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Abstract: In the practical world, there commonly exist different types of multiple-attribute group
decision making (MAGDM) problems with uncertain information. Symmetry among some attributes’
information that is already known and unknown, and symmetry between the pure attribute sets
and fuzzy attribute membership sets, can be an effective way to solve this type of MAGDM
problem. In this paper, we investigate four forms of information aggregation operators, including
the Hamy mean (HM) operator, weighted HM (WHM) operator, dual HM (DHM) operator, and the
dual-weighted HM (WDHM) operator with the g-rung interval-valued orthopair fuzzy numbers
(g-RIVOENSs). Then, some extended aggregation operators, such as the g-rung interval-valued
orthopair fuzzy Hamy mean (3-RIVOFHM) operator; g-rung interval-valued orthopairfuzzy weighted
Hamy mean (g-RIVOFWHM) operator; g-rung interval-valued orthopair fuzzy dual Hamy mean
(g-RIVOFDHM) operator; and g-rung interval-valued orthopair fuzzy weighted dual Hamy mean
(g-RIVOFWDHM) operator are presented, and some of their precious properties are studied in detail.
Finally, a real example for green supplier selection in green supply chain management is provided, to
demonstrate the proposed approach and to verify its rationality and scientific nature.

Keywords: multiple attribute group decision making (MAGDM); Pythagorean fuzzy set (PFSs);
g-rung orthopair fuzzy sets (3-RIVOEFSs); -RIVOFWHM operator; g-RIVOFWDHM operator; green
suppliers selection

1. Introduction

For the indeterminacy of decision makers and decision-making issues, we cannot always give
accurate evaluation values for alternatives to select the best project in real multiple-attribute decision
making (MADM) problems. To overcome this disadvantage, fuzzy set theory, as defined by Zadeh [1]
in 1965, originally used the membership function to describe the estimation results, rather than an
exact real number. Atanassov [2,3] presents the intuitionistic fuzzy set (IFS) by considering another
measurement index which names a non-membership function. Hereafter, the IFS and its extension
has aroused the attention of a large number of scholars since its appearance [4-25]. More recently,
the Pythagorean fuzzy set (PFS) [26,27] has emerged as a useful tool for describing the indeterminacy
of the MADM problems. Zhang and Xu [28] proposed the detailed mathematical expression for PFS
and presented the definition of Pythagorean fuzzy numbers (PFNs). Wei and Lu [29] proposed some
Maclaurin Symmetric Mean Operators with PENs. Peng and Yang [30] studied the division and
subtraction operations of PFNs. Wei and Lu [31] defined some power aggregation operators with
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PENs based on the traditional power aggregation operators [32-37]. Beliakov and James [38] presented
the average aggregation functions of PFNs. Reformat and Yager [39] studied the collaborative-based
recommender system under the Pythagorean fuzzy environment. Gou et al. [40] proposed some
desirable properties of the continuous Pythagorean fuzzy number. Wei and Wei [41] defined some
similar measures of Pythagorean fuzzy sets, based on cosine functions with traditional similarity
measures [42-45]. Ren et al. [46] applied the Pythagorean fuzzy TODIM model in MADM. Garg [47]
combines the Einstein Operations and Pythagorean fuzzy information to propose a new aggregation
operator. Zeng et al. [48] provided a Pythagorean fuzzy hybrid method to study MADM. Garg [49]
presents a novel accuracy function based on interval-valued Pythagorean fuzzy information for solving
MADM problems. Wei et al. [50] propose the Pythagorean hesitant fuzzy Hamacher operators in
MADM. Wei and Lu [51] develop the dual hesitant Pythagorean fuzzy Hamacher operators in MADM.
Lu et al. [52] develop the hesitant Pythagorean fuzzy Hamacher aggregation operators in MADM.

In addition to this, based on the fundamental theories of IFS and PFS, Yager [53] further defined the
g-rung orthopair fuzzy sets (9-ROFSs), in which the sum of the gth power of the degrees of membership
and the gth power of the degrees of non-membership is satisfied the condition u7 +v7 < 1. It is
clear that the -ROFSs are more general for IFSs and PFSs, as they are all special cases. Therefore,
we can express a wider range of fuzzy information by using g-ROFSs. Liu and Wang [54] develop
the g-rung orthopair, fuzzy weighted averaging (3-ROFWA) operator and the g-rung orthopair, fuzzy
weighted geometric (-ROFWG) operator to fuse the evaluation information. Liu and Liu [55] proposes
a g-rung orthopair, fuzzy Bonferroni mean (-ROFBM) aggregation operator, by considering the g-rung
orthopair fuzzy information and the Bonferroni mean (BM) operator. Wei et al. [56] combine the g-rung
orthopair fuzzy numbers (g-ROFNs) with a generalized Heronian mean (GHM) operator to present
some aggregation operators, and applied them into MADM problems. Wei et al. [57] define some
g-rung orthopair, fuzzy Maclaurin symmetric mean operators for the potential evaluation of emerging
technology commercialization.

Nevertheless, in many practical decision-making problems, for the uncertainty of the
decision-making environment and the subjectivity of decision makers (DMs), it is always difficult for
DMs to exactly describe their views with a precise number; however, they can be expressed by an
interval number within [0, 1]. This denotes that it is necessary to introduce the definition of g-rung
interval-valued orthopair fuzzy sets (3-RIVOFSs), of which the degrees of positive membership and
negative membership are given by an interval value. This kind of situation is more or less like that
encountered in interval-valued, intuitionistic fuzzy environments [58,59]. It should be noted that when
the upper and lower limits of the interval values are same, -RIVOFSs reduce to g-ROFSs, meaning
that the latter is a special case of the former.

This research has four main purposes. The first is to develop a comprehensive MAGDM method
for selecting the best green supplier with g-RIVOFNSs. The second purpose lies in exploring several
aggregation operators based on traditional Hamy mean (HM) operators with g-RIVOFNs. The third is
to establish an integrated outranking decision-making method by the g-RIVOFWHM (3-RIVOFWDHM)
operators. The final purpose is to demonstrate the application, practicality, and effectiveness of the
proposed MADM method for selecting the best green supplier.

To further study the g-RIVOFSs, our paper combines the Hamy mean (HM) operator, which
considers the relationship between the attribute’s estimation values with g-rung interval-valued
orthopair fuzzy numbers to investigate MAGDM problems. For the sake of clarity, the rest of this
research is organized as follows. Firstly, we briefly introduce the fundamental theories, such as
definition, score, and accuracy functions, and operational laws of the g-ROFSs and g-RIVOFSs in
Section 2. Then, based on g-RIVOFSs and Hamy mean (HM) operators, we propose four aggregation
operators, including the g-rung interval-valued orthopair, fuzzy Hamy mean (g-RIVOFHM) operator;
the g-rung interval-valued orthopair, fuzzy weighted Hamy mean (g-RIVOFWHM) operator; the
g-rung interval-valued orthopair, fuzzy dual Hamy mean (g-RIVOFDHM) operator; and the g-rung
interval-valued orthopair, fuzzy weighted dual Hamy mean (g-RIVOFWDHM) operator in Section 3.
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Meanwhile, some important properties of these operators are also studied. Thereafter, the models
which apply the proposed aggregation operators to solve MAGDM problems are presented in Section 4,
and an illustrative example to select the best green supplier is developed. Some comments are provided
to summarize this article in Section 5.

2. Preliminaries

2.1. g-Rung Interval-Valued Orthopair Fuzzy Sets (q-RIVOFSs)

According to the g-rung orthopair fuzzy sets (-ROFSs) [53] and interval-valued Pythagorean
fuzzy sets (IVPFSs) [49], we develop the definition of the g-rung interval-valued orthopair fuzzy sets
(9-RIVOFSs).

Definition 1. Let X be a fixed set. A q-RIVOFS is an object having the form

Q= {(x (o). 7o) )lx e X } M

where jiz(x) C [0,1] and v5(x) C [0,1] are interval numbers, and ji5(x) = [yé(x),yg(x)}, vg(x) =

{vé(x),vg(x)] with the condition 0 < (y%(x))q + (vg(x))q < 1,Vx € X, q > 1. The numbers
ﬁé(x),ié(x) represent, respectively, the function of positive membership degree (PMD) and negative

membership degree (NMD) of the element x to Q. Then, for x € X, ﬁé(x) = [né(x),ng(x)} =

H/l - ((yg(x))q + (vg(x))q), {/1 - ((y[é(x))q + (vé(x))qﬂ denotes the function of the refusal

membership degree (RMD) of the element x to Q.

As a matter of convenience, we called § = ( uz ,vﬂ) a g-rung interval-valued

e a g-RIVOEN, then 5(7) =

[) e
and H(7) = <u$> +( ) ( ) ( )" are the score

orthopair fuzzy number (g-RIVOEN). Let § = ( ué,uﬂ, {Ué@,vtlf

1 ALY

O ) Ca)) e () ()
and accuracy function of a g-RIVOFN

Definition 2. Lef §; = ({uq%,u%}, {vq% vl{;lb and §p = ({uh@z,u%], [vq%,v%}) be two q-RIVOFNs; S(q7)
and S(q2) be the scores of Gy and qy, respectively; and let H(qy) and H(q2) be the accuracy degrees of gy and
qo, respectively. Then, if S(G1) < S(g2), then §1 < §o; if S(q1) = S(q2), then (1) if H(§1) = H(q2), then
q1 =42 () if H(q1) < H(q2), then g1 < g2

Definition 3. Let 7 = ({uqél,ut%], [vqﬁl,v%} ), o = ({u%z,u%], {U%z,v%} ), and § =
({ué@, uf;] {U‘% ‘?ED be three ¢-RIVOFNS, and some basic operation rules for them are shown as follows:
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7
L .,L R .,R
= , U0~ 0 ;
g1 92" " fh} ’

)f ©f = P‘ql O g,V { {7/ (vgl
i ([ih - () -0 (4
) @' _<[ ) (1) }’Wl‘(l_@)q

)7 = ([ef. 2] [wf. 7).

2.2. Hamy Mean Operator

Definition 4 [60]. The HM operator is defined as follows:

1
1<i L < <H ql’)
~ o~ ~ h1<..<ixy<n
M(x) (q]qu/' v /Qn) - ! Cx ! (2)

where x is a parameter and x = 1,2,...,n, i1,1iy, ..., iy are x integer values taken from the set {1,2,...,n} of

k integer values; C;; denotes the binomial coefficient and Cj; = (;ix)!.

3. Some Hamy Mean Operators with g-RIVOFNs

3.1. g-RIVOFHM Operator

In this chapter, consider both HM operator and g-RIVOENs, we propose the g-rung interval-valued
orthopair fuzzy Hamy mean (g-RIVOFHM) operator.

Definition 5. Let ﬁ] = ({u%, u%}, {v%,v%] ) (j=1,2,...,n) be a set of ¢-RIVOFNs. The q-RIVOFHM

operator is

e e
(xX) (= = - 1<ip<...<iy<n \ j=1"/
g-RIVOFHM (‘71/‘72/ cee /l]n) — o 3)
n

Theorem 1. Let §; = ([u‘%,uﬂ [ 7Y ])(] =1,2,...,n) be a set of -RIVOFNSs. The fused value by
using g-RIVOFHM operator is also a g- RIVOFN where
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1
¥ X

“)

&) R q;.
1<iy <..<ix<n \j=1"1

Gi

g-RIVOFHM™ (31,32, - - , )

N N\
g ) ' 11— R Al
! (1§i1<1:[<ixgn(l <]_]:[1qu> )) ! (1§i1<1:[<ix§n(1 (,’E%) )) ’ 4)
q—Y_Lth q_"_éq;n
[t () ) e (- 0) )
Proof.
x X X X q X q
g { [ rma) [p-Te- @ p-fie- )} o
=1 7 j= j= j=
Thus,
1
q X A
N e e Jl(ﬂ(l(%)))f
2 4i; [Tug) 11wz ) |/ T ©)
j=1 =1 ! j=1 / x q x
94 _ _ (R
- (0 ()
Thereafter,
1
x X
1§i1<§?<i,(§n (j?1q1j>
[ : :
i1 - 1- (11t ) |, 71— 1 ( 1uk ,
1<i1<1j[<ix<n< <]H1 "7> ) l<i]<1.il<ix<n( </H1 qf) ) )
- r 1 1]
qli ’ 1-— v’[:q ’ ql* 5 1-— 'UBq
1§i1<1j[<ix§n\J (;1_11( ( qf) ) 1§i1<1:[<ix§n ]I;Il( ( qf) )
Therefore,
%
1<i N < <§1q~l/>
g-RIVOFHM™ (1, o, - -, ) = =505
al, L al, (G .R)
. 1 (1<i1<U<ix<n (1 <j1_11uqf> )) ANk (1<i1<n<ix<n(1 <]‘r11u‘1/'> )) ! (8)

I1

1<h<..<ix<n

( $ (70~

Hence, Equation (4) is kept.

(ug(x))q <1

1

1
)CYE<
x
’

")

[T

1<ii<..<ix<n

(i

Then, we need to prove that Equation (4) is a g-RIVOFN. We need to prove 0 < (pt 5

(- ()

=i

R

()" +



Symmetry 2019, 11, 56

Let
ng(x) =
vg (x) =
O
Proof.

< (kg) "+ (1)’

q

x X
=1— 1 1— | ITuR
1<iy <...<iy<n j=1 1

= - (1<i1<1:1<ix<n (1 a (]1:[1 (1 N (U

=1

q
- (4))
1<iy <..<ix<n j=1

- (0-6))

1<ii<..<ix<n

)"

<
I
—

1§i1<1?<ix§n (1 - (]IjIl (1 - (U%)q)>

‘%)q)> )) + (1<i1<1:1<ix<n (1 - (]Ifll

/N

So0 < (y%(x))q + (vg(x))q < 1is maintained. O
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Example 1. Let ([0.5,0.8],[0.4,0.5]), ([0.3,0.5], [0.6,0.7]), ([0.5,0.7],[0.2,0.3]) and ([0.4,0.8],[0.1,0.2]) be
four g-RIVOEFNS, and suppose x = 2,q = 3—then, according to Equation (4), we have

g-RIVOFHM™ (31,82, -+, Gn)

Cn

1

. X
2 ® Gj.
_1<i<.<iysn\j=1 ]

| ( S(; (05%03)%) x (1-

4(Q3x04ﬁ> 04%03X0® ) (

05x05%)x(
3
2

(05 x 0.4)?
— (0.5 x04)

iGN

ufpu‘ =
~

)

08 x05)1) x (1-(08x07)F) x (1 -

R G s

X
o5x0&%>x(

(@)
LN i

(osxos)) )

07x08ﬁ)

x| 1—

x(1—((1-06%) x

[T

(1-0.1%))
(1-0.1%))

[N

(1—(@—04%x(1—0§»f)x(1—(@—04ﬂx(1—0?»%)

((1-04%) x

Ni—

x (1= ((1-06%) x (1-0.2%)

ST

x (1—((1-02%) x (1-0.1%)

0
N

— ([0.4261,0.7072], [ 0.3604, 0.4605])

O—(@—&?)xu—aﬁn%
31 x(1-((1-05% x

x(1=((1-0.7%) x

Mo ~—

(1-0.2%))

Nl—

(1-023%))

x<1—(@—05ﬂx(1—aﬁn%)

((1-07%) x (1-0.3%))

NI

x| 1—

ST

x (1= ((1-03%) x (1-0.2%)

The g-RIVOFHM satisfies the following three properties.

Property 1. Idempotency: if q; = ([”z%

R L R
u= 0% ,0%
! %}’[ qj" "4

DU:LLHW

n) are equal, then

0
N
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g-RIVOFHM™ (71,2, -+, Ga) = § ©

Proof. Since ﬁ] =4= ([u%, uﬂ , [v%, vﬂ ), then

87
q-RIVOFHM(")([’i,q _ lsh<. <1,\<n (,:1

N\ N

(e (Wﬁ“%) ) b)) |
1<iy <...<iy<n j=1 1<i <. <ix<n j=1

[ (@) ) (e (e-60)

Property 2. Monotonicity:  let 'q“] = ([u‘% ulﬂ [v% UZD(]' = 1,2,...,n) and ﬁ; =

([(u‘%)/, (u‘%)l}, [(v%)/, (v‘%)/})(j =1,2,...,n) be two sets of ¢-RIVOFNEs. Ifug% < (u%)l,u% <

(ug), UZ% > (Z)Z%), and U;]L} > <v§j), hold for all j, then

g-RIVOFHM™) (71,52, -+ ,Gu) < ¢-RIVOFHM™ (§,, 3, - -, 4},) (10)

/!
Proof. Given that u‘% < (u‘%) , We can obtain
j j

q q

(1) = (1
(191<1"—-[<1'xf” (l ! <Jlj L%) q)) CL - (1Sil<n<ixs" (1 ) (;‘—1 <M%)l> q)) CL% "

Thereafter,

N\ @ AN
q1_< 1 (1—(11[%@) )) §”1_< 1 (1—( (%)) )) (13)
1<i) <...<iy<n j=1 1<i) <...<ix<n j=1

/! / !/ !/
That means u‘% < (u‘%) . Similarly, we can obtain uf; < (uf;) ,U[% > (v‘%) and v‘% > (UZ’S) . Thus,
the proof is complete. [J

=
/N
=
=
N—
SN——
=
—~
—_
—_
~

=
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Property 3. Boundedness: et q~] = ([uc%,u%}, [vﬁ%,v%} ) (j = 1,2,...,n) be a set
of g¢-RIVOFNs.  If = = ({max,»(u;%),maxi (u%)}, [min,» (v%),mini (v%)}) and §- =
({mini (uff:j),mini (u%)} , {maxi (vq%), max; (v%)D then
§~ < qRIVOFHM™ (41,32, ,u) < 7 (14)
From Property 1,

g-RIVOFHM™) (37,3, , -+, 8, ) =7~
g-RIVOFHM®) (G755, ,57) ="
From Property 2,
4~ < q-RIVOFHM™ (1,32, -+ ,n) < §*

3.2. The q-RIVOFWHM Operator

In practical MADM problems, it is important to take the attribute weights into account.
This section will develop the g-rung interval-valued orthopair, fuzzy weighted Hamy mean
(g-RIVOFWHM) operator.

Definition 6. Let 17] = ([u%,u%} , [v%,v%} ) (j = 1,2,...,n) be a set of -RIVOFNSs, with their weight

vector as w; = (wy,wa, ..., wy)", thereby satisfying w; € [0,1] and Y w; = 1. Then we can define the
g-RIVOFWHM operator as follows:

1
x

X ~ wl-],
@ ® ()
1<iy<...<ix<n \ j=1 i

g-RIVOFWHMY) (41, 32, - .., Gn) = Cr
n

(15)

Theorem 2. Let 17] = ( [ué@_, uﬂ , [v%_, v{ﬂ ) (j=1,2,...,n) beaset of ¢-RIVOFNSs. The fused value obtained
] ] ] ]
by using q-RIVOFWHM operator is also a g-RIVOFN, where

1
PR A
® & (7))
1<ip<..<ix<n \j=1\"J

q-RIVQFWHMSU") GG Gn) = v

AR
,q 1= (1§i1<1i[<i1§n (1 - <11;11 (u‘%]) V) )) ! q 1= (1§i1<1:1<ix§n (1 B </£11 (u’%) /> )) ! (16)
r . .
1 cx ) % c
(1§i1<n<ixgn (d 1= <]r11 (1 B (v’%)q) ’]) ) ) ’ (1§i1<n<ixgn (d - (]rll <1 B (qu]>‘7) U) ) )

Proof. From Definition 3, we can obtain

)" = {1 )L [ ) - @) o
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Thus,
X w; X w
IT (uk) 7, 11 (ul ,]
.él (quj)WIj - x Ll(qu} w;, j_l(uq])x NG (18)
- Wl_}_ql(l_(v%)) Lm0 )) ]
Therefore,

N
K=
S
=
N
kS
\_/
==
|
1
<
e
/N
=
=
N—
8
N———
==
<
e
VS
=
L]
N—
8
v
"

Thereafter,
oo (567

o b G ) ()] | e
EEM (d = (B0-69)) )H(J (- )]

Furthermore,

(%) (~ ~ ~ 1<11<§?<i1<71(j%l(ﬁl/‘)wi/>
g-RIVOFWHMy,’ (71, G2, - - -, Gn) = -

1 CL,‘, q C%‘x
11— () ) i TN
J ' (Kil <F[<i*£" (l <]H1 (l’%) ) ) ) ’ J ' (1<i1<1.il<ix<rz (l <]H] (qu) > ) ) ‘ ’ (21)

Hence, Equation (16) is kept.

Then we need to prove that Equation (16) is a -RIVOFN. We need to prove that 0 < ( ‘ug (x)) ! +

(vg(x))q <1.
Let
1
yg(x) = 1" (1§i1<1.._.1<i)(§n (1 a (}i (u%)mj> ))
VS(X) = (1<i1<1:[<ix<n d 1— (}I_xll (1 _ (v%)qywj) x))
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Proof.

=1- (1<i1<.r..l<ix<n (1 B <]ﬁ1 <1 B (Ugj)q)wjj) )) + <1<i1<l?<ix<n (1 - (ﬁl <1 B (U‘%)q>%> | ))

Therefore, 0 < (y%(x))q + (vg(x))q < 1is maintained. [

Example 2. Let (]0.5,0.8],[0.4,0.5]), ([0.3,0.5],10.6,0.7]), ([0.5,0.7],[0.2,0.3]) and (][0.4,0.8],[0.1,0.2]) be
four g-RIVOFNs, and w = (0.2,0.1,0.3,0.4); in addition, suppose x = 2,q = 3. Then, according to Equation
(16), we have

1
x w; | ¥
® © (@)
1<ip<..<iy<n \ j=1

g-RIVOFWHMS (71,5, -, ) = o

_
3 3 2
, (1 — (0592 x 0.301) 2) X (1 — (0592 x0.5%3)2 ) x (1 (0.592 x 0.494) ) “
1- 3 3 3
X (1 —(0.3%1 x 0.50-3)7) X (1 — (0.3%1 x 0.4%4) 7) X (1 (0.593 x 0.4%4) 7)
1 7
3 3 3
, (1 —(0.892 % 0.5%1) % ) x (1 — (0.892x0.79%)2 ) x (1 (0.892 x 0.894) ) “
1- 3 3 3
x (1 — (0591 x 0.70-3)7) X (1 — (0.5%1 x 0.894) ?) X (1 (0.793 x 0.8%4) 7)
T -
i

(l - ((1 — 043" x (1-06%)"" %> (1 - ((1 _04)°2 x (1-02%)% %)

I x (1 ~((1-0#)™x 1 70.13)"'4>%)
")

X (1 — ((1 _ 0.63)0‘1 % (1 o 0.13>0.4

! T &

(1 (105" x (1-07)" 7) x (1— (105" x (1-03%)* 2) G
3 (1 — (105" x (1~ 0-23’)0'4)2) x (1 ~((1-07)" x (1-03)™) 7)
X (1 — ((1 _ 073)01 X (1 — 0.23)04) 7> ~ (1 _ <(1 _ 0.33)0.3 % (1 _ 0.23)0.4)7>

= (] 0.é204, 0.9266], [ 0.1983,0.2589]) -
The g-RIVOFWHM operator satisfies the following properties.
Property 4.  Monotonicity: let §; = ( [ué , uB} , [vé . UB] ) G = 12..n) and 7 =
! a7 a4l Ly e ;

([(”%)l' (u%)/}, [(U%)l, (U%)l} ) (j =1,2,...,n) be two sets of ¢-RIVOFNS. Ifui% < (u%)l,u%_ <
(u%)/, v% > (v%)/ and v% > (v%)/ hold for all j, then

g-RIVOFWHM™ (41,4, - - - ,Gn) < g-RIVOFWHM™) (4, . - - - , ) (22)

The proof is similar to g-RIVOFHM, so it is omitted here.
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,n) be a set
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LURD(]' = 12...

Property 5. Boundedness: et q~] = ([uc%,u%},[v%, 0
of g-RIVOFNs.  If g& = {max,»(ué) max; ug_ ,[mini(vt%),mini(v% D and §- =
([mini (uf{) min; ( q,)}’ [maxi (v{%),maxl( %)D then
i~ < g-RIVOFWHM®™ (1,4, -+ ,Gu) < §° (23)
From Theorem 2, we get
qRIVOFWHM (G105, Gn) )
] (1<11<H<1x<n( (Jf[l (min(u%))z”l;) )) ,
X wi
) g (1<ll< <h<n( (jljl(mln(uﬁ)) ]> )) o
= L 4
1 =1
1<11< L. 11— (/Ii (1 — (max(vé))q)wU) ) ,
T\ o
[ (a0 en) )
qRIVOFWHM ‘hr’hf"'r%) )
q (1<11<H<1x<n( (jli%(max(ué))wl/> )) ,
X w;, \ °
_ q (1<”< e (fljl(max(u%)) ]> )) (25)
= L T
1 =1
LA 11— (}rx[l (1- (min(vg))q)w’;) :
N\ @
X . g\ Wi \ ¥
LI (A )
(26)

From Property 4, we get
§~ < g-RIVOFWHM™ (71,55, -+, §) < 77
It is obvious that the g-RIVOFWHM operator lacks the property of idempotency.

3.3. The g-RIVOFDHM Operator
Wau et al. [61] define the dual Hamy mean (DHM) operator
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Definition 7 [61]. The DHM operator can be defined as:

(27)

DHM®™ (31,52, -+ ,Gu) = I

1<ii<...<ix<n

where x is a parameter, and x = 1,2,...,n, 11,1y, .., iy are x integer values taken from the set {1,2,...,n} of

k integer values; C;; denotes the binomial coefficient and Cj; = (n"ix)!.

In this section, we will propose the g-rung interval-valued orthopair, fuzzy DHM
(g-RIVOFDHM) operator.

Definition 8. Let ; = ([u% Juf } [v{;] ok } ) (j=1,2,...,n) be a set of ¢-RIVOFNs. The g-RIVOFDHM
operator is

1
XN\ o
& )
g-RIVOFDHM®™ (7,55, - -+ , ) = ® = (28)
1<i1<...<ix<n X

Theorem 3. Let ﬁ] = ([uq%,u%} , [v%,v%] ) (j = 1,2,...,n) be a set of ¢-RIVOFNs. The fused value by
using g-RIVOFDHM operators is also a g-RIVOFN, where

X cx
g-RIVOFDHM®™) (41,2, - - - , Gn) = ( ® (fi /))
1<ii<..<ix<n

[ T c%: T\ ¢
(1= ()Y) 1o 11(1= (ur)"
o (e @) ) (o (o) ) |
AR O s S S -l o (- (1R
1<y <..<iy<n j=1 i 1<i <..<ix<n j=1 U

Proof.

fa={ [0 ()

Thus,

@1— (10-()))

] (31)
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Thereafter,

1<ii<...<ix<n

- ; _
i (1= ()Y /11— 1— (uR)) )
l<i1<1:[<ix<nJ (11;[1( ( q/') ) 1§i1<l:I<ix§n ]I;Il( ( q/-) ) (32)
= = % %
qi= I 1- (et ) | 71— 1 1— (1R
1<i)<...<iy<n j=1 qj 1<iy <. <iy<n s aj
Therefore,
. 1
O3\ \
g-RIVOFDHM® (G, 8y, -+ , ) = ® =
1<ii<..<ix<n
i . N
)& T\ &
a N’ q x U
, 1- 1— (uR )
(ot (ae-600) ) (- (a0-@9) ) | e

q

(1 ) (jnl U"E’)

cx
)) ,ql( I1 <1<HUB_
1<ii<..<ix<n j=1 qj
Hence, Equation (29) is kept.

Then, we need to prove that Equation (29) is a -RIVOFN. We need to prove that 0 < ( ‘ug (x)) 7 +

q
1- IT
1<ii<..<ixy<n

R q
(vé(x)) <1
Let 1
1\ o
Rix)= - 11(1= (uR)’
o[- (10- ()
WRx)y="11- 1— : oR
Q( ) (1§i1<H<1X§n( <]I_T1 %‘) ))
O
Proof.
uR( R
Q VQ(X
& I\ &
Gi x Ca
; R + 1-(11(1- (uR)"
(1<11< <iy< ( ]1;[10'1] )) (1§11< <1x§n( <]I—[1( (qu) )) ))
<1- ) B ! 1-(11(1= (ur)’
> (1<z1< <1X<n( ]I:I] ”‘7/’) )) )) + (1<i1<1._.l<ix<n< (]1:11( (u‘h) )> ))
=1

Therefore, 0 < (y%(x))q + (VS

(x))q < 1is maintained. O



Symmetry 2019, 11, 56 14 of 27

Example 3. Let (]0.5,0.8],[0.4,0.5]), ([0.3,0.5],10.6,0.7]), ([0.5,0.7],[0.2,0.3]) and (][0.4,0.8],[0.1,0.2]) be
four g-RIVOENSs, and suppose x = 2, q = 3; then according to Equation (29), we have

x o
&7, n
q-RIVOFDHM(x)(?jl,Ejz,---,an):( ® (’§]>>

1< <..<ix<n

'S

<1—((1—O.53)><(1 0.3%)) ><<1 (1-05%) x (1- 0.53))5>

x(1-((1-05%) x (1-04%)

Nf—=

13) % (1 ((1-03%) x (1-05%)) ,

1

1—((1-03%) x (1-04%)2 ((1-05%) x (1-04%))

<1((10.83) (1-05%)) )><<1 (1-08%) x (1- 0.73))5> i
= 3 xgl((lO.S?’) 083% E (1-05%) x (1-0.7%))

1-((1-05%) x (1-0.8%))2

NI

w
X
N N

M=

-
=

(1-07) x (1-0.8%))?

3

1-(04x06)1) x (1-(04x02)?) x (1- (0.4 0.1)?) )

-N\J"‘

3

(1—(0.6><0.2)3) (1—(0.6xo.1)3) (1— (02x0.1)?

1 (1-05%07)7) x (1= (05x03)) x (1- (05 x02)?) g
- x(l—(o.7><o.3)%) x(1—(o.7xo.z)%) (1-¢ 03><02%
— (]0.4348,0.7214],[0.3283,0.4291])

w
—_
I
 ~
X

w

The g-RIVOFDHM has the following three operators.

Property 6. Idempotency: if q; = ([ uk 5]] [v{%,v%} ) (j=1,2,...,n) are equal, then

g-RIVOFDHM™ (41,32, - - - ,G) = § (34)

Proof. Since g; = g = ([ué‘ ﬂ [vé‘ s D then
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- CL % C%
x X q E
(1<i1<1?<ix<n q\J - ]1_11 ) (1<11< <ix<n q 1= <]I_Il (1 N <u1'731> )) ) :|’

_(ng<1<jﬁlvsf> ) o)
(i (e-o) )
ok “

-RIVOFDHM (¥
1 (41 b]z (1<11< <ix<n

q

| ) {(eem )]
() )]

Property 7. Monotonicity: let q; = ([ul%,u%} [v% ‘I;JD(] = 1,2,..., n) and q; =

([(u%)’/ (”:%)I} |:(Ul%>/, (v‘%)/})(]’ =1,2,...,n) be two sets of g-RIVOFNS. Iful% < (“%)l,u% .
( 5]), UZ% z (%L‘]) and U;%. > <v§]_),holdfor all j, then

g-RIVOFDHM ™) (31,45, -+ ,Gx) < ¢-RIVOFDHMY (1,35, - - - , ) (35)

/!
Proof. Given that u‘% < (u%) , We can obtain
j j

(- (u5)") = H(l B <(”q%)/)q> (36)
(A1) - (A0 ()

Thereafter,

ot (10 0) ) < i - (@) ) oo

! ! i !/
That means that u(% < (ugv) . Similarly, we can obtain ug < (u?) ,U‘—;i > (vq@) and qu“ > <v§) .
Thus, the proof is complete. [J

—_



Symmetry 2019, 11, 56 16 of 27

Property 8. Boundedness: et q~] = ([uc%,u%}, [U%’U%DO = 1,2,...,n) be a set
of g¢-RIVOFNs.  If = = ({max,»(u;%),maxi (u%)}, [min,» (v%),mini (v%)}) and §- =
({mini (u%),mini (u%)} , {maxi (vq%), max; (v%)D then
7 < ¢-RIVOFDHM®™ (41, 42, -+ ,4n) < " (39)
From Property 6,
¢-RIVOFDHM™ (G, -+, ;) =~
¢-RIVOFDHM™ (G135, -, ;) = q*
From Property 7,

§~ < ¢-RIVOFDHM™ (31,52, - - ,Gu) < G

3.4. The g-RIVOFWDHM Operator

In real MADM problems, it’s of necessity to take attribute weights into account; we will propose
the g-rung interval-valued orthopair fuzzy weighted DHM (3-RIVOFWDHM) operator in this chapter.

Definition 9. Let 17] = ({u%_,u?} , [vqg,v;} ) (j = 1,2,...,n) be a set of -RIVOFNS, with their weight
] ] ] ]

vector as w; = (wy,wy, ..., wy)", thereby satisfying w; € [0,1] and Y, w; = 1. If

.X ~
D Wil
g-RIVOFWDHM®™ (31,35, - -, ) = ® - (40)
1<ii<..<ix<n X

Theorem 4. Let q; = ([u%, u%} , [v{%,v%] ) (j =1,2,...,n) be a set of ¢-RIVOFNs. The fused value by

using q-RIVOFWDHM operators is also a g-RIVOEN, where
5)1(9 w,] ﬁ,'/ C%
g-RIVOFWDHM W) (31,82, - - - , ) = ® Sk
1<ii<..<iyx<n

(1gi1<n<ixgn ({j 1= <]H1 (1 B (M’%)q)wi]) | )) ! (19‘1}11‘19 (d 1= (11{11 <1 B (u‘%)q)wi]> )) (41)

Proof.

o= { [ 0= )) "= 0= ) L6607
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Thus,

- (L EE "
j=1 Ll(v%) J,]l;[l(v%) ’]
Therefore,
/él(wi;%) B q\ll R (Jlfll( - (ul%)q)Wij> , ﬂ a <]Hl (1 ) (ut%)q)wz) ‘ (44)

‘§1wi.ﬁi.
1§i1<(.2.§.)<i,(§n (W)
Lo (dl— (}1_11 (1- (u%)")w:-,-) )’1<il<rl<ix<:1(<Jl_ <]1_11 (1- (u%)”’)zw,-) )] (45)

- [ q q
_ AT AN _ A E (R
ﬂ ! 1§i1<1:[<ix§n (1 <]I—[1 (v‘h') ) ) ! ﬂ ! 1§i1<1.i1<ix§n (1 <]I—[1 (%J’) ) ) ]

Furthermore,

1

é‘;w’iq“/ o

g-RIVOFWDHM W) (G, 82, - - - , ) = ® Sak)
1< <..<ix<n

(1<i1<r[<ix<n (ij 1- <}1j1 (l - (“l%)q)‘ '1) )) , (Kilgluq (d 1— (]I}l (1 - (ng)‘7> u> )) ] (46)
| % N
V' <1<i1£l<i‘<” (1 ) <’H1 (v%) ’j> )) o <1<i1<1:[<ix<" (1 - (JHl<UqB/) li) ))

Hence, Equation (41) is kept.
Then, we need to prove that Equation (41) is a -RIVOFN. We need to prove that 0 < ( yg(x )) ! +

vR (x K <1.
(v§)
Let :
1 (=
‘ug(X) - (1<i1<1..—.1<ix<n <<J - <]ﬁ1 (1 N (u%)q>mj> ))
vi(x) = - <1<i1<1:[<ix<n (1 - (}ﬁl (Ugj_)m) ))

0
=R
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Proof.

< (1g@)"+ (5’

( . (1 (0
1<iy<...<ixy<n j
< (Kililqu (1 - <]f[1 (1 - (u%)’i)wif> ’ ))

\
I
T
VN
|
—~
=
]
N———
-
N——
K
v
R
v
\_/
(')‘_i
=5
+
*
|
—
A
N
AN
o
A

A

| (- (r0-e07) )

+1- ( I
1<ii<..<iy<n

Therefore, 0 < (y%(x))q + (vg(x))q < 1is maintained. [

Example 4. Let ([0.5,0.8],[0.4,0.5]), ([0.3,0.5],[0.6,0.7]), ([0.5,0.7],[0.2,0.3]) and ([0.4,0.8],[0.1,0.2]) be
four g-RIVOFNS; suppose x = 2,9 = 3,and w = (0.2,0.1,0.3,0.4). Then, based on Equation (41), we can get

1
EJ{C% zuijiij Cii
¢-RIVOFWDHM™ (1,32, -+, Gn) = o B
1<ii<..<iy<n

(1 1—053 ( 033)0.1)7) « <1_ <(1_0.53>o_2>< (1 053)03 7) i
| (- (a0 o)) )« (1- (008" x (1-05) )
g (1 ~(a-03)" <~ 043)0‘4)?) g (1 ~(a-03)"x 0.43)0‘4>7)
(1 (a-08" (1-03)™) ) e (1 (08" 1 -07)) ) ) )
’ (1 —08%)* x (1 0.83)0'4)7) x (1_ ((1 055 x (1 0.73)0.3>7)
- ) l
x (1 ~05%)" < (1 083)“)2) x (1— (-0 x (1 0.83)0'4>2)
[ 1
(1 (0.492 x 0. 601) X (1 — (0.492 x 0.2043)% x (1 — (0.492 x 0.10.4)%) &
3
X (]_ — (O 601 % 0. 20 3)%) X (1 _ (0.60'1 % 0104)%> x (1 _ (0.20.3 % 0104)%)
1
<1 — (0.50'2 X 0.70'1)% X (1 _ (0.50»2 % 0303)% % (1 _ (0.5042 % 0.20.4)% Ci
3y
3 3 3
x (1 — (0.701 x 0.30-3)7> X (1 — (0.7 x 0.20-4)?> x (1 — (0.393 x 0'2044)7>
= ([0.2819,0.4954], 0.7249, 0.7855))
We will then study some precious properties of g-RIVOFWDHM operator.
Property 9.  Monotonicity: let §; = ([ué,, ulf} , [vé_,vg} ) (G = 1,2,...,n) and § =
97 " 4j j

1,2,...,

([ )] [5)' (2

(u%)/, vq% > (U%)/ and vq% > (v%)/ hold for all j, then

n) be two sets of g-RIVOFNE. Ifu~]_

!
L<<£> R <
g = \Mg) 4 =

g-RIVOFWDHM® (41,52, - -+ ,§u) < -RIVOFWDHMW™ (7, (47)

This proof is similar to g-RIVOFDHM,, so it is omitted here.
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Property 10. (Boundedness) Let q~] = ({u%,u%},{v%,v%})(j = 1,2,..., n) be a set
of qRIVOFNs If gt = [max,( q) maxl(u%)} [min,»(vt%),mml(vg)}) and §

G~ < g-RIVOFWDHM®™ (71,42, - ,4n) < G*

From Theorem 4, we get

g-RIVOFWDHM®™ (37,85, -+ , )

[t (e (80 (™)
(

1<11< <iy <n(

— 1 _ ,
1<11<---<1x<7’l i
X w;. x n
1- I1 11— IT (max(oR)) 7
(1§i1<..4<i,(§n( j:1< ( '7]))

g-RIVOFWDHM® (1,45, -+ - ,))

(1<i1<1?<ix<n ( (1- <]1f11 (1 - (max(u%))q)wlf) ' )
l§i1<l..—.I<iX§n ( (1~ <]1f11 (1 - (max(u%)>q)wii> : )

= | )

- (1§i1<1.._.1<ixgn (1 - (}[Il (min (v%))w’j> ) ) ’

- (1<i1<1--—~1<ix<n (1 - <]I:[1 (min<v§j)) ’j) ))

From Property 9, we get

=

=

=

=

+

G~ < ¢-RIVOFWDHM™ (1,32, -+ ,Gu) < §

It is obvious that the g-RIVOFWDHM operator is short of the property of idempotency.

(48)

(49)

(50)

(51)
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4. Application of Green Supplier Selection

4.1. Numerical Example

With the rapid development of economic globalization, and the growing enterprise competition
environment, the competition between modern enterprises has become the competition between
supply chains. The diversity of the people consuming is increasing, and the new product life cycles are
getting shorter. The volatility of the demand market and from external factors drives enterprises for
effective supply chain integration and management, as well as strategic alliances with other enterprises
to enhance core competitiveness and resist external risk. The key measure to achieving this goal is
supplier selection. Therefore, the supplier selection problem has gained a lot of attention, whether in
regard to supply chain management theory or in actual production management problems [62-70].
In order to illustrate our proposed method in this article, we provide a numerical example for selecting
green suppliers in green supply chain management using g-RIVOFNs. There is a panel with five
possible green suppliers in green supply chain management to select: Qi(i=1,2,3,4, 5). The experts
select four attributes to evaluate the five possible green suppliers: (1) C; is the product quality
factor; (2) C; is the environmental factors; (3) Cs is the delivery factor; and (4) Cy is the price factor.
The five possible green suppliers Q;(i = 1,2,3,4,5) are to be evaluated by the decision maker using
the g-RIVOFNSs, under the above four attributes (whose weighting vector w = (0.3,0.2,0.3,0.2), and
expert weighting vector w = (0.2,0.2,0.6)) which are listed in Tables 1-3.

Table 1. The g-RIVOFN decision matrix 1 (R;) by expert one.

Alternatives C C, Cs Cy
O ([0.4,0.5],[0.5,0.71) ([0.6,0.71,[0.2,0.3]) ([0.3,0.5],[0.4,0.6]) ([0.7,0.8],[0.2,0.4])
) ([0.2,0.3],[0.4,0.5]) ([0.1,0.2],[0.6,0.7]) ([0.6,0.8],[0.2,0.3]) ([0.5,0.6],[0.5,0.7])
O3 ([0.7,0.9],[0.1,0.2]) ([0.4,0.5],[0.2,0.3]) ([0.5,0.7],[0.3,0.4]) ([0.6,0.71,[0.1,0.2])
QO ([0.3,0.5],[0.4,0.6]) ([0.2,0.3],[0.1,0.2]) ([0.5,0.6],[0.1,0.5]) ([0.3,0.4],[0.2,0.3])
05 (10.3,0.6],00.2,04])  ([0.4,0.6],[02,03])  ([0.1,0.2],[0.4,05])  ([0.2,0.4],[0.1,0.3])

Table 2. The g-RIVOFN decision matrix 1 (R;) by expert two.

Alternatives Cq C, Cs Cy
o)) ([0.3,0.4],[0.4,0.6]) ([0.7,0.8],[0.3,0.4]) ([0.2,0.4],[0.3,0.5]) ([0.8,0.91,[0.3,0.5])
O, ([0.1,0.2],[0.3,0.4]) ([0.2,0.3],[0.7,0.8]) ([0.5,0.71,[0.1,0.2]) ([0.6,0.71,[0.6,0.8])
O3 ([0.6,0.8],[0.1,0.2]) ([0.5,0.6],[0.3,0.4]) ([0.4,0.6],[0.2,0.3]) ([0.7,0.8],[0.2,0.3])
O ([0.2,0.4],[0.3,0.5]) ([0.3,0.4],[0.2,0.3]) ([0.4,0.5],[0.1,0.4]) ([0.4,0.5],[0.3,0.4])
Os ([0.2,0.5],[0.1,0.3]) ([0.5,0.71,[0.3,0.4]) ([0.1,0.2],[0.3,0.4]) ([0.3,0.5],[0.2,0.4])

Table 3. The g-RIVOFN decision matrix 1 (R3) by expert three.

Alternatives Cq C, Cs Cy
o)) ([0.5,0.6],[0.6,0.8]) ([0.5,0.6],[0.1,0.2]) ([0.4,0.6],[0.5,0.7]) ([0.6,0.71,[0.1,0.3])
) ([0.3,0.4],[0.5,0.6]) ([0.1,0.2],[0.5,0.6]) ([0.7,0.9],[0.3,0.4]) ([0.4,0.5],[0.4,0.6])
QO3 ([0.8,0.9],[0.2,0.3]) ([0.3,0.4],[0.1,0.2]) ([0.6,0.8],[0.4,0.5]) ([0.5,0.6],[0.1,0.2])
O ([0.4,0.6],[0.5,0.71) ([0.1,0.2],[0.1,0.2]) ([0.6,0.7],[0.2,0.6]) ([0.2,0.3],[0.1,0.2])
Os ([0.4,0.71,[0.3,0.5]) ([0.3,0.5],[0.1,0.2]) ([0.2,0.3],[0.5,0.6]) ([0.1,0.3],[0.1,0.2])

In the following, we utilize the approach developed to select green suppliers in green supply
chain management.

Step 1. According to -RIVOFNs q~ij(i =1,2,3,4,5,j =1,2,3,4), we can aggregate all g-RIVOFNs qij

by using the g-RIVOFWA (3-RIVOFWG) operator, to get the overall -RIVOFNs @i(z’ =1,2,3,4,5) of
the green suppliers Q;. Then, the fused values are given in Table 4. (Let g = 3).
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Definition 10. Let 17] = ([ué

vector as w; = (wq, wy, . ..

a;’
,wy)T, thereby satisfying w; € [0,1] and Y.y wi = 1. Then we can obtain

4 qj

4-RIVOFWA(f1, %2, . ) = L. w7
]:

.

</1_,ﬁ1<1_

wj

g-RIVOFWG (31, 32, - - -, Gn) = I1 (7))

y

n

]
I (uk)”,
=18

j=1

A7 A0 i)

L) | o) )7

j=1

Table 4. The fused results from the g-RIVOFWA operator.
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uB} , [vév,v{;} ) (j =1,2,...,n) be a set of -RIVOFNSs, with their weight
j

(52)

(53)

Alternatives Cq Cy
01 ([0.7637,0.8175],[0.5335,0.7354]) ([0.8283,0.8756],[0.1431,0.2491])
0, ([0.6249,0.7011],[0.4317,0.5335]) ([0.4945,0.6047],[0.5547,0.6554])
O3 ([0.9089,0.9601],[0.1516,0.2551]) ([0.7149,0.7756],[0.1431,0.2491])
Q4 ([0.7011,0.8175],[0.4317,0.6346]) ([0.5474,0.6420],[0.1149,0.2169])
Os ([0.7011,0.8654],[0.2221,0.4317]) ([0.7149,0.8283],[0.1431,0.2491])
Alternatives Cs Cy
Ql ([0.7011,0.8175],[0.4317,0.6346]) ([0.8756,0.9197],[0.1431,0.3519])
Qz ([0.8654,0.9498],[0.2221,0.3288]) ([0.7756,0.8283],[0.4536,0.6554])
Q3 ([0.8175,0.9089],[0.3288,0.4317]) ([0.8283,0.8756],[0.1149,0.2169])
@4 ([0.8175,0.8654],[0.1516,0.5335]) ([0.6420,0.7149],[0.1431,0.2491])
Os ([0.5445,0.6396],[0.4317,0.5335]) ([0.5474,0.7149],[0.1149,0.2491])

Step 2. Based on Table 4, we can fuse all -RIVOFNS g;; by the g-RIVOFWHM (q-RIVOFWDHM)

operator to get the results of g-RIVOENSs. Let x = 2, then the fused values are given in Table 5.

Table 5. The fused values of the g-rung interval-valued orthopair, fuzzy weighted Hamy mean

(-RIVOFWHM) and the g-rung interval-valued orthopair, fuzzy weighted dual Hamy mean
(-RIVOFWDHM)) operators.

Alternatives q-RIVOFWHM q-RIVOFWDHM
o)) ([0.9422,0.9616],[0.2248,0.3558]) ([0.5409,0.6039],[0.7423,0.8415])
Q> ([0.9148,0.9418],[0.2710,0.3562]) ([0.4842,0.5611],[0.7959,0.8530])
Q3 ([0.9536,0.9720],[0.1237,0.1901]) ([0.5790,0.6546],[0.6536,0.7346])
Q4 ([0.9112,0.9379],[0.1415,0.2910]) ([0.4637,0.5318],[0.6697,0.8006])
Qs ([0.8903,0.9356],[0.1575,0.2505]) ([0.4140,0.5250],[0.6861,0.7805])

Step 3. Based on the fused values given in Table 5, and the score functions of -RIVOFNSs, the green
suppliers’ scores are shown in Table 6.
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Table 6. The score values s (@1) of the green suppliers.

Alternatives q-RIVOFWHM q-RIVOFWDHM
o 0.9172 0.3434
Q> 0.8840 0.2914
Qs 0.9442 0.4497
Q4 0.8885 0.3591
Qs 0.8762 0.3543

Step 4. Rank all the alternatives by the values of Table 6, and the ordering results are shown in Table 7.
Obviously, the best selection is Q3.

Table 7. Ordering of the green suppliers.

Methods Ordering
g-RIVOFWHM Q>0>0>%0>0
g-RIVOFWDHM LB>U>06>0 >

4.2. Influence of the Parameter x

In order to show the effects on the ranking results, by changing parameters of x in the
g-RIVOFWHM (g-RIVOFWDHM) operators, all of the results are shown in Tables 8 and 9. (Letg = 3).

Table 8. Ordering results for different x values by the g-RIVOFWHM operator.

Parameters  S(Q;) S(Q,) S(Q;) S(Qy) S(Qs) Ordering
x=1 0.9306 0.8993 0.9476 0.8941 08844 Q3> 0Q1> 0y > Q4 > Os
x=2 0.9172 0.8840 0.9442 0.8885 08762 Q3> Q1> Qs> Q> Qs
x=3 0.9290 0.8959 0.9454 0.8947 08786 Q3> Q1> Q2> Q4> Qs
x=4 0.9080 0.8772 0.9419 0.8839 08703  Q3>Q1>Qs> Q> Qs

Table 9. Ordering results for different x values by the g-RIVOFWDHM operator.

Parameters  S(Q;) S(Qy) S(Qs5) S(Qy) S(Qs) Ordering
x=1 0.3330 0.2579 0.4340 0.3424 03464 3> Q05> Qs> 01 > Do
x=2 0.3434 0.2914 0.4497 0.3591 03543 03> Qs>05>01 >y
x=3 0.2557 0.2292 0.3406 0.3005 03024 3>05>Q>01>0
x=4 0.3486 0.3150 0.4585 0.3679 03586  Q3>Qs>05>01 >0

4.3. Influence of the Parameter q

In order to show the effects on the ranking results by changing the parameters of g in the
g-RIVOFWHM (g-RIVOFWDHM) operators, all of the results are shown in Tables 10 and 11.
(Letx = 2).
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Table 10. Ordering results for different q by the g-RIVOFWHM operator.

Parameters  S(Q;) S(Qy) S(Qs) S(Qu) S(Qs) Ordering
g=1 0.9090 0.8899 0.9481 0.9147 09121 Q3>Qs>Q5> 01> %
g=2 0.9244 0.8982 0.9555 0.9109 09031  Q3>01>04>05>0
g=3 0.9172 0.8840 0.9442 0.8885 08762 Q3> Q1> 0Qs>0r> 05
g=4 0.9033 0.8634 0.9293 0.8627 08469 Q3> Q1> Qo> Q4> Qs
g=>5 0.8872 0.8412 0.9139 0.8371 08187  Q3>0Q1 >0y > 04> 05
g=6 0.8705 0.8193 0.8989 0.8127 07926  Q3>Q1>Qy > Q4> Qs
g=7 0.8540 0.7983 0.8844 0.7899 07687 Q3> Q1> Qr > Qs> Qs
7=38 0.8380 0.7785 0.8704 0.7687 07468 Q3> Q1 >Qy > Q4> Qs
g=9 0.8225 0.7600 0.8570 0.7490 07270 Q3> Q1> 0y > Qs > Qs
q=10 0.8078 0.7427 0.8441 0.7308 07089 Q3> Q1 >0 > Qs> Q5

Table 11. Ordering results for different q by the g-RIVOFWDHM operator.

Parameters  S(Q;) S(Qy) S(Qs5) S(Qy) S(Qs) Ordering
g=1 0.2814 0.2415 0.3520 0.2756 02655  Q3>0Q1>04>05>0
g=2 0.3107 0.2617 0.4074 0.3188 03110 Q3> 0s>05>01 > D
7=3 0.3434 0.2914 0.4497 0.3591 03543  (03>04>05>01>0
g=4 0.3722 0.3204 0.4788 0.3913 03893  03>Q05>Qs>01 >
g=>5 0.3962 0.3464 0.4978 0.4161 04163 Q3> Q05> 0s>01 >
g==6 0.4157 0.3689 0.5098 0.4350 04369  Q3>05>04>01 >0
g=7 0.4314 0.3881 0.5171 0.4494 04524 (03> Q05>0s>01 >0
g=38 0.4441 0.4044 0.5211 0.4604 04641 Q3> 05> Q4> 01 > Qs
g=9 0.4543 0.4181 0.5230 0.4688 04729 03> Q05> 0s>01 >
q=10 0.4625 0.4297 0.5235 0.4754 04795  Q3>Q05> Qs> 01> s

4.4. Comparative Analysis

In this chapter, we compare the g-RIVOFWHM and ¢-RIVOFWDHM operators with the
g-RIVOFWA and ¢-RIVOFWG operators. The comparative results are shown in Table 12.

Table 12. Comparative results.

Methods Ordering
¢-RIVOFWA 0>0%>0>0>0s
g-RIVOFWG Q> >0Q5>0Q1 >

From above, we can see that we get the same optimal green suppliers, which shows the practicality
and effectiveness of the proposed approaches. However, the g-RIVOFWA operator and g-RIVOFWG
operator do not consider the information about the relationship between arguments being aggregated,
and thus cannot eliminate the influence of unfair arguments on decision results. Our proposed
g-RIVOFWHM and ¢g-RIVOFWDHM operators consider the information about the relationship among
arguments being aggregated.

At the same time, Liu and Wang [54] develop the g-rung orthopair, fuzzy weighted averaging
(-ROFWA) operator, as well as the g-rung orthopair, fuzzy weighted geometric (-ROFWG) operator.
Liu and Liu [55] propose some g-rung orthopair, fuzzy Bonferroni mean (3-ROFBM) aggregation
operators. Wei et al. [56] define the generalized Heronian mean (GHM) operator to present some
aggregation operators, and apply them into MADM problems. Wei et al. [57] define some g-rung
orthopair, fuzzy Maclaurin symmetric mean operators. However, all of these operators can only deal
with g-rung orthopair fuzzy sets (3-ROFSs), and cannot deal with g-rung interval-valued orthopair
fuzzy sets (g-RIVOFSs). The main contribution of this paper is to study the MAGDM problems
based on the g-rung interval-valued orthopair fuzzy sets (3-RIVOFSs), and to utilize the Hamy mean
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(HM) operator, weighted Hamy mean (WHM) operator, dual Hamy mean (DHM) operator, and
weighted dual Hamy mean (WDHM) operator, to develop some Hamy mean aggregation operators
with g-RIVOFNS.

5. Conclusions

In this paper, we study the MAGDM problems with g-RIVOFNs. Then, we utilize the Hamy
mean (HM) operator, weighted Hamy mean (WHM) operator, dual Hamy mean (DHM) operator, and
weighted dual Hamy mean (WDHM) operator, in order to develop some Hamy mean aggregation
operators with g-RIVOFNs. The prominent characteristic of each of these proposed operators is
studied. Then, we have utilized these operators to develop some approaches to solve the MAGDM
problems with g-RIVOEFNSs. Finally, a practical example for green supplier selection is given to show
the developed approach. Using the illustrated example, we have roughly shown the effects on the
ranking results by changing parameters in the -RIVOFWHM (g-RIVOFWDHM) operators. In the
future, the application of the proposed fused operators of g-RIVOFNs needs to be explored in decision
making [71-74], risk analysis [75,76], and many other fields under uncertain environments [77-81].

Author Contributions: JW., H.G., GW. and Y.W. conceived and worked together to achieve this work, J.W.
compiled the computing program by Excel and analyzed the data, ].W. and G.W. wrote the paper. Finally, all the
authors have read and approved the final manuscript.

Funding: The work was supported by the National Natural Science Foundation of China under Grant No.
71571128 and the Humanities and Social Sciences Foundation of Ministry of Education of the People’s Republic
of China (17XJA630003) and the Construction Plan of Scientific Research Innovation Team for Colleges and
Universities in Sichuan Province (15TD0004).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.  Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338-356. [CrossRef]

2. Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87-96. [CrossRef]

3.  Atanassov, K. Two theorems for intuitionistic fuzzy sets. Fuzzy Sets Syst. 2000, 110, 267-269. [CrossRef]

4. Wu, L.; Wei, G.; Gao, H.; Wei, Y. Some interval-valued intuitionistic fuzzy dombi hamy mean operators and

their application for evaluating the elderly tourism service quality in tourism destination. Mathematics 2018,
6,294. [CrossRef]

5. Wang, R.;; Wang, J.; Gao, H.; Wei, G. Methods for MADM with picture fuzzy muirhead mean operators and
their application for evaluating the financial investment risk. Symmetry 2019, 11, 6. [CrossRef]

6. Li, Z.; Gao, H.; Wei, G. Methods for multiple attribute group decision making based on intuitionistic fuzzy
dombi hamy mean operators. Symmetry 2018, 10, 574. [CrossRef]

7.  Deng, X.M.; Wei, G.W.; Gao, H.; Wang, ]. Models for safety assessment of construction project with some
2-tuple linguistic Pythagorean fuzzy Bonferroni mean operators. IEEE Access 2018, 6, 52105-52137. [CrossRef]

8.  Gao, H. Pythagorean fuzzy hamacher prioritized aggregation operators in multiple attribute decision making.
J. Intell. Fuzzy Syst. 2018, 35, 2229-2245. [CrossRef]

9.  Wei, G.; Wei, Y. Some single-valued neutrosophic dombi prioritized weighted aggregation operators in
multiple attribute decision making. J. Intell. Fuzzy Syst. 2018, 35, 2001-2013. [CrossRef]

10. Wang, J.; Wei, G.; Gao, H. Approaches to multiple attribute decision making with interval-valued 2-tuple
linguistic pythagorean fuzzy information. Mathematics 2018, 6, 201. [CrossRef]

11.  Wei, G.W. TODIM method for picture fuzzy multiple attribute decision making. Informatica 2018, 29, 555-566.
[CrossRef]

12.  Xu, Z.S. intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 2007, 15, 1179-1187.

13. Wei, G.W,; Garg, H.; Gao, H.; Wei, C. Interval-Valued pythagorean fuzzy maclaurin symmetric mean
operators in multiple attribute decision making. IEEE Access 2018, 6, 67866—67884. [CrossRef]

14.  Wei, G.W.; Wei, C.; Gao, H. multiple attribute decision making with interval-valued bipolar fuzzy information
and their application to emerging technology commercialization evaluation. IEEE Access 2018, 6, 60930-60955.
[CrossRef]


http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.1016/S0165-0114(99)00112-8
http://dx.doi.org/10.3390/math6120294
http://dx.doi.org/10.3390/sym11010006
http://dx.doi.org/10.3390/sym10110574
http://dx.doi.org/10.1109/ACCESS.2018.2869414
http://dx.doi.org/10.3233/JIFS-172262
http://dx.doi.org/10.3233/JIFS-171741
http://dx.doi.org/10.3390/math6100201
http://dx.doi.org/10.15388/Informatica.2018.181
http://dx.doi.org/10.1109/ACCESS.2018.2877725
http://dx.doi.org/10.1109/ACCESS.2018.2875261

Symmetry 2019, 11, 56 25 of 27

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Wang, J.; Wei, G.; Lu, M. An Extended VIKOR Method for Multiple Criteria Group Decision Making with
Triangular Fuzzy Neutrosophic Numbers. Symmetry 2018, 10, 497. [CrossRef]

Wang, J.; Wei, G.; Lu, M. TODIM Method for multiple attribute group decision making under 2-Tuple
Linguistic Neutrosophic Environment. Symmetry 2018, 10, 486. [CrossRef]

Li, Z.; Wei, G.; Lu, M. Pythagorean fuzzy hamy mean operators in multiple attribute group decision making
and their application to supplier selection. Symmetry 2018, 10, 505. [CrossRef]

Wei, G.W. Some geometric aggregation functions and their application to dynamic multiple attribute decision
making in intuitionistic fuzzy setting. Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 2009, 17, 179-196. [CrossRef]
Li, Z.; Wei, G.; Gao, H. Methods for multiple attribute decision making with interval-valued pythagorean
fuzzy information. Mathematics 2018, 6, 228. [CrossRef]

Deng, X.; Wang, J.; Wei, G.; Lu, M. Models for multiple attribute decision making with some 2-tuple linguistic
pythagorean fuzzy hamy mean operators. Mathematics 2018, 6, 236. [CrossRef]

Tang, X.Y.; Wei, G.W. Models for green supplier selection in green supply chain management with
Pythagorean 2-tuple linguistic information. IEEE Access 2018, 6, 18042-18060. [CrossRef]

Ye, ]. Fuzzy decision-making method based on the weighted correlation coefficient under intuitionistic fuzzy
environment. Eur. J. Oper. Res. 2010, 205, 202-204. [CrossRef]

Huang, Y.H.; Wei, G.W. TODIM Method for Pythagorean 2-tuple linguistic multiple attribute decision
making. J. Intell. Fuzzy Syst. 2018, 35, 901-915. [CrossRef]

Wei, G.W.; Gao, H.; Wang, ].; Huang, Y.H. Research on risk evaluation of enterprise human capital investment
with Interval-valued bipolar 2-tuple linguistic Information. IEEE Access 2018, 6, 35697-35712. [CrossRef]
Liang, X.; Wei, C. An Atanassov’s intuitionistic fuzzy multi-attribute group decision making method based
on entropy and similarity measure. Int. . Mach. Learn. Cybern. 2014, 5, 435-444. [CrossRef]

Yager, R.R. Pythagorean fuzzy subsets. In Proceedings of the Joint IFSA World Congress and NAFIPS Annual
Meeting, Emonton, AB, Canada, 21 June 2013; pp. 57-61.

Yager, R.R. Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 2014,
22,958-965. [CrossRef]

Zhang, X.L.; Xu, Z.S. Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets.
Int. ]. Intell. Syst. 2014, 29, 1061-1078. [CrossRef]

Wei, G.W,; Lu, M. Pythagorean Fuzzy Maclaurin Symmetric Mean Operators in multiple attribute decision
making. Int. J. Intell. Syst. 2018, 33, 1043-1070. [CrossRef]

Peng, X.; Yang, Y. Some results for Pythagorean Fuzzy Sets. Int. |. Intell. Syst. 2015, 30, 1133-1160. [CrossRef]
Wei, G.W.; Lu, M. Pythagorean fuzzy power aggregation operators in multiple attribute decision making.
Int. J. Intell. Syst. 2018, 33, 169-186. [CrossRef]

Wei, G.W. Interval valued hesitant fuzzy uncertain linguistic aggregation operators in multiple attribute
decision making. Int. |. Mach. Learn. Cybern. 2016, 7, 1093-1114. [CrossRef]

Wei, G.W. Picture fuzzy Hamacher aggregation operators and their application to multiple attribute decision
making. Fundam. Inf. 2018, 157, 271-320. [CrossRef]

Gao, H.; Lu, M.; Wei, G.W.; Wei, Y. Some Novel Pythagorean Fuzzy Interaction Aggregation Operators in
Multiple Attribute Decision Making. Fundam. Inf. 2018, 159, 385-428. [CrossRef]

Wei, G.W. Interval valued hesitant fuzzy uncertain linguistic aggregation operators in multiple attribute
decision making. Int. ]. Mach. Learn. Cybern. 2016, 7, 1093-1114. [CrossRef]

Wei, G.W.; Zhao, X.F; Wang, H.J.; Lin, R. Fuzzy power aggregating operators and their application to
multiple attribute group decision making. Technol. Econ. Dev. Econ. 2013, 19, 377-396. [CrossRef]

Wei, G.W. Some linguistic power aggregating operators and their application to multiple attribute group
decision making. J. Intell. Fuzzy Syst. 2013, 25, 695-707.

Beliakov, G.; James, S. Averaging aggregation functions for preferences expressed as Pythagorean
membership grades and fuzzy orthopairs. In Proceedings of the 2014 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), Beijing, China, 6-11 July 2014; pp. 298-305.

Reformat, M.; Yager, R.R. Suggesting Recommendations Using Pythagorean Fuzzy Sets illustrated Using
Netflix Movie Data. In Proceedings of the International Conference on Information Processing and
Management of Uncertainty in Knowledge-Based Systems, Montpellier, France, 15-19 July 2014; pp. 546-556.
Gou, X.; Xu, Z.; Ren, P. The Properties of Continuous Pythagorean Fuzzy Information. Int. . Intell. Syst.
2016, 31, 401-424. [CrossRef]


http://dx.doi.org/10.3390/sym10100497
http://dx.doi.org/10.3390/sym10100486
http://dx.doi.org/10.3390/sym10100505
http://dx.doi.org/10.1142/S0218488509005802
http://dx.doi.org/10.3390/math6110228
http://dx.doi.org/10.3390/math6110236
http://dx.doi.org/10.1109/ACCESS.2018.2817551
http://dx.doi.org/10.1016/j.ejor.2010.01.019
http://dx.doi.org/10.3233/JIFS-171636
http://dx.doi.org/10.1109/ACCESS.2018.2836943
http://dx.doi.org/10.1007/s13042-013-0178-0
http://dx.doi.org/10.1109/TFUZZ.2013.2278989
http://dx.doi.org/10.1002/int.21676
http://dx.doi.org/10.1002/int.21911
http://dx.doi.org/10.1002/int.21738
http://dx.doi.org/10.1002/int.21946
http://dx.doi.org/10.1007/s13042-015-0433-7
http://dx.doi.org/10.3233/FI-2018-1628
http://dx.doi.org/10.3233/FI-2018-1669
http://dx.doi.org/10.1007/s13042-015-0433-7
http://dx.doi.org/10.3846/20294913.2013.821684
http://dx.doi.org/10.1002/int.21788

Symmetry 2019, 11, 56 26 of 27

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Wei, G.W.,; Wei, Y. Similarity measures of Pythagorean fuzzy sets based on cosine function and their
applications. Int. J. Intell. Syst. 2018, 33, 634-652. [CrossRef]

Wei, G.W.; Gao, H. The Generalized Dice Similarity Measures for Picture Fuzzy Sets and Their Applications.
Informatica 2018, 29, 107-124. [CrossRef]

Wei, G.W. Some similarity measures for picture fuzzy sets and their applications. Iran. |. Fuzzy Syst. 2018, 15,
77-89.

Wei, G.W. Some Cosine Similarity Measures for Picture Fuzzy Sets and Their Applications to Strategic
Decision Making. Informatica 2017, 28, 547-564. [CrossRef]

Wei, G.W.; Lin, R.; Wang, H.J. Distance and similarity measures for hesitant interval-valued fuzzy sets.
J. Intell. Fuzzy Syst. 2014, 27, 19-36.

Ren, P; Xu, Z; Gou, X. Pythagorean fuzzy TODIM approach to multi-criteria decision making.
Appl. Soft Comput. 2016, 42, 246-259. [CrossRef]

Garg, H. A New Generalized Pythagorean Fuzzy Information Aggregation Using Einstein Operations and
Its Application to Decision Making. Int. |. Intell. Syst. 2016, 31, 886-920. [CrossRef]

Zeng, S.; Chen, |.; Li, X. A Hybrid Method for Pythagorean Fuzzy Multiple-Criteria Decision Making. Int. |.
Inf. Technol. Decis. Mak. 2016, 15, 403-422. [CrossRef]

Garg, H. A novel accuracy function under interval-valued Pythagorean fuzzy environment for solving
multicriteria decision making problem. J. Intell. Fuzzy Syst. 2016, 31, 529-540. [CrossRef]

Wei, GW.; Lu, M,; Tang, X.Y.; Wei, Y. Pythagorean Hesitant Fuzzy Hamacher Aggregation Operators and
Their Application to Multiple Attribute Decision Making. Int. J. Intell. Syst. 2018, 33, 1197-1233. [CrossRef]
Wei, G.W.; Lu, M. Dual hesitant pythagorean fuzzy Hamacher aggregation operators in multiple attribute
decision making. Arch. Control Sci. 2017, 27, 365-395. [CrossRef]

Lu, M.; Wei, G.W.; Alsaadi, FE.; Hayat, T.; Alsaedi, A. Hesitant Pythagorean fuzzy Hamacher aggregation
operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 1105-1117.
[CrossRef]

Yager, R.R. Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 2017, 25, 1222-1230. [CrossRef]

Liu, P.D.; Wang, P. Some g-Rung Orthopair Fuzzy Aggregation Operators and their Applications to
Multiple-Attribute Decision Making. Int. |. Intell. Syst. 2018, 32, 259-280. [CrossRef]

Liu, PD,; Liu, ].L. Some g-Rung Orthopai Fuzzy Bonferroni Mean Operators and Their Application to
Multi-Attribute Group Decision Making. Int. J. Intell. Syst. 2018, 33, 315-347. [CrossRef]

Wei, G.W.; Gao, H.; Wei, Y. Some g-Rung Orthopair Fuzzy Heronian Mean Operators in Multiple Attribute
Decision Making. Int. J. Intell. Syst. 2018, 33, 1426-1458. [CrossRef]

Wei, G.W.; Wei, C.; Wang, ]J.; Gao, H.; Wei, Y. Some g-rung orthopair fuzzy maclaurin symmetric mean
operators and their applications to potential evaluation of emerging technology commercialization. Int. |.
Intell. Syst. 2019, 34, 50-81. [CrossRef]

Atanassov, K.; Gargov, G. Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 343-349.
[CrossRef]

Atanassov, K. Operators over interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1994, 64, 159-174.
[CrossRef]

Hara, T.; Uchiyama, M.; Takahasi, S.E. A refinement of various mean inequalities. J. Inequal. Appl. 1998, 2,
387-395. [CrossRef]

Wu, S.; Wang, J.; Wei, G.; Wei, Y. Research on Construction Engineering Project Risk Assessment with Some
2-Tuple Linguistic Neutrosophic Hamy Mean Operators. Sustainability 2018, 10, 1536. [CrossRef]

Wang, J.; Wei, G.W.; Wei, Y. Models for Green Supplier Selection with Some 2-Tuple Linguistic Neutrosophic
Number Bonferroni Mean Operators. Symmetry 2018, 10, 131. [CrossRef]

Gao, H.; Wei, G.W.; Huang, Y.H. Dual hesitant bipolar fuzzy Hamacher prioritized aggregation operators in
multiple attribute decision making. IEEE Access 2018, 6, 11508-11522. [CrossRef]

Wei, G.W,; Alsaadi, FE.; Hayat, T.; Alsaedi, A. Projection models for multiple attribute decision making with
picture fuzzy information. Int. |. Mach. Learn. Cybern. 2018, 9, 713-719. [CrossRef]

Wang, S.Y. Applying 2-tuple multigranularity linguistic variables to determine the supply performance in
dynamic environment based on product-oriented strategy. IEEE Trans. Fuzzy Syst. 2008, 16, 29-39. [CrossRef]
Wei, G.W.; Alsaadi, FE.; Hayat, T.; Alsaedi, A. Bipolar fuzzy Hamacher aggregation operators in multiple
attribute decision making. Int. J. Fuzzy Syst. 2018, 20, 1-12. [CrossRef]


http://dx.doi.org/10.1002/int.21965
http://dx.doi.org/10.15388/Informatica.2018.160
http://dx.doi.org/10.15388/Informatica.2017.144
http://dx.doi.org/10.1016/j.asoc.2015.12.020
http://dx.doi.org/10.1002/int.21809
http://dx.doi.org/10.1142/S0219622016500012
http://dx.doi.org/10.3233/IFS-162165
http://dx.doi.org/10.1002/int.21978
http://dx.doi.org/10.1515/acsc-2017-0024
http://dx.doi.org/10.3233/JIFS-16554
http://dx.doi.org/10.1109/TFUZZ.2016.2604005
http://dx.doi.org/10.1002/int.21927
http://dx.doi.org/10.1002/int.21933
http://dx.doi.org/10.1002/int.21985
http://dx.doi.org/10.1002/int.22042
http://dx.doi.org/10.1016/0165-0114(89)90205-4
http://dx.doi.org/10.1016/0165-0114(94)90331-X
http://dx.doi.org/10.1155/S1025583498000253
http://dx.doi.org/10.3390/su10051536
http://dx.doi.org/10.3390/sym10050131
http://dx.doi.org/10.1109/ACCESS.2017.2784963
http://dx.doi.org/10.1007/s13042-016-0604-1
http://dx.doi.org/10.1109/TFUZZ.2007.903316
http://dx.doi.org/10.1007/s40815-017-0338-6

Symmetry 2019, 11, 56 27 of 27

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

You, X.Y,; You, ].X.; Liu, H.C.; Zhen, L. Group multi-criteria supplier selection using an extended VIKOR
method with interval 2-tuple linguistic information. Expert Syst. Appl. 2015, 42, 1906-1916. [CrossRef]
Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Picture 2-tuple linguistic aggregation operators in multiple
attribute decision making. Soft Comput. 2018, 22, 989-1002. [CrossRef]

Santos, L.; Osiro, L.; Lima, R.H.P. A model based on 2-tuple fuzzy linguistic representation and Analytic
Hierarchy Process for supplier segmentation using qualitative and quantitative criteria. Expert Syst. Appl.
2017, 79, 53-64. [CrossRef]

Wei, G.W.; Wang, ].M. A comparative study of robust efficiency analysis and Data Envelopment Analysis
with imprecise data. Expert Syst. Appl. 2017, 81, 28-38. [CrossRef]

Wei, G.W. Picture uncertain linguistic Bonferroni mean operators and their application to multiple attribute
decision making. Kbernetes 2017, 46, 1777-1800. [CrossRef]

Wei, G.W. Picture 2-tuple linguistic Bonferroni mean operators and their application to multiple attribute
decision making. Int. J. Fuzzy Syst. 2017, 19, 997-1010. [CrossRef]

Wei, G.W.; Alsaadi, FE.; Hayat, T.; Alsaedi, A. Hesitant bipolar fuzzy aggregation operators in multiple
attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 1119-1128. [CrossRef]

Li, L.; Zhang, R.; Wang, ].; Shang, X.; Bai, K. A Novel Approach to Multi-Attribute Group Decision-Making
with g-Rung Picture Linguistic Information. Symmetry 2018, 10, 172. [CrossRef]

Wei, Y; Liu, J.; Lai, X.; Hu, Y. Which determinant is the most informative in forecasting crude oil market
volatility: Fundamental, speculation, or uncertainty? Energy Econ. 2017, 68, 141-150. [CrossRef]

Wei, Y;; Yu, Q.; Liu, J.; Cao, Y. Hot money and China’s stock market volatility: Further evidence using the
GARCH-MIDAS model. Physica A 2018, 492, 923-930. [CrossRef]

Alcantud, ].C.R.; de Andrés Calle, R.; Cascén, ].M. A unifying model to measure consensus solutions in a
society. Math. Comput. Model. 2013, 57, 1876-1883. [CrossRef]

Alcantud, ].C.R.; de Andrés Calle, R.; Cascon, ].M. On measures of cohesiveness under dichotomous opinions:
Some characterizations of approval consensus measures. Inf. Sci. 2013, 240, 45-55. [CrossRef]

Ullah, K.; Mahmood, T.; Jan, N. Similarity Measures for T-Spherical Fuzzy Sets with Applications in Pattern
Recognition. Symmetry 2018, 10, 193. [CrossRef]

Zhu, H.; Zhao, ].B.; Xu, Y. 2-dimension linguistic computational model with 2-tuples for multi-attribute
group decision making. Knowl.-Based Syst. 2016, 103, 132-142. [CrossRef]

Wei, C.P; Liao, H.C. A Multigranularity Linguistic Group Decision-Making Method Based on Hesitant
2-Tuple Sets. Int. |. Intell. Syst. 2016, 31, 612-634. [CrossRef]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.eswa.2014.10.004
http://dx.doi.org/10.1007/s00500-016-2403-8
http://dx.doi.org/10.1016/j.eswa.2017.02.032
http://dx.doi.org/10.1016/j.eswa.2017.03.043
http://dx.doi.org/10.1108/K-01-2017-0025
http://dx.doi.org/10.1007/s40815-016-0266-x
http://dx.doi.org/10.3233/JIFS-16612
http://dx.doi.org/10.3390/sym10050172
http://dx.doi.org/10.1016/j.eneco.2017.09.016
http://dx.doi.org/10.1016/j.physa.2017.11.022
http://dx.doi.org/10.1016/j.mcm.2011.12.020
http://dx.doi.org/10.1016/j.ins.2013.03.061
http://dx.doi.org/10.3390/sym10060193
http://dx.doi.org/10.1016/j.knosys.2016.04.006
http://dx.doi.org/10.1002/int.21798
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Preliminaries 
	q-Rung Interval-Valued Orthopair Fuzzy Sets (q-RIVOFSs) 
	Hamy Mean Operator 

	Some Hamy Mean Operators with q-RIVOFNs 
	q-RIVOFHM Operator 
	The q-RIVOFWHM Operator 
	The q-RIVOFDHM Operator 
	The q-RIVOFWDHM Operator 

	Application of Green Supplier Selection 
	Numerical Example 
	Influence of the Parameter x  
	Influence of the Parameter q  
	Comparative Analysis 

	Conclusions 
	References

