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Abstract: We study the existence, multiplicity, and uniqueness results of positive solutions for a
fractional thermostat model. Our approach depends on the fixed point index theory, iterative method,
and nonsymmetry property of the Green function. The properties of positive solutions depending on
a parameter are also discussed.
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1. Introduction

In this paper, we investigate a fractional nonlocal boundary value problem (BVP){
cDα

0+x(t) + λg(t) f (x(t)) = 0, t ∈ (0, 1),

x′(0) = 0, βcDα−1
0+ x(1) + x(η) = 0,

(1)

where 1 < α ≤ 2, β > 0, 0 ≤ η ≤ 1, βΓ(α) > (1− η)α−1, cDα
0+ is the Gerasimov–Caputo fractional

derivative of order α, λ > 0 is a parameter, f ∈ C([0,+∞), [0,+∞)), g ∈ C((0, 1), [0,+∞)), and
0 <

∫ 1
0 g(t)dt < +∞.

One motivation is that the thermostat model{
x′′(t) + g(t) f (t, x(t)) = 0, t ∈ (0, 1),

x′(0) = 0, βx′(1) + x(η) = 0,
(2)

which is a special case with α = 2 and λ = 1, has been discussed by Infante and Webb [1,2].
They established multiplicity results of BVP (2). These types of problems have been investigated
by various scholars, see References [3–17].

Recently, the thermostat model was extended to the fractional case{
cDα

0+x(t) + f (t, x(t)) = 0, t ∈ (0, 1), α ∈ (1, 2],

x′(0) = 0, βcDα−1
0+ x(1) + x(η) = 0,

(3)

where β > 0, 0 ≤ η ≤ 1, f ∈ C([0, 1] × [0,+∞), [0,+∞)). Nieto and Pimentel [18] proved the
existence of positive solutions based on the Krasnosel’skii fixed point theorem. Cabada and Infante [19]
discussed the multiplicity results of positive solutions for BVP (3).

In Reference [20], Shen, Zhou, and Yang studied a fractional thermostat model{
cDα

0+x(t) + λ f (t, x(t)) = 0, t ∈ (0, 1), 1 < α ≤ 2,

x′(0) = 0, βcDα−1
0+ x(1) + x(η) = 0,
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where β > 0, 0 ≤ η ≤ 1, βΓ(α) > (1− η)α−1, λ > 0, f : [0, 1]× [0,+∞) → [0,+∞) is continuous.
The authors obtained intervals of parameter λ that correspond to at least one and no positive solutions.
Similar fractional thermostat problems have been studied in References [21–24].

In this paper, we deal with positive solutions for the fractional thermostat model (1). The
existence, multiplicity, and uniqueness results are established by the fixed point index theory and
iterative method. The properties of positive solutions depending on a parameter are also discussed.
Some of the ideas in this paper are from References [25,26]. Let us remark that the definition of the
Gerasimov–Caputo derivative was first introduced and applied by Gerasimov in 1947 and then by
Caputo in 1967, see for example, the overview by Novozhenova in Reference [27]. For details on the
theory and applications of the fractional derivatives and integrals and fractional differential equations,
see References [28–31].

2. Preliminaries

Lemma 1 ([20]). Given u(t) ∈ C(0, 1) ∩ L1(0, 1), the solution of the problem{
cDα

0+x(t) + u(t) = 0, t ∈ (0, 1),

x′(0) = 0, βcDα−1
0+ x(1) + x(η) = 0

is

x(t) =
∫ 1

0
G(t, s)u(s)ds, t ∈ [0, 1],

where

G(t, s) =



β− (t− s)α−1

Γ(α)
+

(η − s)α−1

Γ(α)
, 0 ≤ s ≤ η, s ≤ t,

β +
(η − s)α−1

Γ(α)
, 0 ≤ s ≤ η, s ≥ t,

β− (t− s)α−1

Γ(α)
, η ≤ s ≤ 1, s ≤ t,

β, η ≤ s ≤ 1, s ≥ t,

and G(t, s) satisfies:

(i) G(t, s) : [0, 1]× [0, 1]→ (0,+∞) is continuous;
(ii) ∂

∂t G(t, s) ≤ 0, t, s ∈ [0, 1];
(iii) γG = G ≤ G(1, s) ≤ G(t, s) ≤ G(0, s) ≤ G, t, s ∈ [0, 1],

where

γ =
βΓ(α)− (1− η)α−1

βΓ(α) + ηα−1 , G =
βΓ(α)− (1− η)α−1

Γ(α)
, G =

βΓ(α) + ηα−1

Γ(α)
.

Denote E = C[0, 1] and ‖x‖ = supt∈[0,1] |x(t)|. We define the cone

P = {x ∈ E : x(t) ≥ 0, inf
t∈[0,1]

x(t) ≥ γ‖x‖}.

For any 0 < r < +∞, let Pr = {x ∈ P : ‖x‖ < r}. We define T : (0,+∞)× E→ E as

T(λ, x)(t) = λ
∫ 1

0
G(t, s)g(s) f (x(s))ds, t ∈ [0, 1].

It is obvious from Lemma 1 that if x ∈ P is a fixed point of operator T, then x is a positive solution
of Problem (1). By regularity arguments, we can show that T is completely continuous and T(P) ⊂ P.
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Define the linear operator L : E→ E by

Lx(t) =
∫ 1

0
G(t, s)g(s)x(s)ds, t ∈ [0, 1].

By the Krein–Rutman theorem, we see that the spectral radius r(L) of the operator L is positive,
and L has positive eigenfunction ϕ1 corresponding to its first eigenvalue µ1 = (r(L))−1.

Lemma 2 ([32]). Let P be a cone in Banach space E. Suppose that T : P → P is a completely continuous
operator. (i) If Tu 6= µu for any u ∈ ∂Pr and µ ≥ 1, then i(T, Pr, P) = 1. (ii) If Tu 6= u and ‖Tu‖ ≥ ‖u‖ for
any u ∈ ∂Pr, then i(T, Pr, P) = 0.

Denote

f0 = lim
s→0

f (s)
s

, f∞ = lim
s→∞

f (s)
s

, A =
∫ 1

0
G(0, s)g(s)ds, l = min

s∈(0,∞)

f (s)
s

.

We assume that:

(H1) f is nondecreasing on [0,+∞);
(H2) there exists a function φ : (0, 1] → [0, 1] continuous nondecreasing, such that f (κx) ≥ φ(κ) f (x) for

0 < κ < 1, x > 0, and F(κ) := κ
φ(κ)

is strictly increasing on (0, 1] and F(1) = 1.

Lemma 3. Suppose that (H1) holds, f0 = ∞ and l > 0. If 0 < λ1 < λ2 < 1
lA , then there exist x1, x2 ∈

P \ {θ}, x1 ≤ x2, such that T(λ1, x1)(t) = x1(t) and T(λ2, x2)(t) = x2(t).

Proof. Assume s0 ∈ (0, ∞) such that f (s0) = ls0. Since 0 < λ1 < λ2 < 1
lA , we have l < 1

λ2 A < 1
λ1 A .

We define

x0(t) =
s0

A

∫ 1

0
G(t, s)g(s)ds, t ∈ [0, 1],

then

‖x0‖ = x0(0) = s0, x0(t) ≥
s0

A

∫ 1

0
γG(0, s)g(s)ds = γ‖x0‖, t ∈ [0, 1].

Therefore, x0 ∈ P and ‖x0‖ = s0. Direct computations yield

T(λ1, x0)(t) =λ1

∫ 1

0
G(t, s)g(s) f (x0(s))ds ≤ λ1

∫ 1

0
G(t, s)g(s) f (‖x0‖)ds

=λ1ls0

∫ 1

0
G(t, s)g(s)ds <

s0

A

∫ 1

0
G(t, s)g(s)ds = x0(t), t ∈ [0, 1].

Define

x1
1(t) = T(λ1, x0)(t), xj

1(t) = T(λ1, xj−1
1 )(t) = T j(λ1, x0)(t), j = 2, 3, · · · , t ∈ [0, 1].

Direct calculations show that x0 > x1
1 > x2

1 > · · · > xj
1 > xj+1

1 > · · · ≥ θ. Hence, sequence

{xj
1}∞

j=1 is decreasing and bounded from below, limj→∞ xj
1(t) exists and convergence is uniform for

t ∈ [0, 1]. Assume that limj→∞ xj
1 = x1, we claim that x1(t) > 0. Otherwise, since x1 ∈ P, x1(t) = 0,

i.e., limj→∞ xj
1(t) = 0, t ∈ [0, 1], and hence from xj

1 ∈ P, we deduce ‖xj
1‖ → 0. Since f0 = ∞, for any

H > 1
λ1γA , there is integral Z > 0 such that for j > Z, we have f (xj

1(t)) > Hxj
1(t), and hence
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xj+1
1 (0) =λ1

∫ 1

0
G(0, s)g(s) f (xj

1(s))ds

>λ1Hγ
∫ 1

0
G(0, s)g(s)‖xj

1‖ds

≥xj
1(0)λ1HγA > xj

1(0).

The contradiction shows that x1 ∈ P \ {θ} and x1 = T(λ1, x1).
Similarly, from x1

2(t) = T(λ2, x0)(t) and xj
2(t) = T(λ2, xj−1

2 )(t), j = 2, 3, · · · , we deduce

x0 > x1
2 > x2

2 > · · · > xj
2 > xj+1

2 > · · · ≥ θ,

limj→∞ xj
2 = x2 ∈ P \ {θ}, and x2 = T(λ2, x2). It follows from x1

1 = T(λ1, x0) < T(λ2, x0) = x1
2 and

the monotonicity of f that xj
1 ≤ xj

2, j = 2, 3, · · · . Therefore, x1 ≤ x2.

Lemma 4. If f∞ = ∞, then for any µ > 0, the set Sµ = {x ∈ P : T(λ, x) = x, λ ∈ [µ, ∞)} is bounded.

Proof. Otherwise, there exists xn ∈ Sµ corresponding to λn ∈ [µ, ∞) such that

T(λn, xn) = xn, lim
n→∞

‖xn‖ = ∞.

Because f∞ = ∞, there is X > 0 such that f (s) > Hs for s > X, where H > 1
µγA . Since

limn→∞ ‖xn‖ = ∞, there exists N0 > 0 such that ‖xn‖ > X
γ for n > N0, and xn(t) ≥ γ‖xn‖ > X, t ∈

[0, 1]. Then, for any n > N0, we obtain

‖xn‖ > λn

∫ 1

0
G(0, s)g(s)Hxn(s)ds > µHγ‖xn‖A > ‖xn‖,

which is absurd, and hence Sµ is bounded.

Lemma 5. Assume that (H1) holds, and that f0 = f∞ = ∞. Then, T admits a fixed point for λ = 1
lA .

Proof. Choosing a sequence 0 < λ1 < λ2 < · · · < λn < λn+1 < · · · < 1
lA such that limn→∞ λn = 1

lA .
By Lemma 3, there exists a nondecreasing sequence {xn}∞

n=1 ⊂ P \ {θ} such that xn = T(λn, xn).
By Lemma 4, we know that {xn}∞

n=1 is uniformly bounded and equicontinuous. By using the
Arzela–Ascoli theorem, we can prove that there exists {xnk}∞

k=1 ⊂ {xn}∞
n=1 such that xnk → x̃ ∈ E

uniformly on [0, 1]. Therefore, xnk satisfies

xnk (t) = T(λnk , xnk )(t) = λnk

∫ 1

0
G(t, s)g(s) f (xnk (s))ds, t ∈ [0, 1].

Passing to the limit as k→ ∞, we obtain

x̃(t) =
1

lA

∫ 1

0
G(t, s)g(s) f (x̃(s))ds, t ∈ [0, 1].

Hence, x̃ = T
(

1
lA , x̃

)
.

Lemma 6. Assume that (H1) holds, and that f (0) > 0. Then, for any x ∈ P, there exist Ux ≥ V > 0
such that

VKλ ≤ T(λ, x)(t) ≤ UxKλ, t ∈ [0, 1],

where

Kλ = λ
∫ 1

0
g(t)dt.



Symmetry 2019, 11, 122 5 of 9

Proof. By (H1), for any x ∈ P and t ∈ [0, 1], we have

T(λ, x)(t) ≥ G f (0)λ
∫ 1

0
g(t)dt := VKλ,

and

T(λ, x)(t) ≤ G f (‖x‖)λ
∫ 1

0
g(t)dt := UxKλ.

3. Main Results

Theorem 1. Assume that f∞ = ∞ and 0 < f0 < ∞. Then, for any 0 < λ < µ1
f0

, BVP (1) admits a
positive solution.

Proof. Since 0 < λ < µ1
f0

, there exist ε > 0 small enough and r > 0 such that λ( f0 + ε) < µ1,

and f (s)
s < f0 + ε for s ∈ (0, r]. We claim that

T(λ, x) 6= µx, x ∈ ∂Pr, µ ≥ 1.

Otherwise, there exist x0 ∈ ∂Pr and µ0 ≥ 1 such that T(λ, x0) = µ0x0. Since 0 < γr ≤ x0(t) ≤
‖x0‖ = r, we have

µ0x0(t) ≤ λ( f0 + ε)
∫ 1

0
G(t, s)g(s)x0(s)ds = λ( f0 + ε)Lx0(t),

then Lx0(t) ≥ µ0
λ( f0+ε)

x0(t). Thus, r(L) ≥ µ0
λ( f0+ε)

≥ 1
λ( f0+ε)

. It follows that µ1 ≤ λ( f0 + ε), which is a
contradiction. Then, i(T, Pr, P) = 1.

Next, we prove that i(T, PR, P) = 0 for some R > r. In fact, f∞ = ∞ implies that f (s) > Ms for
some large R1 > 0 and s ≥ R1, where M > (λγA)−1. Let R > max{r, R1

γ }. For x ∈ ∂PR, we have
x(t) ≥ γ‖x‖ = γR > R1, t ∈ [0, 1], then

‖T(λ, x)‖ ≥ λM
∫ 1

0
G(0, s)g(s)x(s)ds ≥ λMγ‖x‖A > ‖x‖.

Hence, i(T, PR, P) = 0, and i(T, PR \ Pr, P) = −1. Therefore, T admits a fixed point x∗ ∈ PR \ Pr.

Theorem 2. Assume that (H1) holds, and that f0 = f∞ = ∞. Then, BVP (1) has at least one and two positive
solutions for λ = 1

lA and λ ∈ (0, 1
lA ), respectively.

Proof. By Lemma 5, BVP (1) admits a positive solution for λ = 1
lA . For λ ∈ (0, 1

lA ), by Lemmas 3 and
5, there exist x̃, xλ ∈ P \ {θ}, xλ ≤ x̃ such that

T
(

1
lA

, x̃
)
(t) = x̃(t), T(λ, xλ)(t) = xλ(t), t ∈ [0, 1].

If xλ = x̃, we have

T(λ, xλ) = xλ = x̃ = T
(

1
lA

, x̃
)
= T

(
1

lA
, xλ

)
.

This contradiction shows that xλ < x̃.
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Define Ω1 = {x ∈ E : −r < x(t) < x̃(t), t ∈ [0, 1]}, where r > 0 is the same as in the first part of
Theorem 1. For any x ∈ P ∩ ∂Ω1, we obtain ‖x‖ = ‖x̃‖, and

‖T(λ, x)‖ < 1
lA

∫ 1

0
G(0, s)g(s) f (x̃(s))ds = x̃(0) = ‖x̃‖.

Therefore,
‖T(λ, x)‖ < ‖x‖, x ∈ P ∩ ∂Ω1.

As in the proof in Theorem 1, there is R > 0 large enough such that

‖T(λ, x)‖ > ‖x‖, x ∈ P ∩ ∂Ω2,

where Ω2 = {x ∈ E : ‖x‖ < R}. By compression expansion fixed point theorem, we see that T has a
fixed point xλ ∈ P∩ (Ω2 \Ω1). Since xλ ∈ Ω1, xλ 6= xλ, problem (1) has a second positive solution.

Theorem 3. Assume that (H1) and (H2) hold, and that f (0) > 0. Then, for any λ ∈ (0, ∞), BVP (1) admits
a unique positive solution ẋλ(t), and ẋλ(t) satisfies:

(i) ẋλ(t) is nondecreasing with respect to λ;
(ii) limλ→0+ ‖ẋλ‖ = 0, limλ→∞ ‖ẋλ‖ = ∞;
(iii) ‖ẋλ − ẋλ0‖ → 0 as λ→ λ0.

Proof. Since T is nondecreasing, for u ∈ P, we have

T(λ, κx)(t) ≥ φ(κ)λ
∫ 1

0
G(t, s)g(s) f (x(s))ds = φ(κ)T(λ, x)(t), t ∈ [0, 1]. (4)

Define x̂(t) = Kλ, where Kλ is given by Lemma 6, then x̂ ∈ P and VKλ ≤ T(λ, x̂)(t) ≤ UxKλ.
Denote

V = sup{µ : µKλ ≤ T(λ, x̂)(t)}, U = inf{µ : µKλ ≥ T(λ, x̂)(t)},

then V ≥ V and U ≤ Ux. Select Ṽ and Ũ so that

0 < Ṽ < min{1, F−1(V)}, 0 <
1
Ũ

< min
{

1, F−1
(

1
U

)}
.

We define
x1(t) = ṼKλ, xk+1(t) = T(λ, xk)(t), t ∈ [0, 1], k = 1, 2, · · · ,

y1(t) = ŨKλ, yk+1(t) = T(λ, yk)(t), t ∈ [0, 1], k = 1, 2, · · · .

Combining the properties of T and (4), we get

ṼKλ = x1(t) ≤ x2(t) ≤ · · · ≤ xk(t) ≤ · · · ≤ yk(t) ≤ · · · ≤ y2(t) ≤ y1(t) = ŨKλ. (5)

Let d = Ṽ
Ũ

, obviously 0 < d < 1. We claim that

xk(t) ≥ φk−1(d)yk(t), t ∈ [0, 1], k = 1, 2, · · · , (6)

where φ0(d) = d, φk(d) = φ(φk−1(d)), k = 1, 2, · · · . In fact, x1(t) = dy1(t) = φ0(d)y1(t), t ∈ [0, 1].
Suppose xn(t) ≥ φn−1(d)yn(t) for t ∈ [0, 1], then

xn+1(t) ≥ T(λ, φn−1(d)yn)(t) ≥ φ(φn−1(d))T(λ, yn)(t) = φn(d)yn+1(t).
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Hence, it follows by induction that (6) is true. According to (5) and (6), one has

0 ≤ xn+m(t)− xn(t) ≤ yn(t)− xn(t) ≤ (1− φn−1(d))y1(t) = (1− φn−1(d))ŨKλ,

where m ≥ 0 is an integer. Thus,

‖xn+m − xn‖ ≤ ‖yn − xn‖ ≤ (1− φn−1(d))ŨKλ. (7)

We claim that limn→∞ φn(d) = 1. From (H2) and 0 < d < 1, we see that φ(d) ∈ (d, 1) and
d = φ0(d) < φ1(d) < · · · < φn(d) < · · · < 1. Sequence {φn(d)}∞

n=1 is increasing and bounded, there is
p ∈ [d, 1] such that limn→∞ φn(d) = p. By the continuity of φ and φn(d) = φ(φn−1(d)), we conclude
that p = φ(p), i.e., F(p) = 1. It follows that p = 1. Inequality (7) implies that there exists x ∈ P
such that limn→∞ xn(t) = limn→∞ yn(t) = x(t) for t ∈ [0, 1]. Clearly, x(t) is a positive solution of
problem (1).

Suppose that x̄1(t) and x̄2(t) are positive solutions of problem (1), then T(λ, x̄1)(t) = x̄1(t) and
T(λ, x̄2)(t) = x̄2(t), t ∈ [0, 1]. Define δ̃ = sup{δ : x̄1(t) ≥ δx̄2(t)}, then x̄1(t) ≥ δ̃x̄2(t). We claim that
δ̃ ≥ 1. Otherwise, δ̃ < 1. Assumption (H2) implies that f (δ̃x̄2(t)) > ϕ(δ̃) f (x̄2(t)), t ∈ [0, 1]. Since f
is nondecreasing,

x̄1(t) = T(λ, x̄1)(t) ≥ T(λ, δ̃x̄2)(t) > φ(δ̃)T(λ, x̄2)(t) > δ̃x̄2(t), t ∈ [0, 1],

a contradiction. Then, x̄1(t) ≥ x̄2(t) for t ∈ [0, 1]. Similarly, x̄2(t) ≥ x̄1(t). Therefore, x̄1(t) = x̄2(t), t ∈
[0, 1]. This proves the uniqueness result.

Next, we show that (i)− (iii) hold. Let

(Hx)(t) =
∫ 1

0
G(t, s)g(s) f (x(s))ds, t ∈ [0, 1],

then T(λ, x) = λHx. Since Po = {x ∈ P : x(t) > 0, t ∈ [0, 1]} is nonempty, the operator H : Po → Po

is increasing, and H(κx) ≥ φ(κ)Hx for 0 < κ < 1. Let ω = 1
λ . We now write Hxω = ωxω instead of

λHxλ = xλ. Assume 0 < ω1 < ω2, then xω1 ≥ xω2 . Indeed, denote ω = sup{t > 0 : xω1 ≥ txω2}, then
ω ≥ 1. Otherwise 0 < ω < 1. Direct computations yield ω1xω1 = Hxω1 ≥ H(ωxω2) ≥ φ(ω)Hxω2 =

φ(ω)ω2xω2 , then xω1 ≥
ω2
ω1

φ(ω)xω2 > ωxω2 . This is a contradiction to the definition of ω. Thus,
ω ≥ 1, xω1 ≥ xω2 , and further

xω1 =
1

ω1
Hxω1 ≥

1
ω1

Hxω2 =
ω2

ω1
xω2 � xω2 , 0 < ω1 < ω2. (8)

Then, xω(t) is strong decreasing in ω, that is, xλ(t) is strong increasing in λ. Let ω2 = ω and fix
ω1 in (8), for ω > ω1, we have xω1 ≥ ω

ω1
xω, and

‖xω‖ ≤
Nω1

ω
‖xω1‖,

where N > 0 is a normal constant of cone P. Because ω = 1
λ , then limλ→0+ ‖xλ‖ = 0. Let ω1 = ω and

fix ω2 in (8), we obtain limλ→+∞ ‖xλ‖ = +∞.
Finally, for given ω0, by (8), we have

xω � xω0 , ω > ω0. (9)

Let tω = sup{t > 0 : xω ≥ txω0 , ω > ω0}, then 0 < tω < 1 and xω ≥ tωxω0 . Direct computations
yield ωxω = Hxω ≥ H(tωxω0) ≥ φ(tω)Hxω0 = φ(tω)ω0xω0 . By the definition of tω, we have
ω0
ω φ(tω) ≤ tω, and
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tω ≥ F−1
(ω0

ω

)
, ∀ω > ω0. (10)

Combining (9) with (10), one has that

‖xω0 − xω‖ ≤ N
[
1− F−1

(ω0

ω

)]
‖xω0‖ → 0, ω → ω0 + 0.

Similarly, ‖xω0 − xω‖ → 0, ω → ω0 − 0. Hence, ‖xω0 − xω‖ → 0 as ω → ω0.
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