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Abstract: In order to meet the real-time public travel demands, the bus operators need to adjust the
timetables in time. Therefore, it is necessary to predict the variations of the short-term passenger flow.
Under the help of the advanced public transportation systems, a large amount of real-time data about
passenger flow is collected from the automatic passenger counters, automatic fare collection systems,
etc. Using these data, different kinds of methods are proposed to predict future variations of the
short-term bus passenger flow. Based on the properties and background knowledge, these methods
are classified into three categories: linear, nonlinear and combined methods. Their performances
are evaluated in detail in the major aspects of the prediction accuracy, the complexity of training
data structure and modeling process. For comparison, some long-term prediction methods are also
analyzed simply. At last, it points that, with the help of automatic technology, a large amount of
data about passenger flow will be collected, and using the big data technology to speed up the data
preprocessing and modeling process may be one of the directions worthy of study in the future.

Keywords: short-term prediction; Kalman filter; time series; big data technology; deep learning

1. Introduction

With the rapid expansion of urban population, the transportation problems in big cities become
more and more serious [1]. Green and low-cost urban public transportation system [2] is the
main choice of urban residents in some densely populated cities [3]. Urban bus transit system [2],
which consists of a comprehensive route network and a reasonable departure frequency, is the main
component of an urban public transportation system. Comparing with the urban rail transit system [2]
in some metropolises of the world, such as London, Beijing, Hong Kong, Singapore, Taipei, New York,
Madrid, Seoul, etc., except Tokyo and Osaka, the urban bus transit system provides the major public
transit services [4].

Route network, timetable [5], vehicle schedule, and crew schedule [6] are the four core resources
to maintain the normal bus services. A reasonable bus network covering the whole service area will
facilitate the daily life of urban residents. The rationality of the timetable is that it needs to meet the
passenger travel demands, while taking into account the operating costs. In addition, the timetable also
determines the subsequent vehicle and crew schedules. Consequently, grasping an accurate variation
of the passenger flow [7] provides the basis to offer quality bus services.
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Normally, based on the long-term passenger flow prediction, the bus timetable is usually fixed.
However, the weather conditions, traffic jam, or a sporting event [8] may lead to a sudden short-term
change in passenger flow. There will be more passengers waiting for buses than usual. In order
to reduce the waiting time and alleviate the overloaded carriage, it is necessary to develop flexible
timetables based on the variation of the passenger flow. However, it is not easy to change a timetable
in use. If the timetable is changed, a complex sequence of rescheduling problems should be solved
quickly, which should be supported by more accurate real-time passenger flow information. However,
the results about long-term passenger flow disruption are not accurate enough for real-time operation.

Completely different from the long-term passenger flow prediction, the short-term passenger flow
forecasting methods play an important role in real-time monitoring [9], they need more accurate and
detailed real-time information, such as passenger travel destination, departure time, etc., which have
been difficult to collect until recently. Due to the advanced public transportation systems (APTS) [10],
large amount of information about passenger journey and vehicle trace can be collected. APTS is the
component of intelligent transportation system (ITS), and it includes automatic vehicle location (AVL),
automatic passenger counters (APC), and automatic fare collection (AFC) systems [11]. Nowadays,
a wide range of researches are using ITS information, such as passenger route choice, travel time,
service reliability, etc.

In this paper, the literature about short-term bus passenger flow forecasting models or methods
are mainly discussed. This literature is derived from, but not limited to, the Science Citation Index
(SCI), Engineering Index (EI), ScienceDirect, IEEE Xplore Digital Library, China Knowledge Resource
Integrated Database (CNKI). The languages of the papers are English or Chinese, and the literature
retrieval keywords are short term, bus passenger (flow), ridership, predict, forecast. Although the
urban rail transit system belongs to the public transportation system, it appears vastly different from
public bus transit system, and the references of this paper do not include the literature about metro
passenger flow prediction. Based on the constraints above, more than 20 journal articles or theses from
the academic publications were selected. Up to the present, short-term passenger flow forecast models
using ITS data can be categorized into three groups: linear model methods, nonlinear model methods,
and combinatorial model methods [12]. Summarized from the selected literatures, the short-term
forecasting horizon is identified from 5 min to half day, and the long-term is over half year.

Normally, the data collected from the APC or AFC, has the nature characteristics of time series.
The linear methods of time series analysis and regression analysis, only concerned with the data
itself, are easily used in short-term forecast. However, there are many factors, such as rain, snow,
traffic accidents, etc., will affect the passenger flow. Some nonlinear methods, such as ANN (artificial
neural network) and SVM (support vector machine), which take into account more additional factors,
are proposed to predict short-term passenger flow. In order to cover the features as comprehensive as
possible, linear and nonlinear methods are combined together by some researchers. To a certain extent,
the combination method has more complex structure, and has stronger fitting ability and adaptability.
However, it is difficult to say combination model methods are better than single model methods,
especially in the stable public transit demand environment, the prediction results of the combination
methods are usually not as good as expected, and due to the complex structure, the computation
efficiency is not high enough.

Based on the selected literature, the methods or models used for short-term bus passenger flow
prediction are introduced with corresponding background information. The remainder of this paper is
structured as follows: In Section 2, the prediction objects and the approaches of collecting the useful
data are introduced. In Sections 3-5, linear, nonlinear, and combined methods or models used for
prediction are discussed respectively. Sequentially, in Section 6 the big data technology and deep
learning used for processing the very large amount of passenger flow data is introduced particularly,
which is considered as the kernel of the future study in short-term passenger flow prediction. Finally,
the characteristics of the models or methods proposed by the references are categorized in two tables,
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and evaluated according to prediction accuracy, modeling complexity, and other indicators, as well as
recommendations for future work are provided in Section 7.

2. Short-Term Bus Passenger Flow Prediction Objects and Data Source

Under the help of APTS, it is possible to collect the passenger flow data in time and predict its
variation in the short-term. In this section, the types of passenger flow predicting objects, the data
source, and data structure are introduced.

2.1. Short-Term Bus Passenger Flow Prediction Objects

According to the references mentioned below, the predicting objects may be classified into two
categories: bus stop passenger flow and bus line passenger flow.

(1) Bus stop passenger flow prediction

Usually, the passenger flow at different stops of a bus line is not balanced, and the passenger
amount at some stops is far more than other stops. The stops with high passenger volume are called
key stops, for the reasons of traffic jam or bus overloaded, the phenomenon of passenger delay at
key stops happens more frequently. Predicting the passenger flow at these key stops will reflect the
situation of the whole line’s passenger volume, which may help the bus enterprises to develop a
feasible scheduling or put on extra express buses to ease the passenger volume pressure.

(2) Bus line passenger flow prediction

Some other studies propose the bus line passenger flow prediction models by using the aggregated
transaction records from the AFC. Passengers will get on or off at any stop of the bus line, and their
distribution and trip length may affect the bus schedule, so it is useful to predict the whole line’s
passenger flow variation. With the help of the APC, the relatively accurate passenger data will be
collected and used for short-term passenger flow prediction.

2.2. Data Source

There are two approaches to obtain the counts of boarding and alighting passengers at stops
or transit lines: direct method and indirect method. The former mainly uses APC devices to record
boardings and alightings of passengers at a stop. While, the image recognition technology is another
direct way to identify the boarding and alighting passengers through the video monitor systems
equipped at the stop [13]. Indirect method acquires the real-time transaction records through the AFC.
The number of transaction records represent the passenger amount using smart card. According to
the proportion between the passengers using cash and smart card, the passenger number getting on
the bus could be inferred. These technologies are used to obtain the passenger volume, but the two
methods have their own defects. The direct method could obtain the counts of boarding and alighting
passengers, but the records do not include the identification of the passengers, so that it is hard to get
a certain passenger’s travel path. In the indirect method, the transaction record includes the unique
ID of the smart card, which can be used to distinguish the different passengers. However, some lines
using flat fare policy, the smart card is only swiped on the boarding step, and the records only contain
the stop information about the boardings of passengers, without the alighting information. Lu [14]
proposes a method to infer the alighting stops through the adjacent transaction records of the same
smart card. It assumes the stop of the next record is where the passenger alighting on last trip. Based on
this assumption, the round trip can be inferred, but it is not accurate enough and the inferred round
trip is not real-time data, which cannot be used in short-term passenger flow prediction. In some
cities, such as Beijing or Shanghai [15], the metered ticket fare policy needs the boarding and alighting
passenger to swipe the smart card separately; under this situation, the real-time trip records could be
easily obtained.
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2.3. Data Formats

2.3.1. Data Format of AFC

The AFC system is widely implemented in buses all over the world. Passengers hold the smart
card in front of the equipment of the AFC shortly, complete the payment process, and the transaction
information will be recorded in a certain format. Based on international standards [16], the main
properties of the sample data structure are listed in Table 1.

Table 1. The structure of the transaction record.

Field Name Ilustration
Card ID The unique number of the smart card
Type of smart card Normal card, coupon card, etc.
Driver ID The unique number of the current bus driver
Line ID The unique number of the bus line
Vehicle ID The unique number of the vehicle
Balance The balance of the smart card after the last transaction
Transaction amount The transaction amount of the last transaction
Transaction count The total number of the transaction count with this smart card
Transaction time The time of the last transaction

Flat fare, sectional fare or metered fare, and unlimited ride passes are three main fare policies used
in majority worldwide cities, such as New York, Washington DC, Berlin, London, Beijing, Shanghai,
Hong Kong, Singapore, Madrid, et al. [17]. Flat fare is when all riders pay for tickets before the trips.
Sectional fare or metered fare means that fares will increase with the travel distance. Unlimited ride
passes usually include one-day pass, three-day pass, or seven-day pass, etc., which means unlimited
rides in a limited time.

The flat fare and unlimited ride pass policies need the passenger to swipe the smart card before
the trip, while the sectional fare policy needs the rider to swipe the smart card both boarding and
alighting. Through the AFC system, the passenger amount using the smart card can be obtained.
According to the statistics, the proportion of riders using smart cards is over 60%, during the morning
and evening peak hours the proportion may be over 90% [18], so that using the transaction records
from the AFC system to predict the short-term passenger flow variation is feasible.

2.3.2. Data Format of the APC

The APC records the time and location of the passenger getting on or off the bus, and the statistics
of the amount of passengers. Through pressure, infrared, or image recognition technologies, the APC
can distinguish each passenger accurately. The main properties of the sample records from the APC [19]
are listed in Table 2.

Table 2. The structure of the record from the automatic passenger counters (APC).

Field Name Illustration
Equipment ID The unique number of the equipment
On/off Denotes the passenger getting on or off the bus
Vehicle ID The unique number of the vehicle
Line ID The unique number of the bus line
Trip type Denotes the current trip is up run or down run
Stop ID The unique number of stops, where the bus stops at the current time
Count time The time when the passenger scans through the AFC

Stop accumulation The total number of the passengers getting on or off at a stop
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2.3.3. Data Format of the Vehicle Intelligent Terminal

The vehicle intelligent terminal system is composed of a Global Positioning System (GPS),
wireless network communication system, vehicle running status collecting system, etc. Using the
GPS, the information about real-time vehicle position, vehicle heading, speed, etc., will be
recorded. Using vehicle running status collecting system, the information about fuel consumption,
vehicle equipment status and vehicle CAN data will be collected. Through a wireless network
communication system, all information collected by GPS, APC, and AFC can be uploaded to the data
center. The main properties of sample records from the vehicle intelligent terminal system [20] are
listed in Table 3.

Table 3. The structure of the record from the vehicle intelligent terminal system.

Field Name Illustration
Equipment ID The unique number of the vehicle intelligent terminal system
Vehicle ID The unique number of the vehicle
Driver ID The unique number of the driver
Longitude The longitude of the current vehicle position
Latitude The latitude of the current vehicle position
Speed The vehicle real-time speed
Heading The vehicle heading direction at the current time
Line ID The unique number of the bus line
Stop ID The unique number of stop, where the bus stops at the current time
Distance The relative distance from the current position to the last station
Cumulative distance The total mileage of the vehicle
State The state of the vehicle intelligent terminal system

3. Linear Methods for Short-Term Bus Passenger Flow Forecast

The data collected from AFC or APC, has the natural characteristics of spatial-time sequence
concerning with linear relationship. The linear regression or time series analysis methods can be
adapted directly to analysis the data. Some linear methods or models, such as the Kalman filter
method, wavelet forecast method, and time series analysis methods, liking autoregressive (AR),
autoregressive moving average (ARMA), or autoregressive integrated moving average (ARIMA),
are proposed for short-term forecasting. In this section, the linear forecast methods, Kalman filter,
and time series will be introduced in detail.

3.1. Kalman Filter-Based Method

3.1.1. Kalman Filter

The Kalman filter [21] is a famous recursive solution to the problem of discrete data linear
filtering, and it provides an efficient computational method to estimate the future state of a process,
by minimizing the mean of the squared error [22]. Recently, some researchers try to forecast short-term
bus passenger flow by using this method. Zhang and Song [23] only uses a basic Kalman filter
algorithm to estimate the future variation of short-term bus passenger flow at certain bus stops,
and they believe that the prediction errors are acceptable. The Kalman filter algorithm is also used as a
component of the combination model in some other studies, which will be discussed in Section 5.

The Kalman filter is a learning process, which uses a model that distinguishes between phenomena
and noumena, and the state of knowledge about the noumena that can be deduced from the
phenomena [24]. The recursive algorithm uses the history state to estimate the present priori state,
uses the phenomena to revise the priori, and obtains the optimal posteriori based on the minimizing
the mean of the squared error principle. In the following section, the concept of the Kalman filter is
introduced briefly, while more details can be found in [25,26].
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Try to estimate the state variable x € R" of a discrete time process, the relationship between the
system states metastasis of the adjacent time-steps, which could be described by the linear stochastic
difference equation, like Equation (1):

X = Axp_1 + Bug_1 + wy_q. 1)
Define the observation state variable z € ™ as:
zr = Hxp 4 vg. 2)

In Equations (1) and (2), x is the state vector of the system at time k. The n x n conversion matrix
A relates the state at the previous time step k — 1 to the state at the current step k. The n x [ matrix
B, called gain matrix, relates the optional control input I-dimensional vector u € R to the state x;_;.
The m x n gain matrix H relates the state variable x; to the measurement z, Equation (2) is also called
measurement equation. The random variable wy_; represents the process noise and v represents the
measurement noise. They are white noise, assumed independent of each other, with normal probability
distributions, defined as Equations (3) and (4):

p(w) ~N(0,Q), ®)
p(v) ~ N(O,R). 4)

where Q and R are called process noise covariance matrix.
According to Equation (1), the priori state estimate £, at time step k is defined as Equation (5):

27 = A%, + Bug_q. (5)

Equation (5) is a sample regression estimation equation, so there is no error term. Using Equations
(1)-(5), the following equations can be proved [25,26]:

R = & + K2 = & + Kie(z — HE ). (6)
In Equation (6), the symbol K is called filter gain matrix, also called Kalman gain:
Py = (I — KeH) PO (1 — KeH)T + KeReKT, ?)

where the symbol Ry = E [vxv]] is the variance matrix of noise. The symbol P, is a variance matrix
representing the error between the priori estimated value and truth, then:

Py = APy AT+ Q. ®)

In Equation (8), the symbol Qx_1 = E [wk,l w{fl} is the variance matrix of the noise.
Let Kj be the best gain matrix, which will minimize the value of the mean square error matrix Py.
Using the extremum principle, the Ky can be deduced from (6), then:

Ky = P HT(HP HT — R ), ©)

The equation group, composed by Equations (2), (6)—(9), is called the Kalman filter group.
Equations (2) and (8) are together called the time update or prediction equation group. Equations (6),
(7), and (9) are together called the measurement update or correct equation group.

According to the derivation process above, setting initial value of Py and %X, Through continuous
recursive calculation, the value of state estimation £ at any time step can be calculated finally.
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3.1.2. Applications of the Kalman Filter Method in Short-Term Bus Passenger Flow Prediction

Methods or models based on the Kalman filter algorithm are widely used in traffic flow prediction.
Almost all studies about bus passenger flow prediction refer to the researching achievements of traffic
flow prediction.

Zhang and Song [23] only use the Kalman filter algorithm to predict the passenger flow of key bus
stops. They count the passenger flow through the transaction records from AFC and video monitoring
system equipped in the buses and stops. The service time of stop I is 12 h, which is divided into 30 min
intervals, denoted by t € {1,2,- - -, T}, and the number of passengers arriving at stop [ is aggregated
in every interval. The literature sets the premise as that the passenger amount in the time interval
t associated with the passenger amount of the previous m time intervals from t — 1 to t — m on the
Nth day and the time interval t on the N — 1th day. Based on the Kalman filter algorithm, the average
passenger amount within time interval t in the previous n days is set as the observation measurement.
The covariance matrix of the white noise is calculated from the history data, and the initial state is set as
a zero vector. Based on these settings, the passenger amount Q;(t) in the time interval t on the Nth day
at stop [ is estimated by the Kalman filter method. The literature also shows the comparative analysis
with the Back Propagation Artificial Neural Network (BP-ANN). The comparative analysis results
show that the prediction results from the Kalman filter method is better than the BP-ANN, through the
four performance indices, including mean absolute deviation (MAD), mean square error (MSE),
mean absolute percentage error (MAPE), and mean square percentage error (MSPE). The authors also
point that the phenomenon of passenger-mass can be predicted by using the Kalman filter algorithm.

3.2. Time Series-Based Method for Short-Term Prediction

3.2.1. Time Series Theory

The time series is a collection of observations sequentially by time [27], the time series composed
by a sequence of random variables can be defined as follows [28,29]:

A sequence of random variables ordered by time Xy, X, -+, X}, - - -, represents a time series of
arandom event, noted as {X;|t € T, T =1,2,3,--- } or {X;}. x1, X2, x3, - - - X, represents n sequence
observations of random event, which is also called observation sequence with length #.

The widely used time series analysis methods can be categorized into two types: general
descriptive time series analysis method and statistical time series analysis method [30]. Based on
different data processing methods, the statistical time series analysis methods can be classified into the
time domain and the frequency domain analysis methods [31]. The time-domain analysis methods
are mainly used in short-term passenger flow prediction, and the main modeling steps are shown in
Figure 1.

A stationary time series with autocorrelation characteristics can be analyzed by using time domain
models, such as AR(p) (autoregressive process with order p), MA(g) (moving average process with
order g), and ARMA(p, q) (autoregressive moving average process with orders p and g) [32].

Identifying a proper model to analyze a stationary time series is probably the most difficult task
in practice. The orders of the autoregressive and moving average terms, need to be obtained before
applying a model [33]. The autocorrelation coefficient functions and partial autocorrelation coefficient
functions (ACF and PACF), used to examine the stationary data, will appear different features in
figures of AR model, MA model and ARMA model, respectively, the general rules that are applied in
interpreting these two functions are shown in Table 4 [33].

Table 4. ACF and PACF behavior for the ARMA model.

Categories AR(®p) MA(qg) ARMA(p, q)

ACF Tails off exponentially Cuts off after lag g Tails off exponentially
PACF Cuts off after lag p Tails off exponentially  Tails off exponentially
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Figure 1. Time-domain series modeling steps.

The next step is to estimate the parameters of the selected model. The most common methods
are moment estimation, least squares estimation, maximum likelihood estimation, etc. The parameter
estimation can be processed automatically by using R.

For the non-stationary time series, using differential operation, it can be transferred to a stationary
one. The autoregressive integrated moving average (ARIMA) model can be used to analysis a
non-stationary sequence.

The main purpose of using the time series method is to predict the values of the sequence in the
future time.

For the ¢ time steps prediction, based on history data {xy, xx_1, ...}, the variable x4, 1 (¢ > 0) in
the future time step k + ¢ would be predicted. The time k is the forecast origin and / is the lead time.
The symbol £ (¢) denotes the predictive value of xi, 4, also called estimation value.

Based on minimum mean square error forecasting, Equation (10) can be proved:

() = E(Xpere| X X1+ - ), (10)
where the estimation £ (¢) of xj, ¢ is equal to conditional expectation of xj .

3.2.2. Applications of Time Series Method in Short-Term Bus Passenger Flow Prediction

The statistical data of the bus passenger flow has the nature characteristics of time series, so that
some researchers propose methods based on ARMA or ARIMA model to predict or analyze the
passenger flow variation at the bus stop or lines using the observation data.

Gu [34] uses the ARMA model to forecast the passenger flow in the short-term at a transportation
hub station of Shanghai, the largest city in China. In this paper, the bus hub station, located in one of the
key areas of Shanghai named Wujiaochang, is set to be the observation point to carry out the passenger
flow survey. The survey period is five weeks, and the sampling interval is 10 min. After eliminating
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weekends, a total of 2575 observations have been obtained. The time series composed of rough
observations has cyclical and slow attenuation trend. Using variance analysis method (ANOVA) to
eliminate cyclical and trend phenomenon appearing in different weekdays and different time of one
day, the authors obtain a stationary sequence. By drawing ACF and PACF figures of the sequence,
the model ARMA(2,1) is selected to predict the hub station passenger flow. Compared with the real
data, the prediction accuracy of the hub station is proved to be over 80%, which meets the needs of
disseminating the passenger flow forecasting information to the public and supporting the hub station
management of the operators. However, the hub station is the passenger distribution center, which is
the intersection of several lines, and it is difficult to distinguish the directions of the passenger flow.
Therefore, the prediction results cannot provide useful information to optimize or coordinate different
lines” scheduling.

Ma [35] and Xue [36] propose an interactive multiple model (IMM) based approach combining
with time series methods to predict short-term passengers of bus lines. The source data is the
transaction records collected from AFC system in the both literatures. The data is aggregated
in equal time interval (30 min [35] and 15 min [36]) to compose a time series according to
different bus lines. After correlation, periodicity and stationarity analysis, three temporal relevant
pattern time series are obtained. Here, three time series are introduced based on [35] briefly.
The first is weekly relevant pattern time series s?,(f) = {p"7*(t), p"7*%(t), -, p"~ 7" (t)},
which consists of data n, weeks before p"(t) with the same time interval at the same weekday,
where p"(t) is passenger count at time interval (t—1,t] for day n. The second is daily
relevant pattern time series s/i(t) = {p"~!(t), p"2(t),--- , p" "(t)}, which consists of data n,
days before p"(t) with the same time interval. The third is hourly relevant pattern time series
sp(t) ={p"(t—1),p"(t—2),---, p"(t —ny)}, which consists of data 1, time intervals before p"(t)
at the same day. After the ACF and PACF examination, Ma [35] selects AR(3) for weekly time series,
SARIMA(1,0,0)(0,1,0)” for daily time series, and ARIMA(2,1,0) for hourly time series. Xue [36] selects
ARMA(2,2) for weekly time series, SARIMA(Z,O,3)(1,O,0)24 for daily time series, and ARIMA(2,1,0)
for hourly time series. The models selected by Ma [35] and Xue [36] fully prove that the weekly time
series is a stationary sequence, from which it is speculated that the passenger variation is similar in
the same time interval on the same weekday. The daily model reveals the cyclical variation of the
passenger flow at the same time interval of different weekday during a cycle of week. The hourly
model shows the obvious variation trend of the passenger flow in successive time intervals, such as
the peak and off-peak period. Different time series model with different sampling interval will reveal
different variation rules of passenger flow and, depending on different factors effecting the passenger
flow variation, the predicted results will be different. Both studies propose an IMM-based algorithm,
which combined different models prediction result together, and output final prediction in order to
match the different situation. The details of the IMM algorithm will be discussed in Section 5.

However, the transaction records from the AFC system is the only data source in Ma [35] and
Xue [36], which means the passenger using cash will not be counted, and the transactions are only
generated in the bus dwell period, so that the data aggregation method used in these studies will
generate more irregular data.

3.3. Other Linear Models for Short-Term Bus Passenger Flow Prediction

In addition to the Kalman filter and time series analysis methods, some researchers use general
linear regression [37] and the wavelet model [38] to predict short-term passenger flow.

Yang [37] uses the general linear regression method to predict the short-term passenger flow.
The source data are transaction records from the AFC system, and aggregated by hours. Using the
clustering method, the data with a similar variation trend is clustered, and corresponding regression
equations are selected to predict the passenger flow trend. Comparing with the survey data,
the significance test indices are over 0.8, which meets the bus scheduling operation requirements.
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4. Nonlinear Methods for Short-Term Bus Passenger Flow Prediction

Generally, the longer the sampling time interval is, the more detail information will be lost,
and the more stable the sequence will be. Contrarily, the shorter the predicting period is, the greater
the factors will affect the passenger flow, which will lead to be more obvious stochasticity, uncertainty,
and non-linear [12], and it is difficult to use linear regression prediction methods. In order to improve
the accuracy, some researchers try to construct complex and comprehensive models to describe
bus passenger flow variation based on artificial neural networks (ANN), support vector machines
(SVM), etc.

4.1. Support Vector Machine Regression-Based Methods for Short-Term Passenger Flow Prediction

4.1.1. Support Vector Machine Regression

Support vector machine regression (SVR or SVMR) [39] is a special application of a support
vector machine (SVM) for regression. SVM is a supervised learning model, originally designed for
classification, and it only needs a small amount of training data to fit the classification boundary or
hyperplane and, finally, obtain very good classification effects. In order to keep the good properties of
fitting an effective hyperplane, based on the structural risk minimization principle, minimizing the
risk of quadratic e-non loss function, Vapnik [40] proposed a SVM used for estimating the regression
function, which could be called support vector regression. For solving different problems, the SVR can
be categorized into linear regression and non-linear regression.

(1) Linear SVR

Dataset S is N-dimensional with I groups patterns, described as:

S={(x1,n), (x2,¥2),..., (xp,y))} CTR"xR. (11)

Let a regression function f(x) = (w,x) + b, where w € R", b € R, to be estimated by using
training dataset S. Function f(x) is moved around to include training patterns inside e-insensitive
tube. By the structural risk minimization (SRM) principle, the generalization accuracy is optimized by
the regression function flatness, which is guaranteed on small w, and then fitting function is moved to
minimize the norm ||w||? [41]. In order to cover the data outside the e-insensitive tube, the optimization
problem of finding the best fitting function could be moved to a convex quadratic optimization problem
described as:

1 n
minimize R(w, ¢, &) = §||w||2+CZ(§i+C?), (12)
i=1
subject to:
yi—w~xi—b < €+§il (13)
w-xi+b—y; <e+gj, (14)
&, & >0. (15)

This regression optimization problem is constructed by optimization theory based on the
characteristics of SVM, the detail proof procedure could be found in [39]. Ancona [42] interprets
the SVR based on the e-insensitive tube from the perspective of SVM classification theory.

(2) Non-linear SVR

Non-linear SVR has the similar idea with non-linear SVM classification, which uses the kernel
function k(x;,x;) = ¢(x;) - ¢(x;) to change a non-linear regression problem in a low-dimensional space to
a linear regression problem in a higher dimensional space. The detailed proof can be found in [39,42].
There are different kinds of kernel functions, such as linear kernel, polynomial kernel, radial base
function (RBF), and sigmoid kernel function, etc., used for creating models. More information about
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the kernel function can be found in [43], which introduces the kernel functions used in the SVM
application completely.

4.1.2. Applications of SVR in Short-Term Bus Passenger Flow Prediction

Yang [44] proposes a SVR method based on affinity propagation (AP) to predict the short-term
passenger flow of bus stops. The sample data of passenger number is manually collected every 10-min
and grouped by weekly cycle. The authors use an AP clustering algorithm to divide the passenger
flow observations into different cluster subsets based on different principles, such as two groups of
weekday and weekend, or six groups of each weekday and weekend. The basic idea of using the AP
method is to group the similar data samples in order to reduce the volatility of the data sequence.
Different SVR models are established to predict the future trend of each subset sequence. The authors
prove that classifying the data sequence could improve the forecasting accuracy.

Guo [45] adopts Least Squares Support Vector Machine Regression (LS-SVMR) to establish a
short-term passenger flow prediction model. The difference between the SVR and LS-SVMR is that the
former uses the inequality constraints, the latter uses the equality constraints [46], and described as:

minimize [(w,e) = }||lw|? + 1y i, €2,

16
s.t.yr = (w, (xx)) +b+e, k=1,2,--- 1L (16)

In the LS-SVMR algorithm, a QP problem is transformed to solve a linear equation, and easy
to compute Lagrange multiplier. The convergence speed of L5-SVMR algorithm is higher than SVR,
but the prediction accuracy is weaker than SVR. Guo [45] sets bus stop A as the observation site and
the sampling interval to be 5 min, and then uses manual methods to count the arrival passenger of stop
A together with upstream and downstream adjacent stops by every seven days for a cycle. The RBF is
selected as the kernel function to construct the LS-SVMR based prediction model. The instance given
by the authors show that the mentioned three factors, the passenger flow of upstream and downstream,
waiting passenger amount, historical data at the same period, may affect forecasting accuracy. If setting
adjacent time interval parameter § = 3, the performance of the prediction model will be the best.

Generally, selecting a proper kernel function needs several times testing in order to improve the
normalization and adaptive capability, more detail information about the multiple kernel learning
methods can be found in [47-49]. Based on multiple kernel LS-SVMR, Deng [12] uses linear, RBF and
sigmoid, three kinds of kernel functions to construct the weighted summation [48] multiple kernel
function K(X, X;) = 2%:1 Omkm (X, X;) (Where M is the total number of the kernel functions, 6, is
the balance weighted coefficient), to predict the short-term passenger flow. The data source are the
transaction records from the AFC system, and aggregated every 10 min. The training dataset is
constructed by the same time interval on the same weekday of m weeks before, the same time interval
of n days before, and the successional s time intervals before the time interval intended to be predicted.
The authors illustrated an example to prove that the prediction accuracy by using the multiple kernel
functions is higher than a single kernel function.

4.2. Artificial Neural Network-Based Methods for Short-Term Passenger Flow Prediction

4.2.1. Artificial Neural Network

Artificial neural network (ANN) [50,51] is another non-linear regression method used in passenger
flow prediction filed. The essential of ANN is a layered weighted directed graph [52], which can be
divided into input layer, middle layer (or hidden layer) and output layer, and its structure is shown
in Figure 2. The nodes in the directed graph are neurons, like x1, s1, y1, etc., and the directed edges
are nerves.
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Figure 2. Artificial neural network (ANN) diagram.

In the ANN graph, the low layer nodes point to upper nodes by directed edges. The nodes in the
same layer do not point to each other. The directed edge is usually assigned a weight, like w11, 051,
etc. The subscript of the weight represents the number of the neurons in different layer. Every neuron
may have a linear or nonlinear function f(-) used for neuron transformation called neuron function.
Take the neuron s; as an example, the value of s; may be described as s; = f1(wy1x1 + wa1x2 + b).
The input value is transferred upward layer by layer, and a more complex hyperplane could be
constructed to forecast. Two components of the ANN need to be designed in the application, one is the
network structure; the other is how to design the neuron functions f(-). The categories of the ANN
are generally classified by different network structures or neuron functions, such as BP-ANN [53],
RBF-ANN [54], fuzzy ANN [55], etc.

4.2.2. Applications of ANN in Short-Term Bus Passenger Flow Prediction

In the earlier days, some researchers usually predicted the long-term passenger flow trend for
days or years through ANN with manual survey data. For example, Yu [56] uses ANN to forecast
the bus passenger trip flow between different city zones. Jiang [57] uses RBF-ANN and BP-ANN to
predict the long-term passenger flow in one-year interval respectively, the results show the accuracy of
RBF-ANN is better than BP-ANN. Yang [58] proposes a model based on the theory of adaptive neural
fuzzy inference system to predict bus line passenger flow in day time interval. Compared with the AR
and ARMA, the test results from the fuzzy ANN based model are better in accuracy. The time interval
in days is not considered as short term anymore nowadays, but it plays an important guiding role in
short-term bus passenger flow prediction, and the authors point out that the next step is to predict the
passenger flow in hour interval based on the daytime interval prediction results.

Liu [59] proposes a model based on BP-ANN to predict passenger getting on and off flow at a
bus stop. The authors select three layers BP-ANN to construct the predict model. The training data is
divided into three groups as the model inputs. The first is the same period on the same weekday of
the three weeks before the time prepared to be forecast. The second is the same period of the three
days before the time prepared to be forecast. The last group is the three adjacent time intervals before
the time prepared to be forecast. The total of 2608 samples are divided into three groups as BP-ANN
inputs, compared with real data, the prediction accuracy is over 90%.

Lu [14] proposes a short-term passenger flow prediction model based on RBF-ANN. In this model,
the data are transaction records from AFC system. The records with the same smart card ID ordered by
transaction time are selected. The travel trace from origin to destination could be deduced according
to the two adjacent records. From the travel trace information, the counts of boardings and alightings
of passengers are obtained. Using the counts as the training data, the authors use RBF-ANN to predict
the passenger flow at stops in one-hour interval. The literature does not describe the prediction process
of RBF-ANN, but comparing with the real data, the absolute relative error of prediction results is less
than 1.5%, which means the model has a certain value of practical application.

Wen [60] proposes a fuzzy ANN based real-time bus passenger flow forecast model. Different from
other models, it uses similarity analysis to calculate the relationship between stop passenger flow
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distribution and line passenger flow distribution, and finds the key stops that affect the line passenger
flow distribution. Based on the real-time passenger boarding counts from key stops, fuzzy ANN
based model is used to forecast short-term passenger flow distribution of bus lines in one-hour
intervals. The advantage of this model is to use similarity analysis to find key stops, which greatly
reduces the cost of passenger flow survey, obtain better effective prediction results, and meet the
precision requirements.

Dong [61] uses BP-ANN, improved BP-ANN and RBF-ANN to predict the passenger flow of the
selected bus line by using the same transaction records from AFC system. The records are divided into
three categories, the same as the input of the ANN in [59]. The results show that the accuracy of the
improved BP-ANN and RBF-ANN are better than the traditional BP-ANN model.

4.3. Other Nonlinear Methods for Short-Term Passenger Flow Prediction

The grey model (GM) is widely used in bus passenger flow prediction filed. Liu [62] proposes
a GM(1,1) model to predict short-term passenger flow of a bus line by using the transaction records
from AFC system. The data are aggregated every 15 min and selected 10 consecutive Monday data
in peak hour as training data. Compared with real data, the mean relative error of the prediction
results is 3.343%, which means the accuracy of the prediction results is acceptable. Zhang [63] also
uses GM(1,1) to predict the time-division passenger flow of a single line, and the relative residual of
each group is less than 10%, which meet with the second order accuracy requirement. Shen [64] and
Wang [65] declare that their research results are short-term prediction, but the prediction interval is
over years, so that they are not considered as short-term prediction in this paper. However, the grey
model deserves further study in the short-term bus passenger flow prediction field.

5. Combined Methods for Short-Term Bus Passenger Flow Prediction

Generally, the short-term passenger flow variation is more random and uncertain than the
long-term passenger flow. It is hard to cover all characteristics of the short-term passenger flow by a
single model. In order to make full use of the advantages of different models, researchers combine
linear or nonlinear, different kinds of models together, to establish combination models. In this
section, the combination models used for short-term passenger flow prediction are reviewed, and some
combination models that deserve further study are simply introduced.

Gong [13] proposes a framework with three sequential stages, including a seasonal ARIMA-based
method, an event-based algorithm and a Kalman filter-based algorithm, to predict the short-term
passenger flow of bus stops. In the first stage, a time series method is used to predict the arrival
passenger count (ArPC) and empty space count (ESC) of a bus. In the second stage, an event-based
method is developed to predict the departure passenger counts (DPC) from the stop. In the third stage,
a Kalman filter-based method is used to predict the waiting passenger count (WPC) according to the
results from the first and second stages. The passenger boarding counts are collected from the APC
or cameras installed in each bus. The WPC data is collected through cameras installed at each bus
stop. The researchers suggest that the passenger flow of a bus stop is the waiting passenger at the bus
stop, which is strongly related to bus arrival times and its current passenger capacity. Based on these
principles, the WPC at a bus stop is represented mathematically as:

WPC(t) = WPC(t — 1) + ArPC(t) — DPC(t) (17)

which means the count of passengers waiting at a bus stop at time ¢ relates to the count of passenger
waiting at a bus stop at time ¢ — 1, count of passenger arriving at the stop at time ¢, and count of
passenger departing from the stop at time ¢. Based on the principle represented by (17), the ArPC and
DPC need to be predicted before predicting WPC. The first stage is to predict the ArPC. The authors
analyze the relation between the passenger boarding count data and arriving data, and proposed a
passenger allocation approach to compute the historical ArPC. The boarding count can be collected
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through the APC. While the passenger arrival process is treated as a Poisson distribution with the
probability density function f(x). The ArPC at time ¢ can be presented as:

ArPC(t) = Y [ Buis (1) x /f(x)dx e {ijn>t—1}, (18)
21

f t

where T; is the time of ith bus arrival event and By,;s(1;) is history data of boarding count. Using (18),
the historical ArPC data will be obtained, and the data repeat in a week-cycle pattern. According to
the ACF and PACF experiments, ARIMA(1,0,0)(1,0,0)” model is selected to predict ArPC and ESC.
Compared with real data, the average relative errors of prediction results are 2.94% of ArPC and
3.02% of ESC. The second stage is to predict the DPC, which is triggered by the bus arrival events
(BAEs) at a bus stop in each time interval. Under the author’s assumption, the boarding count of
BAE is the minimum of the passengers waiting at the stop and the empty space available on the bus.
The boarding count d is collected from the APC, so the DPC is the sum of the boarding count of every
BAE happened during the time interval t. Therefore, predicting DPC is equivalent to predicting the
BAEs at the corresponding stop. Using bus trajectory records from the AVL, an event-based algorithm
is proposed to predict the bus arrival time, and combining with the predict results of ArPC and ESC in
the first step, the DPC can be predicted. The third stage has been discussed in the previous section.
At the end of the literature, a numerical experiments conducted at three typical bus stops are illustrated
to demonstrate that the proposed framework is robust and accurate.

Ma [35] and Xue [36], discussed in Section 3.2.2, propose weekly, daily and hourly three temporal
relevant pattern time series to predict passenger flow on the bus lines. The three patterns select
AR (ARMA), SARMA and ARIMA separately to capture different characteristics of time series.
In order to maximize the advantages of single models and optimize the interaction between them,
the two literatures propose an IMM-based algorithm to combine the predictions of each single model.
The output equation of the IMM is defined as:

MMt = 30 %50 (1), (19)

where £;(f|t) is the prediction result of model j at time ¢; y;(t) is the mixed probability. The IMM-based
algorithm is a recursive approach, including four steps: re-initialization, model filtering, probability
updating and hybrid output. The first step is to calculate the mixed state and covariance at time ¢ based
on transition matrix with the updated estimations and probabilities from the last recursive. The second
step is using Kalman filter algorithm to update the estimations for each model, and calculate the
residual and covariance with the input of real-time measurement. The third step is updating the
probability of each model at time ¢ based on likelihood function of each model. The fourth step is
calculating the final estimation at time t weighted by the updated probability [35]. The IMM algorithm
combines the weekly, daily and hourly time series models to match different data states in order to
reduce the errors of using one single model. Comparing with single models, the IMM-based hybrid
model can provide more accurate prediction results.

Liu [38] proposes a short-term passenger flow forecasting method by combining the wavelet and
time series. Its basic idea is to treat the observation sequences of the passenger flow as the timing signals.
Using discrete Flourier transformation (DFT) converts the time domain of the original sequence to
frequency domain. Using Mallat-based wavelet decomposition method divides the changed sequence
into one low frequency main trend signal and five high frequency interference signals. Comparing with
the original sequence, the single signal sequence is more stationary. The ARMA model is used to predict
the future trend of each series. Finally, the wavelet reconstruction method is used to synthesize these
single prediction results together as the final prediction result. From the authors’ view, the wavelet
decomposition and reconstruction method reduce the volatility of the original signal. Therefore,
the wavelet prediction method can improve the forecast accuracy effectively. However, the original
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sequence is not stationary, the conclusion of ARMA(4,4) model, used to prove the proposed wavelet
method with higher forecast accuracy, needs to be confirmed by further research.

Zhou [66] proposes a sliding window ensemble framework to predict the short-term passenger
flow. The framework includes three distinct predicting models. The first is the time varying Poisson
model, which is used to predict the average number of passenger demand in a fixed time period.
The second is the weighted time varying Poisson model, which is to predict the passenger flow with
seasonal burst issues. The third one is using ARIMA model to predict the short-term passenger flow.
The three models could use long, medium and short-term historical data as training data respectively,
and be combined together to improve prediction result by:

M,
Er =), f B=Y, , piH, (20)

where M = {M;, My, ... M} is the set of z models of interest to model a given time series and
My = {Myy, My, ... My} is the set of prediction values of the next period in the time interval ¢ by those
models. P;H is the forecasting accuracy of the model M; in the time window [t — H, t]. The prediction
results show that the accuracy of the ensemble framework is around 79%, which is better than the
single models. The ensemble framework in [66] is used to develop a prototype APP for mobile phone
users to predict the crowdedness of the bus.

Liu [67] proposes a combined predicting model with BP-ANN and LS-SVM. The combined model
includes two steps: firstly, the BP-ANN is adopted to do an initial prediction with the historical training
data, and then the LS-SVM is used to refine the initial prediction. The result shows the combination
model can improve the prediction accuracy by 1% more than single model. From the authors’
perspective, the proposed model combines the advantages of the nonlinear fitting ability of BP-ANN
and using small amount training data of LS-SVM, which may improve the prediction accuracy.

Pekel [68] develops two hybrid model, parliamentary optimization algorithm-artificial neural
network (POA-ANN) and intelligent water drops algorithm-artificial neural network (IWD-ANN),
POA and IWD are utilized to optimize the number of the hidden layer neurons and weight of hidden
layer neurons, so as to make global optimization of the model.

Some researchers propose different combined methods used to predict bus passenger flow,
such as combining with different linear regression functions together, combining the grey model with
ANN, the grey model with Markov, etc. However, these methods are used for predicting long-term,
years’ or months’ interval, passenger flow. Here, these methods are introduced simply, the basic
idea of which deserves further study. Gan [69] gives a combined method with three weighted linear
regression to predict the bus line passenger flow. Ge [70] proposes a combined method based on
genetic algorithm and ANN, and Cai [71] proposes a similar model by combing genetic algorithm and
BP-ANN, which used genetic algorithm to define data weight of initial input. The grey model (GM) is
widely used to construct combined models with others, such as Yang [72] and Shen [64], who propose
a similar combination prediction method based on GM and Markov models. Wang [65] proposes a
random grey ant colony neural network combined model with random grey model and recurrent
neural network. Ling [73] uses the sum of the absolute values of the predicted sequence and residual
sequence to construct a new sequence as the input of GM(1,1) to predict the passenger flow.

6. Big Data Technology and Deep Learning Used for Short-Term Bus Passenger Flow Prediction

The short term bus passenger flow prediction technology is urgently needed by the bus companies,
but it develops very slowly. One of the reasons leading to slow its development is that it is hard to
obtain the information about passenger flow. Traditional manual survey to collect data costs much
time, and it does not suit for short-term passenger flow prediction. Until recent years, it is possible
to collect the passenger flow data in real-time with the help of APTS. Since then, the literatures,
proposed methods to predict short-term passenger flow, usually used the data from AFC or APC.
Another problem is that too much data is collected in short term. Such as the AFC system used in
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Beijing, the transaction records are over 10 million per day, and the traditional methods hardly handle
these data in time. Thanks to the big data technology, storing and accessing a very large amount data
are no longer significant problems.

Li [74] uses the MapReduce to implement the BP-ANN parallel algorithm. There are two kinds of
parallel approaches to implement the algorithm, one is the structure parallel, and the other is training
data parallel. The second approach is very suitable for the big data technology, because the basic idea
of the MapReduce technology is to divide the data file into small pieces, and used different machines
to speed up the training data process. Li [74] uses data parallel approach to train the BP-ANN,
and exchange the training results through a unified weight list table. Comparing with the traditional
BP-ANN, the training time spent by the MapReduce-based algorithm is one-sixth of the traditional
algorithm and the prediction accuracy is almost the same.

Deep learning, successfully applied in many fields and achieved amazing results, can deeply and
abstractly extract the nonlinear features embedded in the dataset, that are attracting some researchers
using deep learning to predict the short-term passenger flow variation.

Liu [75] proposes an unsupervised training model based on a stacked autoencoder (SAE)
combined with a supervised training model based on deep neural network (DNN) to predict hourly
passenger flow. Passenger flow data are collected from the AFC for four months. The authors explain
why the hidden nodes can robustly extract and represent the valuable features embedded in the input
data by visualizing the high-level features learned in different hidden layers. The experimental results
show that the selections and combinations of the input features have a great impact on the accuracy of
the prediction results. The highest average RMSE is 75% across all of scenarios, however, the authors
believe that it is a universal and robust hourly passenger flow prediction model.

7. Conclusions

In this paper, more than 20 studies about bus passenger flow prediction are discussed. Twenty-two
pieces of literature, listed in Tables 5 and 6, about short-term bus passenger flow prediction are
discussed briefly, and the rest about long-term bus passenger flow prediction deserving further study
are introduced simply. In the two tables, the characteristics and the evaluation of the methods used by
each paper are also listed.

Table 5 lists the single linear and nonlinear methods for short-term passenger flow prediction.
From the column of “Accuracy”, the accuracy of nonlinear method is better than the linear method.
For the modeling difficulty, time series and linear regression methods are easier than nonlinear models.
The structures of training datasets or sample datasets used as the input of the model are relatively
simple, most of which are original time sequence data or roughly processed data. Therefore, it is easy
to use single models to predict the passenger flow, and obtain relatively satisfactory prediction results
with low cost.

Table 6 lists the combination model used for short-term passenger flow prediction. The first four
literatures propose methods by combining different types of time series methods together to handle
different situation of the sample datasets, which are carefully designed and selected from the rough
data sequence. Therefore, the complexity of the dataset structure and the modeling process is very
high, which leads to weaken universality of the combined model. The accuracy of the combination
models is better than the single model, but the cost is higher.

From the tables listed below, the nonlinear models and combination models are better in
prediction accuracy, but the complex modeling process will make the computational complexity higher,
and well-defined data structures will cost more time to preprocess rough data, so that if the time costs
more than prediction period, the method will lose meaning. Liu [67] proposes the comparison of the
computing speed between different methods. In the short-term prediction field, the speed will be
more important than accuracy, especially for the APTS equipped in buses, which produced a very
large amount of data needing to be treated in time. It is valuable to improve the traditional prediction
models by using big data technology so as to accelerate the computing speed.
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Since there is no complete experiment dataset given by the authors of the references in this
paper, and the evaluating criteria is also not uniform, it is difficult to evaluate the methods or models
objectively. In further study, all prediction methods mentioned in the references will be tested and
comparatively analyzed, using a unified data source under the unified evaluating criteria,

The urban bus transit system plays an important role in the public transit services, and its
service ability has been paid close, extensive attention. However, traffic jams, weather conditions,
even irregular business activities, will cause sudden changes of the passenger flow. Overcrowded
carriages or long waiting times will cause passengers to be dissatisfied with the quality of the bus
service. As discussed earlier, passenger flow is the basis of public transport operation. Bus operators
hope to improve the quality of bus services to increase corporate profits by developing flexible
timetables based on short-term passenger flow changes. Due to the difficulties in obtaining real-time
passenger flow statistics for a long time, related applications based on short-term passenger flow
changes cannot be applied in practice. With the widespread use of APTS equipment, it is now
possible to obtain passenger flow statistics in real-time, and application research based on short-term
passenger flow changes has been rapidly developed. DiDj, the largest Chinese ride-sharing company,
has launched a shared bus system based on real-time passenger flow demand, which comprehensively
considers the number of passengers, travel demand, traffic conditions, and other factors to plan routes
in real-time and dispatch buses to meet diverse public travel needs. In future work we will cooperate
with a large-scale bus operation enterprise to develop a bus fleet intelligent dispatching operation
platform based on short-term passenger flow changes, helping the enterprise to optimize the timetables
and subsequent bus fleet and crew scheduling. At the same time, the bus fleet operation information
release platform is provided, and the bus arrival information is pushed through the electronic station
plate or mobile terminal APP, so as to help the travelers to reasonably arrange the travel plan and
improve the bus service level.
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Table 5. Single models about short-term bus passenger flow prediction.

18 of 23

Contrast Method . . a Modeling Universality
Author(s) Method Method Style Predict Object Data Source Data Structure Difficulty ? of Model © Accuracy
Zhang (2011) [23] Kalman filter BP-ANN Single Stop \}Aiil:eco Simple Complex Weak around 80%
Gu (2011) [34] ARMA(2,1) GM(1,1) Single Hub Manual survey Simple Easy Middle around 80%
Yang(2009) [37] Linear regression Real data Single Line AFC Complex Easy Weak NA
) AP(6) based AP(p) based . . . o
Yang (2016) [44] SVM SVM Single Stop Manual survey Complex Low complexity Middle Over 85%
LSSVM with . . . MAE 0.625
Guo (2013) [45] LSSVM different factors Single Stop Manual survey Low complexity =~ Low complexity Weak MSE 0.9145
Multiple kernel Single kernel . . . .
Deng (2012) [12] LSSVM LSSVM Single Stops AFC Simple Low complexity Middle EC 0.9544
Yang (2000) [58] Fuzzy ANN AR ARMA Single Line Manual survey ~ Low complexity =~ Low complexity Weak ME 7.47%
Liu(2008) [59] BP-ANN Real data Single Stops NA Low complexity =~ Low complexity Middle EC 0.901
Lu(2015) [14] RBF-ANN Real data Single Stops AFC Simple Low complexity High ME/MSE less 1.5%
Wen(2009) [60] Fuzzy ANN Real data Single Line (key stops) ~ Manual survey Simple Low complexity Middle ME less 10%
Il?:—ﬁ)ljle\; EC 0.9697
Dong (2013) [61] BP}? ANN Real data Single Line AFC Simple Low complexity Middle EC 0.9758
RBE-ANN EC 0.974
Liu (2011) [62] GM(1,1) Real data Single Line AFC Simple Low complexity Weak RE less 10%
Zhang(2017) [63] GM(1,1) Real data Single Line Manual survey Simple Easy Middle RE Less 10%
Li (2015) [74] Bpﬁﬂljoglth MA, ES, realdata  Single Lines AFC Complex Complex Middle RMSE 21.61%

2 Complexity of data structure increased from simple, low complexity, complex, to highly complex; ® Modeling difficulty increased by easy, low complexity, complex, to highly complex; ©
Universality of the model increased from weak, middle, to high.
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Table 6. Combination models about short-term bus passenger flow prediction.

Contrast Method Predict Data Modeling Universality
Author(s) Method Method Style Object Data Source Structure Difficulty of Model Accuracy
Gong (2014) [13] KalszlRf;;}e;based Direct-addition Combination Stop APC and video Complex Complex Weak RE around 3%
IMMPH with AR, I . . o
Ma (2014) [35] SARIMA, ARIMA ANNPH Combination Line AFC Complex  Highly complex Weak MAPE 5.82%
IMM with ARMA, - . . N
Xue (2015) [36] SARIMA, ARIMA Real data Combination Line AFC Complex  Highly complex Weak MAPE 9.084%
Liu (2010) [38] Wavelet with ARMA ARMA Combination Stop Not available Simple Complex Weak MAPE 0.18
Liu (2014) [67] BP-ANN LSSVM Real data Combination Hub History statistics Simple Low complexity Middle 94.05%
Zhou (2013) [66] ~ Poisson model ARIMA Real data Combination Stop APTS Complex Complex Weak Around 79%
Pekel (2017) [68] fv?[gzﬁlﬁlﬁ GA-ANN Combination Line AFC Simple Low complexity Middle MSE less 0.1
Liu (2017) [75] SAE-DNN Real data combination Stops AFC Complex Complex High Best MAPE

over 75%

19 of 23
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