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Abstract: The existing cosine similarity measure for hesitant fuzzy linguistic term sets (HFLTSs) has
an impediment as it does not satisfy the axiom of similarity measure. Due to this disadvantage,
a new similarity measure combining the existing cosine similarity measure and the Euclidean
distance measure of HFLTSs is proposed, which is constructed based on a linguistic scale function;
the related properties are also given. According to the relationship between the distance measure
and the similarity measure, a corresponding distance measure between HFLTSs is obtained.
Furthermore, we generalize the technique for order preference by similarity to an ideal solution
(TOPSIS) method to the obtained distance measure of the HFLTSs. The principal advantages of the
proposed method are that it cannot only effectively transform linguistic information in different
semantic environments, but it can also avoid the shortcomings of existing the cosine similarity
measure. Finally, a case study is conducted to illustrate the feasibility and effectiveness of the
proposed method, which is compared to the existing methods.

Keywords: hesitant fuzzy linguistic term set; similarity measure; linguistic scale function;
distance measure; TOPSIS method

1. Introduction

In many multi-criteria decision making (MCDM) problems, because of the incomplete information
and the complexity of the decision-making environment, crisp numbers cannot describe the relevant
decision information. Thus Zadeh [1] proposed the fuzzy set (FS) A = {

(
xj, µA

(
xj
))∣∣xj ∈ X }(

0 ≤ µA
(

xj
)
≤ 1

)
on X = {x1, x2, · · · , xn}, where µA

(
xj
)

is the membership degree of xj ∈ X. Since it
was put forward, many scholars have generalized it. For example, Atanassov [2,3] introduced the
concepts of the intuitionistic fuzzy set (IFS) and the interval-valued intuitionistic fuzzy set (IVIFS),
and Torra [4] proposed the hesitant fuzzy set (HFS). In the past few years, the FS and its extensions have
been applied in many fields, such as supplier selection, pattern recognition, and medical diagnosis.
As the FS and its extensions mentioned above use crisp numbers to express decision information,
they cannot express qualitative evaluation information. For instance, when one expert evaluates
the performance of a company, he/she thinks that the performance of the company is very good.
Because the evaluation expression is consistent with the human’s cognitive process, it is suitable to
express this in a linguistic term set (LTS). To describe the relevant information, Zadeh [5–7] proposed
the LTS to express the relevant information. A general discrete LTS of seven terms can be represented as
S = {s0 : very poor, s1 : poor, s2 : slightly poor, s3 : f air, s4 : slightly good, s5 : good, s6 : very good}.
Then, the expert’s evaluation about the performance of the company can be represented as {s6}.
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However, due to the uncertainty of the problem in the decision making process, the decision makers
cannot express their preferences using only one membership degree of a LTS. In order to express the
decision makers’ hesitation about the decision problem, Rodríguez et al. [8] proposed the hesitant fuzzy
linguistic term set (HFLTS), which is based on LTS and HFS. The HFLTS makes the representation
of the decision information more flexible. Since the HFLTS was proposed, a number of relevant
studies and their applications [9–22] have been conducted. For example, Liu et al. [16] presented
the fuzzy envelope for HFLTSs and applied it to choose the best alternative. Xu et al. [17] presented
the hesitant fuzzy linguistic ordered weighted distance operator, and applied it to plan the selection
of enterprise’s large projects. Liao et al. [18] maked a survey on HFLTSs and reviewed the decision
making process with hesitant fuzzy linguistic preference (HFLP) relations. Liao et al. [19] proposed
the hesitant fuzzy linguistic preference utility set (HFLPUS) and applied the HFLP utility TOPSIS
approach to choose the best fire rescue alternative. One thing that they have in common is that
they use the subscript of linguistic terms directly in the process of operations, which may cause a
loss of information. In order to overcome this problem, the linguistic scale function was introduced
by Wang et al. [23], which can assign different numerical values to the linguistic terms set under
different circumstances. The linguistic scale function can reflect the preferences of the decision
makers in different environments. Since it was put forward, many scholars have studied this subject.
For example, Wang et al. [24] presented the Hausdorff distance between the hesitant fuzzy linguistic
numbers (HFLNs), based on the linguistic scale function, and developed the TOPSIS and TODIM
approaches to it. Liu et al. [25] proposed a distance measure of HFLTSs, which also included the
linguistic scale function. Furthermore, Liu et al. [26] proposed the intuitionistic fuzzy linguistic cosine
similarity measure and the interval-valued intuitionistic fuzzy linguistic cosine similarity measure,
they all contain the linguistic scale function. The research on this field has developed rapidly.

From another perspective, the similarity measure is also an important aspect in MCDM problems,
which can measure the similarity degree between two different alternatives. It has been widely studied
in the past few years. For example, Song et al. [27] considered the similarity measure between IFSs,
and proposed the corresponding distance measure between IF belief functions. Liao et al. [9] presented
some similarity measures and distance measures between HFLTSs; Lee et al. [10] proposed a similarity
measure based on likelihood relations. For the other studies about the similarity measure, we can refer
to [11–13]. The cosine similarity measure is also a significant similarity measure; it can be expressed
as the inner product of two vectors divided by the product of their lengths [28]. Some scholars have
studied the cosine similarity measure [29–31]. For instance, Ye [29] introduced a weighted cosine
similarity measure between IFSs and they applied it to rank the alternative. Furthermore, Ye [30]
presented the cosine similarity measure between interval-valued fuzzy sets (IVFSs) with risk preference,
and altered its decision making method depending on decision makers’ preferences. Liao et al. [31]
defined the cosine similarity measure between HFLTSs and extended the TOPSIS approach and VIKOR
approach to the cosine distance measure. It is already known that the cosine similarity measure
proposed by Liao et al. [31] is not a regular similarity measure (because it is not satisfied with the axiom
of the similarity measure; the example can be seen in Section 3). If it is applied in MCDM problems,
it may cause the decision information to be distorted. Furthermore, the cosine similarity measure
defined by Liao et al. [31] used the subscript of linguistic terms directly in process of operations;
they did not consider the semantic decision environment, which may cause a loss of information in the
decision making process.

Therefore, this paper introduces a new method to construct a similarity measure between HFLTSs;
the main motivations and contributions of the paper are given as follows:

(1) In order to overcome the disadvantage of the similarity measure proposed by Liao et al. [31],
a new similarity measure combining the existing cosine similarity measure [31] and the Euclidean
distance measure of HFLTSs is proposed in this paper, which can improve the accuracy of the
calculation to some extent.
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(2) On the basis of the linguistic scale function, the paper proposes a new similarity measure between
two HFLTSs; it is already known that the linguistic scale function can improve the flexibility
of the transformation of the linguistic decision information in different semantic environments.
The proposed method is capable of expressing the fuzzy linguistic information more flexibly and
improving the adaptability of HFLTSs in practice.

(3) According to the relationship between the similarity measure and the distance measure, this paper
proposes a new distance measure of HFLTSs and extends the TOPSIS method to it; it focuses on
the differences between different alternatives, which can improve the effectiveness of solving
MCDM problems.

The reminder of the paper is given as follows: the background on the MCDM problems,
some concepts of LTS and HFLTS, the existing similarity measures of HFLTSs, and the linguistic
scale function are reviewed in Section 2. In Section 3, a new score function of HFLTS based on
the linguistic scale function, and a new approach to construct the similarity measure of HFLTSs,
are presented. The corresponding distance measure is also constructed based on the relationship
between the distance measure and the regular similarity measure. In Section 4, we extend the TOPSIS
method to the proposed distance measure. In Section 5, a numerical example is given to illustrate the
feasibility of the proposed method, and the same numerical example is examined to compare with
other methods. Some conclusions and future research are proposed in Section 6.

2. Preliminaries

In this section, we will explain how the MCDM method works, and we review some basic
knowledge, including LTS, HFLTS, the score function of HFLTS, and the linguistic scale function.
Some existing distance measures and similarity measures of HFLTSs are also introduced. In this paper,
we denote X = {x1, x2, · · · , xn} as the discourse set.

2.1. MCDM

Multi-criteria decision making is an important branch of the decision-making field. There are some
common aspects (alternatives and criteria) in MCDM; the typical MCDM problem can be described
as follows:

Let X = {x1, x72, · · · , xn} be a set of alternatives; let C = {c1, c2, · · · , cm} be a set of criteria
values. The decision matrix D is an n×m matrix, in which element dij indicates the performance of the
alternative xi when it is evaluated according to the decision criterion cj (i = 1, 2, · · · n; j = 1, 2, · · ·m.);
the decision element dij is provided by the expert. It is also assumed that the expert has determined the
weight of the criteria (denoted as ωj, j = 1, 2, · · ·m). There are three steps in utilizing the decision-making
technique to rank the alternatives [32]: (1) Provide the relevant criteria and alternatives; (2) Collective
information calculation; (3) Rank the alternative according to the collective information.

2.2. LTS

LTS is suitable for qualitative description of the decision-making problems, which can be defined
as follows:

Definition 1. Let S = { si|i = 0, 1, · · · , 2t} be a finite and totally ordered discrete linguistic term set, where si
is a possible value for a linguistic variable, and t is a positive integer [33].

(1) The LTS S satisfies the following properties:
(2) The set S is ordered: si ≤ sj if i ≤ j ; max

(
si, sj

)
= si if si ≥ sj ; min

(
si, sj

)
= si if si ≤ sj;

(3) The negation operator is defined: neg(si) = sj. satisfying with i + j = 2t.
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In order to make the description of the given information more accurate, Xu [34] generalized
the discrete linguistic term set S to the continuous linguistic term set S = { si|i ∈ [0, τ]} (τ > 2t),
where si ≤ sj if i ≤ j, and τ is a sufficiently large positive integer.

2.3. HFLTS

The HFLTS permits the membership of an element to be a set of several possible linguistic variable
values. In the following, the concept of HFLTS and some related operations of HFLTS are reviewed.

Definition 2. Given a fixed set X, let S = { si|i = 0, 1, · · · , 2t} be a LTS, then a HFLTS HS on X is expressed
by [8]:

HS = {
(
xj, hS

(
xj,
))∣∣xj ∈ X }

where hS
(

xj
)

is a subset of linguistic terms in S, it represents the membership degrees of the element xj belongs
to X. For convenience, the element of hS

(
xj
)

is called the hesitant fuzzy linguistic element (HFLE).

Example 1. Let S = {s0 : very poor, s1 : poor, s2 : slightly poor, s3 : f air, s4 : slightly good, s5 : good, s6 :
very good} be a LTS. Two experts evaluate the performance of a company; one thinks the performance of a company
is not less than good, the other thinks it is between fair and good. According to Definition 2, the above evaluation
information can be represented as H1

S = {s5, s6} and H2
S = {s3, s4, s5}, respectively. The numbers of linguistic

terms in H1
S and H2

S are not equal, which is not convenient for computing the similarity measure between H1
S

and H2
S.

In order to solve this problem, for any two HFLTSs H1
S = {

(
xj, h1

S
(

xj
))∣∣xj ∈ X} and

H2
S = {

(
xj, h2

S
(

xj
))∣∣xj ∈ X}(j = 1, 2, · · · , n) , where hk

S
(
xj
)
= {sδk

l

(
xj
)
|sδk

l

(
xj
)
∈ S, lk = 1, 2, · · · , Lk

j },
if the numbers of hk

S
(

xj
)

are not equal, we can let Lj = max{L1
j , L2

j }. Zhu et al. [35] proposed the rules
of regulation: for the optimists, they extend the set with fewer numbers of elements by adding the

maximum value s+
δk

l

(
xj
)
=

max
l = L1

j or l = L2
j
{sδk

l

(
xj
)
} until the two sets have the same number of

elements; while for the pessimists, they add the minimum value s−
δk

l

(
xj
)
=

min
l = L1

j or l = L2
j
{sδk

l

(
xj
)
}

to the set with fewer numbers of elements. In this paper, we assume that the largest element is added
to the set with fewer elements until they have the same number.

The existing score function of HFLTSs is defined as follows:

Definition 3. Let S = { si|i = 0, 1, · · · , 2t} be a LTS; HS = {sδk
l

(
xj
)∣∣∣sδk

l

(
xj
)
∈ S}

(
l = 1, 2, · · · , Lj, j = 1, 2, · · · , n

)
be a HFLTS on X, then the score function of HS is [36]:

F(HS) =
1
n

n

∑
j=1

δ(xj)−
∑n

j=1

(
1
Lj

∑
Lj
l=1

(
δl
(
xj
)
− δ
(
xj
))2
)

Var(2t)

where δ = 1
Lj

∑
Lj
l=1 δl

(
xj
)
, Var(2t) = ∑2t

i=0(i−t)2

2t+1 .

Lemma 1. For two HFLTSs H1
S and H2

S, the comparison rules between them are defined as follows [36]:

(1) H1
S > H2

S if and only if F
(

H1
S
)
> F

(
H2

S
)
;

(2) H1
S = H2

S if and only if F
(

H1
S
)
= F

(
H2

S
)
.
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2.4. Existing Distance and Similarity Measures Between HFLTSs

The Distance and similarity measure are effective tools for describing the deviation and closeness
between different alternatives in MCDM problems; the definitions about the existing distance and
similarity measures between HFLTSs are given as follows:

Definition 4. Given a fixed set X, suppose that S = { si|i = 0, 1, · · · , 2t} be a LTS,
hk

S
(

xj
)
= {sδk

l

(
xj
)∣∣∣sδk

l

(
xj
)
∈ S, l = 1, 2, · · · , Lj} , where Lj = max{l

(
h1

S
(

xj
)
, l(h2

S
(
xj
))
), l
(

hk
S
(

xj
))

represents the number of elements in hk
S
(

xj
)
(k = 1, 2). For any two HFLTSs H1

S = {
(
xj, h1

S
(

xj
))∣∣xj ∈ X}

and H2
S = {

(
xj, h2

S
(

xj
))∣∣xj ∈ X} (j = 1, 2, · · · , n) , assume the weight of different element xj is ωj

(j = 1, 2, · · · , n), then the weighted Euclidean distance measure between H1
S and H2

S can be defined as
follows [9]:

DωHFL

(
H1

S, H2
S

)
=

 n

∑
j=1

ωj

Lj

Lj

∑
l=1

(∣∣δ1
l
(

xj
)
− δ2

l
(
xj
)∣∣

2t + 1

)2
 1

2

. (1)

Remark 1. For all j = 1, 2, · · · , n, if the weight ωj =
1
n , then the weighted Euclidean distance measure

DωHFL
(

H1
S, H2

S
)

is reduced to the Euclidean distance measure DHFL
(

H1
S, H2

S
)
:

DHFL

(
H1

S, H2
S

)
=

 1
n

 n

∑
j=1

1
Lj

Lj

∑
l=1

(∣∣δ1
l
(
xj
)
− δ2

l
(
xj
)∣∣

2t + 1

)2
 1

2

Liao et al. [31] defined a cosine similarity measure between HFLTSs as follows:

Definition 5. Given a fixed set X, suppose that S = { si|i = 0, 1, · · · , 2t} is a LTS,
hk

S
(

xj
)
= {sδk

l

(
xj
)∣∣∣sδk

l

(
xj
)
∈ S, l = 1, 2, · · · , Lj} , where Lj = max{l

(
h1

S
(
xj
)
, l(h2

S
(
xj
))
}, l

(
hk

S
(

xj
))

represents the number of elements in hk
S
(

xj
)
(k = 1, 2). For any two HFLTSs H1

S = {
(
xj, h1

S
(

xj
))∣∣xj ∈ X}

and H2
S = {

(
xj, h2

S
(

xj
))∣∣xj ∈ X} (j = 1, 2, · · · , n) , if the weight of different element xj is ωj

(j = 1, 2, · · · , n), then the weighted cosine similarity measure can be defined as [31]:

CosωHFL.

(
H1

S, H2
S

)
=

∑n
j=1

(
ωj
Lj

∑
Lj
l=1

(
δ1

l (xj)
2t+1 ·

δ2
l (xj)
2t+1

))
(

∑n
j=1

(
ωj
Lj

∑
Lj
l=1

(
δ1

l (xj)
2t+1

)2
)
·∑n

j=1

(
ωj
Lj

∑
Lj
l=1

(
δ2

l (xj)
2t+1

)2
)) 1

2
(2)

Remark 2. For all j = 1, 2, · · · , n, if the weight ωj = 1
n , then the weighted cosine similarity measure

CosωHFL
(

H1
S, H2

S
)

is reduced to the cosine similarity measure CosHFL(H1
S′ , H2

S′):

CosHFL.

(
H1

S, H2
S

)
=

∑n
j=1

(
1
Lj

∑
Lj
l=1

(
δ1

l (xj)
2t+1 ·

δ2
l (xj)
2t+1

))
(

∑n
j=1

(
1
Lj

∑
Lj
l=1

(
δ1

l (xj)
2t+1

)2
)
·∑n

j=1

(
1
Lj

∑
Lj
l=1

(
δ2

l (xj)
2t+1

)2
)) 1

2
(3)

2.5. Linguistic Scale Function

In different semantic decision-making environments, linguistic terms have some differences in
expressing alternatives. Bao et al. [37] thought that the information may be distorted when using
the subscript of the linguistic term set directly in the process of operations. To solve this problem,
Wang et al. [23] put forward the linguistic scale function to calculate the linguistic information.
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According to the decision-making environment, the decision makers choose a different linguistic scale
function, which can express the linguistic information more flexibly in different semantic situations.

Definition 6. Let S = { si|i = 0, 1, · · · , 2t} be a LTS; if θi ∈ R+(R+ = { r|r ≥ 0, r ∈ R}) is a real value,
then the linguistic scale function f can be defined as follows [22]:

f : si → θi (i = 0, 1, · · · , 2t,)

where 0 ≤ θ0 ≤ θ1 ≤ · · · ≤ θ2t ≤ 1. The linguistic scale function f is a strictly monotonically increasing
function on the subscript of si. Actually, the function value θi represents the semantics of the linguistic terms.

Next we introduce three common linguistic scale functions as follows:

(1). f1(si) = θi =
i

2t
(i = 0, 1, · · · , 2t)1).

(2). f2(si) = θi =

{
at−at−i

2at−2 , (i = 0, 1, · · · , t);
at+ai−t−2

2at−2 , (i = t + 1, t + 2, · · · , 2t).

If the LTS is a set of seven terms, then a ∈ [1.36, 1.4] [38]. In this paper, we assume that a = 1.4.

(3). f3(si) = θi =


tα−(t−i)α

2tα , (i = 0, 1, · · · , t);
tβ−(t−i)β

2tβ , (i = t + 1, t + 2, · · · , 2t),

where α, β ∈ (0, 1]. If the LTS is a set of seven terms, then α = β = 0.8 [39].

Example 2. Assume that S = { si|i = 0, 1, · · · , 2t} be a LTS. When t = 3, the corresponding linguistic scale
functions are f1(si), f2(si) (a = 1.4), f3(si) (α = β = 0.8) respectively, and the characteristics of the three
functions are shown in Figure 1.
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Figure 1. The change of the three linguistic scale functions.

Remark 3. The linguistic scale function f1(si) can be explained as the decision maker’s neutral attitude towards
risk; the linguistic scale function f2(si) indicates that the decision maker’s attitude towards risk is changing
from aversion to appetite; the linguistic scale function f3(si) indicates that the decision maker’s attitude towards
risk is changing from appetite to aversion.
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3. The Score Function, Similarity Measure, and Distance Measure Between HFLTSs Based on a
Linguistic Scale Function

In this section, we first propose the definition of a new score function of HFLTSs based
on a linguistic scale function, then the new similarity measure and its properties are given.
Furthermore, we construct a corresponding distance measure based on the relationship between
the similarity measure and the distance measure.

3.1. The Score Function Between HFLTSs Based on the Linguistic Scale Function

Definition 7. Let S = { si|i = 0, 1, · · · , 2t} be a LTS, HS = {sδk
l

(
xj
)∣∣∣sδk

l

(
xj
)
∈ S}(

l = 1, 2, · · · , Lj, j = 1, 2, · · · , n
)

be the HFLTS on X, and f be a linguistic scale function, then the
score function of HS is defined as:

F∗(HS) =
1
n

n

∑
j=1

f
(
sδl

(
xj
))
−

∑n
j=1

(
1
Lj

∑
Lj
l=1

(
f
(
sδl

(
xj
))
− f sδl

(
xj
))2
)

Var∗(2t)
,

where f
(
sδl

(
xj
))

= 1
Lj

∑
Lj
l=1 f

(
sδl

(
xj
))

, Var∗(2t) = ∑2t
i=0( f (si)− f (st))

2.

Theorem 1. For any two HFLTSs H1
S and H2

S, the comparison rules between them are defined as follows:

(1) If F∗
(

H1
S
)
> F∗

(
H2

S
)
, then H1

S > H2
S;

(2) If F∗
(

H1
S
)
= F∗

(
H2

S
)
, then H1

S = H2
S.

Example 3. Let S = {s0 : very poor, s1 : poor, s2 : slightly poor, s3 : f air, s4 : slightly good, s5 :
good, s6 : very good} be a LTS, three HFLTSs are given as follows: H1

S = {s0, s1, s2}, H2
S = {s2, s3, s4}

and H3
S = {s0, s2}. By Definition 7, if the linguistic scale function f = f1(si) = i

2t (t = 3), we obtain
F∗
(

H1
S
)
= 0.1429, F∗

(
H2

S
)
= 0.4048, F∗

(
H3

S
)
= 0.1310, then the ranking of the HFLTSs is H2

S > H1
S > H3

S.
By Definition 3, we can obtain F

(
H1

S
)
= 0.8323, F

(
H2

S
)
= 2.8333, F

(
H3

S
)
= 0.75, according to Lemma 1,

and it is clearly seen that H2
S > H1

S > H3
S, which is same as the proposed score function in Theorem 1.

3.2. The Similarity Measure Between HFLTSs Based on the Linguistic Scale Function

It is already known the regular similarity measure satisfies the following Lemma 2:

Lemma 2. Let S = { si|i = 0, 1, · · · , 2t} be a LTS, H1
S and H2

S be any two HFLTSs; if the similarity measure
S
(

H1
S, H2

S
)

satisfies the following properties [9]:

(1) 0 ≤ S
(

H1
S, H2

S
)
≤ 1,

(2) S
(

H1
S, H2

S
)
= 1 if and only if H1

S = H2
S,

(3) S
(

H1
S, H2

S
)
= S

(
H2

S, H1
S
)
.

then the similarity measure S
(

H1
S, H2

S
)

is a regular similarity measure, and the corresponding distance measure
D
(

H1
S, H2

S
)
= 1− S

(
H1

S, H2
S
)
.

The cosine similarity measure proposed by Liao et al. [31] is sometimes different from human
intuition in practical decision-making problems, and we can determine this from the following
Example 4.

Example 4. When two experts evaluate the performance of a company, they provide their opinions with
hesitant fuzzy linguistic information; for the given LTS, = {s0 : very poor, s1 : poor, s2 : slightly poor, s3 :
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f air, s4 : slightly good, s5 : good, s6 : very good}, and two experts’ evaluations are represented as HFLTSs
H1

S = {s1, s2} and H2
S = {s2, s4}, respectively.

It is already known H1
S 6= H2

S, but from using Formula (3) to calculate the similarity measure
between H1

S and H2
S, we have CosHFL

(
H1

S, H2
S
)
= 1. That is to say, the property (2) in Lemma 2 is not

satisfied. So, the similarity measure CosHFL proposed by Liao et al. [31] is not a regular similarity
measure. On the other hand, the similarity measure CosHFL as defined by Liao et al. [31] used the
subscript of linguistic terms directly in the process of operations; they did not consider the semantic
environment, which may cause the loss of information in the decision process. In order to overcome its
disadvantages, next we will construct a new similarity measure and derive a corresponding distance
measure. A scheme of this process is shown in Figure 2.Symmetry 2018, 10, x FOR PEER REVIEW  8 of 17 
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At first, we improve the existing distance measure (1) and similarity measure (2) based on a
linguistic scale function, which can be defined as follows:

Definition 8. Given a fixed set X, let S = { si|i = 0, 1, · · · , 2t} be a LTS, and let f be a linguistic
scale function, hk

S
(

xj
)
= {sδk

l

(
xj
)∣∣∣sδk

l

(
xj
)
∈ S, l = 1, 2, · · · , Lj} , where Lj = max{l

(
h1

S
(
xj
)
, l(h2

S
(
xj
))
},

l
(

hk
S
(

xj
))

represents the number of elements in hk
S
(
xj
)
(k = 1, 2). For any two HFLTSs H1

S = {(xj,

h1
S
(

xj
)
)
∣∣xj ∈ X} and H2

S = {
(

xj, h2
S
(

xj
))∣∣xj ∈ X} (j = 1, 2, · · · , n) , if the weight of the different element

xj is ωj (j = 1, 2, · · · , n), then the improved weighted distance measure between HFLTSs H1
S and H2

S can be
defined as follows:

D′ωHFL

(
H1

S, H2
S

)
=

 n

∑
j=1

ωj

Lj

Lj

∑
l=1

(∣∣∣ f(sδ1
l

(
xj
))
− f

(
sδ2

l

(
xj
))∣∣∣)2

 1
2

.

Theorem 2. Let H1
S and H2

S be any two HFLTSs, and let f be a linguistic scale function; the distance measure
D′ωHFL between HFLTSs satisfies the following properties:

(1) 0 ≤ D′ωHFL
(

H1
S, H2

S
)
≤ 1;

(2) D′ωHFL
(

H1
S, H2

S
)
= 0 if and only if H1

S = H2
S;

(3) D′ωHFL
(

H1
S, H2

S
)
= D′ωHFL

(
H2

S, H1
S
)
.

Proof. Properties (1), (2), and (3) are obvious, and we omit the proof here. �
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Remark 4. For all j = 1, 2, · · · , n, if the weight ωj = 1
n , then the improved weighted distance measure

D′ωHFL
(

H1
S, H2

S
)

is reduced to the improved Euclidean distance measure D′HFL
(

H1
S, H2

S
)
:

D′HFL

(
H1

S, H2
S

)
=

 1
n

 n

∑
j=1

1
Lj

Lj

∑
l=1

(∣∣∣ f(sδ1
l

(
xj
))
− f

(
sδ2

l

(
xj
))∣∣∣)2

 1
2

.

Definition 9. Given a fixed set X, let S = { si|i = 0, 1, · · · , 2t} be a LTS, and let f be a linguistic
scale function, hk

S
(

xj
)
= {sδk

l

(
xj
)∣∣∣sδk

l

(
xj
)
∈ S, l = 1, 2, · · · , Lj} , where Lj = max{l

(
h1

S
(
xj
)
, l(h2

S
(
xj
))
},

l
(

hk
S
(

xj
))

represents the number of elements in hk
S
(
xj
)
(k = 1, 2). For any two HFLTSs H1

S = {(xj,

h1
S
(

xj
)
)
∣∣xj ∈ X} and H2

S = {
(

xj, h2
S
(

xj
))∣∣xj ∈ X} (j = 1, 2, · · · , n) , if the weight of different element xj

is ωj (j = 1, 2, · · · , n), then the improved weighted cosine similarity measure between H1
S and H2

S can be
defined as:

Cos′ωHFL

(
H1

S, H2
S

)
=

∑n
j=1

(
ωj
Lj

∑
Lj
l=1 f

(
sδ1

l

(
xj
))
· f
(

sδ2
l

(
xj
)))

(
∑n

j=1

(
ωj
Lj

∑
Lj
l=1

(
f
(

sδ1
l

(
xj
)))2

)
·∑n

j=1

(
ωj
Lj

∑
Lj
l=1

(
f
(

sδ2
l

(
xj
)))2

)) 1
2

.

Remark 5. For all j = 1, 2, · · · , n, if the weight ωj =
1
n , then the improved weighted cosine similarity measure

Cos′ωHFL
(

H1
S, H2

S
)

is reduced to the similarity measure Cos′HFL
(

H1
S, H2

S
)
:

Cos′HFL

(
H1

S, H2
S

)
=

∑n
j=1

(
1
Lj

∑
Lj
l=1 f

(
sδ1

l

(
xj
))
· f
(

sδ2
l

(
xj
)))

(
∑n

j=1

(
1
Lj

∑
Lj
l=1

(
f
(

sδ1
l

(
xj
)))2

)
·∑n

j=1

(
1
Lj

∑
Lj
l=1

(
f
(

sδ2
l

(
xj
)))2

)) 1
2

.

In the following, we go on to propose a similarity measure between the HFLTSs, which combine
the distance measure D′HFL and the cosine similarity measure Cos′HFL.

Definition 10. Given a fixed set X, let S = { si|i = 0, 1, · · · , 2t} be a LTS, and let f be a linguistic
scale function, hk

S
(

xj
)
= {sδk

l

(
xj
)∣∣∣sδk

l

(
xj
)
∈ S, l = 1, 2, · · · , Lj} , where Lj = max{l(h1

S
(

xj
)
, l(h2

S
(
xj
)
)},

l
(

hk
S
(

xj
))

represents the number of elements in hk
S
(
xj
)
(k = 1, 2). For any two HFLTSs H1

S = {(xj,

h1
S
(

xj
)
)
∣∣xj ∈ X} and H2

S = {
(

xj, h2
S
(

xj
))∣∣xj ∈ X} (j = 1, 2, · · · , n) , then the new similarity measure

S∗HFL
(

H1
S, H2

S
)

can be defined as follows:

S∗HFL,

(
H1

S, H2
S

)
=

1
2

(
Cos′HFL

(
H1

S, H2
S

)
+ 1− D′HFL

(
H1

S, H2
S

))

where Cos′HFL
(

H1
S, H2

S
)
=

∑n
j=1

(
1
Lj

∑
Lj
l=1 f

(
s

δ1
l
(xj)

)
· f
(

s
δ2
l
(xj)

))
(

∑n
j=1

(
1
Lj

∑
Lj
l=1

(
f
(

s
δ1
l
(xj)

))2
)
·∑n

j=1

(
1
Lj

∑
Lj
l=1

(
f
(

s
δ2
l
(xj)

))2
)) 1

2
, D′HFL

(
H1

S, H2
S
)
=

(
1
n

(
∑n

j=1
1
Lj

∑
Lj
l=1

(∣∣∣ f(sδ1
l

(
xj
))
− f

(
sδ2

l

(
xj
))∣∣∣)2

)) 1
2
.

Theorem 3. The similarity measure S∗
(

H1
S, H2

S
)

is a regular similarity measure.

Proof. According to Lemma 2, we will prove it by three steps as follows:
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(1) Since 0 ≤ f ≤ 1, Cos′HFL
(

H1
S, H2

S
)

can be considered as the extension of cosine function,
then 0 ≤ Cos′HFL

(
H1

S, H2
S
)
≤ 1. According to Theorem 2, we know that D′HFL

(
H1

S, H2
S
)

is a
distance measure, then 0 ≤ 1− D′HFL

(
H1

S, H2
S
)
≤ 1. Thus, we get 0 ≤ Cos′HFL

(
H1

S, H2
S
)
+ 1−

D′HFL
(

H1
S, H2

S
)
≤ 2, so 0 ≤ S∗HFL

(
H1

S, H2
S
)
≤ 1 is obvious.

(2) If H1
S = H2

S, we have f (sδ1
l

(
xj
)
) = f (sδ2

l

(
xj
)
), Cos′HFL

(
H1

S, H2
S
)

= 1, D′HFL
(

H1
S, H2

S
)

=

0, then S∗HFL
(

H1
S, H2

S
)

= 1. On the other hand, when S∗HFL
(

H1
S, H2

S
)

= 1, we have
Cos′HFL

(
H1

S, H2
S
)
+ 1 − D′HFL

(
H1

S, H2
S
)

= 2; that is, Cos′HFL
(

H1
S, H2

S
)

= 1 + D′HFL
(

H1
S, H2

S
)
.

Because 0 ≤ Cos′HFL
(

H1
S, H2

S
)
≤ 1, D′HFL

(
H1

S, H2
S
)
≥ 0 hold simultaneously, then we have

D′HFL
(

H1
S, H2

S
)
= 0, Cos′HFL

(
H1

S, H2
S
)
= 1. When Cos′HFL

(
H1

S, H2
S
)
= 1, we know that H1

S = kH2
S

and k is a constant; while D′HFL
(

H1
S, H2

S
)
= 0, we know that H1

S = H2
S. That is to say, when

S∗HFL
(

H1
S, H2

S
)
= 1, H1

S = H2
S. Thus, S∗HFL

(
H1

S, H2
S
)
= 1 if and only if H1

S = H2
S.

(3) According to Remark 5, Cos′HFL
(

H1
S, H2

S
)
= Cos′HFL

(
H2

S, H1
S
)

is obvious. From Theorem 2, it is
already known that when D′HFL

(
H1

S, H2
S
)
= D′HFL

(
H2

S, H1
S
)
, then S∗HFL

(
H1

S, H2
S
)
= S∗HFL

(
H2

S, H1
S
)

are proven. �

From Theorem 3, we know that the proposed similarity measure S∗HFL is a regular similarity
measure, which overcomes the disadvantages of the similarity measure as defined by Liao et al. [31].

Remark 6. According to the relation between the distance measure and the regular similarity measure,
we can obtain a new distance measure D∗HFL

(
H1

S, H2
S
)
, which is based on the proposed similarity measure

S∗HFL
(

H1
S, H2

S
)

:

D∗HFL
(

H1
S, H2

S
)
= 1− S∗HFL

(
H1

S, H2
S
)
= 1

2
(
1− Cos′HFL

(
H1

S, H2
S
)
+ D′HFL

(
H1

S, H2
S
))

= 1
2

1−
∑n

j=1

(
1
Lj

∑
Lj
l=1 f

(
s

δ1
l
(xj)

)
· f
(

s
δ2
l
(xj)

))
(

∑n
j=1

(
1
Lj

∑
Lj
l=1

(
f
(

s
δ1
l
(xj)

))2
)
·∑n

j=1

(
1
Lj

∑
Lj
l=1

(
f
(

s
δ2
l
(xj)

))2
)) 1

2
+

(
1
n

(
∑n

j=1
1
Lj

∑
Lj
l=1

(∣∣∣ f(sδ1
l

(
xj
))
− f (sδ2

l

(
xj
)
)
∣∣∣)2
)) 1

2

.

Theorem 4. The new distance measure D∗HFL
(

H1
S, H2

S
)

satisfies the following properties:

(1) 0 ≤ D∗HFL
(

H1
S, H2

S
)
≤ 1;

(2) D∗HFL
(

H1
S, H2

S
)
= 0 if and only if H1

S = H2
S;

(3) D∗HFL
(

H1
S, H2

S
)
= D∗HFL

(
H2

S, H1
S
)
.

Proof. Properties (1) and (3) are obvious, here we only present the proof of property (2).
If H1

S = H2
S, we have S∗HFL

(
H1

S, H2
S
)
= 1, then D∗HFL

(
H1

S, H2
S
)
= 1− S∗HFL

(
H1

S, H2
S
)
= 0. On the other

hand, when D∗HFL
(

H1
S, H2

S
)
= 0, we have S∗HFL

(
H1

S, H2
S
)
= 1− D∗HFL

(
H1

S, H2
S
)
= 1. Because S∗HFL is a

regular similarity measure, according to Lemma 2, we have H1
S = H2

S.
Thus, we obtain D∗HFL

(
H1

S, H2
S
)
= 0 if and only if H1

S = H2
S. �

Definition 11. Given a fixed set X, let S = { si|i = 0, 1, · · · , 2t} be a LTS, and let f be a linguistic
scale function. hk

S
(

xj
)
= {sδk

l

(
xj
)∣∣∣sδk

l

(
xj
)
∈ S, l = 1, 2, · · · , Lj} , where Lj = max{l(h1

S
(

xj
)
, l(h2

S
(
xj
)
)},

l
(

hk
S
(

xj
))

represents the number of elements in hk
S
(

xj
)

(k = 1, 2). For any two HFLTSs H1
S =

{(xj, h1
S
(

xj
)
)
∣∣xj ∈ X} and H2

S = {
(

xj, h2
S
(
xj
))∣∣xj ∈ X} (j = 1, 2, · · · , n) , the associated weighting vector

ω =
(
ω1, ω2, · · · , ωj

)
satisfying with ∑n

j=1 ωj = 1
(
0 ≤ ωj ≤ 1

)
, then the weighted similarity measure

between H1
S and H2

S can be defined as:

S∗ωHFL

(
H1

S, H2
S

)
=

1
2

(
Cos′ωHFL

(
H1

S, H2
S

)
+ 1− D′ωHFL

(
H1

S, H2
S

))
Theorem 5. The weighted similarity measure S∗ωHFL

(
H1

S, H2
S
)

is also a regular similarity measure.
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Proof. The proof is similar to Theorem 3; we omit it here. �

Remark 7. If the weight of the different element xj is ωj (j = 1, 2, · · · , n), satisfying ∑n
j=1 ωj = 1

(
0 ≤ ωj ≤ 1

)
,

then the weighted distance measure between H1
S and H2

S can be obtained by:

D∗ωHFL

(
H1

S, H2
S

)
= 1− S∗ωHFL

(
H1

S, H2
S

)
Remark 8. If we take the weight ωj = 1

n (j = 1, 2, · · · , n) in S∗ωHFL
(

H1
S, H2

S
)

and D∗ωHFL
(

H1
S, H2

S
)
,

then S∗ωHFL
(

H1
S, H2

S
)

and D∗ωHFL
(

H1
S, H2

S
)

are reduced to S∗HFL
(

H1
S, H2

S
)

and D∗HFL
(

H1
S, H2

S
)
, respectively.

Next, we utilize the medical diagnosis example to illustrate the application of the proposed
similarity measure.

Example 5. In traditional Chinese medical diagnosis, doctors diagnose patients by watching, smelling,
asking and touching, so the doctor always get some imprecise information about patients’ symptoms. Let us
consider a set of diagnoses G = { Viral f ever, Typhoid, Pneumonia, Stomach problem} and a set of
symptoms X = { temperature, headache, cough, stomach pain}. Assume that a patient, with respect to all
symptoms, can be depicted as the following LTS, respectively: S1 = { s0 : very low, s1 : low, s2 : slightly
low, s3 : normal, s4 : slightly high, s5 : high, s6 : very high}, Sj = {s0 : none, s1 : very slight, s2 :
slight, s3 : normal, s4 : slightly terrible, s5 : terrible, s6 : very terrible} (j = 2, 3, 4). Furthermore, let
ωj = (0.25, 0.25, 0.25, 0.25) (j = 1, 2, 3, 4) be the weight vector of symptoms.

Suppose that the patient P = {Richard, Catherine, Nicle, Kevin} has all of the symptoms,
which are represented by a HFLTS and are given in Table 1.

Table 1. Symptoms characteristic for the patients.

Viral Fever Typhoid Pneumonia Stomach Problem

Richard {s5} {s5} {s4,s5} {s0}
Catherine {s3} {s0} {s0} {s4,s5}

Nicle {s6} {s4} {s5} {s0}
Kevin {s4} {s2,s3} {s5} {s0}

According to experience, each patient’s symptoms diagnosis can be viewed as a HFLTS, and these
are shown in Table 2.

Table 2. Symptoms characteristic for the diagnosis.

Viral Fever Typhoid Pneumonia Stomach Problem

Richard {s4,s5,s6} {s3,s4,s5} {s4,s5,s6} {s0}
Catherine {s5,s6} {s1,s2,s3} {s4,s5,s6} {s0,s1}

Nicle {s3,s4} {s2,s3} {s5,s6} {s0}
Kevin {s3} {s0} {s0} {s4,s5,s6}

In order to diagnose what kind of symptoms that the patients belong to, we can calculate the
similarity measure between each patient’s symptoms and the diagnosis. If the linguistic scale function
f = f1(si) =

i
2t (t = 3), we apply the proposed similarity measure S∗ωHFL to calculate the degree of

similarity between each patient’s symptoms and the diagnosis; the results are shown in Table 3.
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Table 3. Hesitant fuzzy linguistic similarity measure.

Viral Fever Typhoid Pneumonia Stomach Problem

Richard 0.9574 0.9702 0.8973 0.8606
Catherine 0.7865 0.7856 0.8323 0.9954

Nicle 0.9558 0.9517 0.8846 0.7741
Kevin 0.9279 0.8728 0.9814 0.8370

It is already known that the larger value of similarity measure, the higher the possibility of
diagnosis for the patient. From the above results of Table 3, the symptoms of Richard, Catherine,
Nicole, and Kevin indicate that they are suffering from typhoid, stomach problems, viral fever,
and pneumonia, respectively.

4. The TOPSIS Method with the Proposed Distance Measure D*
ωHFL

In Section 4, we will present the TOPSIS method [40] to the proposed distance measure D∗ωHFL for
hesitant fuzzy linguistic multi-criteria decision-making problems.

Suppose that a panel of decision makers are invited to evaluate the alternatives
H = {H1, H2, · · · , Hm}with respect to the criteria C = {C1, C2, · · · , Cn}. Let S = { si|i = 0, 1, · · · , 2t}
be a LTS, let ωj (j = 1, 2, · · · , n) be the weight of criteria Cj, where 0 ≤ ωj ≤ 1 (j = 1, 2, · · · , n) and
∑n

j=1 ωj = 1; the hesitant fuzzy linguistic information decision matrix H are given as follows:

H =


H11

S H12
S · · · H1n

S
H21

S H22
S · · · H2n

S
...

...
. . .

...
Hm1

S Hm2
S · · · Hmn

S

,

where Hij
S = {sij

δl

∣∣∣l = 1, 2, · · · , Lj}(i = 1, 2, · · · , m; j = 1, 2, · · · , n) are HFLTSs, representing the
evaluation about alternative Hi with respect to the criterion Cj.

Next, we present the TOPSIS method with the distance measure D∗ωHFL for MCDM problems.
In general, it includes the following steps:

Step 1. Normalize the hesitant fuzzy linguistic decision matrix H.

If the criteria belong to the benefit-type, we need not do anything; if the criteria belong to the
cost-type, we should use neg(si) = sj(i + j = 2t) to normalize the decision matrix.

Step 2. For i = 1, 2, · · · , m, j = 1, 2, · · · , n, the hesitant fuzzy linguistic positive ideal solution
(HFLPIS) H+ = {H1+

S , H2+
S , · · · , Hn+

S } and hesitant fuzzy linguistic negative ideal solution (HFLNIS)
H− = {H1−

S , H2−
S , · · · , Hn−

S } are given in the following:

H j+
S = Hij

S , H j−
S = Hij

S .

For criteria Cj(j = 1, 2, · · · , n), by the score function proposed in Definition 7, we can get the

value of F∗(Hij
S ) (i = 1, 2, · · · , m). According to Theorem 1, the order relationship for HFLTSs can be

given as: if F∗
(

H1
S
)
> F∗

(
H2

S
)
, then H1

S > H2
S, so that H j+

S and H j−
S can be obtained.

Step 3. Use the distance measure to calculate the separation of each alternative between the
HFLPIS H+ = {H1+

S , H2+
S , · · · , Hn+

S } and HFLNIS H− = {H1−
S , H2−

S , · · · , Hn−
S }, respectively.

The distance measure between Hi(i = 1, 2, · · · , m) and H+ can be given as: D+
i =

∑n
j=1 D∗ωHFL(Hij

S , H+). Similarly to the distance measure D+
i , the distance measure between the

alternative Hi(i = 1, 2, · · · , m) and H− is obtained as: D−i = ∑n
j=1 D∗ωHFL(Hij

S , H−).
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For the given Hi (i = 1, 2, · · · , m),

D+
i = ∑n

j=1 D∗ωHFL(Hij
S , H+) = ∑n

j=1(1− 1
2 (Cos′ωHFL(Hij

S , H+) + 1− D′ωHFL(Hij
S , H+))) = ∑n

j=1
1
2 (1−

Cos′ωHFL

(
Hij

S , H+
)
+ D′ωHFL

(
Hij

S , H+
) )

= ∑n
j=1

1
2

1−
∑n

j=1

(
1
Lj

∑
Lj
l=1 f

(
s

δ
ij
l
(xj)

)
· f
(

s
δ+l
(xj)

))
∑n

j=1

 1
Lj

∑
Lj
l=1

(
f

(
s

δ
ij
l
(xj)

))2
·∑n

j=1

(
1
Lj

∑
Lj
l=1

(
f
(

s
δ+l
(xj)

))2
) 1

2
+

(
∑n

j=1
ωj
Lj

∑
Lj
l=1

(∣∣∣∣ f(s
δ

ij
l

(
xj
))
− f

(
sδ+l

(
xj
))∣∣∣∣)2

) 1
2
;

D−i = ∑n
j=1 D∗ωHFL

(
Hij

S , H−
)
= ∑n

j=1

(
1− 1

2

(
Cos′ωHFL

(
Hij

S , H−
)
+ 1− D′ωHFL

(
Hij

S , H−
)))

= ∑n
j=1

1
2 (1−

Cos′ωHFL

(
Hij

S , H−
)
+ D′ωHFL

(
Hij

S , H−
) )

= ∑n
j=1

1
2

1−
∑n

j=1

(
1
Lj

∑
Lj
l=1 f

(
s

δ
ij
l
(xj)

)
· f
(

s
δ−l
(xj)

))
∑n

j=1

 1
Lj

∑
Lj
l=1

(
f

(
s

δ
ij
l
(xj)

))2
·∑n

j=1

(
1
Lj

∑
Lj
l=1

(
f
(

s
δ−l
(xj)

))2
) 1

2
+

(
∑n

j=1
ωj
Lj

∑
Lj
l=1

(∣∣∣∣ f(s
δ

ij
l

(
xj
))
− f

(
sδ−l

(
xj
))∣∣∣∣)2

) 1
2
.

Step 4. Calculate the closeness coefficient Φi of each alternative Hi(i = 1, 2, · · · , m):

Φi =
D−i

D+
i + D−i

.

Step 5. Rank the alternatives by decreasing order of the closeness coefficient Φi; the greater value
Φi is, the better alternative Hi will be.

5. Numerical Example

In this section, we give a numerical example that concerns logistics outsourcing (adapted from
Wang et al. [38]) to illustrate the feasibility of the TOPSIS method with the proposed distance
measure D∗ωHFL.

5.1. Background

The ABC Limited Company is a passenger car manufacturer in China. To improve the
competitiveness of products and reduce production costs, ABC decides to choose a third-party
logistics service provider for logistics outsourcing. Through preliminary selection, five possible
logistics providers H = {H1, H2, H3, H4, H5} are provided for further evaluation with respect to
the following four criteria: service (C1), relationship (C2), quality (C3), and equipment systems (C4).
Furthermore, assume that the weight vector of criteria Cj (j =1, 2, 3, 4) is ω = (0.4, 0.3, 0.2, 0.1).
Three experts with different backgrounds are invited by the company to evaluate the TPLSP. Since these
criteria are all qualitative, it is suitable for the experts to express their views in linguistic term
sets. The ABC Company uses a LTS of seven terms to evaluate the TPLSP, which can be expressed
by S = {s0 : very poor, s1 : poor, s2 : slightly poor, s3 : f air, s4 : slightly good, s5 : good, s6 : very good}.
The final judgment of the five providers with the hesitant fuzzy linguistic decision matrix H = (Hij

S )5×4
are given in Table 4.

To verify the feasibility and effectiveness of the decision method proposed in Section 4, at first,
we assume f = f1(si) =

i
2t (t = 3).
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Table 4. The hesitant fuzzy linguistic decision matrix provided by experts.

C1 C2 C3 C4

H1 {s2,s3,s4} {s3,s6} {s4,s6} {s0,s1,s2}
H2 {s3,s4} {s4,s6} {s0,s1} {s1,s4}
H3 {s0,s1} {s4} {s0,s1,s3} {s2}
H4 {s5} {s1,s3} {s4,s6} {s0,s1,s4}
H5 {s4,s5} {s2,s3} {s1,s3,s4} {s0,s2}

Step 1. Normalize the hesitant fuzzy linguistic decision matrix.

It is already known the criteria C1, C2, C3, C4 are all benefit-type criteria, and thus we do not need
to do anything.

Step 2. According to the score function in Theorem 1, we can calculate the HFLPIS H+ and the
HFLNIS H−, which are given as follows:

H+ = {{s5 }, {s4, s6}, {s4, s6}, {s1, s4}}

H− = {{s0, s1 }, {s1, s3}, {s0, s1, s3}, {s0, s2}}

Step 3. Calculate the distance measure D∗ωHFL(Hij
S , H+) and D∗ωHFL(Hij

S , H−) for different
alternative Hi(i = 1, 2, 3, 4, 5) respectively, which are given in Table 5.

Table 5. The distance measure of each alternative.

D+
i D−i

H1 0.1524 0.2907
H2 0.2395 0.3169
H3 0.4201 0.1694
H4 0.1753 0.4624
H5 0.1884 0.3740

Step 4. Calculate the closeness coefficient Φi of each alternative Hi; they are obtained in Table 6.

Table 6. The closeness coefficient of each alternative.

H1 H2 H3 H4 H5

Φi 0.6561 0.5695 0.2873 0.7251 0.6650

Step 5. Rank the alternatives Hi and utilize Φi (i = 1, 2, 3, 4, 5).

It is already known that H4 � H5 � H1 � H2 � H3, which means that the best choice is H4.
In order to illustrate the impact of the linguistic scale function f on MCDM, we use the different

linguistic scale functions f = f2(si) (a = 1.4, t = 3) and f = f3(si) (α = β = 0.8) to calculate the
distance measure between HFLTSs, the results are given in Table 7.

Table 7. Results obtained by different linguistic scale functions.

Ranking

f = f1(si) H4 � H5 � H1 � H2 � H3
f = f2(si) H4 � H1 � H5 � H2 � H3
f = f3(si) H4 � H5 � H1 � H2 � H3

The results between the different linguistic scale functions are shown in Figure 3.
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5.2. Comparison Analysis

To illustrate the feasibility and effectiveness of the proposed method, different approaches are
used to compare with the same numerical example. The comparison is displayed in Table 8.

From Table 8, we know that the optimal alternative obtained by the proposed method is H4; it is
same as Liao et al. [31], Wang et al. [38], and Zhang et al. [41], which illustrates the feasibility and
effectiveness of the proposed decision method.

Table 8. Comparison of different methods.

Ranking

Approach from Liao et al. [9] H2 � H1 � H4 � H5 � H3
Approach from Liao et al. [31] H4 � H5 � H1 � H2 � H3

Approach from Wang et al. [38] H4 � H1 � H2 � H5 � H3
Approach from Zhang et al. [41] H4 � H1 � H2 � H5 � H3

Proposed approach based on D∗ωHFL H4 � H5 � H1 � H2 � H3

In Liao et al. [9], we can see the best alternative is different from other methods. The reason is that
the approach from Liao et al. [9] only considers the algebraic relations of two HFLTSs, and they use
the subscript of the linguistic terms directly in the process of operations, which may cause the loss of
decision information. The method proposed in this paper is superior to the method in Liao et al. [9] for
considering the distance measure, not only from the point of view of algebra, but also from the point
of view of geometry.

Furthermore, in the MCDM method proposed by Liao et al. [31], the cosine similarity measure
defined by them is not a regular similarity measure, as it cannot precisely deal with the hesitant fuzzy
linguistic information that the subscripts of two linguistic terms have in the linear relationship, so that
the result obtained in Liao et al. [31] seems unreliable. The proposed similarity measure combining the
existing cosine similarity measure and the Euclidean distance measure overcomes this disadvantage;
it can improve the accuracy of calculations to some extent, and it appears that the similarity measure
that is proposed in this paper outperforms the existing similarity measure of HFLTSs.

In Wang et al. [38], the ranking results are a little different from the proposed method. Because the
TODIM method in Wang et al. [38] has complicated parameters, the parameters selected by the expert
will affect the ranking results. The proposed approach in this paper is capable of expressing the fuzzy
linguistic information more flexibly; it can improve the adaptability of HFLTSs in practice.

In the method proposed by Zhang et al. [41], the evaluation values of each provider were
aggregated independently. Because the best evaluation information under one criterion were usually
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offset by the worst evaluation information under another criterion in the process of aggregation,
this may cause the decision information to be distorted. Compared with the method in Zhang et al. [41],
the proposed method takes notice of the differences between different alternatives, and it is more
meaningful in representing practical examples.

According to the results of comparative analysis, the benefits and advantages of this approach
can be given in the following:

(1) The distance measure D∗ωHFL is derived from the cosine function and the Euclidean distance
measure; it considers the distance measure not only from the point of view of algebra, but also
from the point of view of geometry. It shows a better performance when the subscripts of the
linguistic term sets in the two HFLTS have the linear relationship.

(2) The similarity measure S∗ωHFL and distance measure D∗ωHFL based on the linguistic scale function
can express information better under different circumstances, and the decision makers can
select the appropriate linguistic scale function f on the basis of their preferences. It also can be
applied more widely in the decision-making field than the existing distance measure and cosine
similarity measure.

(3) The proposed method focuses on the differences of each alternative, which can improve the
effectiveness of solving MCDM problems.

6. Conclusions

The similarity measure and distance measure are widely used in MCMD problems. Considering that
the cosine similarity measure proposed by Liao et al. [31] is not a regular similarity measure, a new
similarity measure combining the existing cosine similarity measure [31] and the Euclidean distance
measure of HFLTSs is proposed, which is constructed based on the linguistic scale function.
The proposed similarity measure in this paper considers the distance measure, not only from the point
of view of algebra, but also from the point of view of geometry, and it also satisfies the axiom of the
similarity measure. As far as we know, the new similarity measure between HFLTSs can express the
fuzzy linguistic information more flexibly, which can improve the adaptability of HFLTSs in practice.
Furthermore, the TOPSIS method with the corresponding distance measure is developed, and it
focuses on the differences for each alternative, which can improve the effectiveness of solving MCDM
problems. Finally, a numerical example is given to demonstrate the feasibility and the effectiveness
of the proposed method, which is compared to the existing methods. In future research, efforts are
continued to find other applications of the proposed similarity measure in the fields of supplier
selection, pattern recognition, and so on.
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