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1. Introduction

Geometry of space-time can be understood by the choice of convenient algebra which reveals
hidden properties of the physical system. These properties are best describable by the reflections
of symmetries of physical signals that we receive and of the algebra using in the measurement
process [1–3]. Thus, we need normed division algebras with a unit element for the better understanding
of these systems. For these reasons, higher dimension algebras have been an immense source of
inspiration for mathematicians and physicists as their representations pave the way towards easy
understanding of universal phenomenons. These algebras present nice understandings towards general
rotations and describe some easy ways to consider geometric problems in mechanics and dynamical
systems [4,5].

Quaternion algebra have been playing a central role in many fields of sciences such as differential
geometry, human imaging, control theory, quantum physics, theory of relativity, simulation of particle
motion, 3D geo-phones, multi-spectral images, signal processing including seismic velocity analysis,
seismic waveform de-convolution, statistical signal processing and probability distributions (see [6–8]
and references therein). It is known that rotations of 3D-Minkowski spaces can be represented by
the algebra of split quaternions [5]. Applications of these algebras can be traced in the study of
Graphenes, Black holes, quantum gravity and Gauge theory. A classical application of split quaternion
is given in [1] where Pavsic discussed spin gauge theory. Quantum gravity of 2 + 1 dimension has
been described by Carlip in [2] using split quaternions. A great deal of research is in progress where
authors are focused on considering matrices of quaternions and split-quaternions [9–12]. The authors
in [13] gave a fast structure-preserving method to compute singular value decomposition of quaternion
matrices. Split quaternions play a vital role in geometry and physical models in four-dimensional
spaces as the elements of split quaternion are used to express Lorentzian rotations [14]. Particularly,

Symmetry 2018, 10, 405; doi:10.3390/sym10090405 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-6719-7376
http://dx.doi.org/10.3390/sym10090405
http://www.mdpi.com/journal/symmetry


Symmetry 2018, 10, 405 2 of 18

the geometric and physical applications of split quaternions require solving split quaternionic
equations [15,16]. Similarly, octonion and split octonion algebras play important role in mathematical
physics. In [8], authors discussed ten dimensional space-time with help of these eight dimensional
algebras. In [16], authors gave comprehensive applications of split octonions in geometry. Anastasiou
developed M-theory algebra with the help of octonions [3].

This article mainly covers finite algebras of split quaternion and split octonion over prime fields Zp.
Split quaternion algebra over R was in fact introduced by James Cockle in 1849 on already established
quaternions by Hamilton in 1843. Both of these algebras are actually associative, but non-commutative,
non-division ring generated by four basic elements. Like quaternion, it also forms a four dimensional
real vector space equipped with a multiplicative operation. However, unlike the quaternion algebra,
the split quaternion algebra contains zero divisors, nilpotent and nontrivial idempotents. For a detailed
description of quaternion and its generalization (octonions), please follow [15–18]. As mathematical
structures, both are algebras over the real numbers which are isomorphic to the algebra of 2× 2 real
matrices. The name split quaternion is used due to the division into positive and negative terms in the
modulus function. The set (1, î, ĵ, k̂) forms a basis. The product of these elements are î2 = −1, ĵ2 =

1 = k̂2, î ĵ = k̂ = − ĵî, ĵk̂ = −î = −k̂ ĵ, k̂î = ĵ = −îk̂, î ĵk̂ = 1. It follows from the defining relations that
the set (±1,±i,±j,±k) is a group under split quaternion multiplication which is isomorphic to the
dihedral group of a square. Following Table 1 encodes the multiplication of basis split quaternions.

Table 1. Split quaternion multiplication table.

. 1 î ĵ k̂

1 1 î ĵ k̂
î î −1 k̂ − ĵ
ĵ ĵ −k̂ 1 −î
k̂ k̂ ĵ î 1

The split octonion is an eight-dimensional algebraic structure, which is non-associative algebra
over some field with basis 1, t́1, t́2, t́3, t́4, t́5, t́6 and t́7. The subtraction and addition in split octonions is
computed by subtracting and adding corresponding terms and their coefficients. Their multiplication
is given in this table. The product of each term can be given by multiplication of the coefficients and a
multiplication table of the unit split octonions is given following Table 2.

Table 2. Split octonions’ multiplication table.

. t́1 t́2 t́3 t́4 t́5 t́6 t́7

t́1 −1 t́3 −t́2 −t́7 t́6 −t́5 t́4
t́2 −t́3 −1 t́1 −t́6 −t́7 t́4 t́5
t́3 t́2 −t́1 −1 t́5 −t́4 −t́7 t́6
t́4 t́7 t́6 −t́5 1 −t́3 t́2 t́1
t́5 −́t6 t́7 t́4 t́3 1 −t́1 t́2
t́6 t́5 −́t4 t́7 −t́2 t́1 1 t́3
t́7 −́t4 −́t5 −t́6 −t́1 −t́2 −t́3 1

From the table, we get very useful results:

t́2
i = −1, ∀i = 1, ..., 3,

t́2
i = 1, ∀i = 4, ..., 7,

t́i t́j = −t́j t́i, ∀i 6= j.
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Brand in [19] computed the roots of a quaternion over R. Strictly speaking, he proved mainly
De Moivres theorem and then used it to find nth roots of a quaternion. His approach paved way for
finding roots of a quaternion in an efficient and intelligent way. Ozdemir in [20] computed the roots of
a split quaternion. In [21], authors discussed Euler’s formula and De Moivres formula for quaternions.
In [15], authors gave some geometrical applications of the split quaternion. It is important to mention
that these two algebras can also be constructed for Zp over prime finite fields of characteristic P. In this
way, we obtain finite algebras with entirely different properties. Recently, the ring of quaternion over
Zp was studied by Michael Aristidou in [22,23], where they computed the idempotents and nilpotents
in H/Zp. In [18], authors computed the roots of a general quadratic polynomial in algebra of split
quaternion over R. They also computed fixed points of general quadratic polynomials in the same
sittings. A natural question arises as to what happens with the same situations over Zp. Authors
in [24] discussed split-quaternion over Zp in algebraic settings.

In the present article, we first obtain the roots of a general quadratic polynomial in the algebra of
split quaternion over Zp. Some characterizations of fixed points in terms of the coefficients of these
polynomials are also given. As a consequence, we give some computations about algebraic properties
of particular classes of elements in this settings. We also give examples as well as the codes that create
these examples with ease. For a computer program, we refer to Appendix A at the end of the article.
We hope that our results will be helpful in understanding the communication in machine language
and cryptography.

Definition 1. Let x ∈ Hs, x = a0 + a1 î + a2 ĵ + a3k̂ where ai ∈ R. The conjugate of x is defined as
x̄ = a0 − a1 î− a2 ĵ− a3k̂. The square of pseudo-norm of x is given by

N(x) = xx̄ = a2
0 + a2

1 − a2
3 − a2

4. (1)

Definition 2. Let x = a0 + ∑7
i=1 ai t́i ∈ Os/Zp. The conjugate of x is defined as

x = a0 +
7

∑
i=1

ai t́i

= a0 +
7

∑
i=1

ai t́i

= a0 −
7

∑
i=1

ai t́i

= a0 +
7

∑
i=1

ái t́i,

where ái = −ai where i = 1, 2, ..., 7. The square of pseudo-norm of x is given by

N(x) = xx =
3

∑
i=0

a2
i −

7

∑
i=4

a2
i .

2. Main Results

In this section, we formulate our main results. At first, we give these results for split quaternions
and then we move towards split octonions.
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2.1. Some Fixed Points Results of Quadratic Functions in Split Quaternions over the Prime Field

We first solve a general quadratic polynomial in algebra of split quaternion. As a consequence,
we find fixed points of associated functions in this algebra.

Theorem 1. The quadratic equation ax2 + bx + c = 0 a, b, c ∈ Zp, where p is an odd prime and p - a, has root

x = a0 + a1 î + a2 ĵ + a3k̂ ∈ Hs/Zp if and only if a0 = p−b
2a and a2

1 − a2
2 − a2

3 = ( p2−b2

4a2 ) + c
a .

Proof.

x = a0 + a1 î + a2 ĵ + a3k̂, (2)

x2 = (a0 + a1 î + a2 ĵ + a3k̂)2, (3)

= a2
0 − a2

1 + a2
2 + a2

3 + 2a0a1 î + 2a0a2 ĵ + 2a0a3k̂

= a2
0 + a2

0 − ‖x‖+ 2a0a1 î + 2a0a2 ĵ + 2a0a3k̂

= 2a2
0 − ‖x‖+ 2a0a1 î + 2a0a2 ĵ + 2a0a3k̂

= 2a0(a0 + a1 î + a2 ĵ + a3k̂)− ‖x‖
= 2a0x− ‖x‖.

Putting x and x2 into ax2 + bx + c = 0, we have

2aa0x− a‖x‖+ bx + c = 0,

(2aa0 + b)x− a‖x‖+ c = 0,

(2aa0 + b)(a0 + a1 î + a2 ĵ + a3k̂)− a(a2
0 + a2

1 − a2
2 − a2

3) + c = 0,

(2aa0 + b)a0 + (2aa0 + b)(a1 î + a2 ĵ + a3k̂)− a(a2
0 + a2

1 − a2
2 − a2

3) + c = 0.

Comparing vector terms in the above equation, we get

2aa0 + b = 0, (4)

a0 =
−b
2a

=
p− b

2a
. (5)

Comparing constant terms, we get

(2aa0 + b)a0 − a(a2
0 + a2

1 − a2
2 − a2

3) + c = 0, (6)

(2aa0 + b)a0 − aa2
0 + c = a(a2

1 − a2
2 − a2

3), (7)

aa2
0 + ba0 + c = a(a2

1 − a2
2 − a2

3), (8)

(aa0 + b)a0 + c = a(a2
1 − a2

2 − a2
3), (9)

(a(
p− b

2a
) + b)

p− b
2a

+ c = a(a2
1 − a2

2 − a2
3), (10)

p2 − b2

4a2 +
c
a

= a2
1 − a2

2 − a2
3. (11)

On the basis of the above results 2.1, we arrive at a new result given as
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Theorem 2. The fixed point of function f (x) = x2 + (b + 1)x + c where a, b, c ∈ Zp, p is an odd prime and

p - a is x = a0 + a1 î + a2 ĵ + a3k̂ ∈ Hs/Zp if and only if a0 = p−b
2a and a2

1 − a2
2 − a2

3 = ( p2−b2

4a2 ) + c
a .

Proof. It is enough to give a new relation f (x) = g(x) + x, where g(x) = x2 + bx + c. Then, existence
of fixed points for f (x) is equivalent to the solutions of g(x). Then, the required result is immediate
from the above theorem.

Theorem 3. Let p be an odd prime, p - a, if x = a0 + a1 î + a2 ĵ + a3k̂ ∈ Hs/Zp is a root of quadratic equation
x2 + bx + c = 0, where a, b, c ∈ Zp. Then, conjugate of x i.e., x̄ = a0 − a1 î− a2 ĵ− a3k̂ ∈ Hs/Zp is also the
root of quadratic equation x2 + bx + c = 0.

Proof. The proof follows simply by using condition of Theorem 1 applied on the conjugate of x.

Theorem 4. Let p be an odd prime, p - a, if x = a0 + a1 î + a2 ĵ + a3k̂ ∈ Hs/Zp be the fixed point of function
f (x) = x2 +(b+ 1)x+ c, where a, b, c ∈ Zp. Then, the conjugate of x i.e., x̄ = a0− a1 î− a2 ĵ− a3k̂ ∈ Hs/Zp

also be the fix point of function f (x) = x2 + (b + 1)x + c.

Proof. Again, it is enough to use relation f (x) = g(x) + x where g(x) = x2 + bx + c. Then, the existence
of fixed points for f (x) is equivalent to the solutions of g(x). Then, the required result is immediate from
the above theorem.

The following two theorems are new results about the number of fixed points of f (x) = x2 + (b +
1)x + c.

Theorem 5. |Fix( f )| =
{

p2, b = 0, c = 0,
p2 + p + 2, c = 0, b 6= 0.

Proof. We split the proof in cases.

Case 1: For c = 0 and b = 0, we obtain two Hs/Zp ∼= M2(Zp),where p is prime. It is easy to see
that Hs/Zp and M2(Zp) are isomorphic as algebras, the map ϕ : Hs/Zp 7−→ M2(Zp) is defined as
ϕ(a0 + a1 î + a2 ĵ + a3k̂) = a0(

10
01) + a1(

0p−1
10 ) + a2(

0p−1
p−10) + a3(

p−10
01 ). As Hs/Zp ∼= M2(Zp), so we find the

number of nilpotent elements in M2(Zp). It is well-known by Fine and Herstein that the probability
that n× n matrix over a Galois field having pα elements have pα.n nilpotent elements. As in our case,
α = 1 and n = 2, thus the probability that the 2× 2 matrix over Zp has p−2 nilpotent elements:

|nil(M2(Zp))|
|(M2(Zp|))

= p−2, (12)

|nil(M2(Zp))|
p4 = p−2, (13)

|nil(M2(Zp))| = p2. (14)

Case 2: For c = 0 and b 6= 0, we obtain as many points as there are matrices M2(Zp) because of the
above isomorphism, and, using the argument given in 2, we arrive at the result.

Theorem 6. Let b 6= 0 and c 6= 0. Then, |Fix( f )| =


p2 − p, p ≡ 1(mod3),
p2 + p, p ≡ 2(mod3),
3, p = 3.

Proof. Case 1: For p = 3, there is nothing to prove.
Case 2: For p ≡ 1(mod3), we have two further cases:
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case I: If p ≡ 3(mod4),
x2 + y2 = z has a unique solution for z = 0.
x2 + y2 = z has (p + 1) options for z 6= 0, thus (p + 1)(p− 1) options in all.
Thus, we get that x2 + y2 = z has total number of solutions (p + 1)(p− 1) + 1 = p2 − 1 + 1 = p2.
Now, when z = 0, we get no solution for a1:

] = 1(p + 1) + 2(
p− 1

2
)(p + 1) (15)

= p + 1 + p2 − 1 (16)

= p2 + p. (17)

case II: If p ≡ 1(mod4),
x2 + y2 = z has (2p− 1) solutions for z = 0.
x2 + y2 = z has (p− 1) options for z 6= 0, thus (p− 1)(p− 1) options in all.
Thus, we get that x2 + y2 = z has total number of solutions
(p− 1)(p− 1) + (2p− 1) = p2 − p− p + 1 + 2p− 1 = p2.
Now, when z = 0, we get two solutions for a1:

] = 2(2p− 1) + 2(
p− 3

2
)(p− 1) + 1(p− 1) (18)

= 4p− 2 + p2 − p− 3p + 3 + p− 1 (19)

= p2 + p. (20)

Case 3: For p ≡ 2(mod3), we have two further cases:
case I: If p ≡ 3(mod4)
x2 + y2 = z has a unique solution for z = 0.
x2 + y2 = z has (p + 1) options for z 6= 0. So (p + 1)(p− 1) options in all.
Thus we get, x2 + y2 = z has total number of solutions (p + 1)(p− 1) + 1 = p2 − 1 + 1 = p2

Now, when z = 0, we get no solution for a1:

] = 1(2) + 2(
p− 3

2
)(p + 1) + 1(p + 1) (21)

= 2 + p2 + p− 3p− 3 + p + 1 (22)

= p2 − p. (23)

case II: If p ≡ 1(mod4),
x2 + y2 = z has (2p− 1) solutions for z = 0.
x2 + y2 = z has (p− 1) options for z 6= 0. So (p− 1)(p− 1) options in all.
Thus we get, x2 + y2 = z has total number of solutions
(p− 1)(p− 1) + (2p− 1) = p2 − p− p + 1 + 2p− 1 = p2.
Now, when z = 0, we get two solutions for a1.

] = 1(p− 1) + 2(
p− 1

2
)(p− 1) (24)

= p− 1 + p2 − p− p + 1 (25)

= p2 − p. (26)
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2.2. Some Algebraic Consequences about Hs/Zp

We can understand the algebraic structure of Hs/Zp with ease. The following results are simple
facts obtained from the previous section.

Corollary 1. Let p be an odd prime, an element

x = a0 + a1 î + a2 ĵ + a3k̂ ∈ Hs/Zp (27)

is idempotent⇔ a0 = p+1
2 and a2

1 − a2
2 − a2

3 = p2−1
4 .

Proof. Taking a = 1, b = p− 1 and c = p in the above theorem, we have

x2 + (p− 1)x + p = 0,

x2 − x = 0,

x2 = x

has root

x = a0 + a1 î + a2 ĵ + a3k̂,

where

a0 =
p− b

2a

=
p + 1

2
,

and

a2
1 − a2

2 − a2
3 =

p2 − b2

4a2 +
c
a
=

p2 − (−1)2

4(1)2 +
0
1

=
p2 − 1

4
.

In other words, we can say x is idempotent.

We also present similar results but without proof as they can be derived similarly.

Corollary 2. Let p be an odd prime an element and

x = a0 + a1 î + a2 ĵ + a3k̂ ∈ Hs/Zp (28)

is idempotent if and only if a0 = p+1
2 and ‖x‖ = 0.

Corollary 3. Let p be an odd prime and x ∈ Hs/Zp. If x is an idempotent, then ‖x‖ = 0.

Corollary 4. Let p be an odd prime. If x ∈ Hs/Zp is idempotent, then x̄ is also an idempotent.

Corollary 5. Let p be an odd prime. If x ∈ Hs/Zp and x is of the form x = a0. If x is idempotent, then it is
either 0 or 1.



Symmetry 2018, 10, 405 8 of 18

Corollary 6. Let p be an odd prime and x ∈ Hs/Zp of the form

x = a0 + a1 î + a2 ĵ + a3k̂, (29)

where at least one ai 6= 0. Then, x is not an idempotent.

Corollary 7. Let p be an odd prime, and the quadratic equation x2 = 0 has root x = a0 + a1 î + a2 ĵ + a3k̂ ∈
Hs/Zp, where a0 = p

2 and a2
1 − a2

2 − a2
3 = p2

4 .

Proof. Taking a = 1, b = 0 and c = 0 in the above theorem, we have that

x2 + (p)x + o = 0,

x2 = 0

has root

x = a0 + a1 î + a2 ĵ + a3k̂,

where

a0 =
p− b

2a
=

p− 0
2

=
p
2

,

and

a2
1 − a2

2 − a2
3 =

p2 − b2

4a2 +
c
a
=

p2 − (0)2

4(1)2 +
0
1

a2
1 − a2

2 − a2
3 =

p2

4
.

In other words, we can say x is nilpotent.

2.3. Some Fixed Points Results of Quadratic Functions in Split Octonions over the Prime Field

Theorem 7. The quadratic equation ax2 + bx + c = 0 where a, b, c ∈ Zp, p is an odd prime and p - a has root

x = a0 + ∑7
i=1 ai t́i ∈ Os/Zp if and only if a0 = p−b

2a and ∑3
i=1 a2

i −∑7
i=4 a2

i = ( p2−b2

4a2 ) + c
a .

Proof.
ax2 + bx + c = 0.
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Take x = a0 + ∑7
i=1 ai t́i, we have

x2 = (a0 +
7

∑
i=1

ai t́i)
2

= (a0)
2 + (

7

∑
i=1

ai t́i)
2 + 2a0

7

∑
i=1

ai t́i

= (a0)
2 −

7

∑
i=1

a2
i + 2a0

7

∑
i=1

ai t́iwhere(
7

∑
i=1

ai t́i)
2 = −

7

∑
i=1

a2
i

= (a0)
2 + a2

0 − ||x||+ 2a0

7

∑
i=1

ai t́iwhere||x|| = a0 +
7

∑
i=1

a2
i

= 2(a0)
2 − ||x||+ 2a0

7

∑
i=1

ai t́i

= 2(a0)
2 + 2a0

7

∑
i=1

ai t́i − ||x||,

= 2a0x− ||x||.

Putting it in the above equation, we get

a(2a0x− ||x||) + bx + c = 0, (30)

2aa0x− a||x||+ bx + c = 0, (31)

(2aa0 + b)x− a||x||+ c = 0. (32)

Here, x = a0 + ∑7
i=1 ai t́i and ||x|| = a2

0 + ∑3
i=1 a2

i −∑7
i=3 a2

i , we have

(2aa0 + b)(a0 +
7

∑
i=1

ai t́i)− a[a2
0 +

3

∑
i=1

a2
i −

7

∑
i=3

a2
i ] + c = o,

(2aa0 + b)a0 + (2aa0 + b)
7

∑
i=1

ai t́i − aa2
0 − a

3

∑
i=1

a2
i + a

7

∑
i=3

a2
i + c = o,

Comparing vector terms on both sides, we have

(2aa0 + b)ai = 0,

2aa0 + b = 0,

a0 =
−b
2a

,

a0 =
p− b

2a
.

Comparing constant terms on both sides, we have

(2aa0 + b)a0 − aa2
0 − a

3

∑
i=1

a2
i + a

7

∑
i=4

a2
i + c = o,

2aa2
0 + ba0 − aa2

0 + c = a
3

∑
i=1

a2
i − a

7

∑
i=4

a2
i ,

a0(aa0 + b) + c = a[
3

∑
i=1

a2
i −

7

∑
i=4

a2
i ],
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where a0 = p−b
2a .

(
p− b

2a
)(a(

p− b
2a

) + b) + c = a[
3

∑
i=1

a2
i −

7

∑
i=4

a2
i ],

(
p− b

2a
)(

p + b
2

) + c = a[
3

∑
i=1

a2
i −

7

∑
i=4

a2
i ],

(
p2 − b2

4a
) + c = a[

3

∑
i=1

a2
i −

7

∑
i=4

a2
i ],

(
p2 − b2

4a2 ) +
c
a

=
3

∑
i=1

a2
i −

7

∑
i=4

a2
i .

Theorem 8. The fixed points of function f (x) = ax2 + (b + 1)x + c are x = a0 + ∑7
i=1 ai t́i ∈ Os/Zp, where

a0 = p−b
2a and ∑3

i=1 a2
i −∑7

i=4 a2
i = ( p2−b2

4a2 ) + c
a .

Proof. It is enough to use relation f (x) = g(x) + x where g(x) = ax2 + bx + c. Then, the existence of
fixed points for f (x) is equivalent to the solutions of g(x). Then, the required result is immediate from
the above theorem.

Corollary 8. The fixed point of function f (x) = x2 + x are x = a0 + ∑7
i=1 ai t́i ∈ Os/Zp where a0 = p

2 and

∑3
i=1 a2

i −∑7
i=4 a2

i = p2

4 .

Proof. It is obvious from the above theorem, only by taking a = 1, b = 0 and c = 0.

Theorem 9. Let p be an odd prime. If x = a0 + ∑7
i=1 ai t́i ∈ Os/Zp is the root of the quadratic equation

ax2 + bx + c = 0 a, b, c ∈ Zp, then x = a0 + ∑7
i=1 ái t́i ∈ Os/Zp is also the root of the quadratic equation

ax2 + bx + c = 0 a, b, c ∈ Zp.

Proof.

x = a0 +
7

∑
i=1

ai t́i = a0 +
7

∑
i=1

áiti = a0 −
7

∑
i=1

ai t́i (33)

= a0 +
7

∑
i=1

ái t́i, (34)

where ái = −ai where i = 1, 2, ..., 7 as

a0 =
p− b

2a
and

3

∑
i=1

ái
2 −

7

∑
i=4

ái
2 =

3

∑
i=1

(−ai)
2 −

7

∑
i=4

(−ai)
2 (35)

=
3

∑
i=1

(ai)
2 −

7

∑
i=4

(ai)
2 (36)

=
p2 − b2

4a2 +
c
a

. (37)

It implies that x is the root of the quadratic equation ax2 + bx + c = 0 a, b, c ∈ Zp.
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Theorem 10. If the function f (x) = ax2 + (b + 1)x + c has fixed point x = a0 + ∑7
i=1 ai t́i ∈ Os/Zp, then

x = a0 + ∑7
i=1 ái t́i ∈ Os/Zp also is the fixed point of function f (x) = ax2 + (b + 1)x + c.

Proof. It is enough to use relation f (x) = g(x) + x, where g(x) = ax2 + bx + c. Then, the existence of
fixed points for f (x) is equivalent to the solutions of g(x). Then, the required result is immediate from
the above theorem.

3. Some Algebraic Consequences about Os/Zp

Proposition 1. Let p be an odd prime and an element

x = a0 +
7

∑
i=1

ai t́i ∈ Os/Zp

is idempotent⇔ a0 = p+1
2 and

3

∑
i=1

a2
i −

7

∑
i=4

a2
i =

p2 − 1
4

.

Proof. Taking a = 1, b = p− 1 and c = p in the above theorem, we have

x2 + (p− 1)x + p = 0, (38)

x2 − x = 0, (39)

x2 = x (40)

has root

x = a0 +
7

∑
i=1

ai t́i, (41)

where

a0 =
p− b

2a
=

p− p + 1
2

(42)

=
1
2

, (43)

and

3

∑
i=1

a2
i −

7

∑
i=4

a2
i =

p2 − b2

4a2 +
c
a
=

p2 − (−1)2

4(1)2 +
0
1

(44)

=
p2 − 1

4
. (45)

In other words, we can say that x is idempotent.

Proposition 2. Let p be an odd prime and element

x = a0 +
7

∑
i=1

ai t́i ∈ Os/Zp (46)

is idempotent if and only if a0 = p+1
2 and ‖x‖ = 0.

Proposition 3. Let p be an odd prime and x ∈ Os/Zp. If x is an idempotent, then ‖x‖ = 0.
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Proposition 4. Let p be an odd prime. If x ∈ Os/Zp is idempotent, then x̄ is also an idempotent.

Proposition 5. Let p be an odd prime. If x = a0 ∈ Os/Zp is idempotent, then it is either 0 or 1.

Proposition 6. Let p be an odd prime and x ∈ Os/Zp be of the form

x =
7

∑
i=1

ai t́i, (47)

where at least one ai 6= 0. Then, x is not an idempotent.

Proposition 7. Let p be an odd prime and the quadratic equation x2 = 0 has root x = a0 + ∑7
i=1 ai t́i ∈

Os/Zp, where a0 = p
2 and ∑3

i=1 a2
i −∑7

i=4 a2
i = p2

4 .

Proof. Taking a = 1, b = 0 and c = 0 in the above theorem, we have

x2 + (p)x + o = 0, (48)

x2 = 0 (49)

has root

x = a0 +
7

∑
i=1

ai t́i, (50)

where

a0 =
p− b

2a
=

p− 0
2

(51)

=
p
2

(52)

and

3

∑
i=1

a2
i −

7

∑
i=4

a2
i =

p2 − b2

4a2 +
c
a
=

p2 − (0)2

4(1)2 +
0
1

(53)

=
p2

4
. (54)

In other words, we can say that x is nilpotent.

Using results of the previous section and programs mentioned in the Appendix A, we can give
many examples.

4. Examples

In this section, we add examples relating to the previous section. These results are generated
by the codes given in Appendix A. These along with other examples can be created using codes,
and results can be applied to crypto systems and communication channel systems.
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Example 1. We find all solutions of x2 − x = 0 over Hs/Z7. As above, we see that, if x ∈ Hs/Z7, then
a0 = 7−(−1)

2 = 4 and following are the values of a1, a2 and a3, respectively, satisfying the equation −a2
1 + a2

2 +

a2
3 = −5 or a2

1 − a2
2 − a2

3 = 5.

(0, 1, 1) (0, 1, 6) (0, 3, 0) (0, 4, 0) (0, 1, 1) (0, 6, 1) (0, 6, 6) (1, 1, 3)
(1, 1, 4) (1, 3, 1) (1, 3, 6) (1, 4, 1) (1, 4, 6) (1, 6, 4) (2, 2, 3) (2, 2, 4)
(2, 3, 2) (2, 3, 3) (2, 3, 5) (2, 4, 2) (2, 4, 3) (2, 4, 5) (2, 5, 3) (2, 5, 4)
(3, 0, 2) (3, 0, 5) (3, 2, 0) (3, 3, 3) (3, 3, 4) (3, 4, 3) (3, 4, 4) (3, 5, 0)
(4, 0, 2) (4, 0, 5) (4, 2, 0) (4, 3, 3) (4, 3, 4) (4, 4, 3) (4, 4, 4) (4, 5, 0)
(5, 0, 6) (5, 2, 3) (5, 2, 4) (5, 3, 2) (5, 3, 5) (5, 4, 2) (5, 4, 5) (5, 5, 3)
(5, 5, 4) (5, 6, 0) (6, 1, 4) (6, 3, 6) (6, 4, 1) (6, 4, 6) (6, 6, 3) (6, 6, 4)

.

Example 2. We compute all solutions of 2x2 + x = 0 over Hs/Z5. As above, we see that, if x ∈ Hs/Z5, then
a0 = 1 and following are the values of a1, a2 and a3, respectively, satisfying the equation −a2

1 + a2
2 + a2

3 = −4
or a2

1 − a2
2 − a2

3 = 4.

(0, 0, 1) (1, 4, 1) (2, 2, 4) (3, 1, 2) (3, 4, 2)
(0, 0, 4) (1, 4, 4) (2, 3, 1) (3, 1, 3) (3, 4, 3)
(0, 1, 0) (2, 0, 0) (2, 3, 4) (3, 2, 1) (4, 1, 1)
(0, 4, 0) (2, 1, 2) (2, 4, 2) (3, 2, 4) (4, 1, 4)
(1, 1, 1) (2, 1, 3) (2, 4, 3) (3, 3, 1) (4, 4, 1)
(1, 1, 4) (2, 2, 1) (3, 0, 0) (3, 3, 4) (4, 4, 4)

.

Example 3. We compute all solutions of x2 + x+ 1 = 0 over Hs/Z7. As above, we see that, if x ∈ Hs/Z7, then
a0 = 3 and following are the values of a1, a2 and a3, respectively satisfying the equation −a2

1 + a2
2 + a2

3 = −6
or a2

1 − a2
2 − a2

3 = 6.

(0, 0, 1) (1, 0, 3) (6, 0, 3) (2, 1, 2) (5, 1, 2) (3, 1, 3) (4, 1, 3)
(0, 0, 6) (1, 0, 4) (6, 0, 4) (2, 1, 5) (5, 1, 5) (3, 1, 4) (4, 1, 4)
(0, 1, 0) (1, 1, 6) (6, 1, 6) (2, 2, 1) (5, 2, 1) (3, 3, 1) (4, 3, 1)
(0, 2, 2) (1, 3, 0) (6, 3, 0) (2, 2, 6) (5, 2, 6) (3, 3, 6) (4, 3, 6)
(0, 2, 5) (1, 4, 0) (6, 4, 0) (2, 5, 1) (5, 5, 1) (3, 4, 1) (4, 4, 1)
(0, 5, 2) (1, 6, 1) (6, 6, 1) (2, 5, 6) (5, 5, 6) (3, 4, 6) (4, 4, 6)
(0, 5, 5) (1, 1, 1) (6, 1, 1) (2, 6, 2) (5, 6, 2) (3, 6, 3) (4, 6, 2)
(0, 6, 0) (1, 6, 6) (6, 6, 6) (2, 6, 5) (5, 6, 5) (3, 6, 4) (4, 6, 5)

.

Example 4. We compute all solutions of x2 = 0 over Hs/Z5. As above, we see that, if x ∈ Hs/Z5, then
a0 = 0 and following are the values of a1, a2 and a3, respectively, satisfying the equation −a2

1 + a2
2 + a2

3 = 0 or
a2

1 − a2
2 − a2

3 = 0.

(0, 0, 0) (0, 3, 4) (1, 4, 0) (2, 0, 3) (3, 3, 0)
(0, 1, 2) (0, 4, 2) (4, 0, 1) (2, 2, 0) (0, 3, 1)
(0, 1, 3) (0, 4, 3) (4, 0, 4) (2, 3, 0) (1, 1, 0)
(0, 2, 1) (1, 0, 1) (4, 1, 0) (3, 0, 2) (2, 0, 2)
(0, 2, 4) (1, 0, 4) (4, 4, 0) (3, 0, 3) (3, 2, 0)

.

Example 5. We compute all solutions of x2 − x = 0 over Os/Z3 (idempotents in the split octonion algebra).
As above we see that x = a0 + ∑7

i=1 ai t́i ∈ Os/Z3 where a0 = 3−(−1)
2 = 2 and following is the values of a1,

a2, a3, a4, a5, a6 and a7 respectively satisfying the equation ∑3
i=1 a2

i −∑7
i=4 a2

i = ( p2−b2

4a2 ) + c
a = 2 .

We do so by putting values for p = 3, a = 1, b = −1, c = 0 in above given code.
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(2, 1, 0, 1, 1, 0, 2); (2, 1, 0, 1, 1, 1, 0); (2, 1, 0, 1, 1, 2, 0); (2, 1, 0, 1, 2, 0, 1);

(2, 1, 0, 1, 2, 0, 2); (2, 1, 0, 1, 2, 1, 0); (2, 1, 0, 1, 2, 2, 0); (2, 1, 0, 2, 0, 1, 1);

(2, 1, 0, 2, 0, 1, 2); (2, 1, 0, 2, 0, 2, 1); (2, 1, 0, 2, 0, 2, 2); (2, 1, 0, 2, 1, 0, 1);

(2, 1, 0, 2, 1, 0, 2); (2, 1, 0, 2, 1, 1, 0); (2, 1, 0, 2, 1, 2, 0); (2, 1, 0, 2, 2, 0, 1);

(2, 1, 0, 2, 2, 0, 2); (2, 1, 0, 2, 2, 1, 0); (2, 1, 0, 2, 2, 2, 0); (2, 1, 1, 0, 0, 0, 1);

(2, 1, 1, 0, 0, 0, 2); (2, 1, 1, 0, 0, 1, 0); (2, 1, 1, 0, 0, 2, 0); (2, 1, 1, 0, 1, 0, 0);

(2, 1, 1, 0, 2, 0, 0); (2, 1, 1, 1, 0, 0, 0); (2, 1, 1, 1, 1, 1, 1); (2, 1, 1, 1, 1, 1, 2);

(2, 1, 1, 1, 1, 2, 1); (2, 1, 1, 1, 1, 1, 1); (2, 1, 1, 1, 1, 1, 2); (2, 1, 1, 1, 1, 2, 1);

(2, 1, 1, 1, 1, 2, 2); (2, 1, 1, 1, 2, 1, 1); (2, 1, 1, 1, 2, 1, 2); (2, 1, 1, 1, 2, 2, 1);

(2, 1, 1, 1, 2, 2, 2); (2, 1, 1, 2, 0, 0, 0); (2, 1, 1, 2, 1, 1, 1); (2, 1, 1, 2, 1, 1, 2);

(2, 1, 1, 2, 1, 2, 1); (2, 1, 1, 2, 1, 2, 2); (2, 1, 1, 2, 2, 1, 1); (2, 1, 1, 2, 2, 1, 2);

(2, 1, 1, 2, 2, 2, 1); (2, 1, 1, 2, 2, 2, 2); (2, 1, 2, 0, 0, 0, 1); (2, 1, 2, 0, 0, 0, 2);

(2, 1, 2, 0, 0, 1, 0); (2, 1, 2, 0, 0, 2, 0); (2, 1, 2, 0, 1, 0, 0); (2, 1, 2, 0, 2, 0, 0);

(2, 1, 2, 1, 0, 0, 0); (2, 1, 2, 1, 1, 1, 1); (2, 1, 2, 1, 1, 1, 2); (2, 1, 2, 1, 1, 2, 1);

(2, 1, 2, 1, 1, 2, 2); (2, 1, 2, 1, 2, 1, 1); (2, 1, 2, 1, 2, 1, 2); (2, 1, 2, 1, 2, 2, 1);

(2, 1, 2, 1, 2, 2, 2); (2, 1, 2, 2, 0, 0, 0); (2, 1, 2, 2, 1, 1, 1); (2, 1, 2, 2, 1, 1, 2);

(2, 1, 2, 2, 1, 2, 1); (2, 1, 2, 2, 1, 2, 2); (2, 1, 2, 2, 2, 1, 1); (2, 1, 2, 2, 2, 1, 2);

(2, 1, 2, 2, 2, 2, 1); (2, 1, 2, 2, 2, 2, 2); (2, 2, 0, 0, 0, 0, 0); (2, 2, 0, 0, 1, 1, 1);

(2, 2, 0, 0, 1, 1, 2); (2, 2, 0, 0, 1, 2, 1); (2, 2, 0, 0, 1, 2, 2); (2, 2, 0, 0, 1, 2, 2);

(2, 2, 0, 0, 2, 1, 1); (2, 2, 0, 0, 2, 1, 2); (2, 2, 0, 0, 2, 2, 1); (2, 2, 0, 0, 2, 2, 2);

(2, 2, 0, 1, 0, 1, 1); (2, 2, 0, 1, 0, 1, 2); (2, 2, 0, 1, 0, 2, 1); (2, 2, 0, 1, 0, 2, 2);

(2, 2, 0, 1, 1, 0, 1); (2, 2, 0, 1, 1, 0, 2); (2, 2, 0, 1, 1, 1, 0); (2, 2, 0, 1, 1, 2, 0);

(2, 2, 0, 1, 2, 0, 1); (2, 2, 0, 1, 2, 0, 2); (2, 2, 0, 1, 2, 1, 0); (2, 2, 0, 1, 2, 2, 0);

(2, 2, 0, 2, 0, 1, 1); (2, 2, 0, 2, 0, 1, 1); (2, 2, 0, 2, 0, 1, 2); (2, 2, 0, 2, 0, 2, 1);

(2, 2, 0, 2, 0, 2, 2); (2, 2, 0, 2, 1, 0, 1); (2, 2, 0, 2, 1, 0, 2); (2, 2, 0, 2, 1, 1, 0);

(2, 2, 0, 2, 1, 2, 0); (2, 2, 0, 2, 2, 0, 1); (2, 2, 0, 2, 2, 0, 2); (2, 2, 0, 2, 2, 1, 0);

(2, 2, 0, 2, 2, 2, 0); (2, 2, 1, 0, 0, 0, 1); (2, 2, 1, 0, 0, 0, 2); (2, 2, 1, 0, 0, 1, 0);

(2, 2, 1, 0, 0, 2, 0); (2, 2, 1, 0, 1, 0, 0); (2, 2, 1, 0, 2, 0, 0); (2, 2, 1, 1, 0, 0, 0);

(2, 2, 1, 1, 1, 1, 1); (2, 2, 1, 1, 1, 1, 1); (2, 2, 1, 1, 1, 1, 2); (2, 2, 1, 1, 1, 2, 1);

(2, 2, 1, 1, 1, 2, 2); (2, 2, 1, 1, 2, 1, 1); (2, 2, 1, 1, 2, 1, 2); (2, 2, 1, 1, 2, 2, 1);

(2, 2, 1, 1, 2, 2, 2); (2, 2, 1, 2, 0, 0, 0); (2, 2, 1, 2, 1, 1, 1); (2, 2, 1, 2, 1, 1, 2);

(2, 2, 1, 2, 1, 2, 1); (2, 2, 1, 2, 1, 2, 2); (2, 2, 1, 2, 2, 1, 1); (2, 2, 1, 2, 2, 1, 2);

(2, 2, 1, 2, 2, 2, 1); (2, 2, 1, 2, 2, 2, 2); (2, 2, 2, 0, 0, 0, 1); (2, 2, 2, 0, 0, 0, 2);

(2, 2, 2, 0, 0, 1, 0); (2, 2, 2, 0, 0, 2, 0); (2, 2, 2, 0, 1, 0, 0); (2, 2, 2, 0, 2, 0, 0);

(2, 2, 2, 1, 0, 0, 0); (2, 2, 2, 1, 1, 1, 1); (2, 2, 2, 1, 1, 1, 2); (2, 2, 2, 1, 1, 2, 1);

(2, 2, 2, 1, 1, 2, 2); (2, 2, 2, 1, 2, 1, 2); (2, 2, 2, 1, 2, 2, 1); (2, 2, 2, 1, 2, 2, 2);

(2, 2, 2, 2, 0, 0, 0); (2, 2, 2, 2, 1, 1, 1); (2, 2, 2, 2, 1, 1, 2); (2, 2, 2, 2, 1, 2, 1);

(2, 2, 2, 2, 1, 2, 2); (2, 2, 2, 2, 2, 1, 1); (2, 2, 2, 2, 2, 1, 2); (2, 2, 2, 2, 2, 2, 1);

(2, 2, 2, 2, 2, 2, 2).



Symmetry 2018, 10, 405 15 of 18

5. Conclusions and Further Directions

In this article, we produced some general results about fixed points of a general quadratic
polynomial in algebras of split quaternion and octonion over Zp. We not only characterized these
points in terms of the coefficients of these polynomials but also gave the cardinality of these points and
also the programs that produced fixed points. We arrived at the following new results for a general
quadratic function.

Theorem 11. |Fix( f )| =
{

p2, b = 0, c = 0,
p2 + p + 2, c = 0, b 6= 0.

Theorem 12. Let b 6= 0 and c 6= 0. Then, |Fix( f )| =


p2 − p, p ≡ 1(mod3);
p2 + p, p ≡ 2(mod3);
3, p = 3.

We also give the following two new results for the fixed points of a general quadratic quaternionic
equation without proofs. Proofs are left as an open problem.

Theorem 13. |Fix( f )| =
{

p6, b = 0, c = 0;
p6 + p3, c = 0, b 6= 0.

Theorem 14. Let b 6= 0 and c 6= 0. Then, |Fix( f )| =


p6 + p3, p ≡ 1(mod3);
p6 − p3, p ≡ 2(mod3);
p6, p = 3.

We like to remark that new results can be obtained for a general cubic polynomials in these algebras.
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Appendix A. Computer Codes

Here, we put together some programs to compute fixed points and roots easily.

Appendix A.1. Program for Finding Solutions of the Quadratic Equation in Hs/Zp

Following codes, count and print the number of solutions of quadratic equation ax2 + bx + c = 0
in Hs/Zp. These codes print the string a1, a2, a3 with the understanding that the co-efficient a0 = p−b

2a is

fixed in Hs/Zp and satisfying the relation a2
1 − a2

2 − a2
3 = ( p2−b2

4a2 ) + c
a or −a2

1 + a2
2 + a2

3 = (−p2+b2

4a2 )− c
a

for Hs/Zp.

CODE: This code will give solutions of the quadratic equation only by putting values for p, a, b, c,
where p is an odd prime and a, b, cεZp.

#include<iostream>
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#include<conio.h>
using namespace std;

main()
{
int a1, a2, a3, p, n, a, b, c, count;
count=0;
cout<<"Enter value for p: ";
cin>>p;
cout<<"Enter value for a: ";
cin>>a;
cout<<"Enter value for b: ";
cin>>b;
cout<<"Enter value for c: ";
cin>>c;
n=((p*p-b*b)/(4*a*a))+(c/a);
while(n<0)
n=n+p;
for(int i=0; i<p; i++)
{
a3=i;
for(int j=0; j<p; j++)
{
a2=j;
for(int k=0; k<p; k++)
{
a1=k;
int sum=(a1*a1)-(a2*a2)-(a3*a3);
while(sum<0)
sum=sum+p;
if(sum%p==n)
{
count++;
cout<<a1<<" "<<a2<<" "<<a3<<endl;
}
}
}
}
cout<<"\nCount: "<<count;
getch();
}

Appendix A.2. Program for Finding Roots of the Quadratic Equation in Os/Zp

Following codes, count and print the number of solutions of quadratic equation ax2 + bx+ c = 0 in
Os/Zp. These codes print the string a1, a2, a3, a4, a5, a6, a7 with the understanding that the co-efficient

a0 = p−b
2a is fixed in Os/Zp and satisfying the relation ∑3

i=1 a2
i −∑7

i=4 a2
i = ( p2−b2

4a2 ) + c
a for Os/Zp.

CODE: This code will give solutions of the quadratic equation only by putting values for p, a, b, c,
where p is an odd prime and a, b, c ∈ Zp.

#include <iostream>
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#include <fstream>
using namespace std;
int main(){

int a1,a2,a3,a4,a5,a6,a7;
int sum=0;
int p;
int n=0;
int count=2;
int totalCount=0;
cout<<"Enter value of p: ";
cin>>p;
n = ((p*p -1)/4)%p;
for(int i=0;i<p;i++)
{
a1 = i;
for(int j=0; j<p; j++)
{
a2 = j;
for(int k=0; k<p; k++)
{
a3 = k;
for(int l=0; l<p;l++)
{
a4 = l;
for(int m=0; m<p; m++)
{
a5 = m;
for(int q=0; q<p; q++)
{
a6 = q;
for(int r=0; r<p;r++)
{
a7 = r;
totalCount++;
cout<<a1<<" "<<a2<<" "<<a3<<" "<<a4<<" "<<a5

<<" "<<a6<<" "<<a7<<endl;
//dataFile << a1 << endl;
sum = a1*a1+a2*a2+a3*a3-a4*a4-a5*a5-a6*a6-a7*a7;
if(sum%p == n)
count++;

}
}

}
}

}
}

}
cout<<"Total Count is: "<<totalCount<<endl;
cout<<"Count is: "<<count<<endl;
system("pause");
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return 0;
}
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