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Abstract: The aim of this paper is to study the congruence properties of a new sequence, which is
closely related to Fubini polynomials and Euler numbers, using the elementary method and the
properties of the second kind Stirling numbers. As results, we obtain some interesting congruences
for it. This solves a problem proposed in a published paper.

Keywords: Fubini polynomials; Euler numbers; congruence; elementary method

MSC: 11B83; 11B37

1. Introduction

Let n ≥ 0 be an integer, the famous Fubini polynomials Fn(y) are defined according to the
coefficients of following generating function:

1
1− y (et − 1)

=
∞

∑
n=0

Fn(y)
n!
· tn, (1)

where F0(y) = 1, F1(y) = y, and so on.
These polynomials are closely related to the Stirling numbers and Euler numbers. For example,

if y = − 1
2 , then (1) becomes

2
1 + et =

∞

∑
n=0

En

n!
· tn, (2)

where En denotes the Euler numbers.
At the same time, the Fubini polynomials with two variables can also be defined by the following

identity (see [1,2]):
ext

1− y (et − 1)
=

∞

∑
n=0

Fn(x, y)
n!

· tn,

and Fn(y) = Fn(0, y) for all integers n ≥ 0. Many scholars have studied the properties of Fn(x, y), and
have obtained many important works. For example, T. Kim et al. proved a series of identities related
to Fn(x, y) (see [2,3]), one of which is

Fn(x, y) =
n

∑
l=0

(
n
l

)
xl · Fn−l(y), n ≥ 0.

Zhao Jianhong and Chen Zhuoyu [4] studied the computational problem of the sums

∑
a1+a2+···+ak=n

Fa1(y)
(a1)!

· Fa2(y)
(a2)!

· · ·
Fak (y)
(ak)!

,
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where the summation in the formula above denotes all k-dimension non-negative integer coordinates
(a1, a2, · · · , ak) such that a1 + a2 + · · ·+ ak = n. They proved the identity

∑a1+a2+···+ak=n
Fa1 (y)
(a1)!

· Fa2 (y)
(a2)!

· · · Fak (y)
(ak)!

= 1
(k−1)!(y+1)k−1 · 1

n! ∑k−1
i=0 C(k− 1, i)Fn+k−1−i(y),

(3)

where the sequence C(k, i) is defined for positive integer k and i with 0 ≤ i ≤ k, C(k, 0) = 1,
C(k, k) = k! and

C(k + 1, i + 1) = C(k, i + 1) + (k + 1)C(k, i), for all 0 ≤ i < k,

providing C(k, i) = 0, if i > k.
For clarity, for 1 ≤ k ≤ 9, we list values of C(k, i) in the following Table 1.

Table 1. Values of C(k, i).

C(k, i) i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9

k=1 1 1
k=2 1 3 2
k=3 1 6 11 6
k=4 1 10 35 50 24
k=5 1 15 85 225 274 120
k=6 1 21 175 735 1624 1764 720
k=7 1 28 322 1960 6769 13,132 13,068 5040
k=8 1 36 546 4536 22,449 67,284 118,124 109,584 40,320
k=9 1 45 870 9450 63,273 269,325 723,680 1,172,700 1,026,576 362,880

Meanwhile, Zhao Jianhong and Chen Zhuoyu [4] proposed some conjectures related to the
sequence. We believe that this sequence is meaningful because it satisfies some very interesting
congruence properties, such as

C(p− 2, i) ≡ 1 (mod p) (4)

for all odd primes p and integers 0 ≤ i ≤ p− 2. The equivalent conclusion is

C(p− 1, i) ≡ 0 (mod p) (5)

for all odd primes p and positive integers 1 ≤ i ≤ p− 2. Since some related content can be found in
references [5–15], we will not go through all of them here.

The aim of this paper is to prove congruence (5) by applying the elementary method and the
properties of the second kind Stirling numbers. That is, we will solve the conjectures in [4], which are
listed in the following.

Theorem 1. Let p be an odd prime. For any integer 1 ≤ i ≤ p− 2, we have congruence

C(p− 1, i) ≡ 0 (mod p) .

From this theorem and (3), we can deduce following three corollaries:

Corollary 1. For any positive integer n and odd prime p, we have

Fn+p−1(y)− Fn(y) ≡ 0 (mod p) .

Corollary 2. For any positive integer n and odd prime p, we have
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En+p−1 − En ≡ 0 (mod p).

Corollary 3. For any odd prime p, we have the congruences

2Ep ≡ −1 (mod p), 4Ep+2 ≡ 1 (mod p), and 2Ep+4 ≡ −1 (mod p).

Note. Since En is a rational number, we can denote En =
Un

Vn
, where Un and Vn are integers with

(Un, Vn) = 1. Based on this, in our paper, the expression En ≡ 0 (mod p) means p | Un, while p - Vn.

2. Several Lemmas

Lemma 1. For any positive integer k, we have the identity

k!y(y + 1)k−1 =
k−1

∑
i=0

C(k− 1, i)Fk−i(y).

Proof. Taking n = 1 in (3), and noting that F0(y) = 1, F1(y) = y, and the equation a1 + a2 + · · ·+ ak = 1
holds if and only if one of ai is 1, others are 0. The number of the solutions of this equation is (k

1) = k.
So, from (3), we have

∑
a1+a2+···+ak=1

Fa1(y)
(a1)!

· Fa2(y)
(a2)!

· · ·
Fak (y)
(ak)!

=

(
k
1

)
y = ky

=
1

(k− 1)!(y + 1)k−1 ·
k−1

∑
i=0

C(k− 1, i)Fk−i(y)

or identity

k!y(y + 1)k−1 =
k−1

∑
i=0

C(k− 1, i)Fk−i(y),

which proves Lemma 1.

Lemma 2. For any positive integer n, we have the identity

Fn(y) =
n

∑
k=0

S(n, k) k! yk, (n ≥ 0),

where S(n, k) are the second kind Stirling numbers, which are defined for any integer k, n with 0 ≤ k ≤ n as:

S(n, k) = kS(n− 1, k) + S(n− 1, k− 1)

where S(0, 0) = 1, S(n, 0) = 0 and S(0, k) = 0 for n, k > 0.

Proof. See Reference [2].

Lemma 3. For any positive integers n and k, we have

S(n, k) =
1
k!

k

∑
j=0

(
k
j

)
jn(−1)k−j.

Proof. See Theorem 4.3.12 of [16].
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Lemma 4. For any odd prime p and positive integer 2 ≤ k ≤ p− 1, we have the congruence

k!S(p, k) ≡ 0 (mod p) .

Proof. From the definition and properties of S(n, k), we have S(n, k) = 0, if k > n. For any integers
0 ≤ j ≤ p − 1, from the famous Fermat’s little theorem, we have the congruence jp ≡ j (mod p).
From this congruence and Lemma 3, we have

k!S(p, k) =
k

∑
j=0

(
k
j

)
jp(−1)k−j ≡

k

∑
j=0

(
k
j

)
j(−1)k−j ≡ k!S(1, k) ≡ 0 (mod p) ,

if k ≥ 2. This completes the proof of Lemma 4.

3. Proof of the Theorem

In this section, we will prove Theorem by mathematical induction. Taking k = p in Lemma 1 and
noting that C(p− 1, 0) = 1 and C(p− 1, p− 1) = (p− 1)!, we have:

p!y(y + 1)p−1 =
p−1

∑
i=0

C(p− 1, i)Fp−i(y)

= Fp(y) + y(p− 1)! +
p−2

∑
i=1

C(p− 1, i)Fp−i(y).

Note that (p− 1)! + 1 ≡ 0 (mod p), which implies

Fp(y)− y +
p−2

∑
i=1

C(p− 1, i)Fp−i(y) ≡ 0 (mod p) . (6)

From (6), we have the congruence

y− Fp(y) ≡
p−2

∑
i=1

C(p− 1, i)Fp−i(y) (mod p) . (7)

From Lemma 2, we have

Fp(y) =
p

∑
k=0

S(p, k) k! yk (8)

and

F(p−1)
p (0) = S(p, p− 1) (p− 1)! · (p− 1)!, (9)

where F(k)
n (y) denotes the k-order derivative of Fn(y) for variable y.

F(p−1)
p−1 (0) = S(p− 1, p− 1) (p− 1)! · (p− 1)! = (p− 1)! · (p− 1)!. (10)

Then, applying Lemma 3 and Lemma 4 and noting that S(1, p− 1) = 0, we have

(p− 1)!S(p, p− 1) ≡ ∑
p−1
j=0 (p−1

j )jp(−1)p−1−j ≡ ∑
p−1
j=0 (p−1

j )j(−1)p−1−j

≡ (p− 1)!S(1, p− 1) ≡ 0 (mod p) .
(11)
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Combining (7), (9), (10), and (11), we have:

0 ≡ −S(p, p− 1)(p− 1)!(p− 1)! ≡ C(p− 1, 1)(p− 1)! · (p− 1)! (mod p) (12)

or

C(p− 1, 1) ≡ 0 (mod p) . (13)

That is, the theorem is true for i = 1.
Assume that the theorem is true for all 1 ≤ i ≤ s. That is,

C(p− 1, i) ≡ 0 (mod p)

for 1 ≤ i ≤ s < p− 1. It is clear that if s = p− 2, then the theorem is true.
If 1 < s < p− 2, then from (7) we have the congruence

y− Fp(y) ≡
p−2

∑
i=s+1

C(p− 1, i)Fp−i(y) (mod p) . (14)

In congruence (14), taking the (p − s − 1)-order derivative with respect to t, then let y = 0,
applying Lemma 2, we have:

−S(p, p− s− 1)(p− s− 1)! · (p− s− 1)!

≡ C(p− 1, s + 1)(p− s− 1)!(p− s− 1)! (mod p) .
(15)

Note that ((p− s− 1)!, p) = 1, from Lemma 4 and (15) we have the congruence

C(p− 1, s + 1)(p− s− 1)! ≡ −(p− s− 1)!S(p, p− s− 1) ≡ 0 (mod p) ,

which implies

C(p− 1, s + 1) ≡ 0 (mod p) .

That is, the theorem is true for i = s+ 1. Now the proof of the theorem completes by mathematical
induction.

Now, we prove Corollary 1. For any integer n ≥ 0, taking k = p in (3) and noting that

n! ∑
a1+a2+···+ap=n

Fa1(y)
(a1)!

· Fa2(y)
(a2)!

· · ·
Fap(y)
(ap)!

≡ 0 (mod p) ,

we have

p−1

∑
i=0

C(p− 1, i)Fn+p−1−i(y) ≡ 0 (mod p) . (16)

From our theorem, we have

p−2

∑
i=1

C(p− 1, i)Fn+p−1−i(y) ≡ 0 (mod p) . (17)
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Note that C(p− 1, 0) = 1, C(p− 1, p− 1) = (p− 1)!. Combining (16) and (17), we can deduce
the congruence

Fn+p−1(y)− Fn(y) ≡ 0 (mod p) .

Now the proof of Corollary 1 completes. Since Corollarys 2 and 3 are the special situation of
Corollary 1, we will not prove Corollarys 2 and 3 here.
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