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Abstract: A non-local action functional for electrodynamics depending on the electric and magnetic
fields, instead of potentials, has been proposed in the literature. In this work we elaborate and
improve this proposal. We also use this formalism to confront the electric-magnetic duality symmetry
of the electromagnetic field and the Aharonov–Bohm effect, two subtle aspects of electrodynamics
that we examine in a novel way. We show how the former can be derived from the simple harmonic
oscillator character of vacuum electrodynamics, while also demonstrating how the magnetic version
of the latter naturally arises in an explicitly non-local manner.
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1. Introduction

Locality is a preferred virtue of fundamental field theories. Electrodynamics, the paradigm of
field theory, and general relativity, the modern and finest description of gravity, are very important
examples. Both theories are consistent with local causality and the conservation of energy and
momentum. Maxwell’s and Einstein’s equations are systems of partial differential equations for their
fundamental fields: the electromagnetic and metric tensors, respectively. The two sets of field equations
can also be derived from an action functional. The Hilbert-Einstein action itself is also local in the
metric field. However, to derive the Maxwell equations from a local action one has to introduce the
electromagnetic potentials. To construct an action depending exclusively on gauge invariant quantities
one must necessarily sacrifice locality. This issue is very rarely treated in the literature, despite of the
fact that it is a question that may naturally arise in graduate courses on basic field theory and classical
electrodynamics (see, for instance [1,2] and references therein). Within the context of constrained
dynamical systems [3–5], a non-local action functional describing Maxwell theory, dependent on the
electric and magnetic fields, was sketched in Ref. [6]. In this paper we will focus on this proposal and
related aspects of quantum mechanics and the theory of Noether’s symmetries.

As remarked above, electrodynamics is commonly formulated in terms of Hamilton’s variational
principle through the action functional S[Aµ] =

∫
d4xLEM, where the Lagrangian density for the

electromagnetic field in the presence of an external current source Jµ ≡ (ρ, J), is given by [7,8]

LEM ≡ −
1
4

FµνFµν − Aµ Jµ . (1)
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The action is regarded as a functional of the 4-vector potential Aµ = (A0, A), where Fµν ≡
∂µ Aν − ∂ν Aµ is the electromagnetic field tensor. Ei = −F0i and Bi = − 1

2 εijkFjk are the components
of the electric and magnetic fields (E and B), respectively, and the metric η = diag(1,−1,−1,−1)
was used to lower and raise indices in Jµ, Fµν, and ∂µ (e.g., Jµ = ηµν Jν). [Throughout this work we
use Lorentz-Heaviside units and take c = 1. We also assume the Einstein summation convention for
repeated indices and ε123 = 1. Additionally, greek letter indices refer to time and Cartesian space
coordinates whereas latin letter indices only refer to the latter. Furthermore, simultaneous spacetime
points are labelled as x ≡ (t, x) and x′ ≡ (t, x′). Finally, it is assumed that all fields decay to 0
at infinity.]

The inhomogeneous Maxwell equations

∇× B− ∂tE = J , (2)

∇ · E = ρ , (3)

are obtained by varying the action with respect to δAµ and imposing δS = 0. One gets immediately
∂µ(∂µ Aν − ∂ν Aµ) = Jν, and rewriting the potential in terms of the electric and magnetic fields,
Gauss’ law (3) and the Ampere-Maxwell equation (2) are readily obtained. The fact that (2) and (3)
only hold on-shell (i.e., when the Euler-Lagrange equations for Aµ hold) contrasts with the off-shell
nature of the homogeneous Maxwell equations

∇× E + ∂tB = 0 , (4)

∇ · B = 0 , (5)

which are trivially satisfied by the definition of Fµν in terms of the potentials, or equivalently
E = −∇A0 − ∂

∂t A, B = ∇×A in vector notation. This distinction between two types of Maxwell
equations can seem somewhat forced, as in essence it is only due to the choice of Aµ as the field of the
action functional. Nevertheless, it is the price to be paid to deal with a local action, i.e., one where LEM

depends on the value of Aµ(x) and finitely many derivatives at a single spacetime point x.
An alternative local action functional is given by [2]

S[Aµ, Fµν] =
∫

d4x[
1
4

FµνFµν − 1
2

Fµν(∂µ Aν − ∂ν Aµ)− Aµ Jµ] . (6)

Fµν and Aµ are here considered to be completely independent dynamical variables. The equation
of motion for Fµν is Fµν = ∂µ Aν − ∂ν Aµ, and plugging this into the action (6) one gets the standard
action S[Aµ] =

∫
d4xLEM. This alternative first-order action (6) is very efficient to prove [2] that the

covariant Feynman rules for quantum electrodynamics obtained from the functional integral approach
are indeed equivalent to the rules derived within the canonical formalism.

The use of potentials in (1) is also useful to study electrodynamics with matter sources.
Recycling the field-matter interaction term −Aµ Jµ present in (1), inserting the charge distribution
(the dot refers to a total time derivative)

ρ(x′) = eδ3(x(t)− x′) and J(x′) = eẋ(t)δ3(x(t)− x′), (7)

and adding a kinetic energy term, the standard Lagrangian that describes the motion of a
non-relativistic particle of mass m and charge e within an external electromagnetic field,

Lp =
1
2

mẋ2 + eA · ẋ− eA0, (8)
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is recovered. Despite the fact that the action Sp[x] =
∫

dtLp is explicitly dependent on the potentials,
the equations of motion, which in this case are just the Lorentz force

mẍ = e(E + ẋ× B), (9)

can be expressed solely in terms of the electromagnetic field, similarly to the case of Equations (2)
and (3) with respect to the action S. Consequently, in classical mechanics where δSp = 0 strictly defines
the dynamics of the particle, this formulation does not pose anything more than possibly an aesthetic
nuisance. However, in the context of quantum mechanics, where the contribution of trajectories with
δSp 6= 0 to the path integral is not negligible [9], this formulation does become an issue with the
interpretation of the Aharonov–Bohm (AB) effect [10–14] .

As mentioned above, the first aim of this paper is to study the non-local formulation suggested by
Jackiw [6]. It is of first-order in time derivatives, but spatially non-local. We will elaborate on this
proposal finding a slightly more simplified expression for the action functional than that originally
proposed [6] (see the comments after Equation (29)). This alternative non-local action turns out to be
very efficient to analyze the electric-magnetic duality symmetry of free electrodynamics, and, as a
bonus, to gain new insights on the AB effect.

2. The Free Non-Local (Duality Invariant) Action

A wide family of first-order Lagrangians in classical mechanics can be expressed as

L = ωij q̇i pj − H(q, p) , (10)

where the constants ωij are the components of the off-diagonal block term of the symplectic tensor

Ω =

(
0 ω

−ω 0

)
(11)

and H(q, p) is the system’s Hamiltonian [3,6]. As the notation hints, q = {qi} and p = {pi} are the
sets of (phase space) variables. If ω has an inverse ω−1, then their brackets are simply {qi, pj} ≡
ωij ({qi, qj} = {pi, pj} = 0), where ωij are the components of ω−1. The conventional choice for
simple Hamiltonian systems is ωij = δij, and hence q and p are canonically conjugate variables with
{qi, pj} = δij. However, when ω is not invertible, one typically faces a constrained system, examples
of which we give below.

The Lagrangian (10) can be generalized to a Lagrangian density for the context of field theory.
Besides summing over the discrete degrees of freedom in the non-Hamiltonian component of (10),
one must also sum over (i.e., integrate) the continuous degrees of freedom. Thus, the Lagrangian
density of the conjugate fields φ and π can be expressed in terms of the Hamiltonian densityH(φ, π) as

L =
∫

d3x′ωij(x, x′)∂tφ
i(x)π j(x′)−H(φ, π) (12)

with {φi(x), π j(x′)} ≡ ωij(x, x′), if ω is invertible. The most conventional choice for ω in field theory is
ωij(x, x′) = δijδ

3(x− x′), which leads to the local Lagrangian density L = ∂tφ
i(x)π j(x)−H(φ, π). For

H(φ, π) =
1
2
(π2 + (∇φ)2) +

1
2

m2φ2 (13)

we have the usual free scalar Klein-Gordon theory, with field equations ∂tφ = π and ∂tπ = (∇2−m2)φ,
which easily combine into the Klein-Gordon wave equation (∂2

t −∇2 + m2)φ = 0, consistent with
{φi(x), π j(x′)} = δijδ3(x− x′).
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A more involved example is given by taking ωij(x, x′) as the divergenceless or transverse
delta function

ωij(x, x′) = δT
ij(x− x′) ≡ δijδ

3(x− x′) + ∂i∂j
1

4π|x− x′| . (14)

It is convenient to briefly recall here that a generic vector field F always decomposes univocally [15]
into a transverse vector FT, obeying ∇ · FT = 0, plus a longitudinal one FL, with ∇ × FL = 0.
The transverse delta can then be used to project the transverse component,∫

d3x′δT
ij(x− x′)Fj(x′) = Fi

T(x) . (15)

Choosing the variables to be vector fields φ→ E, π → A with a Hamiltonian density given by

H0(E, A) =
1
2
[(E2 + (∇×A)2] , (16)

then the (non-local) Lagrangian density reads

L0 =
∫

d3x′δT
ij(x− x′)∂tEi(x)Aj(x′)−H0(E, A) . (17)

In contrast with the Klein-Gordon example, this Lagrangian density, due to the extra contribution to
the delta function, cannot be reduced to a local one in terms of the chosen fields E, A. Furthermore,
Equation (17) is invariant under gauge transformations A′ = A +∇ξ. By taking variations and
assuming the appropriate boundary conditions one obtains the field equations

Ei = −
∫

d3x′δT
ij(x− x′)∂t Aj(x′) = −∂t Ai

T , (18)

[∇× (∇×A)]i =
∫

d3x′δT
ij(x− x′)∂tEj(x′) = ∂tEi

T . (19)

However, after some manipulations one can transform the above equations into the following set
of local field equations

∂tE = ∇× (∇×A) , ∇× E + ∂t(∇×A) = 0 , (20)

∇ · E = 0 . (21)

The source-free versions of (2)–(4) are recovered with the identification B = ∇× A. Equation (5)
identically follows from the definition of the magnetic field in terms of A, hence completing the full
set of vacuum Maxwell equations. Note how the Gauss law constraint (21) was obtained without
explicitly introducing any Lagrange multiplier. Also note how the transverse delta can project AT,
leading to the Lagrangian density

L0 = ∂tE ·AT −
1
2

[
E2 + (∇×AT)

2
]

, (22)

where the longitudinal component of A has naturally decoupled from the theory. That this is the
case seems natural, as AL does not possess indispensable physical value due to the aforementioned
gauge invariance. Please note that although (22) is apparently a local expression, there is a hidden
non-locality in the (constrained and gauge-independent) transverse vector potential. Solving now the
constraint (21) (i.e., taking E = ET) into (23) we finally get

L0 = ∂tET ·AT −
1
2
[E2

T + (∇×AT)
2] . (23)
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In this way we therefore recover the completely reduced form of the electromagnetic Lagrangian
density. A bonus of the above discussion is that one can immediately work out the brackets of
the theory: δT

ij(x − x′) can be inverted for transverse vector fields and hence the expected [16–18]

{Ei
T(x), Aj

T(x′)} = δTij(x− x′) is derived.

2.1. Non-Local Formulation for the Electromagnetic Field in Terms of E and B

Our last and most important example consists of defining the object ωij(x, x′) for the electric and
magnetic field themselves. The solution involves a derivative of the Green’s function for the Laplacian
operator4 ≡ ∂i∂i, and it is given by

ωij(x, x′) = εijk∂k
−1

4π|x− x′| . (24)

This expression can be regarded as the simplest way to enforce the appropriate physical
dimensions for ωij(x, x′)∂tEiBj and consistency with respect to electric-magnetic duality symmetry
(see next subsection for more details). Together with the conventional electromagnetic Hamiltonian
density we can construct, in the absence of sources, the action SNL,0[E, B] =

∫
d4xLNL,0, a functional

exclusively dependent on the electromagnetic field, with a first-order Lagrangian density

LNL,0 =
∫

d3x′ ωij(x, x′)∂tEi(x)Bj(x′)− 1
2
(E2(x) + B2(x)) . (25)

It is quite remarkable that this action yields all of the four vacuum Maxwell equations. The integral
term in (25) introduces an explicit non-locality, as the fields at spatially separated points x = (t, x)
and x′ = (t, x′) "interact” with one another. This coupling is nonetheless weighed by ωij(x, x′),
leading it to steadily decay as x and x′ become further apart. Taking variations of Ei and Bi,
simultaneously exploiting the standard fall-off conditions of the fields at infinity, one can show
that the equations of motion are just the Hemholtz decomposition [15] of the free electromagnetic field,

Ei(x) = −
∫

d3x′ωij(x, x′)∂tBj(x′) , (26)

Bi(x) =
∫

d3x′ωij(x, x′)∂tEj(x′) . (27)

Applying a divergence and a curl on (26) and (27) immediately provides the vacuum versions of
Equations (2)–(5),

∇× E = −∂tB , ∇× B = ∂tE , (28)

∇ · E = 0 , ∇ · B = 0 . (29)

The non-local Lagrangian density LNL,0 is similar to the one given in Ref. [6], up to the
contributions of two Lagrange multipliers, which we find unnecessary in the absence of sources. As in
the previous case [(17) and (23)], the constraints (29) can be solved into the Lagrangian density (25).
In this situation, where the fields are necessarily transverse, ω does possess an inverse, leading to the
anticipated [17] brackets

{Ei
T(x), Bj

T(x′)} = −εijk∂kδ3(x− x′) . (30)

Note also how (17), and consequently (23), can also be recovered from (25) by introducing the
vector potential A such that B = ∇×A.

2.2. Electric-Magnetic Duality Symmetry

The fact that (25) is formulated solely in terms of E and B means that it is manifestly dual, quite in
contrast to the standard formulation (1). It is straightforward to prove that the discrete transformations
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E→ −B, B→ E and their continuous generalization as electric-magnetic duality rotations [7] with
parameter θ, (

E′

B′

)
=

(
cos θ sin θ

− sin θ cos θ

)(
E
B

)
, (31)

leave the Maxwell equations invariant. It is, however, not such a simple task [19–22] to prove that (31)
are a symmetry in the Noether sense, i.e., that their infinitesimal version

δE = θB, δB = −θE, (32)

leaves the Lagrangian L =
∫

d3L invariant, up to a total time derivative and without making use of
the field equations.

Employing the standard formulation (1), the transformations (32) clearly will not suffice
as Noether’s theorem requires the transformations of the dynamic fields, Aµ in this case.
However, the problem is actually deeper. The introduction of the potentials implies that
Equations (4) and (5) hold, which for consistency would also require, through the use of (32),
the equations ∇ × B − ∂tE = 0 and ∇ · E = 0. However, within the Lagrangian formalism it is
forbidden to use the latter (on-shell) equations to prove that the duality rotations are a symmetry of
the theory. Consequently, the transformation in (32) cannot be applied directly [20,21] on (1) with
Noether’s Theorem. A way out of this tension is to project the original duality rotations on the
transverse fields (ET, AT) and consider the reduced Lagrangian (23) [20,21]. The new form of the
duality symmetry is then non-local.

On the other hand, the application of Noether’s theorem with (25) is swift and even elegant.
While the bracket has become more intricate in the transition from using A and E to B and E,
the Hamiltonian density now has the well known form of the isotropic simple harmonic oscillator (SHO),

H(q, p) =
1
2
(q2 + p2) (normalized). (33)

The presence of the SHO in this context shouldn’t be too surprising, as it is a well-known fact that
vacuum electromagnetic field satisfies the wave equations ∂µ∂µE and ∂µ∂µB = 0, which are just the
field version of the SHO equations q̈i + k2qi = 0 and p̈i + k2 pi = 0. Thus, (25) can be viewed as a the
first-order Lagrangian of a SHO with non-canonical, i.e., {qi, pj} 6= δij, commutation relations. As with
the canonical, i.e., {qi, pj} = δij, SHO, this system is also invariant under phase space rotations(

q′i

p′i

)
=

(
cos θ sin θ

− sin θ cos θ

)(
qi

pi

)
. (34)

However, while in the canonical case this symmetry implies conservation of energy, the non-trivial
case preserves a more general quantity, which using Noether’s theorem is straight-forwardly shown
to be

Q =
1
2

ωij(qiqj + pi pj). (35)

Of course, phase space rotations (34) are just electric-magnetic rotations (31) in the formalism
of (25) and (30), where E and B are the (non-canonical) dynamic variables. Thus we can conclude that
in the context of the non-local formulation exposed here, electric-magnetic duality is analogous to the
phase space rotation symmetry of the SHO, with the conserved quantity being

QD =
1
2

∫∫
d3xd3x′ωij(x, x′)

[
Ei(x)Ej(x′) + Bi(x)Bj(x′)

]
. (36)
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Assuming now that the electric and magnetic fields are transverse, the vector potentials A(x) and
Z(x) can be introduced such that E = −∇× Z and B = ∇×A. It is then easily proven that the above
non-local quantity (36) becomes the local

QD =
1
2

∫
d3x[Z · (∇× Z) + A · (∇×A)] , (37)

equivalent to the conserved charge obtained by Calkin [19] and Deser-Teitelboim [20]. An extended
discussion in the quantum theory is given in [22–25].

We would like to remark that the conservation law d
dt QD = 0 should be modified in the

presence of charged matter, since duality rotations are no longer symmetries of the theory. Note that
this is somewhat similar to the chirality transformation of fermions [8]. Chirality rotations are
symmetries for massless fermions, implying that ∂µ jµ

5 = 0, where jµ5 ≡ ψ̄γµγ5ψ, and the corresponding
conservation of the chiral charge Q5 ≡

∫
d3xj05. In presence of a mass term, d

dt Q5 = 0 would also be
modified accordingly.

3. The Non-Local Action with Matter

The non-local action presented in the previous section can be straightforwardly generalized
to accommodate for the presence of matter. This is a important issue since the interaction of the
electromagnetic field with matter has both fundamental and applied significance. This new action
functional SNL[E, B, λ] =

∫
d4xLNL, essentially based on Ref. [6], has the electric and magnetic fields

as its dynamical fields as well as a Lagrange multiplier λ that imposes Gauss’ law (3) as a constraint,

LNL =
∫

d3x′ ωij(x, x′)[∂tEi(x) + Ji(x)]Bj(x′)− 1
2
(E2 + B2)− λ(∇ · E− ρ). (38)

In the above expression ωij(x, x′) is again given by (24). We note that a single Lagrange multiplier
λ is introduced here, instead of the two employed in Ref. [6]. This Lagrangian provides all four of
Maxwell’s equations if there is electric charge conservation, i.e., ρ̇ +∇ · J = 0, a prerequisite that is
used in the standard formulation (1) as well to preserve gauge invariance. For instance, if the matter
field is given by a Dirac spinor ψ, with electric charge q and mass m, we should replace ρ = qψ̄ψ and
Ji = qψ̄γiψ in (38). One can then complete the action by adding the standard local free action for the
Dirac field such that the Lagrangian of the complete theory reads

L = (iψ̄γµ∂µψ−mψ̄ψ) +
∫

d3x′ ωij(x, x′)[∂tEi(x) + qψ̄γiψ(x)]Bj(x′)− 1
2
(E2 + B2)− λ(∇ · E− qψ̄ψ). (39)

In addition to the constraint (3) enforced by λ, the equations of motion for the action (38) are

Ei = ∂iλ−
∫

d3x′ωij(x, x′)∂tBj(x′) (40)

Bi =
∫

d3x′ωij(x, x′)[∂tEj(x′) + J j(x′)] , (41)

which correspond to the Helmholtz decomposition of the electromagnetic field coupled to an
external source. Gauss’ law for the magnetic field is recovered by taking the divergence of (41),
while the time-dependent Maxwell Equations (2) and (4) are obtained by applying a curl on (41)
and (40) respectively.

The standard formalism in terms of the potentials can also be recovered solving the non-time
evolving Equation (5). Applying the variable change B → A such that B = ∇× A along with the
relabelling A0 ≡ −λ, it can be shown that (38) becomes

L = (∂tE + J) ·AT −
1
2

[
E2 + (∇×AT)

2
]
+ A0 (∇ · E− ρ) , (42)
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which is of a similar form to (22). Hence, the introduction of the vector potential makes the non-local
Lagrangian density become the standard first-order Lagrangian density after removing the excess
longitudinal component of A. However, it is important to keep in mind that (38) and (42) are not fully
equivalent, as the equation ∇ · B = 0 holds as a proper Euler-Lagrange equation for (38), while it is
assumed off-shell for (42).

Nevertheless, it is not difficult to see that (38) can be obtained by introducing the explicit
expression of AT into (42)

Ai
T(x) =

∫
d3x′ωij(x, x′)Bj(x′) (43)

and assuming (5) holds. Therefore, even though the formalism in terms of (38) is not equivalent to the
one of (1) or (42), in some instances it will be useful to obtain results for the non-local viewpoint by
simply substituting (43) wherever A appears in results derived from the local viewpoint, which
is equivalent to imposing the Coulomb gauge, i.e., ∇ · A = 0 or A = AT. This property can
be illustrated by considering the Lagrangian of the non-relativistic particle (8). Inserting (43) and
relabelling λ ≡ −A0, a new Lagrangian is obtained,

LNL,p[x] =
1
2

mẋ2 + e
∫

d3x′ωij(x, x′) ẋiBj(x′) + eλ(x). (44)

Alternatively, (44) could have been obtained by applying the same procedure that was used to
obtain (8) on (38). While the Lagrangian LNL,p appears to be non-local with respect to the magnetic
field, the equations of motion are expectedly the Lorentz force (9), which is local in both E and B.
This is reassuring, as in a classical δS = 0 context no possibly non-local phenomenon is observed.

Things are not so simple however in a quantum context, a fact best depicted by considering the
magnetic AB effect with Feynman’s path integral method. The details of the setup considered here to
analyse the AB effect are described in Figure 1. The action for this process is given by SNL,p =

∫
dtLNL,p

with λ = 0, and it can thus be proven that the propagator for the electrons getting from the source to
the screen is

K(xf, tf; x1, t1) = exp
[

ie
h̄

∫
above

dsi
∫

d3x′ωij(s, x′)Bj(x′)
] ∫

above
D[x(t)] exp

[
iS0

h̄

]

+ exp
[

ie
h̄

∫
below

dsi
∫

d3x′ωij(s, x′)Bj(x′)
] ∫

below
D[x(t)] exp

[
iS0

h̄

]
. (45)

This result can be obtained using an analogous method to the one shown in Ref. [14]. The term
S0 =

∫
dt 1

2 mẋ2 is the free particle action while subscripts “above” and “below” in (45) are used
to distinguish paths that curl above the cylinder from those that curl below. As it is known from
the standard analysis of the AB effect, all paths curling above have a common phase, while those
curling below have another, a property that appears explicitly in (45). In contrast to the standard
analysis however, these phases are explicitly non-local with respect to the physically relevant quantity,
the magnetic field B inside the cylinder, instead of being local in the vector potential A outside.
Therefore, the non-locality suggested by the standard derivation of the magnetic AB effect appears
naturally in the non-local prescription of electrodynamics described here. While the result (45) can
be derived by simply applying the Coulomb gauge on (8) [26], we stress how here it has really been
proven from a more fundamental action (38), and not from an arbitrary choice of gauge.
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Figure 1. Experimental setup we will consider to analyse the magnetic AB effect. A source of electrons
is located at the point x1, from which one is emitted at a time t1. Between the source and a screen
on the other side of the setup there is a wall, containing two slits A and B, and a long impenetrable
cylinder behind it. Inside the cylinder, oriented parallel to the z-axis, there is a magnetic field B = ẑB0,
while outside B = 0. The electrons can trace two types of deterministic paths to reach the point xf on
the screen at a time tf, either above (e.g., γ1) or below (e.g., γ2) the cylinder.

The cylindrical symmetry of the setup ensures that an analytical value of the nonlocal interaction
term, equivalent to the transverse component AT of the vector potential (43), can be obtained,

∫
d3x′ωij(x, x′)Bj(x′) =

[
ΦB

2πρ
ϕ̂ϕϕ

]i
, (46)

where ρ2 = (x1)2 + (x2)2 is the distance squared with respect to the center of the cylinder and ϕ̂ϕϕ is the
unit vector associated with the azimuthal angle. This result can be derived by evaluating the volume
integral directly as we have done for completeness in the Appendix A, or treating AT as a shorthand
for the interaction term (left-hand-side (LHS) of (46)) and recycling the standard derivation [14].
The relevant phase difference is thus the expected AB phase,

∆ϕ =
e
h̄

[∫
above

AT · ds−
∫

below
AT · ds

]
=

eΦB

h̄
. (47)

where ΦB is the magnetic flux through the cylinder.

4. Conclusions

Non-locality is a reasonably objectionable feature, but we feel the fomulation of electrodynamics
treated here, elaborating and improving on a proposal sketched in [6], will at least be useful to
shed some light on the subtle topic of action functionals independent of potentials. We have argued
how non-locality seems to be unescapable in an electromagnetic field-dependent formalism due to
the non-trivial commutation relations {E, B}. It is nonetheless important to keep in mind that the
field-matter action (38) is not completely independent of potentials, as the Lagrange multiplier λ in (38)
is actually just a relabelled (Coulomb gauge) scalar potential. However, it is consistent to assume λ = 0
in the context of electric-magnetic duality or the magnetic AB effect, meaning they can be studied
without concern.

On one hand, the former can be seen as a manifestation of the phase-space rotation symmetry of
the SHO. It is worth recalling how this symmetry was derived with an action where all the Maxwell
equations hold solely on-shell, in contrast with past derivations, which assume some of them off-shell.
On the other hand, an arguably plausible interpretation for the AB effect was deduced. In a classical
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context, where δS = 0, the equations of motion (9) of (44) are local in both E and B despite the
non-locality of the action. Therefore the correspondence principle holds, i.e., when h̄ → 0 the
interaction of the particle with the electromagnetic field is local. In a quantum context however
trajectories with δS 6= 0 are not negligible, hence the non-locality of the action can materialize (45) with
the AB effect. Through this scope, manifest non-locality is thus an exclusively quantum affair, and we
believe this is also one of the lessons of this note.

We would like to remark that we are not advocating to avoid the use of field potentials to analyze
electrodynamics or its generalizations (nonabelian gauge theories). The purpose of this work is to
point out that it could be useful to reanalyze electrodynamics from a nonlocal perspective (using only
the electric and magnetic fields). In so doing this we have filled a gap in the literature and obtain,
as a bonus, new insights on two important topics in electrodynamics: i) the electromagnetic duality
symmetry, and ii) the AB effect.

After finishing this work we became aware of the work [27], concerning a formulation of
electrodynamics without a gauge-fixing procedure. We think that there is a close connection with our
work that could merit to be further explored.
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Appendix A. Interaction Term in the A.B. Effect

Preliminary considerations:

• The expression for the magnetic field is B(x) = ẑΘ(R2 − x2 − y2), where Θ is the Heaviside step
function and x = (x, y, z).

• The volume region is a cylinder C of radius R, with a length L1 and L2 over and under the xy plane
respectively. Furthermore, it will be assumed that the cylinder is long i.e., L2

1, L2
2 � R2, x2 + y2.

Due to its equivalence with the nonlocal interaction term (LHS of (46)), we will use AT as a
shorthand to refer to it. It can thus be proven that

AT(x) =
B0

4π
ẑ×

∫
C

d3x′∇
(

1
|x− x′|

)
=

B0

4π
ẑ×

∫
∂C

dS′
1

|x− x′| .

where a corollary of the Divergence theorem was used in the second equality.
The surface of the cylinder is composed by a circular wall and the two lids on either end.

However, since the lids have a normal vector dS′ ∝ ẑ and ẑ × ẑ = 0, their contributions to the
total integral are 0. Consequently, the only relevant contribution to the integral comes from the circular
wall, with a normal vector dS′ = ρ̂ρρ′Rdφ′dz′ where ρ̂ρρ′ = (cos φ′, sin φ′, 0):

=
B0

4π
ẑ×

∫ 2π

0
Rdφ′ρ̂ρρ′

∫ L1

−L2

dz′
(

z′2 + α(φ′)
)−1/2

(A1)

=
B0

4π
ẑ×

∫ 2π

0
Rdφ′ρ̂ρρ′

[
log
(√

α(φ′) + L2
1 + L1

)
+ log

(√
α(φ′) + L2

2 + L2

)
− log

(
α(φ′)

)]

where α(φ′) = (x− R cos φ′)2 + (y− R sin φ′)2 was introduced for brevity. However, expressions of
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the form log
(√

α(φ′) + L2 + L
)

can be disregarded by taking into account the first
preliminary consideration,

∫ 2π

0
dφ′ρ̂ρρ′ log

(√
α(φ′) + L2 + L

)
≈ log(2L)

∫ 2π

0
dφ′ρ̂ρρ′ = 0.

Therefore the expression for AT is now a one-dimensional integral

AT(x) = −
B0R
4π

∫ 2π

0
dφ′φ̂φφ

′ log
[
(x− R cos φ′)2 + (y− R sin φ′)2

]
. (A2)

where ẑ× ρ̂ρρ′ = φ̂φφ
′, with φ̂φφ

′
= (− sin φ′, cos φ′, 0). Equation (A2) can be reinterpreted as a complex

integral, zA = Ax
T + iAy

T, over a circle of radius R on the complex plane

zA(x, y) = − B0

4π

∮
γ

dz log |z− z0|2 (A3)

where z0 = x + iy and γ(s) = Reis. Ignoring for now the multiplicative constant −B0/4π, the integral
can be split into two, ∮

γ
dz log |z− z0|2 =

∮
γ

dz log(z− z0) +
∮

γ
dz log(z∗ − z∗0) (A4)

=
∮

γ
dz log(z− z0) + R2

∮
γ

dz
log(z− z∗0)

z2 (A5)

where the latter equality is due to the easily proven general property for circular contour integrals,∮
γ dz f (z∗) = R2

∮
γ dz f (z)/z2. The value of (A5) will depend on whether z0 is inside or outside

the disk delimited by γ on the complex plane C (see Figure A1). In terms of the original problem,
this means that the expressions for AT inside and outside the solenoid will be different. In the latter
case, ρ2 ≡ x2 + y2 > R2, meaning that

zA(x, y) =
B0πR2

2π

−y + ix
x2 + y2 . (A6)

and

AT(x) =
B0πR2

2π(x2 + y2)
(−y, x, 0) =

B0πR2

2πρ
φ̂φφ =

ΦB

2πρ
φ̂φφ (A7)

where ΦB = B0πR2 and φ̂φφ = (−y/ρ, x/ρ, 0). This is the expected result outside the cylinder. On the
other hand, inside ρ2 ≡ x2 + y2 < R2. Evaluating (A5) in this situation gives

zA =
B0

2
(−y + ix) (A8)

so that
AT(x) =

B0

2
(−y, x, 0) =

B0ρ

2
φ̂φφ. (A9)

This is the expected result for the transverse component of the vector potential in a finite volume
under a constant magnetic field (in this case, a cylinder with B = B0ẑ), where AT(x) = − 1

2 x× B.
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Figure A1. Complex plane representation of z0 = x + iy outside and inside the cylinder.
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