) = A f
IF(x ∗ y),

and

A f
F(x ∗ (y ∗ (y ∗ x))) = AF( f (x ∗ (y ∗ (y ∗ x))))

= AF( f (x) ∗ ( f (y) ∗ ( f (y) ∗ f (x))))

≤ AF( f (x) ∗ f (y))

= AF( f (x ∗ y)) = A f
F(x ∗ y).

Therefore A f = (A f
T , A f

IT , A f
IF, A f

F) is a commutative generalized neutrosophic ideal of X.
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Lemma 6 ([15]). Let f : X → Y be an onto homomorphism of BCK/BCI-algebras and let A = (AT , AIT ,
AIF, AF) be a GNS in Y. If the induced GNS A f = (A f

T , A f
IT , A f

IF, A f
F) in X is a generalized neutrosophic

ideal of X, then A = (AT , AIT , AIF, AF) is a generalized neutrosophic ideal of Y.

Theorem 9. Assume thta f : X → Y is an onto homomorphism of BCK-algebras and A = (AT , AIT , AIF,
AF) is a GNS in Y. If the induced GNS A f = (A f

T , A f
IT , A f

IF, A f
F) in X is a commutative generalized

neutrosophic ideal of X, then A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic ideal of Y.

Proof. Suppose that A f = (A f
T , A f

IT , A f
IF, A f

F) is a commutative generalized neutrosophic ideal of

X. Then A f = (A f
T , A f

IT , A f
IF, A f

F) is a generalized neutrosophic ideal of X, and thus A = (AT , AIT ,
AIF, AF) is a generalized neutrosophic ideal of Y. For any a, b, c ∈ Y, there exist x, y, z ∈ X such that
f (x) = a, f (y) = b and f (z) = c. Thus,

AT(a ∗ (b ∗ (b ∗ a))) = AT( f (x) ∗ ( f (y) ∗ ( f (y) ∗ f (x)))) = AT( f (x ∗ (y ∗ (y ∗ x))))

= A f
T(x ∗ (y ∗ (y ∗ x))) ≥ A f

T(x ∗ y)

= AT( f (x) ∗ f (y)) = AT(a ∗ b),

AIT(a ∗ (b ∗ (b ∗ a))) = AIT( f (x) ∗ ( f (y) ∗ ( f (y) ∗ f (x)))) = AIT( f (x ∗ (y ∗ (y ∗ x))))

= A f
IT(x ∗ (y ∗ (y ∗ x))) ≥ A f

IT(x ∗ y)

= AIT( f (x) ∗ f (y)) = AIT(a ∗ b),

AIF(a ∗ (b ∗ (b ∗ a))) = AIF( f (x) ∗ ( f (y) ∗ ( f (y) ∗ f (x)))) = AIF( f (x ∗ (y ∗ (y ∗ x))))

= A f
IF(x ∗ (y ∗ (y ∗ x))) ≤ A f

IF(x ∗ y)

= AIF( f (x) ∗ f (y)) = AIF(a ∗ b),

and

AF(a ∗ (b ∗ (b ∗ a))) = AF( f (x) ∗ ( f (y) ∗ ( f (y) ∗ f (x)))) = AF( f (x ∗ (y ∗ (y ∗ x))))

= A f
F(x ∗ (y ∗ (y ∗ x))) ≤ A f

F(x ∗ y)

= AF( f (x) ∗ f (y)) = AF(a ∗ b).

It follows from Theorem 2 that A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic
ideal of Y.

Let CGNI(X) denote the set of all commutative generalized neutrosophic ideals of X and t ∈ [0, 1].
Define binary relations Ut

T , Ut
IT , Lt

F and Lt
IF on CGNI(X) as follows:

(A, B) ∈ Ut
T ⇔ UA(T, t) = UB(T, t), (A, B) ∈ Ut

IT ⇔ UA(IT, t) = UB(IT, t),
(A, B) ∈ Lt

F ⇔ LA(F, t) = LB(F, t), (A, B) ∈ Lt
IF ⇔ LA(IF, t) = LB(IF, t)

(19)

for A = (AT , AIT , AIF, AF) and B = (BT , BIT , BIF, BF) in CGNI(X). Then clearly Ut
T , Ut

IT , Lt
F

and Lt
IF are equivalence relations on CGNI(X). For any A = (AT , AIT , AIF, AF) ∈ CGNI(X),

let [A]Ut
T

(resp., [A]Ut
IT

, [A]Lt
F

and [A]Lt
IF

) denote the equivalence class of A = (AT , AIT , AIF, AF)

modulo Ut
T (resp, Ut

IT , Lt
F and Lt

IF). Denote by CGNI(X)/Ut
T (resp., CGNI(X)/Ut

IT , CGNI(X)/Lt
F

and CGNI(X)/Lt
IF) the system of all equivalence classes modulo Ut

T (resp, Ut
IT , Lt

F and Lt
IF); so

CGNI(X)/Ut
T = {[A]Ut

T
| A = (AT , AIT , AIF, AF) ∈ CGNI(X)}, (20)
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CGNI(X)/Ut
IT = {[A]Ut

IT
| A = (AT , AIT , AIF, AF) ∈ CGNI(X)}, (21)

CGNI(X)/Lt
F = {[A]Lt

F
| A = (AT , AIT , AIF, AF) ∈ CGNI(X)}, (22)

and

CGNI(X)/Lt
IF = {[A]Lt

IF
| A = (AT , AIT , AIF, AF) ∈ CGNI(X)}, (23)

respectively. Let CI(X) denote the family of all commutative ideals of X and let t ∈ [0, 1]. Define maps

ft : CGNI(X)→ CI(X) ∪ {∅}, A 7→ UA(T, t), (24)

gt : CGNI(X)→ CI(X) ∪ {∅}, A 7→ UA(IT, t), (25)

αt : CGNI(X)→ CI(X) ∪ {∅}, A 7→ LA(F, t), (26)

and

βt : CGNI(X)→ CI(X) ∪ {∅}, A 7→ LA(IF, t). (27)

Then the definitions of ft, gt, αt and βt are well.

Theorem 10. Suppose t ∈ (0, 1), the definitions of ft, gt, αt and βt are as above. Then the maps ft, gt, αt and
βt are surjective from CGNI(X) to CI(X) ∪ {∅}.

Proof. Assume t ∈ (0, 1).We know that 0∼ = (0T , 0IT , 1IF, 1F) is in CGNI(X) where 0T , 0IT , 1IF and 1F
are constant functions on X defined by 0T(x) = 0, 0IT(x) = 0, 1IF(x) = 1 and 1F(x) = 1 for all x ∈ X.
Obviously ft(0∼) = U0∼(T, t), gt(0∼) = U0∼(IT, t), αt(0∼) = L0∼(F, t) and βt(0∼) = L0∼(IF, t) are
empty. Let G( 6= ∅) ∈ CGNI(X), and consider functions:

GT : X → [0, 1], G 7→
{

1 if x ∈ G ,
0 otherwise,

GIT : X → [0, 1], G 7→
{

1 if x ∈ G ,
0 otherwise,

GF : X → [0, 1], G 7→
{

0 if x ∈ G ,
1 otherwise,

and

GIF : X → [0, 1], G 7→
{

0 if x ∈ G ,
1 otherwise.

Then G∼ = (GT , GIT , GIF, GF) is a commutative generalized neutrosophic ideal of X, and
ft(G∼) = UG∼(T, t) = G, gt(G∼) = UG∼(IT, t) = G, αt(G∼) = LG∼(F, t) = G and βt(G∼) =

LG∼(IF, t) = G. Therefore ft, gt, αt and βt are surjective.

Theorem 11. The quotient sets

CGNI(X)/Ut
T , CGNI(X)/Ut

IT , CGNI(X)/Lt
F and CGNI(X)/Lt

IF
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are equipotent to CI(X) ∪ {∅}.

Proof. For t ∈ (0, 1), let f ∗t (resp, g∗t , α∗t and β∗t ) be a map from CGNI(X)/Ut
T

(resp., CGNI(X)/Ut
IT , CGNI(X)/Lt

F and CGNI(X)/Lt
IF) to CI(X) ∪ {∅} defined by f ∗t

(
[A]Ut

T

)
=

ft(A) (resp., g∗t
(
[A]Ut

IT

)
= gt(A) , α∗t

(
[A]Lt

F

)
= αt(A) and β∗t

(
[A]Lt

IF

)
= βt(A)) for all A = (AT ,

AIT , AIF, AF) ∈ CGNI(X). If UA(T, t) = UB(T, t), UA(IT, t) = UB(IT, t), LA(F, t) = LB(F, t)
and LA(IF, t) = LB(IF, t) for A = (AT , AIT , AIF, AF) and B = (BT , BIT , BF, BIF) in CGNI(X),
then (A, B) ∈ Ut

T , (A, B) ∈ Ut
IT , (A, B) ∈ Lt

F and (A, B) ∈ Lt
IF. Hence [A]Ut

T
= [B]Ut

T
, [A]Ut

IT
= [B]Ut

IT
,

[A]Lt
F

= [B]Lt
F

and [A]Lt
IF

= [B]Lt
IF

. Therefore f ∗t (resp, g∗t , α∗t and β∗t ) is injective. Now let
G( 6= ∅) ∈ CGNI(X). For G∼ = (GT , GIT , GIF, GF) ∈ CGNI(X), we have

f ∗t
(
[G∼]Ut

T

)
= ft(G∼) = UG∼(T, t) = G,

g∗t
(
[G∼]Ut

IT

)
= gt(G∼) = UG∼(IT, t) = G,

α∗t

(
[G∼]Lt

F

)
= αt(G∼) = LG∼(F, t) = G

and

β∗t

(
[G∼]Lt

IF

)
= βt(G∼) = LG∼(IF, t) = G.

Finally, for 0∼ = (0T , 0IT , 1IF, 1F) ∈ CGNI(X), we have

f ∗t
(
[0∼]Ut

T

)
= ft(0∼) = U0∼(T, t) = ∅,

g∗t
(
[0∼]Ut

IT

)
= gt(0∼) = U0∼(IT, t) = ∅,

α∗t

(
[0∼]Lt

F

)
= αt(0∼) = L0∼(F, t) = ∅

and

β∗t

(
[0∼]Lt

IF

)
= βt(0∼) = L0∼(IF, t) = ∅.

Therefore, f ∗t (resp, g∗t , α∗t and β∗t ) is surjective.

∀t ∈ [0, 1], define another relations Rt and Qt on CGNI(X) as follows:

(A, B) ∈ Rt ⇔ UA(T, t) ∩ LA(F, t) = UB(T, t) ∩ LB(F, t)

and

(A, B) ∈ Qt ⇔ UA(IT, t) ∩ LA(IF, t) = UB(IT, t) ∩ LB(IF, t)

for any A = (AT , AIT , AIF, AF) and B = (BT , BIT , BIF, BF) in CGNI(X). Then Rt and Qt are
equivalence relations on CGNI(X).
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Theorem 12. Suppose t ∈ (0, 1), consider the following maps

ϕt : CGNI(X)→ CI(X) ∪ {∅}, A 7→ ft(A) ∩ αt(A), (28)

and

ψt : CGNI(X)→ CI(X) ∪ {∅}, A 7→ gt(A) ∩ βt(A) (29)

for each A = (AT , AIT , AIF, AF) ∈ CGNI(X). Then ϕt and ψt are surjective.

Proof. Assume t ∈ (0, 1). For 0∼ = (0T , 0IT , 1IF, 1F) ∈ CGNI(X),

ϕt(0∼) = ft(0∼) ∩ αt(0∼) = U0∼(T, t) ∩ L0∼(F, t) = ∅

and

ψt(0∼) = gt(0∼) ∩ βt(0∼) = U0∼(IT, t) ∩ L0∼(IF, t) = ∅.

For any G ∈ CI(X), there exists G∼ = (GT , GIT , GIF, GF) ∈ CGNI(X) such that

ϕt(G∼) = ft(G∼) ∩ αt(G∼) = UG∼(T, t) ∩ LG∼(F, t) = G

and

ψt(G∼) = gt(G∼) ∩ βt(G∼) = UG∼(IT, t) ∩ LG∼(IF, t) = G.

Therefore ϕt and ψt are surjective.

Theorem 13. For any t ∈ (0, 1), the quotient sets CGNI(X)/Rt and CGNI(X)/Qt are equipotent to
CI(X) ∪ {∅}.

Proof. Let t ∈ (0, 1) and define maps

ϕ∗t : CGNI(X)/Rt → CI(X) ∪ {∅}, [A]Rt 7→ ϕt(A)

and

ψ∗t : CGNI(X)/Qt → CI(X) ∪ {∅}, [A]Qt 7→ ψt(A).

If ϕ∗t ([A]Rt) = ϕ∗t ([B]Rt) and ψ∗t

(
[A]Qt

)
= ψ∗t

(
[B]Qt

)
for all [A]Rt , [B]Rt ∈ CGNI(X)/Rt and

[A]Qt , [B]Qt ∈ CGNI(X)/Qt, then ft(A) ∩ αt(A) = ft(B) ∩ αt(B) and gt(A) ∩ βt(A) = gt(B) ∩ βt(B),
that is, UA(T, t) ∩ LA(F, t) = UB(T, t) ∩ LB(F, t) and UA(IT, t) ∩ LA(IF, t) = UB(IT, t) ∩ LB(IF, t).
Hence (A, B) ∈ Rt, (A, B) ∈ Qt. So [A]Rt = [B]Rt , [A]Qt = [B]Qt , which shows that ϕ∗t and ψ∗t are
injective. For 0∼ = (0T , 0IT , 1IF, 1F) ∈ CGNI(X),

ϕ∗t ([0∼]Rt) = ϕt(0∼) = ft(0∼) ∩ αt(0∼) = U0∼(0T , t) ∩ L0∼(1F, t) = ∅

and

ψ∗t

(
[0∼]Qt

)
= ψt(0∼) = gt(0∼) ∩ βt(0∼) = U0∼(0IT , t) ∩ L0∼(1IF, t) = ∅.

If G ∈ CI(X), then G∼ = (GT , GIT , GIF, GF) ∈ CGNI(X), and so

ϕ∗t ([G∼]Rt) = ϕt(G∼) = ft(G∼) ∩ αt(G∼) = UG∼(GT , t) ∩ LG∼(GF, t) = G
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and

ψ∗t

(
[G∼]Qt

)
= ψt(G∼) = gt(G∼) ∩ βt(G∼) = UG∼(GIT , t) ∩ LG∼(GIF, t) = G.

Hence ϕ∗t and ψ∗t are surjective, and the proof is complete.

4. Conclusions

Based on the theory of generalized neutrosophic sets, we proposed the new concept of
commutative generalized neutrosophic ideal in a BCK-algebra, and obtained some characterizations.
Moreover, we investigated some homomorphism properties related to commutative generalized
neutrosophic ideals.

The research ideas of this paper can be extended to a wide range of logical algebraic systems such
as pseudo-BCI algebras (see [1,16]). At the same time, the concept of generalized neutrosophic set
involved in this paper can be further studied according to the thought in [11,17], which will be the
direction of our next research work.
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