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Abstract: The generating functions of fourteen families of generalized Chebyshev polynomials
related to rank two Lie algebras A2, C2 and G2 are explicitly developed. There exist two classes of
the orthogonal polynomials corresponding to the symmetric and antisymmetric orbit functions of
each rank two algebra. The Lie algebras G2 and C2 admit two additional polynomial collections
arising from their hybrid character functions. The admissible shift of the weight lattice permits the
construction of a further four shifted polynomial classes of C2 and directly generalizes formation of the
classical univariate Chebyshev polynomials of the third and fourth kinds. Explicit evaluating formulas
for each polynomial family are derived and linked to the incomplete exponential Bell polynomials.
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1. Introduction

The purpose of this article is to develop generating functions of fourteen types of bivariate
generalized Chebyshev polynomials [1–3]. There exist two families of polynomials corresponding
to the Lie algebra A2, four to the algebra G2 and eight to the algebra C2. Explicit formulas for the
polynomials are deduced from their generating functions.

The four kinds of the of classical univariate Chebyshev polynomials [4] constitute a fundamental
part of polynomial numeric methods. Inherent relation of these polynomials to the standard
trigonometric functions forms the cornerstone of their theoretical and practical applications. As cosine
images of a finite part of the equidistant lattice [4], Chebyshev nodes play a special role. Orbit functions
related to the crystallographic root systems of Weyl groups [5,6] serve as multidimensional
generalizations of the trigonometric functions and induce specific multivariate versions of Chebyshev
polynomials [2,3]. Symmetric and antisymmetric orbit functions occur as a standard tool in Lie
theory and the form of the corresponding two kinds of polynomials, which appears already in [1],
specializes for the algebra A1 to univariate Chebyshev polynomials of the first and second kind.

For any root system with two root-lengths, the concept of a sign homomorphism produces two
additional classes of hybrid character polynomials [3]. All four polynomial classes constitute special
cases of the Heckman–Opdam polynomials [7]. Discrete orthogonality relations of all four sorts of
orbit functions over distinct finite fragments of Weyl group invariant lattices are developed in [8–11].
Specific generalized cosine images of the finite fragments of multidimensional lattices form the sets of
generalized Chebyshev nodes [3,12–16]. Moreover, analysis of intrinsic discrete orthogonality relations
of orbit functions leads to a special type of admissible shifts of the weight lattices [17]. The admissible
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shift of the weight lattice doubles the number of polynomial families of C2 and specializes for the
algebra A1 to the Chebyshev polynomials of the third and fourth kinds [4]. Generating functions
of the multivariate Chebyshev polynomials are closely linked to the character generators of simple
Lie groups.

During the last century, the approach of generating functions was developed to resolve many
diverse problems in Lie theory and in the theory of finite groups. A wide range of applications of
generating functions in Lie theory can be traced to the definition of the generating function for the
characters of the representation [18]. Subsequently, the theory was developed further for the specific
types of the Lie groups [19–22]. The generating functions have a unique capability to provide answers
to questions that are inaccessible to any other methods. Typically, a generating function of a simple Lie
group G is a rational function of several formal variables built to solve a series of analogous problems
like decomposition of the product of two irreducible finite dimensional representations of G into the
direct sum of them, or reduction of any finite irreducible representations of G to the direct sum of
representations of a particular subgroup G′ ⊂ G. A number of other problems in group representation
theory are listed in the reference [23].

Developed into the power series, the coefficients of the series provide answers to infinite number
of computational problems involving the same Lie group [18,23–25]. A practical difficulty often is
the complexity of the generating functions for the higher ranks of G. So far, the generating functions
practically for all problems are explicitly derived by hand computation. The derivation becomes
particularly complicated when one wants to have the generating function in a positive form that
also provides the integrity basis for each problem [26] or in polynomial form involving fundamental
character functions. Direct calculation of generating functions as rational polynomial functions in
fundamental characters is utilized in the present paper. With efficient tools for symbolic computation
available in recent years, many more generating functions could be calculated.

Constructed generating functions and explicit formulas in the present article serve as theoretical
and practical means for handling the corresponding bivariate generalized Chebyshev polynomials.
Explicit evaluating formulas for the polynomials, derived from the explicit form of the generating
functions, permit straightforward calculation and computer implementation, considerably more
efficient than current recursive algorithms [14]. Cubature formulas for numerical integration,
polynomial interpolation and approximation methods corresponding to several current cases of
polynomials are recently intensively studied [3,12–16]. Since viability of these polynomial methods is a
direct consequence of the discrete orthogonality relations of the underlying orbit functions, extensibility
of these techniques to all fourteen cases of the studied bivariate polynomials is guaranteed.

The paper is organized as follows. In Section 2, the fourteen cases of the bivariate Chebyshev
polynomials are explicitly constructed and the lowest reference polynomials listed for each case.
In Section 3, generating functions are explicitly evaluated from their generic forms and tabulated for
each case. In Section 4, the K-polynomials are introduced, their form for each algebra calculated and
their utilization as components in evaluating formulas presented. Concluding remarks and follow-up
questions are contained in Section 5.

2. Chebyshev Polynomials Associated with Root Systems

2.1. Four Kinds of Univariate Polynomials of A1

Throughout the article, the standard scalar product of the Euclidean spaces R and R2 is denoted
by brackets 〈 , 〉. Recall that the four kinds of the classical Chebyshev polynomials Tn(x), Un(x), Vn(x)
and Wn(x) are for n ∈ Z≥0 and a real variable x = cos θ defined as [4]
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Tn(cos θ) = cos nθ,

Un(cos θ) =
sin (n + 1)θ

sin θ
,

Vn(cos θ) =
cos (n + 1

2 )θ

cos 1
2 θ

,

Wn(cos θ) =
sin (n + 1

2 )θ

sin 1
2 θ

.

Suitable reformulating of the definitions of the four kinds of Chebyshev polynomials in terms of
quantities related to the root system A1 leads directly to generalized Chebyshev-like polynomials of
rank two algebras. The cornerstone of this reformulation is the relation of the one-variable cosine and
sine functions to the orbit functions of the algebra A1, detailed in [27].

Integer multiples of the weight vector ω = 1/
√

2 ∈ R determine the weight lattice P, non-negative
integer multiples of ω yield the set of dominant weights P+. In the present notation, the symmetric
orbit functions ϕ

(0)
λ of A1, parametrized by any λ ∈ R, are of the form of the cosine functions,

ϕ
(0)
λ (z) = e2πi〈λ, z〉 + e−2πi〈λ, z〉 = 2 cos 2π〈λ, z〉,

and the antisymmetric orbit functions ϕ
(1)
λ become sine functions,

ϕ
(1)
λ (z) = e2πi〈λ, z〉 − e−2πi〈λ, z〉 = 2i sin 2π〈λ, z〉.

The four generalized $-vectors of A1, stemming from the admissible shift µ = ω/2 of the weight
lattice in [17], are introduced by

$(0,0) = 0,

$(1,0) = ω,

$(0,1) =
1
2

ω,

$(1,1) =
1
2

ω.

The fundamental character function of A1 is simplified as

χω(z) =
ϕ
(1)
ω+$(1,0)(z)

ϕ
(1)
$(1,0)(z)

= 2 cos 2π〈ω, z〉 = 2 cos θ, (1)

where the substitution θ = 2π〈ω, z〉 is used. The four types of Chebyshev polynomials U(j,k)
λ , labelled

by dominant weights λ ∈ P+ and with the fundamental character (1) as their common variable,
are defined via relation

U(j,k)
λ (χω(z)) =

ϕ
(j)
λ+$(j,k)(z)

ϕ
(j)
$(j,k)(z)

, (2)

where the indices j, k are taking the values

A1 : j ∈ {0, 1}, k ∈ {0, 1}.

The four types of polynomials U(j,k)
λ , with λ = nω = (n), n ∈ Z≥0 then directly become the four

kinds of the classical Chebyshev polynomials,
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U(0,0)
(n) (2x) = Tn(x),

U(1,0)
(n) (2x) = Un(x),

U(0,1)
(n) (2x) = Vn(x),

U(1,1)
(n) (2x) = Wn(x).

Thus, the four corresponding generating functions υ(j,k) of the polynomials U(j,k)
(n) (x),

υ(j,k)(x, u) =
+∞

∑
n=0

U(j,k)
(n) (x)un, (3)

are obtained by substitution x → x/2 into the generating functions of the four kinds of Chebyshev
polynomials,

υ(0,0)(x, u) =
1− xu

2
1− xu + u2 , (4)

υ(1,0)(x, u) =
1

1− xu + u2 , (5)

υ(0,1)(x, u) =
1− u

1− xu + u2 , (6)

υ(1,1)(x, u) =
1 + u

1− xu + u2 . (7)

The four generating functions υ(j,k) satisfy the following three symmetry relations,

υ(0,0)(−x,−u) = υ(0,0)(x, u),

υ(1,0)(−x,−u) = υ(1,0)(x, u),

υ(0,1)(−x,−u) = υ(1,1)(x, u),

which generate the parity relations for the polynomials U(j,k)
λ of the form

U(0,0)
(n) (−x) = (−1)nU(0,0)

(n) (x), (8)

U(1,0)
(n) (−x) = (−1)nU(1,0)

(n) (x), (9)

U(0,1)
(n) (−x) = (−1)nU(1,1)

(n) (x). (10)

For the case A1, define the K-polynomials of two variables Kl(y1, y2) and l ∈ Z as

Kl(y1, y2) =
l

∑
k=d l

2 e

k! y2k−l
1 yl−k

2
(2k− l)!(l − k)!

,
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where d e denotes the ceiling function. The several first K-polynomials of A1 are given as

K0(y1, y2) =1,

K1(y1, y2) =y1,

K2(y1, y2) =y2
1 + y2,

K3(y1, y2) =y3
1 + 2y1y2,

K4(y1, y2) =y4
1 + 3y2

1y2 + y2
2,

K5(y1, y2) =y5
1 + 4y3

1y2 + 3y1y2
2.

The explicit forms of the Chebyshev polynomials [4] are in terms of K-polynomials expressed as

Tn

( x
2

)
= U(0,0)

(n) (x) = Kn(x,−1)− x
2

Kn−1(x,−1),

Un

( x
2

)
= U(1,0)

(n) (x) = Kn(x,−1),

Vn

( x
2

)
= U(0,1)

(n) (x) = Kn(x,−1)− Kn−1(x,−1),

Wn

( x
2

)
= U(1,1)

(n) (x) = Kn(x,−1) + Kn−1(x,−1).

2.2. Rank Two Root Systems and Weyl Groups

The ordered set of simple roots ∆ = (α1, α2) of a simple Lie algebra of rank two is a collection of
two vectors spanning a real two-dimensional Euclidean space R2 [28]. The simple roots of ∆ form a
basis of R2—they are fully specified by their lengths and the angle between them. The lengths of the
simple roots and the angles between them are in accordance with the standard convention listed in
Table 1. The coroots α∨i are defined as α∨i = 2αi/ 〈αi, αi〉 , i = 1, 2. The Cartan matrix Cij =

〈
αi, α∨j

〉
equivalently characterizes the root system ∆ and the determinants

c = det C (11)

of rank two Cartan matrices are listed in Table 1. In addition to the α- and α∨-bases, the weight ω-basis
is defined by

〈
α∨i , ωj

〉
= δij, i, j ∈ {1, 2}. The weight lattice P and the cone of dominant weights P+

are of the form
P = Zω1 +Zω2, P+ = Z≥0ω1 +Z≥0ω2.

The dual weight ω∨-basis is defined by
〈

αi, ω∨j

〉
= δij, i, j ∈ {1, 2}, and the dual weight lattice

P∨ is of the form
P∨ = Zω∨1 +Zω∨2 .

The reflection rα, α ∈ ∆, which fixes the hyperplane orthogonal to α and passes through the origin,
is for x ∈ R2 explicitly written as rαx = x− 〈α, x〉α∨. The Weyl group W is a finite group generated by
reflections ri ≡ rαi , i = 1, 2. Half of the number of elements of the Weyl group W is denoted by

p =
|W|

2
, (12)

and the values of p are listed in Table 1.
Admissible shifts µ, µ∨ ∈ R2 of the weight and dual weight lattices P, P∨ are defined as vectors

which preserve the Weyl group invariance of the shifted lattices [17],

W(µ + P) = µ + P,

W(µ∨ + P∨) = µ∨ + P∨.
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For any irreducible crystallographic root system, all admissible shifts are classified in [17].
The admissible shifts of rank two root systems are listed in Table 1.

The two standard sign homomorphisms σ(0), σ(1) : W → {±1} are defined for any root system
on w ∈W as

σ(0)(w) = 1,

σ(1)(w) = det w.

The short sign homomorphism σ(2) : W → {±1} is defined for the root systems with two
root-lengths C2 and G2 by its values on the generators rα, α ∈ ∆. To the rα of the short simple root, α is
assigned the value −1; to the rα of the long simple root, α is assigned 1. The long sign homomorphism
σ(3) is given similarly, assigning the value −1 to the rα of the long simple root α.

For all root systems, the generalized $-vector $(0,0) is defined as zero and the vector $(1,0) as half
of the sum of the positive roots,

$(0,0) = 0,

$(1,0) = ω1 + ω2.

The short and long $-vectors $(2,0), $(3,0) which are halves of the sums of the positive short or
long roots, respectively, are listed for C2 and G2 in Table 1.

For the root system C2, which admits the non-trivial admissible shift µ = 1
2 ω2, four additional

minimal $-vectors in the shifted weight lattice are given as

$(0,1) = $(3,1) =
1
2

ω2,

$(1,1) = $(2,1) = ω1 +
1
2

ω2.

Table 1. Simple roots of rank two irreducible root systems, short and long minimal weights $(2,0), $(3,0),
admissible shifts µ, µ∨ and the determinants of the Cartan matrices c.

〈α1, α1〉 〈α2, α2〉 6 α1, α2 p c $(2,0) $(3,0) µ µ∨

A2 2 2 2π
3 3 3 − − − −

C2 1 2 3π
4 4 2 ω1 ω2

1
2 ω2

1
2 ω∨1

G2 2 2
3

5π
6 6 1 ω2 ω1 − −

2.3. Four Types of Orbit Functions

The four types of special functions which correspond to the Weyl groups are recalled [3,5,6,9].
Each of these special functions together with an admissible shift induces a family of orthogonal
polynomials. Up to four types of normalized orbit functions ϕ

(j)
λ : R2 → C are parametrized by λ ∈ R2

and given in general form as

ϕ
(j)
λ (z) = ∑

w∈W
σ(j)(w) e2πi〈wλ, z〉, z ∈ R2, (13)

where j = 0, 1 for the root system A2 and j = 0, . . . , 3 for C2 and G2.

2.3.1. Orbit Functions of A2

The two types of orbit functions of A2 are explicitly evaluated for a point with coordinates in
α∨-basis (z1, z2) and a weight with coordinates in ω-basis (λ1, λ2),
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ϕ
(0)
(λ1,λ2)

(z1, z2) =e2πi(z1λ1+z2λ2) + e−2πi(z1λ1−z2λ1−z2λ2) + e2πi(z1λ1+z1λ2−z2λ2)

+ e−2πi(z1λ2+z2λ1) + e−2πi(z1λ1+z1λ2−z2λ1) + e2πi(z1λ2−z2λ1−z2λ2),

ϕ
(1)
(λ1,λ2)

(z1, z2) =e2πi(z1λ1+z2λ2) − e−2πi(z1λ1−z2λ1−z2λ2) − e2πi(z1λ1+z1λ2−z2λ2)

− e−2πi(z1λ2+z2λ1) + e−2πi(z1λ1+z1λ2−z2λ1) + e2πi(z1λ2−z2λ1−z2λ2).

2.3.2. Orbit Functions of C2

The four types of orbit functions of C2 are explicitly evaluated for a point with coordinates in
α∨-basis (z1, z2) and a weight with coordinates in ω-basis (λ1, λ2)

ϕ
(0)
(λ1,λ2)

(z1, z2) =2 cos(2π(z1λ1 + 2z1λ2 − z2λ1 − z2λ2)) + 2 cos(2π(z1λ1 − z2λ1 − z2λ2))

+ 2 cos(2π(z1λ1 + 2z1λ2 − z2λ2)) + 2 cos(2π(z1λ1 + z2λ2)),

ϕ
(1)
(λ1,λ2)

(z1, z2) =2 cos(2π(z1λ1 + 2z1λ2 − z2λ1 − z2λ2))− 2 cos(2π(z1λ1 − z2λ1 − z2λ2))

− 2 cos(2π(z1λ1 + 2z1λ2 − z2λ2)) + 2 cos(2π(z1λ1 + z2λ2)),

ϕ
(2)
(λ1,λ2)

(z1, z2) =− 2 cos(2π(z1λ1 + 2z1λ2 − z2λ1 − z2λ2))− 2 cos(2π(z1λ1 − z2λ1 − z2λ2))

+ 2 cos(2π(z1λ1 + 2z1λ2 − z2λ2)) + 2 cos(2π(z1λ1 + z2λ2)),

ϕ
(3)
(λ1,λ2)

(z1, z2) =− 2 cos(2π(z1λ1 + 2z1λ2 − z2λ1 − z2λ2)) + 2 cos(2π(z1λ1 − z2λ1 − z2λ2))

− 2 cos(2π(z1λ1 + 2z1λ2 − z2λ2)) + 2 cos(2π(z1λ1 + z2λ2)).

2.3.3. Orbit Functions of G2

The four types of orbit functions of G2 are explicitly evaluated for a point with coordinates in
α∨-basis (z1, z2) and a weight with coordinates in ω-basis (λ1, λ2)

ϕ
(0)
(λ1,λ2)

(z1, z2) =2 cos(2π(2z1λ1 + z1λ2 − 3z2λ1 − z2λ2)) + 2 cos(2π(2z1λ1 + z1λ2 − 3z2λ1 − 2z2λ2))

+ 2 cos(2π(z1λ1 + z1λ2 − 3z2λ1 − 2z2λ2)) + 2 cos(2π(z1λ1 − 3z2λ1 − z2λ2))

+ 2 cos(2π(z1λ1 + z1λ2 − z2λ2)) + 2 cos(2π(z1λ1 + z2λ2)),

ϕ
(1)
(λ1,λ2)

(z1, z2) =2 cos(2π(2z1λ1 + z1λ2 − 3z2λ1 − z2λ2))− 2 cos(2π(2z1λ1 + z1λ2 − 3z2λ1 − 2z2λ2))

+ 2 cos(2π(z1λ1 + z1λ2 − 3z2λ1 − 2z2λ2))− 2 cos(2π(z1λ1 − 3z2λ1 − z2λ2))

− 2 cos(2π(z1λ1 + z1λ2 − z2λ2)) + 2 cos(2π(z1λ1 + z2λ2)),

ϕ
(2)
(λ1,λ2)

(z1, z2) =2i(− sin(2π(2z1λ1 + z1λ2 − 3z2λ1 − z2λ2)) + sin(2π(2z1λ1 + z1λ2 − 3z2λ1 − 2z2λ2))

+ sin(2π(z1λ1 + z1λ2 − 3z2λ1 − 2z2λ2))− sin(2π(z1λ1 − 3z2λ1 − z2λ2))

− sin(2π(z1λ1 + z1λ2 − z2λ2)) + sin(2π(z1λ1 + z2λ2))),

ϕ
(3)
(λ1,λ2)

(z1, z2) =2i(− sin(2π(2z1λ1 + z1λ2 − 3z2λ1 − z2λ2))− sin(2π(2z1λ1 + z1λ2 − 3z2λ1 − 2z2λ2))

+ sin(2π(z1λ1 + z1λ2 − 3z2λ1 − 2z2λ2)) + sin(2π(z1λ1 − 3z2λ1 − z2λ2))

+ sin(2π(z1λ1 + z1λ2 − z2λ2)) + sin(2π(z1λ1 + z2λ2))).

2.4. Discrete Orthogonality of Orbit Functions

The fundamental domain F of the affine Weyl group Waff and the dual fundamental domain F∨ of
the dual affine Weyl group Ŵaff are for the rank two cases triangles with their vertices explicitly given
in [17]. For any sign homomorphism σ, the boundaries of the subsets of the fundamental domains
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Fσ(µ) ⊂ F and Fσ∨(µ∨) ⊂ F∨, with values of the admissible shifts µ and µ∨ either zero or taken from
their classification in Table 1, follow from Equations (57) and (61) in [17]. The functions ε : R2 → N
and h∨M : R2 → N, M ∈ N are determined by the orders of the affine stabilizers StabWaff(z) and
StabŴaff

( z
M
)

via relations

ε(z) =
|W|

|StabWaff(z)|
, h∨M(z) =

∣∣∣StabŴaff

( z
M

)∣∣∣ . (14)

The domains Fσ(µ) induce discrete point sets Fσ
M(µ, µ∨) ⊂ F,

Fσ
M(µ, µ∨) =

[
1
M

(µ∨ + P∨)
]
∩ Fσ(µ) (15)

and the domains Fσ∨(µ∨) determine the corresponding shifted weight sets

Λσ
M(µ, µ∨) = (µ + P) ∩MFσ∨(µ∨). (16)

For any sign homomorphism σ(j) and any two labels λ, λ′ ∈ Λσ
M(µ, µ∨), the discrete orthogonality

relations of the rank two orbit functions are according to ([17] (Thm 4.1)) of the form

∑
z∈Fσ(j)

M (µ,µ∨)

ε(z)ϕ
(j)
λ (z)ϕ

(j)
λ′ (z) = c |W|M2h∨M(λ) δλ,λ′ , (17)

where c is the determinant of the Cartan matrix (11).

2.5. Orthogonal Polynomials

Common variables of families of orthogonal polynomials are for each root system defined via the
standard character functions χλ,

χλ(z) =
ϕ
(1)
λ+$(1,0)(z)

ϕ
(1)
$(1,0)(z)

, λ ∈ P+. (18)

The character functions are explicitly evaluated using the explicit forms of the antisymmetric
functions ϕ

(1)
λ . The special role as variables of the orthogonal polynomials play fundamental characters

corresponding to the fundamental weights χω1 , χω2 .
For a point with coordinates in α∨-basis (z1, z2) and the fundamental weights ω1 and ω2,

the fundamental character functions are explicitly calculated as

A2 : χω1 (z1, z2) =e2πiz1 + e−2πi(z1−z2) + e−2πiz2 , (19)

χω2 (z1, z2) =e2πiz2 + e2πi(z1−z2) + e−2πiz1 , (20)

C2 : χω1 (z1, z2) =2 cos 2π(z1 − z2) + 2 cos(2πz1) (21)

χω2 (z1, z2) =1 + 2 cos 2π(2z1 − z2) + 2 cos(2πz2), (22)

G2 : χω1 (z1, z2) =2 + 2 cos 2π(z1 − z2) + 2 cos 2π(z1 − 2z2) + 2 cos(2πz2)

+ 2 cos 2π(2z1 − 3z2) + 2 cos 2π(z1 − 3z2) + 2 cos(2πz1), (23)

χω2 (z1, z2) =1 + 2 cos 2π(z1 − z2) + 2 cos 2π(z1 − 2z2) + 2 cos(2πz2). (24)

The fourteen families of two-variable orthogonal polynomials U(j,k)
λ (x1, x2), labelled uniformly by

the dominant weights λ ∈ P+, are induced by the relations
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U(j,k)
λ (χω1(z), χω2(z)) =

ϕ
(j)
λ+$(j,k)(z)

ϕ
(j)
$(j,k)(z)

, λ ∈ P+, (25)

with the indices j, k taking the values

A2 : j ∈ {0, 1}, k = 0,

C2 : j ∈ {0, 1, 2, 3}, k ∈ {0, 1}, (26)

G2 : j ∈ {0, 1, 2, 3}, k = 0.

2.5.1. Polynomials of A2

The lowest orthogonal polynomials (25) of variables x1, x2, given by relations (19) and (20), are for the first

kind U(0,0)
λ of the following explicit form:

U(0,0)
(0,0)(x1, x2) = 1,

U(0,0)
(1,0)(x1, x2) =

1
3

x1,

U(0,0)
(0,1)(x1, x2) =

1
3

x2,

U(0,0)
(1,1)(x1, x2) =

1
6

x1x2 −
1
2

,

U(0,0)
(2,1)(x1, x2) =

1
6

x2
1x2 −

1
3

x2
2 −

1
6

x1,

U(0,0)
(1,2)(x1, x2) =

1
6

x1x2
2 −

1
3

x2
1 −

1
6

x2,

and for the second kind U(1,0)
λ are of the form

U(1,0)
(0,0)(x1, x2) = 1,

U(1,0)
(1,0)(x1, x2) = x1,

U(1,0)
(0,1)(x1, x2) = x2,

U(1,0)
(1,1)(x1, x2) = x1x2 − 1,

U(1,0)
(2,1)(x1, x2) = x2

1x2 − x2
2 − x1,

U(1,0)
(1,2)(x1, x2) = x1x2

2 − x2
1 − x2.

2.5.2. Polynomials of C2

The lowest orthogonal polynomials (25) of variables x1, x2, given by relations (21) and (22), are for the first

kind U(0,0)
λ of the following explicit form:

U(0,0)
(0,0)(x1, x2) = 1,

U(0,0)
(1,0)(x1, x2) =

1
4

x1,

U(0,0)
(0,1)(x1, x2) =

1
4

x2 −
1
4

,

U(0,0)
(1,1)(x1, x2) =

1
8

x1x2 −
3
8

x1,

U(0,0)
(2,1)(x1, x2) =

1
8

x2
1x2 −

1
8

x2
1 −

1
4

x2
2 −

1
4

x2 +
1
2

,

U(0,0)
(1,2)(x1, x2) = −

1
4

x3
1 +

1
8

x1x2
2 +

1
8

x1x2 +
1
2

x1,
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and for the second kind U(1,0)
λ are of the form

U(1,0)
(0,0)(x1, x2) = 1,

U(1,0)
(1,0)(x1, x2) = x1,

U(1,0)
(0,1)(x1, x2) = x2,

U(1,0)
(1,1)(x1, x2) = x1x2 − x1,

U(1,0)
(2,1)(x1, x2) = x2

1x2 − x2
1 − x2

2 − x2 + 1,

U(1,0)
(1,2)(x1, x2) = −x3

1 + x1x2
2 + x1.

The lowest polynomials of the short second kind U(2,0)
λ are of the following explicit form:

U(2,0)
(0,0)(x1, x2) = 1,

U(2,0)
(1,0)(x1, x2) = x1,

U(2,0)
(0,1)(x1, x2) =

1
2

x2 +
1
2

,

U(2,0)
(1,1)(x1, x2) =

1
2

x1x2 −
1
2

x1,

U(2,0)
(2,1)(x1, x2) =

1
2

x2
1x2 −

1
2

x2
1 −

1
2

x2
2 − x2 +

1
2

,

U(2,0)
(1,2)(x1, x2) = −x3

1 +
1
2

x1x2
2 + x1x2 +

3
2

x1,

and the polynomials of the long second kind U(3,0)
λ are of the form

U(3,0)
(0,0)(x1, x2) = 1,

U(3,0)
(1,0)(x1, x2) =

1
2

x1,

U(3,0)
(0,1)(x1, x2) = x2 − 1,

U(3,0)
(1,1)(x1, x2) =

1
2

x1x2 − x1,

U(3,0)
(2,1)(x1, x2) =

1
2

x2
1x2 −

1
2

x2
1 − x2

2 + 1,

U(3,0)
(1,2)(x1, x2) = −

1
2

x3
1 +

1
2

x1x2
2 −

1
2

x1x2 + x1.

The lowest polynomials of the third kind U(0,1)
λ are of the following explicit form:

U(0,1)
(0,0)(x1, x2) = 1,

U(0,1)
(1,0)(x1, x2) =

1
2

x1 − 1,

U(0,1)
(0,1)(x1, x2) = −x1 + x2,

U(0,1)
(1,1)(x1, x2) = −

1
2

x2
1 +

1
2

x1x2 −
1
2

x1 + 1,

U(0,1)
(2,1)(x1, x2) = −

1
2

x3
1 +

1
2

x2
1x2 + x1x2 − x2

2 +
1
2

x1 − x2 + 1,

U(0,1)
(1,2)(x1, x2) = −

1
2

x3
1 −

1
2

x2
1x2 +

1
2

x1x2
2 +

3
2

x2
1 − 1,
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and the polynomials of the fourth kind U(1,1)
λ are of the form

U(1,1)
(0,0)(x1, x2) = 1,

U(1,1)
(1,0)(x1, x2) = x1 + 1,

U(1,1)
(0,1)(x1, x2) = x1 + x2 + 1,

U(1,1)
(1,1)(x1, x2) = x2

1 + x1x2 − 1,

U(1,1)
(2,1)(x1, x2) = x3

1 + x2
1x2 − x1x2 − x2

2 − 2x1 − 2x2,

U(1,1)
(1,2)(x1, x2) = −x3

1 + x2
1x2 + x1x2

2 − 2x2
1 + x1x2 + 1.

The lowest polynomials of the short fourth kind U(2,1)
λ are of the following explicit form:

U(2,1)
(0,0)(x1, x2) = 1,

U(2,1)
(1,0)(x1, x2) = x1 − 1,

U(2,1)
(0,1)(x1, x2) = −x1 + x2 + 1,

U(2,1)
(1,1)(x1, x2) = −x2

1 + x1x2 + 1,

U(2,1)
(2,1)(x1, x2) = −x3

1 + x2
1x2 + x1x2 − x2

2 + 2x1 − 2x2,

U(2,1)
(1,2)(x1, x2) = −x3

1 − x2
1x2 + x1x2

2 + 2x2
1 + x1x2 − 1,

and the polynomials of the long fourth kind U(3,1)
λ are of the form

U(3,1)
(0,0)(x1, x2) = 1,

U(3,1)
(1,0)(x1, x2) =

1
2

x1 + 1,

U(3,1)
(0,1)(x1, x2) = x1 + x2,

U(3,1)
(1,1)(x1, x2) =

1
2

x2
1 +

1
2

x1x2 −
1
2

x1 − 1,

U(3,1)
(2,1)(x1, x2) =

1
2

x3
1 +

1
2

x2
1x2 − x1x2 − x2

2 −
1
2

x1 − x2 + 1,

U(3,1)
(1,2)(x1, x2) = −

1
2

x3
1 +

1
2

x2
1x2 +

1
2

x1x2
2 −

3
2

x2
1 + 1.

2.5.3. Polynomials of G2

The lowest orthogonal polynomials (25) of variables x1, x2, given by relations (23) and (24), are for the first

kind U(0,0)
λ of the following explicit form:

U(0,0)
(0,0)(x1, x2) = 1,

U(0,0)
(1,0)(x1, x2) =

1
6

x1 −
1
6

x2 −
1
6

,

U(0,0)
(0,1)(x1, x2) =

1
6

x2 −
1
6

,

U(0,0)
(1,1)(x1, x2) =

1
12

x1x2 −
1
4

x2
2 +

1
4

x1 +
1
6

x2 +
5
12

,

U(0,0)
(2,1)(x1, x2) = −

1
6

x4
2 +

1
12

x2
1x2 +

1
4

x1x2
2 +

1
3

x3
2 +

1
12

x2
1 −

1
6

x1x2 +
1
6

x2
2 −

1
4

x1 −
1
2

x2 −
1
6

,

U(0,0)
(1,2)(x1, x2) =

1
12

x1x2
2 −

1
12

x3
2 −

1
6

x2
1 −

1
12

x1x2 +
1
3

x2
2 −

1
6

x1 −
1

12
x2 −

1
6

,
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and for the second kind U(1,0)
λ are of the form

U(1,0)
(0,0)(x1, x2) = 1,

U(1,0)
(1,0)(x1, x2) = x1,

U(1,0)
(0,1)(x1, x2) = x2,

U(1,0)
(1,1)(x1, x2) = x1x2 − x2

2 + x1 + 1,

U(1,0)
(2,1)(x1, x2) = −x4

2 + x2
1x2 + x1x2

2 + x3
2 + x2

1 + 2x2
2 − x2 − 1,

U(1,0)
(1,2)(x1, x2) = x1x2

2 − x3
2 − x2

1 + x2
2 − x1 + x2.

The lowest polynomials of the short second kind U(2,0)
λ are of the following explicit form:

U(2,0)
(0,0)(x1, x2) = 1,

U(2,0)
(1,0)(x1, x2) =

1
2

x1 +
1
2

x2 −
1
2

,

U(2,0)
(0,1)(x1, x2) = x2 + 1,

U(2,0)
(1,1)(x1, x2) =

1
2

x1x2 −
1
2

x2
2 + x1 −

1
2

x2,

U(2,0)
(2,1)(x1, x2) = −x4

2 +
1
2

x2
1x2 + 2x1x2

2 +
1
2

x3
2 +

1
2

x2
1 + x1x2 +

3
2

x2
2 − x1 −

1
2

x2 −
1
2

,

U(2,0)
(1,2)(x1, x2) =

1
2

x1x2
2 −

1
2

x3
2 −

1
2

x2
1 + x2 +

1
2

,

and the polynomials of the long second kind U(3,0)
λ are of the form

U(3,0)
(0,0)(x1, x2) = 1,

U(3,0)
(1,0)(x1, x2) = x1 − x2 + 1,

U(3,0)
(0,1)(x1, x2) =

1
2

x2 −
1
2

,

U(3,0)
(1,1)(x1, x2) =

1
2

x1x2 − x2
2 +

1
2

x1 + x2 + 1,

U(3,0)
(2,1)(x1, x2) = −

1
2

x4
2 +

1
2

x2
1x2 +

3
2

x3
2 +

1
2

x2
1 −

1
2

x1x2 +
1
2

x1 − 2x2,

U(3,0)
(1,2)(x1, x2) =

1
2

x1x2
2 −

1
2

x3
2 − x2

1 +
3
2

x2
2 −

3
2

x1 −
1
2

x2 −
1
2

.

2.6. Discrete Orthogonality of Polynomials

The X-transform is a mapping X : R2 → C2 defined for any x ∈ R2 as

X(x) = (χω1 (x), χω2 (x)).

For a non–trivial admissible shift µ 6= 0, the point and label sets Ω(j,1)
M (µ∨) and L(j,1)

M (µ∨) are defined as

Ω(j,1)
M (µ∨) = X

(
Fσ(j)

M (µ, µ∨)
)

, L(j,1)
M (µ∨) = −$(j,1) + Λσ(j)

M (µ, µ∨) (27)

and for µ = 0 the point and label sets Ω(j,0)
M (µ∨) and L(j,0)

M (µ∨) as

Ω(j,0)
M (µ∨) = X

(
Fσ(j)

M (0, µ∨)
)

, L(j,0)
M (µ∨) = −$(j,0) + Λσ(j)

M (0, µ∨). (28)

The restricted X-transform X(j,k)
M (µ∨), which produces the transformed point sets Ω(j,k)

M (µ∨) via relations (27)
and (28), is one-to-one [16] and therefore the numbers of points and labels coincide [17],
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|Ω(j,k)
M (µ∨)| = |L(j,k)

M (µ∨)|. (29)

The discrete function ε̃ : Ω(j,k)
M (µ∨)→ N is defined for any y ∈ Ω(j,k)

M (µ∨) by relation

ε̃(y) = ε

((
X(j,k)

M (µ∨)
)−1

y
)

.

The polynomial weight functions w(j,k)(x1, x2) are defined by

w(j,k)(χω1 (z), χω2 (z)) =
∣∣∣ϕ(j)

$(j,k) (z)
∣∣∣2 .

The weight functions w(0,0)(x1, x2) are constant,

w(0,0)(x1, x2) = |W|2 = 4p2,

and the non-constant polynomial weight functions w(j,k)(x1, x2) are given explicitly as

A2 : w(1,0)(x1, x2) =x2
1x2

2 − 4x3
1 − 4x3

2 + 18x1x2 − 27,

C2 : w(1,0)(x1, x2) =− 4x4
1 + x2

1x2
2 + 22x2

1x2 − 4x3
2 − 7x2

1 − 20x2
2 − 12x2 + 36,

w(2,0)(x1, x2) =4x2
1 − 16x2 + 16,

w(3,0)(x1, x2) =− 16x2
1 + 4x2

2 + 24x2 + 36,

w(0,1)(x1, x2) =8x1 + 4x2 + 12,

w(1,1)(x1, x2) =− 2x3
1 + x2

1x2 + 3x2
1 + 8x1x2 − 4x2

2 − 8x1 − 8x2 + 12,

w(2,1)(x1, x2) =2x3
1 + x2

1x2 + 3x2
1 − 8x1x2 − 4x2

2 + 8x1 − 8x2 + 12,

w(3,1)(x1, x2) =− 8x1 + 4x2 + 12,

G2 : w(1,0)(x1, x2) =− 4x5
2 + x2

1x2
2 + 26x1x3

2 − 7x4
2 − 4x3

1 − 38x2
1x2 + 26x1x2

2 + 32x3
2 − 47x2

1 − 58x1x2

− 10x2
2 − 42x1 − 28x2 + 49,

w(2,0)(x1, x2) =− 4x2
2 + 16x1 − 8x2 + 28,

w(3,0)(x1, x2) =16x3
2 − 4x2

1 − 40x1x2 − 4x2
2 − 40x1 − 8x2 + 28.

The discrete orthogonality of Weyl orbit functions (17) induces for all λ, λ′ ∈ L(j,k)
M (µ∨) the discrete

orthogonality of the bivariate polynomials U(j,k)
λ ,

∑
y∈Ω(j,k)

M (µ∨)

ε̃(y)w(j,k)(y)U(j,k)
λ (y)U(j,k)

λ′ (y) = c |W|M2 h∨M(λ + $(j,k)) · δλ,λ′ .

3. Generating Functions

3.1. General Form of Generating Functions

The method for constructing generating functions of bivariate polynomials U(j,k)
λ closely follows the method

for the classical Chebyshev polynomials in Section 2.1. Taking two supplementary variables u1, u2 ∈ R and

λ = λ1ω1 + λ2ω2 = (λ1, λ2) ∈ P+ in ω-basis, the corresponding generating functions υ(j,k) of U(j,k)
(λ1,λ2)

(x1, x2),
with indices j, k given by (26), are defined standardly as

υ(j,k)(x1, x2, u1, u2) =
+∞

∑
λ1,λ2=0

U(j,k)
(λ1,λ2)

(x1, x2)u
λ1
1 uλ2

2 . (30)

The families of polynomials U(j,k)
(λ1,λ2)

(x1, x2) are from the power series υ(j,k)(x1, x2, u1, u2) generated by the
standard differentiation

U(j,k)
(λ1,λ2)

(x1, x2) =
1

λ1!λ2!
∂λ1

∂uλ1
1

∂λ2

∂uλ2
2

υ(j,k)(x1, x2, 0, 0). (31)
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The infinite sum in the defining relation (30) can be further evaluated. Considering |u1|, |u2| < 1 and using
the formula for infinite geometric series, the following finite sum is obtained:

υ(j,k)(χω1 (z), χω2 (z), u1, u2) =
+∞

∑
λ1,λ2=0

ϕ
(j)
λ+$(j,k) (z)

ϕ
(j)
$(j,k) (z)

uλ1
1 uλ2

2

=
1

ϕ
(j)
$(j,k) (z)

∑
w∈W

σ(j)(w) e2πi〈w$(j,k) , z〉

(1− u1e2πi〈wω1, z〉)(1− u2e2πi〈wω2, z〉)
. (32)

The functions in (32) need to be expressed as functions of

x1 = χω1 , x2 = χω2 . (33)

It appears that the form of the resulting generating functions υ(j,k) is analogous to fractions (4)–(7). For each
υ(j,k), there is a numerator function N(j,k) of the form

N(j,k)(x1, x2, u1, u2) =
p−1

∑
k1,k2=0

α
(j,k)
(k1,k2)

(x1, x2)u
k1
1 uk2

2 , (34)

with polynomial coefficients α
(j,k)
(k1,k2)

(x1, x2) and the parameter p given by (12). Two denominator functions D1

and D2, common for all υ(j,k), are of the form

Dm(x1, x2, um) = 1−
p

∑
k=1

a(m)
k uk

m, m = 1, 2. (35)

The resulting general form of υ(j,k) is

υ(j,k)(x1, x2, u1, u2) =
N(j,k)(x1, x2, u1, u2)

D1(x1, x2, u1)D2(x1, x2, u2)
. (36)

In the following, the explicit forms of the generating functions are listed. The explicit forms of all generating
functions are straightforwardly verified by substituting (33) into (36) and comparing the result directly to (32).

3.2. The Lie Algebra A2

The two numerator functions N(0,0) and N(1,0) are given as

6N(0,0)(x1, x2, u1, u2) =6− 4x2u2 − 4x1u1 + 2x1u2
2 + (3x1x2 − 3)u1u2

+ 2x2u2
1 + (−2x2

1 + 2x2)u1u2
2 + (−2x2

2 + 2x1)u2
1u2 + (x1x2 − 3)u2

1u2
2, (37)

N(1,0)(u1, u2) =1− u1u2, (38)

and the denominator functions D1, D2 are

D1(x1, x2, u1) =1− x1u1 + x2u2
1 − u3

1, (39)

D2(x1, x2, u2) =1− x2u2 + x1u2
2 − u3

2. (40)

3.3. The Lie Algebra C2

The four coefficients α
(j,0)
(k1,k2)

from (34) of the four numerator functions N(j,0) are listed in Table 2 while

coefficients α
(j,1)
(k1,k2)

of the four numerator functions N(j,1) are listed in Table 3. From this table, one can see, for

example, that the function N(1,0) is given as

N(1,0)(x1, u1, u2) =1 + u2 − x1u1u2 + u2
1u2 + u2

1u2
2.
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The two denominator functions D1, D2 are given as

D1(x1, x2, u1) =1− x1u1 + (x2 + 1)u2
1 − x1u3

1 + u4
1,

D2(x1, x2, u2) =1 + (−x2 + 1)u2 + (x2
1 − 2x2)u2

2 + (−x2 + 1)u3
2 + u4

2.

Table 2. Coefficients α
(j,0)
(k1,k2)

of the numerator functions (34) of C2.

(k1, k2) 8α
(0,0)
(k1,k2)

α
(2,0)
(k1,k2)

α
(3,0)
(k1,k2)

α
(1,0)
(k1,k2)

(0, 0) 8 1 1 1
(0, 1) −6x2 + 6 − 1

2 x2 +
3
2 0 1

(0, 2) 4x2
1 − 8x2 − 1

2 x2 +
3
2 −1 0

(0, 3) −2x2 + 2 1 0 0
(1, 0) −6x1 0 − 1

2 x1 0
(1, 1) 5x1x2 − 7x1 −x1 − 1

2 x1 −x1
(1, 2) −4x3

1 + 9x1x2 + x1
1
2 x1x2 − 1

2 x1 x1 0
(1, 3) 2x1x2 − 4x1 −x1 0 0
(2, 0) 4x2 + 4 −1 1 0
(2, 1) 2x2

1 − 4x2
2 − 2x2 + 6 x2

1
2 x2

1 − x2 + 1 1
(2, 2) 3x2

1x2 + x2
1 − 6x2

2 − 8x2 + 6 −x2
1 +

3
2 x2 +

3
2 −x2 1

(2, 3) 2x2
1 − 2x2

2 − 2x2 + 4 1
2 x2 +

1
2 0 0

(3, 0) −2x1 0 0 0
(3, 1) 2x1x2 − 4x1 0 − 1

2 x1 0
(3, 2) −2x3

1 + 5x1x2 + x1 0 1
2 x1 0

(3, 3) x1x2 − 3x1 0 0 0

Table 3. Coefficients α
(j,1)
(k1,k2)

of the numerator functions (34) of C2.

(k1, k2) α
(0,1)
(k1,k2)

α
(1,1)
(k1,k2)

α
(2,1)
(k1,k2)

α
(3,1)
(k1,k2)

(0, 0) 1 1 1 1
(0, 1) −x1 + 1 x1 + 2 −x1 + 2 x1 + 1
(0, 2) x1 − 1 1 1 −x1 − 1
(0, 3) −1 0 0 −1
(1, 0) − 1

2 x1 − 1 1 −1 − 1
2 x1 + 1

(1, 1) 1
2 x2

1 − x1 + x2 −x1 − x2 −x1 + x2 − 1
2 x2

1 − x1 − x2

(1, 2) −x2
1 +

1
2 x1 + x2 −x1 − x2 −x1 + x2 x2

1 +
1
2 x1 − x2

(1, 3) x1 − 1 1 −1 x1 + 1
(2, 0) 1

2 x1 + 1 0 0 − 1
2 x1 + 1

(2, 1) 1
2 x2

1 −
1
2 x1x2 − x1 − x2 + 2 1 1 1

2 x2
1 +

1
2 x1x2 + x1 − x2 + 2

(2, 2) 1
2 x2

1 +
1
2 x1x2 − 2x2 + 1 x1 + 2 −x1 + 2 1

2 x2
1 −

1
2 x1x2 − 2x2 + 1

(2, 3) 1
2 x1 − x2 1 1 − 1

2 x1 − x2
(3, 0) −1 0 0 1
(3, 1) − 1

2 x1 + x2 0 0 − 1
2 x1 − x2

(3, 2) − 1
2 x2

1 + x2 0 0 1
2 x2

1 − x2

(3, 3) 1
2 x1 − 1 0 0 1

2 x1 + 1
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3.4. The Lie Algebra G2

The coefficients α
(0,0)
(k1,k2)

of the numerator function are listed in Table 4, the coefficients α
(1,0)
(k1,k2)

, α
(2,0)
(k1,k2)

are

listed in Table 5 and the coefficients α
(3,0)
(k1,k2)

are listed in Table 6. The two denominator functions D1, D2 are
given as

D1(x1, x2, u1) =1 + (−x1 + x2 + 1)u1 + (x3
2 − 3x1x2 − 2x1 − x2 + 1)u2

1

+ (2x3
2 − x2

1 − 4x1x2 − x2
2 − 4x1 − 2x2 + 1)u3

1 + (x3
2 − 3x1x2 − 2x1 − x2 + 1)u4

1

+ (−x1 + x2 + 1)u5
1 + u6

1,

D2(x1, x2, u2) =1 + (−x2 + 1)u2 + (x1 + 1)u2
2 + (−x2

2 + 2x1 + 1)u3
2

+ (x1 + 1)u4
2 + (−x2 + 1)u5

2 + u6
2.

Table 4. Coefficients α
(0,0)
(k1,k2)

of the numerator function (34) of G2.

(k1, k2) 12 α
(0,0)
(k1,k2)

(0, 0) 12
(0, 1) −10x2 + 10
(0, 2) 8x1 + 8
(0, 3) −6x2

2 + 12x1 + 6
(0, 4) 4x1 + 4
(0, 5) −2x2 + 2
(1, 0) −10x1 + 10x2 + 10
(1, 1) 9x1x2 − 11x2

2 − 5x1 + 2x2 + 13
(1, 2) 2x3

2 − 8x2
1 + 3x1x2 − x2

2 + x1 + 2x2 + 9
(1, 3) 6x1x2

2 − 6x3
2 − 12x2

1 + 10x1x2 − 4x2
2 + 6x1 + 2x2 + 12

(1, 4) −4x2
1 + 4x1x2 + 2x2

2 − 2x2 + 8
(1, 5) 2x1x2 − 2x2

2 − 2x1 − 2x2 + 4
(2, 0) 8x3

2 − 24x1x2 − 16x1 − 8x2 + 8
(2, 1) −8x4

2 + 25x1x2
2 + 7x3

2 − 2x2
1 − 6x1x2 + 7x2

2 − 17x1 − 11x2 + 9
(2, 2) 7x1x3

2 − x4
2 − 21x2

1x2 + 3x1x2
2 + 11x3

2 − 19x2
1 − 29x1x2 − 5x2

2 − 13x1 − 7x2 + 10
(2, 3) −6x5

2 + 30x1x3
2 − 35x2

1x2 + 11x1x2
2 + 16x3

2 − 27x2
1 − 35x1x2 − 11x2

2 − 12x1 − 2x2 + 11
(2, 4) 4x1x3

2 − 12x2
1x2 − x1x2

2 + 3x3
2 − 8x2

1 − 8x1x2 − x2
2 − 7x1 + x2 + 5

(2, 5) −2x4
2 + 6x1x2

2 + 2x3
2 − x1x2 + 3x2

2 − 9x1 − 6x2 − 1
(3, 0) 12x3

2 − 6x2
1 − 24x1x2 − 6x2

2 − 24x1 − 12x2 + 6
(3, 1) −12x4

2 + 6x2
1x2 + 23x1x2

2 + 19x3
2 − 4x2

1 − 2x1x2 + 7x2
2 − 23x1 − 23x2 + 5

(3, 2) 13x1x3
2 − 3x4

2 − 6x3
1 − 26x2

1x2 + 2x1x2
2 + 13x3

2 − 30x2
1 − 40x1x2 − 17x1 − 13x2 + 11

(3, 3) −10x5
2 + 5x2

1x2
2 + 40x1x3

2 + 5x4
2 − 10x3

1 − 42x2
1x2 + 14x1x2

2 + 26x3
2 − 47x2

1 − 62x1x2
−14x2

2 − 16x1 − 16x2 + 17
(3, 4) 9x1x3

2 − 3x4
2 − 4x3

1 − 18x2
1x2 + 4x1x2

2 + 9x3
2 − 20x2

1 − 28x1x2 + 2x2
2 − 11x1 − 9x2 + 9

(3, 5) −4x4
2 + 2x2

1x2 + 7x1x2
2 + 7x3

2 − 2x1x2 + 3x2
2 − 7x1 − 11x2 + 1

(4, 0) 4x3
2 − 12x1x2 − 8x1 − 4x2 + 4

(4, 1) −4x4
2 + 12x1x2

2 + 4x3
2 − 3x1x2 + 5x2

2 − 13x1 − 10x2 + 1
(4, 2) 4x1x3

2 − 12x2
1x2 − x1x2

2 + 3x3
2 − 8x2

1 − 8x1x2 − x2
2 − 7x1 + x2 + 5

(4, 3) −4x5
2 + 20x1x3

2 − 23x2
1x2 + 7x1x2

2 + 12x3
2 − 19x2

1 − 25x1x2 − 9x2
2 − 12x1 + 9

(4, 4) 3x1x3
2 − x4

2 − 9x2
1x2 + 3x1x2

2 + 7x3
2 − 11x2

1 − 13x1x2 − 5x2
2 − 9x1 − 3x2 + 6

(4, 5) −2x4
2 + 7x1x2

2 + x3
2 − 2x2

1 + x2
2 − 5x1 + x2 + 3

(5, 0) −2x1 + 2x2 + 2
(5, 1) 2x1x2 − 2x2

2 − 2x1 − 2x2 + 4
(5, 2) −2x2

1 + 2x1x2 + 2x2
2 − 4x2 + 6

(5, 3) 2x1x2
2 − 2x3

2 − 4x2
1 + 2x1x2 + 2x1 − 2x2 + 8

(5, 4) 2x3
2 − 2x2

1 − 3x1x2 − x2
2 + x1 − 4x2 + 3

(5, 5) x1x2 − 3x2
2 + 3x1 + 2x2 + 5
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Table 5. Coefficients α
(1,0)
(k1,k2)

, α
(2,0)
(k1,k2)

of the numerator functions (34) of G2.

(k1, k2) α
(2,0)
(k1,k2)

α
(1,0)
(k1,k2)

(0, 0) 1 1
(0, 1) 2 1
(0, 2) −x2 + 1 0
(0, 3) 2 0
(0, 4) 1 0
(1, 0) − 1

2 x1 +
3
2 x2 +

1
2 x2 + 1

(1, 1) −x2
2 −

1
2 x1 +

5
2 x2 +

3
2 −x2

2 + x1 + x2 + 2
(1, 2) x1x2 − x2

2 + x2 + 1 x1 + 1
(1, 3) −2x1 + x2 + 2 −x2 + 1
(1, 4) −x1 + x2 + 2 1
(2, 0) − 1

2 x1x2 +
1
2 x2

2 +
1
2 x1 +

1
2 x2 + 1

(2, 1) 1
2 x1x2

2 +
1
2 x3

2 −
1
2 x2

1 − 3x1x2 − 3
2 x1 − 3

2 x2 + 1 −x2
2 + x2 + 1

(2, 2) −x4
2 + 3x1x2

2 + x3
2 −

1
2 x2

1 −
1
2 x1x2 + x2

2 − x1 − 1
2 x2 +

3
2 x1x2 − x2

2 + x1 + 2x2 + 1
(2, 3) 2x3

2 −
11
2 x1x2 − 3

2 x2
2 −

7
2 x1 − x2 +

5
2 −x2

2 + x2 + 1
(2, 4) x3

2 − 3x1x2 − 5
2 x1 +

1
2 x2 +

3
2 x2 + 1

(3, 0) 1
2 x1x2 − 1

2 x2
2 −

1
2 x1 − 1

2 1
(3, 1) − 1

2 x1x2
2 +

3
2 x3

2 −
3
2 x1x2 − x2

2 −
5
2 x1 − 2x2 − 1

2 −x2 + 1
(3, 2) −x4

2 +
1
2 x2

1x2 + 2x1x2
2 +

3
2 x3

2 −
1
2 x2

1 +
1
2 x2

2 − 2x1 − 3
2 x2 +

1
2 x1 + 1

(3, 3) 1
2 x1x2

2 +
5
2 x3

2 − 2x2
1 −

13
2 x1x2 − x2

2 −
11
2 x1 − 2x2 +

5
2 −x2

2 + x1 + x2 + 2
(3, 4) 2x3

2 − x2
1 −

9
2 x1x2 − 1

2 x2
2 −

7
2 x1 − 2x2 +

3
2 x2 + 1

(4, 0) 1
2 x1 − 3

2 x2 − 1
2 0

(4, 1) − 1
2 x1x2 +

3
2 x2

2 −
1
2 x1 − x2 − 1

2 0
(4, 2) 1

2 x2
1 −

1
2 x1x2 − x1 − 3

2 x2 − 1
2 0

(4, 3) − 1
2 x1x2

2 +
3
2 x3

2 +
1
2 x2

1 − 3x1x2 − 5
2 x1 − 1

2 x2 + 1 1
(4, 4) x3

2 −
5
2 x1x2 − 1

2 x2
2 −

5
2 x1 − x2 +

1
2 1

(5, 0) −1 0
(5, 1) x2 0
(5, 2) −x1 − x2 0
(5, 3) x2

2 −
3
2 x1 − 1

2 x2 +
1
2 0

(5, 4) − 1
2 x1 − 1

2 x2 +
1
2 0

Table 6. Coefficients α
(3,0)
(k1,k2)

of the numerator function (34) of G2.

(k1, k2) α
(3,0)
(k1,k2)

(0, 0) 1
(0, 1) − 1

2 x2 +
1
2

(0, 2) 1
2 x2 − 1

2
(0, 3) −1
(1, 0) 2
(1, 1) − 1

2 x2
2 + x1 − x2 +

5
2

(1, 2) 1
2 x3

2 −
3
2 x1x2 +

3
2 x1 − 3

2 x2 + 1
(1, 3) − 1

2 x1x2 +
3
2 x1 − 3

2 x2 +
1
2

(1, 4) 1
2 x2

2 − x2 +
1
2

(1, 5) − 1
2 x2 +

1
2

(2, 0) −x1 + x2 + 1
(2, 1) x1x2 − 3

2 x2
2 + x2 +

3
2

(2, 2) 1
2 x3

2 − x2
1 − x2

2 + x2 +
1
2

(2, 3) 1
2 x1x2

2 −
1
2 x3

2 − x2
1 + x1x2 − 1

2 x2
2 +

1
2 x1 +

1
2 x2 +

1
2

(2, 4) − 1
2 x3

2 + x1x2 + x2
2 +

1
2

(2, 5) 1
2 x2

2 − x1 − x2 − 1
2

(3, 0) 2
(3, 1) − 3

2 x2 +
3
2

(3, 2) − 1
2 x2

2 + 2x1 + x2 +
3
2

(3, 3) 1
2 x1x2 − 2x2

2 +
5
2 x1 +

3
2 x2 +

3
2

(3, 4) − 1
2 x3

2 +
3
2 x1x2 +

1
2 x1 +

3
2 x2 + 1

(3, 5) 1
2 x2

2 − x1 − x2 − 1
2

(4, 0) 1
(4, 1) −x2 + 1
(4, 2) x1 + 1
(4, 3) −x2

2 + 2x1 + 2
(4, 4) x1 − 1

2 x2 +
3
2

(4, 5) − 1
2 x2 +

1
2
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4. Explicit Formulas for Polynomials

4.1. General Form of Evaluating Formulas

The goal of this section is to derive the explicit formulas of the two-variable orthogonal polynomials
from their generating functions. The explicit formulas are derived by generalizing an evaluation procedure for
Chebyshev polynomials of the first and the second kind [4] and using the Bell polynomials. The incomplete
exponential Bell polynomials Bl,k are defined [29,30] for a sequence of variables (t1, t2, . . . ) and a set of indices
j1, j2, · · · ∈ Z≥0 as

Bl,k(t1, t2, . . . ) = ∑
j1+j2+···=k
j1+2j2+···=l

l!
j1!j2! · · ·

(
t1
1!

)j1 ( t2
2!

)j2
· · · . (41)

The sequence of K-polynomials of p variables Kl(y1, . . . , yp), l ∈ Z, with the number p associated to the
Weyl group of each rank two algebra by relation (12), are introduced via the Bell polynomials Bl,k for l ∈ Z≥0 as

Kl(y1, . . . , yp) =
1
l!

l

∑
k=0

k!Bl,k(1!y1, 2!y2, . . . , p!yp, 0, 0, . . . ), (42)

and for l ∈ Z<0 as
Kl(y1, . . . , yp) = 0. (43)

Using the K-polynomials, the general form of the evaluating formulas is for each class of two-variable
polynomials determined in the following theorem.

Theorem 1. The two-variable polynomials (25) are of the form

U(j,k)
(λ1,λ2)

(x1, x2) =
p−1

∑
k1,k2=0

α
(j,k)
(k1,k2)

Kλ1−k1
(a(1)1 , . . . , a(1)p )Kλ2−k2 (a(2)1 , . . . , a(2)p ), (44)

with the numerator coefficients α
(j,k)
(k1,k2)

determined by (34) and the denominator coefficients a(m)
k defined by (35).

Proof. Applying the Faà di Bruno’s formula [29] to expand each function 1/Dm as power series of um, the
following expansions involving K-polynomials (42) are obtained:

1
Dm

=
+∞

∑
l=0

Kl(a(m)
1 , . . . , a(m)

p )ul
m, m = 1, 2.

Taking into account the convention (43), the generating function of the form (36) is then expanded into the
power series as

N(j,k)

D1D2
= N(j,k)

+∞

∑
l1,l2=0

Kl1 (a(1)1 , . . . , a(1)p )Kl2 (a(2)1 , . . . , a(2)p )ul1
1 ul2

2

=
+∞

∑
l1,l2=0

p−1

∑
k1,k2=0

α
(j,k)
(k1,k2)

Kl1 (a(1)1 , . . . , a(1)p )Kl2 (a(2)1 , . . . , a(2)p )ul1+k1
1 ul2+k2

2

=
+∞

∑
λ1,λ2=0

p−1

∑
k1,k2=0

α
(j,k)
(k1,k2)

Kλ1−k1
(a(1)1 , . . . , a(1)p )Kλ2−k2 (a(2)1 , . . . , a(2)p )uλ1

1 uλ2
2 . (45)

Comparing the resulting power series expansion (45) to defining relation (30) yields the result.

The K-polynomials are for each rank two case further explicitly evaluated in the following sections.
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4.2. K-Polynomials of A2

For the case A2, the K-polynomials of three variables Kl(y1, y2, y3) are brought to the compact form

Kl(y1, y2, y3) =
l

∑
k=d l

3 e

b l−k
2 c

∑
j3=max{0,l−2k}

k! y2k−l+j3
1 yl−k−2j3

2 yj3
3

(2k− l + j3)!(l − k− 2j3)!j3!
,

where d e and b c denote the ceiling and the floor function, respectively. The several first K-polynomials of A2 are
given as

K0(y1, y2, y3) =1,

K1(y1, y2, y3) =y1,

K2(y1, y2, y3) =y2
1 + y2,

K3(y1, y2, y3) =y3
1 + 2y1y2 + y3,

K4(y1, y2, y3) =y4
1 + 3y2

1y2 + 2y1y3 + y2
2,

K5(y1, y2, y3) =y5
1 + 4y3

1y2 + 3y2
1y3 + 3y1y2

2 + 2y2y3,

K6(y1, y2, y3) =y6
1 + 5y4

1y2 + 4y3
1y3 + 6y2

1y2
2 + 6y1y2y3 + y3

2 + y2
3.

Example 1. Utilization of K-polynomials in evaluation formula (44) is demonstrated for the polynomials U(0,0)
(2,3) and U(1,0)

(2,3)
of A2. Taking into account the numerator coefficients in (37), (38) and denominator coefficients (39) and (40), the polynomial
U(0,0)
(2,3) is calculated as

6U(0,0)
(2,3)(x1, x2) =6K2(x1,−x2, 1)K3(x2,−x1, 1)− 4x2K2(x1,−x2, 1)K2(x2,−x1, 1)

− 4x1K1(x1,−x2, 1)K3(x2,−x1, 1) + 2x1K2(x1,−x2, 1)K1(x2,−x1, 1)

+ (3x1x2 − 3)K1(x1,−x2, 1)K2(x2,−x1, 1) + 2x2K0(x1,−x2, 1)K3(x2,−x1, 1)

+ (−2x2
1 + 2x2)K1(x1,−x2, 1)K1(x2,−x1, 1) + (−2x2

2 + 2x1)K0(x1,−x2, 1)K2(x2,−x1, 1)

+ (x1x2 − 3)K0(x1,−x2, 1)K1(x2,−x1, 1)

=x2
1x3

2 − 3x3
1x2 − 2x4

2 + 6x1x2
2 + 3x2

1 − 7x2,

and similarly the polynomial U(1,0)
(2,3) is calculated as

U(1,0)
(2,3)(x1, x2) =K2(x1,−x2, 1)K3(x2,−x1, 1)− K1(x1,−x2, 1)K2(x2,−x1, 1)

=x2
1x3

2 − 2x3
1x2 − x4

2 + x1x2
2 + 2x2

1 − x2.

4.3. K-Polynomials of C2

For the case C2, the K-polynomials of four variables Kl(y1, y2, y3, y4) are of the form

Kl(y1, y2, y3, y4) =
l

∑
k=d l

4 e

b l−k
2 c

∑
j3=0

b l−k−2j3
3 c

∑
j4=max{0,d l−2k−j3

2 e}

k! y2k−l+j3+2j4
1 yl−k−2j3−3j4

2 yj3
3 yj4

4
(2k− l + j3 + 2j4)!(l − k− 2j3 − 3j4)!j3!j4!

.

The several first K-polynomials of C2 are given as

K0(y1, y2, y3, y4) =1,

K1(y1, y2, y3, y4) =y1,

K2(y1, y2, y3, y4) =y2
1 + y2,

K3(y1, y2, y3, y4) =y3
1 + 2y1y2 + y3,

K4(y1, y2, y3, y4) =y4
1 + 3y2

1y2 + 2y1y3 + y2
2 + y4,

K5(y1, y2, y3, y4) =y5
1 + 4y3

1y2 + 3y2
1y3 + 3y1y2

2 + 2y1y4 + 2y2y3,

K6(y1, y2, y3, y4) =y6
1 + 5y4

1y2 + 4y3
1y3 + 6y2

1y2
2 + 3y2

1y4 + 6y1y2y3 + y3
2 + 2y2y4 + y2

3.
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4.4. K-Polynomials of G2

For the case G2, the K-polynomials of six variables Kl(y1, y2, y3, y4, y5, y6) are of the form

Kl(y1, y2, y3, y4, y5, y6) = ∑
k,j3,j4,j5,j6

k! y2k−l+j3+2j4+3j5+4j6
1 yl−k−2j3−3j4−4j5−5j6

2 yj3
3 yj4

4 yj5
5 yj6

6
(2k− l + j3 + 2j4 + 3j5 + 4j6)!(l − k− 2j3 − 3j4 − 4j5 − 5j6)!j3!j4!j5!j6!

with the indices in the sum taking values

k =

⌈
l
6

⌉
. . . l,

j3 =0 . . .
⌊

l − k
2

⌋
,

j4 =0 . . .
⌊

l − k
3

⌋
,

j5 =0 . . .
⌊

l − k
4

⌋
,

j6 =max
{

0,
⌈

l − 2k− j3 − 2j4 − 3j5
4

⌉}
. . .
⌊

l − k− 2j3 − 3j4 − 4j5
5

⌋
.

The several first K-polynomials of G2 are given as

K0(y1, y2, y3, y4, y5, y6) =1,

K1(y1, y2, y3, y4, y5, y6) =y1,

K2(y1, y2, y3, y4, y5, y6) =y2
1 + y2,

K3(y1, y2, y3, y4, y5, y6) =y3
1 + 2y1y2 + y3,

K4(y1, y2, y3, y4, y5, y6) =y4
1 + 3y2

1y2 + 2y1y3 + y2
2 + y4,

K5(y1, y2, y3, y4, y5, y6) =y5
1 + 4y3

1y2 + 3y2
1y3 + 3y1y2

2 + 2y1y4 + 2y2y3 + y5,

K6(y1, y2, y3, y4, y5, y6) =y6
1 + 5y4

1y2 + 4y3
1y3 + 6y2

1y2
2 + 3y2

1y4 + 6y1y2y3 + y3
2 + 2y1y5 + 2y2y4 + y2

3 + y6.

5. Conclusions

• The explicit evaluating formulas (44) comprise the family of p-variate case-dependent polynomials Kl . The
construction of the K-polynomials from truncation formula (42) relies on solving the two indices’ equations
inside definition (41) of Bell polynomials Bl,k with respect to j1 and j2,

j1 + j2 + · · ·+ jp = k,

j1 + 2j2 + · · ·+ pjp = l.

Compared to calculation by a direct differentiation from (31) and by recursive formulas, the Formula (44)

indeed represents efficient and straightforward means of evaluation of any given polynomial U(j,k)
λ .

• Two distinct renormalizations of polynomials U(j,k)
λ , inherited from normalizations of the underlying orbit

functions, are mainly used throughout the literature [2,3,31–33]. Between the normalized orbit functions

(13), summed over the entire Weyl group W, and orbit functions ϕ̂
(j)
λ , added over the group orbit O(λ) only,

holds the following relation:

ϕ
(j)
λ = hλ ϕ̂

(j)
λ ,

where hλ = |StabW λ| denotes the order of the stabilizer of λ ∈ R2 in the group W. Thus, the two polynomials

U(j,k)
λ and the polynomials Û(j,k)

λ induced by ϕ̂
(j)
λ are intertwined as

U(j,k)
λ =

hλ+$(j,k)

h$(j,k)
Û(j,k)

λ .
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• Three principal choices of the variables of the polynomialsU(j,k)
λ and Û(j,k)

λ and their corresponding generating
functions are available. The present fundamental character variables x1 and x2, the fundamental normalized

symmetric orbit functions variables c1 = ϕ
(0)
(1,0), c2 = ϕ

(0)
(0,1) and the fundamental symmetric orbit functions

variables ĉ1 = ϕ̂
(0)
(1,0), ĉ2 = ϕ̂

(0)
(0,1) satisfy the following linear transformations:

A2 : c1 =2ĉ1 = 2x1,

c2 =2ĉ2 = 2x2,

C2 : c1 =2ĉ1 = 2x1,

c2 =2ĉ2 = 2x2 − 2,

G2 : c1 =2ĉ1 = 2x1 − 2x2 − 2,

c2 =2ĉ2 = 2x2 − 2.

• Generating functions represent an efficient tool for analyzing the symmetries of the generated polynomials.
The symmetries of the C2 generating functions

υ(j,0)(−x1, x2,−u1, u2) = υ(j,0)(x1, u1, u1, u2),

υ(0,1)(−x1, x2,−u1, u2) = υ(3,1)(x1, u1, u1, u2),

υ(1,1)(−x1, x2,−u1, u2) = υ(2,1)(x1, u1, u1, u2),

generalize the parity properties of the classical Chebyshev polynomials (8)–(10) for the case C2 in the
following six relations:

U(j,0)
(λ1,λ2)

(−x1, x2) = (−1)λ1U(j,0)
(λ1,λ2)

(x1, x2),

U(0,1)
(λ1,λ2)

(−x1, x2) = (−1)λ1U(3,1)
(λ1,λ2)

(x1, x2),

U(1,1)
(λ1,λ2)

(−x1, x2) = (−1)λ1U(2,1)
(λ1,λ2)

(x1, x2).

Similar parity properties do not appear for the cases A2 and G2.
• The advent of generating functions in the representation theory of Lie groups can be traced to papers of

Cayley [34] and Sylvester and Franklin [35], which predate the emergence of the representation theory of
Lie groups. In the terminology that is challenging to a contemporary reader, they calculated the generating
functions for the structure of polynomial rings, where the variables are transforming under irreducible
representations of SU(2) of dimensions 2, 3, . . . , 13. A group theoretical ’interpretation’ of their results came
a century later [26]. Invaluable information provided by such generating function is about the existence,
degrees and structure of the syzygies that are present in such rings.

• The current fourteen generating functions of bivariate polynomials include for completeness the five bivariate
cases from [31–33]. The present calculation procedure as well as the procedure in [31–33] is based on
case-by-case analysis of the given Lie algebra. Expressing the general form of character generators [19]
in rational polynomial form potentially yields the polynomial generating functions υ(1,0) for any case.
Specific polynomial form of character generators together with the polynomial generating function of the
remaining polynomial classes deserve further study. Even a more challenging and deep problems poses
formation of polynomial generating functions for the entire class of Heckman–Opdam polynomials [7].
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