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Abstract: In this paper, we propose a bimodal extension of the Birnbaum–Saunders model by
including an extra parameter. This new model is termed flexible Birnbaum–Saunders (FBS) and
includes the ordinary Birnbaum–Saunders (BS) and the skew Birnbaum–Saunders (SBS) model as
special cases. Its properties are studied. Parameter estimation is considered via an iterative maximum
likelihood approach. Two real applications, of interest in environmental sciences, are included,
which reveal that our proposal can perform better than other competing models.

Keywords: flexible skew-normal distribution; skew Birnbaum–Saunders distribution; bimodality;
maximum likelihood estimation; Fisher information matrix

1. Introduction

The BS distribution was originally introduced in [1] to model the fatigue in the lifetime of certain
materials. During the last decades, mainly due to its good properties, the use of this model spread out
to other fields, such as economics and environmental sciences. In these applied scenarios, quite often,
departures of the BS model are found, and therefore it is necessary to introduce some improvements.
In this paper, we focus on those situations in which extra asymmetry or bimodality are present in our
data, and a generalization of the BS model should be considered to deal with these issues. To reach this
end, a flexible BS model is introduced. Our proposal is based on the flexible skew-normal distribution
introduced in [2], and includes, as particular cases, the BS and skew BS distribution. Next, we briefly
describe the key aspects that properly combined result in the flexible BS model. These are asymmetry,
bimodality and main features of the basic BS model.

1.1. Asymmetry

Earlier results on asymmetric models started with the pioneering works by [1,3,4]. This topic
regained interest with the study in [5], which from a Bayesian point of view developed a new
asymmetric model which was later studied in depth by Azzalini [6], from a classical point of view.
Azzalini model was termed the skew-normal distribution. Following Azzalini’s method, a general
family of asymmetric models termed skew-symmetric models appeared in the literature. The following
lemma, originally presented in [6], can be considered as the starting point for the development of these
asymmetric models.
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Lemma 1. Let f0 be a probability density function (pdf) which is symmetric around zero, and G a cumulative
distribution function (cdf) such that G′ exists and is a symmetric pdf around zero. Then

fZ(z; λ) = 2 f0(z)G(λz), z ∈ R, (1)

is a pdf for λ ∈ R.

Equation (1) provides the skew version of f0(·) with skewing function G(·) and λ the skewness
parameter. If f0(·) = φ(·) and G(·) = Φ(·), the pdf and cdf, respectively, of the N(0, 1) distribution,
then the skew-normal is obtained, whose pdf is

fZ(z) = 2φ(z)Φ(λz), z ∈ R, λ ∈ R . (2)

Other examples of skew models are: skew-t, skew-Cauchy, skew-elliptical, and generalized
skew-elliptical. We highlight that all of them are unimodal distributions.

1.2. Bimodality

Another fundamental result in our proposal will be the following lemma, which was given in
Gómez et al. [2]. These authors extended (1), by introducing a parameter δ in f0, in such a way that for
certain values of δ the resulting distribution is bimodal.

Lemma 2. Let f be a symmetric pdf around zero, F the corresponding cdf and G an absolutely continuous cdf
such that G′ exists and is symmetric around zero. Then

g(z; δ, λ) = cδ f (|z|+ δ)G(λz), z ∈ R, λ, δ ∈ R (3)

is a pdf and c−1
δ = 1− F(δ).

Taking f (·) = φ(·) and G(·) = Φ(·), in (3), the flexible skew-normal (FSN) model was
obtained and studied in detail in [2]. There, it was proved that the FSN model can be bimodal
for certain values of δ. Notice that the FSN model is obtained by adding an extra parameter, δ, to the
skew-normal distribution proposed in [6]. That is a random variable (rv) Z follows a FSN distribution,
Z ∼ FSN(δ, λ), if its pdf is given by

f (z; δ, λ) = cδφ(|z|+ δ)Φ(λz), z ∈ R, λ, δ ∈ R (4)

where φ and Φ are the pdf and cdf of the N(0, 1) distribution, respectively, and c−1
δ = 1−Φ(δ).

Other recent proposals in the contemporary literature dealing with bimodality are the extended
two-pieces skew-normal model (ETN), introduced in [7] and the uni-bi-modal asymmetric power
normal model given in [8] whose properties are based on results given in [9,10]. Applications of
interest in Economics are given in [11]. All these references show the interest in the latest years for
modelling bimodality.

1.3. BS Model

The BS or fatigue life distributions was proposed for modelling survival time data and material
lifetime subject to stress in [12,13]. This model is asymmetric and only fits positive data. The pdf of a
BS distribution is given by

fT(t) = φ(at)
t−3/2(t + β)

2α
√

β
, t > 0, (5)
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where

at = at(α, β) =
1
α

(√
t
β
−
√

β

t

)
, (6)

α > 0 is a shape parameter, β > 0 is a scale parameter and the median of this distribution. (5) is denoted
as T ∼ BS(α, β). It is well known that α is the parameter that controls asymmetry. Specifically, (5)
becomes more asymmetric as α increases and symmetric around β as α gets close to zero. It can be
seen in [13] that (5) can be obtained as the distribution of the random variable

T = β

[
α

2
Z +

√(α

2
Z
)2

+ 1

]2

, (7)

where Z ∼ N(0, 1).
The BS model has been applied to a variety of practical situations. However, quite often, although

the data suggest a BS distribution, some deficiencies are observed in the fitted BS model. This problem
has motivated an increasing interest in its generalizations. We highlight that, recently, this model
was extended by [14] to the family of elliptical distributions, this is known in the literature as the
generalized Birnbaum–Saunders (GBS) distribution. Later, [15] proposed an extension based on the
elliptical asymmetric distributions, known as the doubly generalized Birnbaum–Saunders model.
On the other hand, [16] presents the asymmetric BS distribution with five parameters called the
extended Birnbaum–Saunders (EBS) distribution. Other types of extensions are the asymmetric
epsilon-Birnbaum–Saunders model given in [17], models in [18] based on the slash-elliptical family
of distributions, and the generalized modified slash Birnbaum–Saunders (GMSBS) proposed in [19],
which is based on [20].

In these extensions, we find that the asymmetric BS models previously cited, such as [15,21],
are designed to fit data with greater or smaller asymmetry (or kurtosis) than that of the ordinary BS
model, but they are not appropriate for fitting bimodal data. On the other hand, we highlight that the
extension given in [21], which can become bimodal for certain combination of parameters is unable to
capture bimodality unless it is accentuated enough.

Therefore there exists a real need for an asymmetric model, based on the BS distribution, and able
to fit data presenting bimodal features, which is not uncommon in the literature. So the present paper
presents a flexible BS distribution able to model skewness and to fit data with and without bimodality.

The paper is organized as follows. Section 2 is devoted to the development of an asymmetric
uni-bimodal BS model. Its properties are studied in depth. Specifically, a closed expression for the
cumulative distribution function (cdf) is given in terms of the cdf of a bivariate normal distribution.
Some of the models proposed in [15,22] are obtained as particular cases. The shape and bimodality
of the distribution are studied. It is shown that this model is closed under a change of scale and
reciprocity. Survival and hazard functions are also obtained. Section 3 deals with moments derivation
and iterative maximum likelihood estimation methods for the new model. Section 4 is devoted to real
data applications of interest in environmental sciences. The first one deals with a bimodal situation
in which our proposal performs better than other BS models and a mixture of normal distributions.
The second one is taken from [16], where the extended BS model was proposed as the best for this
dataset. It is shown that the FBS outperforms the extended BS model.

2. Results in Flexible Birnbaum-Saunders

Based on the flexible skew-normal model proposed in [2], we extend the Birnbaum–Saunders.
The main idea is to apply (7) with Z ∼ FSN(δ, λ) introduced in (4). This new model is called the
flexible Birnbaum–Saunders (FBS) distribution whose pdf is given by

f (t; α, β, δ, λ) =
t−3/2(t + β)

2αβ1/2(1−Φ(δ))
φ(|at|+ δ)Φ(λat), (8)
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with at defined in (6), t > 0, α > 0, β > 0, δ ∈ R, λ ∈ R, φ(·) and Φ(·) the pdf and cdf of a N(0, 1),
respectively. We use the notation T ∼ FBS(α, β, δ, λ). The inclusion of parameters δ and λ makes
our approach more flexible than the extensions previously discussed. λ is a parameter that controls
asymmetry (skewness) and δ is a shape parameter related to bimodality of our proposal.

If λ = 0 then we obtain, as a particular case, the model introduced by [22].
Figures 1 and 2 depict the behaviour of (8) for some values of parameters, illustrating that it can

be bimodal for some combinations of them.

2.1. Interpretation of Parameters.

In both figures the values of parameters α and β are fixed. We study the effects of

(i) λ positive versus λ negative.
(ii) Increasing δ > 0 in Figure 1. Decreasing δ < 0 in Figure 2.

Figure 1 suggests that, for α and β fixed, if a positive value of δ is considered then we have a
unimodal distribution and the peak of the distribution increases when δ increases: δ = 0.75 (red solid
line), δ = 1.5 (green dashed line), . . . , δ = 3 (blue dashed dotted line). This happens for positive and
negative values of λ.

On the other hand, in Figure 2, we have different situations. This plot suggests that, for α and β

fixed, if a negative value of δ is considered then a bimodal distribution can be obtained. For positive
λ, if δ decreases: δ = −0.75 (red solid line), δ = −1.5 (green dashed line), . . . , δ = −3 (blue dashed
dotted line), then the peaks decrease and bimodality becomes more accentuated. For negative λ, if δ

decreases, then main peak increases and bimodality becomes less accentuated.
Also, note in Figures 1 and 2, that in the FBS model the pdf for negative λ is no longer the specular

image of plot for positive λ.
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Figure 1. FBS distributions for α = 0.75, β = 1 (both fixed). In (a) λ = 1 versus (b) λ = −1. Increasing
values of δ > 0: δ = 0.75 (red solid line), 1.5 (green dashed line), 2.25 (black dotted line) and 3.0 (blue
dashed and dotted line).
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Figure 2. Flexible Birnbaum–Saunders (FBS) distributions for α = 0.30, β = 0.75 (both fixed). In (a)
λ = 0.5 versus (b) λ = −0.5. Decreasing values of δ < 0: δ = −0.75 (red solid line), −1.5 (green dashed
line), −2.25 (black dotted line) and −3.0 (blue dashed and dotted line).

2.2. Properties

Next, important properties of the FBS model are presented. First an explicit expression for the cdf
is given in terms of the cdf of a bivariante normal distribution.

Proposition 1. Let T ∼ FBS(α, β, δ, λ). Then the cdf of T is

FT(t) =


cδΦBNλ

(
λδ√
1+λ2 , at − δ

)
, if 0 < t < β

cδ

[
ΦBNλ

(
λδ√
1+λ2 ,−δ

)
+ ΦBNλ

(
− λδ√

1+λ2 , at + δ
)
−ΦBNλ

(
− λδ√

1+λ2 , δ
)]

, if t ≥ β,
(9)

where ΦBNλ
(x, y) is the cdf of a bivariate normal distribution, with mean vector µ′ = (0, 0) and

covariance matrix

Ωλ =

(
1 ρλ

ρλ 1

)
where ρλ = − λ√

1+λ2 . (10)

Proof. It can be seen in Appendix A.

Next some particular cases of interest for λ and δ parameters are discussed. Results about the
shape of fT(·) are included.

2.2.1. Effect of λ.

Corollary 1. Let T ∼ FBS(α, β, δ, λ). If λ = 0 then the cdf of T is

FT(t) =

{
cδ
2 Φ(at − δ), if 0 < t < β
cδ
2 {Φ(at + δ) + 1− 2Φ(δ)} , if t ≥ β .

(11)

Proof. If λ = 0 then ρλ, defined in (10), is equal to zero, and since in the bivariate normal distribution
uncorrelation implies independence, we have that

ΦBNλ=0(x, y) = Φ(x) Φ(y), ∀(x, y) .

Taking into account that Φ(0) = 1/2 and Φ(−δ) = 1−Φ(δ), we have that (9) reduces to (11).

Result in Corollary 1 corresponds to the model studied in [22].

2.2.2. Effect of δ.

Corollary 2. Let T ∼ FBS(α, β, δ, λ). If δ = 0 then FT reduces to FT(t) = 2ΦBNλ
(0, at), for t > 0 .
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Corollary 2 is a particular case of models studied in [15].

2.2.3. Shape of fT(·).

Proposition 2. Let T ∼ FBS(α, β, δ, λ). Then the pdf given in (8) is nondifferentiable at t = β.

Proof. It follows from (8), by noting that if t = β then at = 0 and the absolute value function is not
differentiable at zero.

Proposition 3. Let T ∼ FBS(α, β, δ, λ). The pdf given in (8) can be bimodal. The modes are the solution of the
following non-linear equations.

1. 0 < t∗1 < β solution of

at1 = δ + λ
φ(λat1)

Φ(λat1)
+

a′′t1{
a′t1

}2 . (12)

2. t∗2 > β solution of

at2 = −δ + λ
φ(λat2)

Φ(λat2)
+

a′′t2{
a′t2

}2 , (13)

With at given in (6), a′t and a′′t the first and second derivatives of at with respect to t, respectively.

Proof. It is given in Appendix A.

Comments on the use of (12) and (13) are included in Appendix A, Remark A1.

Remark 1. Equations obtained in (12) and (13) are similar to those we have in the skew normal and BS model.

1. Let Z ∼ SN(λ), λ ∈ R. Then Z is unimodal and the mode, z∗, is given by the solution of the
non-linear equation

z = λ
φ(λz)
Φ(λz)

.

2. Let T ∼ BS(α, β), α, β > 0. Then T is unimodal and the mode, t∗, is given by the solution of the
non-linear equation

−at
{

a′t
}2

+ a
′′
t = 0.

Next it is shown that the p-th quantile of T can be given in terms of the pth quantile of the
FSN(δ, λ). Also it is proved that the FBS model is closed under change of scale and reciprocity.

Theorem 1. Let T ∼ FBS(α, β, δ, λ), with α, β ∈ R+ and δ, λ ∈ R. Then

(i) Let tp be the pth quantile of T , 0 < p < 1.

tp = β

(
α

2
zp +

√(α

2
zp

)2
+ 1

)2

(14)

where zp denotes the pth quantile of Z ∼ FSN(δ, λ).
(ii) kT ∼ FBS(α, kβ, δ, λ) for k > 0.

(iii) T−1 ∼ FBS(α, β−1, δ,−λ).

Proof. It can be seen in Appendix A.
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2.2.4. Lifetime Analysis

The BS model is commonly used to explain survival and material resistance data. The survival
and risk (or hazard) functions are important indicators in such fields. For the FBS model these functions
are given next.

Proposition 4. Let T ∼ FBS(α, β, δ, λ) with α, β ∈ R+ and δ, λ ∈ R. Then

(i) The survival function is S(t) = P[T > t] = 1− FT(t) with FT(·) given in (9).
(ii) The hazard function, r(t) = f (t)/S(t), is

r(t) =


cδa′tφ(|at |+δ)Φ(λat)

1−cδΦBNλ

(
λδ√
1+λ2

,at−δ

) , if 0 < t < β

cδa′tφ(|at |+δ)Φ(λat)

1−cδ

[
ΦBNλ

(
λδ√
1+λ2

,−δ

)
+ΦBNλ

(
− λδ√

1+λ2
,at+δ

)
−ΦBNλ

(
− λδ√

1+λ2
,δ
)] , if t ≥ β

with ΦBNλ
(·) the cdf of the bivariate normal given in Proposition 1.

In Figure 3, the hazard function for those pdf’s considered in Figures 1 and 2 are plotted. These
graphs show that, for the FBS distribution, the hazard function admits a variety of shapes, which is
interesting from an applied point of view.
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Figure 1 (a)
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Figure 1 (b)
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Figure 2 (a)
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2

4
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8

Figure 2 (b)

Figure 3. Hazard function of the FBS distribution for plots corresponding to Figure 1 (a), (b): α = 0.75,
β = 1 (both fixed), δ = 0.75 (red solid line), 1.5 (green dashed line), 2.25 (black dotted line) and 3.0
(blue dashed dotted line), in (a) λ = 1 versus (b) λ = −1. For plots corresponding to Figure 2 (a), (b):
α = 0.30, β = 0.75 (both fixed), δ = −0.75 (red solid line), –1.5 (green dashed line), –2.25 (black dotted
line) and –3.0 (blue dashed dotted line), in (a) λ = 0.5 versus (b) λ = −0.5.

Remark 2. More complicated hazard functions than the traditional ones are obtained when we are dealing with
models with complex structure, as it happens with the FBS. For instance, in Figure 3, we have two situations:

1. r(t) corresponding to Figure 1a,b. These are, first, quickly increasing, later decreasing more slowly or even
in a flat way. It can be applied in practical situations in which the risk of failure increases quickly until
certain point in which its behaviour becomes flatter. As [23] points out, the flat area is very interesting in
survival analysis and reliability contexts.
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2. r(t) corresponding to Figure 2a,b are increasing-decreasing-increasing. This kind of hazard functions has
been recently introduced and discussed in literature, due to its interest in reliability of systems, see for
instance [23] or [24] (and references therein). In plot for Figure 2b, r(t) is (quickly) increasing—or (quickly)
decreasing. On the other hand, for Figure 2a the initial effect increasing—decreasing is less accentuated.

3. Moments and Maximum Likelihood Estimation

Moments of the FBS model can be obtained from the moments of the flexible skew-normal model
given in [2]. The following results present important properties relating those distributions, and the
expressions for the first moment and variance in the FBS model.

Theorem 2. Let T ∼ FBS(α, β, δ, λ) and Z ∼ FSN(δ, λ). Then E(Tr), r = 0, 1, . . ., always exists. Moreover

E(Tr) =
βr

4r

2r

∑
k=0

(
2r
k

)
E
[
(αZ)k

(
α2Z2 + 4

) 2r−k
2

]
, r = 0, 1, . . . . (15)

Proof. From (7), we can write

T =
β

4

{
αZ +

(
α2Z2 + 4

)1/2
}2

.

Taking expectation of the rth-power of T

E(Tr) =
βr

4r E
[{

αZ +
(

α2Z2 + 4
)1/2

}2r
]

. (16)

From (16), note that for r = 0, 1, . . ., E(Tr) exists if and only if E(Z2r) exists. On the other hand, it
can be seen in [2] that E(Z2r) always exists, and therefore E(Tr) too.

Finally note that (15) is the result of applying the binomial formula to (16).

Next, explicit expressions for the expected value and variance of T ∼ FBS(α, β, δ, λ) are given.
In these expressions, κj = ESFN

(
Zj

2

√
α2Z2 + 4

)
with Z ∼ FSN(δ, λ).

Theorem 3. Let T ∼ FBS(α, β, δ, λ). Then

E(T) = β

[
1 + ακ1 +

α2

2
cδ

{
(1 + δ2)(1−Φ(δ))− δφ(δ)

}]
, (17)

E(T2) = β2
[

7α4cδ

16

(
(3 + 6δ2 + δ4)(1−Φ(δ))− δ(5 + δ2)φ(δ)

)
+ α3κ3 + 2ακ1 + 1

]
+ 2α2β2cδ

(
(1 + δ2)(1−Φ(δ))− δφ(δ)

)
and

Var(T) = β2
[

7α4cδ

16

(
(3 + 6δ2 + δ4)(1−Φ(δ))− δ(5 + δ2)φ(δ)

)
+ α3κ3 − α2κ1 + 1

]
− α2β2cδ

4

(
(1 + δ2)(1−Φ(δ))− δφ(δ)

) (
α2cδ

(
(1 + δ2)(1−Φ(δ))− δφ(δ)

)
+ 4(1− ακ1)

)
where κj = EFSN

(
Zj

2

√
α2Z2 + 4

)
and Z ∼ FSN(δ, λ).
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Proof. These results follows from Theorem 2 and the expressions of κj, which have been computed by
using the results for moments of Z ∼ FSN(δ, λ) obtained in [2].

As illustration, note that for the case r = 1, (15) reduces to

E(T) =
β

4

[
E(α2Z2 + 4) + 2E

(
(αZ)

√
α2Z2 + 4)

)
+E(α2Z2)

]
= β

[
1 + ακ1 +

α2

2
E(Z2)

]
,

it can be seen in [2] that E(Z2) = cδ(1 + δ2) (1−Φ(δ))− δφ(δ)), and so (17) is obtained.

3.1. Maximum Likelihood Estimators

Parameter estimation in the BS model has been the topic of interest in many papers. Among
others, we mentioned [25–27]. To estimate the parameters in the usual BS model, the modified moment
method (MME) and maximum likelihood (MLE) are commonly used. To start the maximum likelihood
approach moment estimators are used which are given by

β̂M =
√

sr, α̂M =

√
2
(√

s
r
− 1
)

.

where s = 1
n ∑n

i=1 ti and r =
(

1
n ∑n

i=1
1
ti

)−1
are the sample (arithmetic) and harmonic mean,

respectively. Relevant aspects of this distribution such as its robustness with respect to parameter
estimation and O(n−1) bias corrections for MLEs, can be seen in [25–27].

In the following, we discuss MLE estimation for the FBS model in depth. Thus, given
n observations independent and identically distributed, T1, T2, ..., Tn, with Ti ∼ FBS(α, β, δ, λ),
the log-likelihood function for the parameter vector θ = (α, β, δ, λ)′ is given by

`(θ) = −n
(

log(α) +
1
2

log(β) + log (1−Φ(δ))

)
− 3

2

n

∑
i=1

log(ti) +
n

∑
i=1

log(ti + β)

− 1
2

n

∑
i=1

(a2
ti
+ 2δ|ati |+ δ2) +

n

∑
i=1

log (Φ(λati )). (18)

To maximize l(θ) in θ, consider the first derivatives of l(θ) with respect to α, β, δ and λ, denoted
as l̇α, l̇β, l̇δ and l̇λ, respectively. From l̇α = 0, l̇β = 0, l̇δ = 0 and l̇λ = 0, the likelihood equations are
given by

− n +
n

∑
i=1

a2
ti
− δ

n

∑
i=1
|ati | − λ

n

∑
i=1

ati

φ(λati )

Φ(λati )
= 0 (19)

− n
2β

+
n

∑
i=1

1
ti + β

+
1

2αβ3/2

n

∑
i=1

(
sgn(ati ) (|ati |+ δ)− λ

φ(λati )

Φ(λati )

)
ti + β√

ti
= 0 (20)

δ− φ(δ)

1−Φ(δ)
= − 1

n

n

∑
i=1
|ati | (21)

n

∑
i=1

ati

φ(λati )

Φ(λati )
= 0 (22)

in which sgn(·) denotes the sign function.
The solution to the previous system of equations must be obtained by iterative methods such as

the Newton-Raphson or quasi-Newton procedures, which can be implemented using the statistical
software R, [28].
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As initial estimates of α and β can be proposed the estimates of these parameters obtained in the
basic BS model, denoted as α̂0 and β̂0. These estimates can be plugged into (21) and (22) to obtain
preliminar estimates of δ and λ, δ̂0 and λ̂0, and so, start the recursion.

3.2. Expected and Observed Information Matrices

Recall that, the Fisher information matrix is given by

I(θ) =
(

ji,j
)

i,j=α,β,δ,λ ,

which entries are equal to minus the second partial derivatives of the log-likelihood function given
in (18) with respect to the parameters in the model. They are denoted as jαα = − ∂2

∂α2 l(θ), and so on.
So we have

jαα = − n
α2 +

1
α2

n

∑
i=1

(
3a2

ti
+ 2δ|ati |

)
+

λ

α2

n

∑
i=1

ati wi (2 + λati Bi) ,

jβα = − 1
α3β2

n

∑
i=1

(
β2 − t2

i
ti

)
+

1
2α2β3/2

n

∑
i=1

(δsgn(ati ) + λwi(−1 + λati Bi))

(
ti + β√

ti

)
,

jββ = − n
2β2 +

n

∑
i=1

1
ti + β

+
1

α2β3

n

∑
i=1

ti +
1

4αβ5/2

n

∑
i=1

(δsgn(ati )− λwi)

(
3ti + β√

ti

)

+
λ2

4α2β3/2

n

∑
i=1

wiBi

(
ti + β√

ti

)2
,

jδα = − 1
α

n

∑
i=1
|ati |, jδβ = − 1

2α2β3/2

n

∑
i=1

sgn(ati )

(
ti + β√

ti

)
,

jλα =
1
α

n

∑
i=1

ati wi (1− λati Bi) , jλβ =
1

2αβ3/2

n

∑
i=1

wi (1 + λati Bi)

(
ti + β√

ti

)
,

jδδ = n (wδ(δ− wδ) + 1) , jδα = jδβ = jλδ = 0, jλλ =
n

∑
i=1

a2
ti

wiBi

where w = φ(λat)
Φ(λat)

, wδ = φ(δ)/(1−Φ(δ)) and B = λat + w.
The Fisher (expected) information matrix would be obtained by computing the expected values of

the above second derivatives. Taking in this matrix δ = λ = 0, that is, T ∼ BS(α, β), and, using results
in [21], we have

I(θ) =


2
α2 0 − 1

α

√
2
π 0

0 α−2β−2
(

1 + αq(α)√
2π

)
0 1√

2π
1

αβ3/2 A1(t)

− 1
α

√
2
π 0 1− 2

π 0
0 1√

2π
1

αβ3/2 A1(t) 0 2
π

 ,

where A1(t) = E
(

ti+β√
ti

)
, q(α) = α

√
2
π −

π exp( 2
α2 )

2 er f c( 2
α ), with er f c(·) the error function, i.e.,

er f c(x) = 2√
π

∫ ∞
x exp(−t2)dt, see [29].

It can be shown that |I(θ)| 6= 0, so the Fisher information matrix is not singular at δ = λ = 0.
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Hence, for large samples, the MLE, θ̂, of θ is asymptotically normal, that is,

√
n
(

θ̂− θ
) L−→ N4(0, I(θ)−1),

resulting that the asymptotic variance of the MLE, θ̂, is the inverse of Fisher information matrix I(θ).
Since the parameters are unknown, usually the observed information matrix is considered where the
unknown parameters are estimated by ML.

Asymptotic confidence intervals for the parameters in the FBS model can be obtained from
these results.

4. Numerical Illustrations

The numerical illustrations introduced next are aimed to show that the FBS model can be an
alternative to modelling unimodal or bimodal data from different areas. First illustration is related
to nickel content in soil samples analyzed at the Mining Department (Departamento de Minas) of
Universidad de Atacama, Chile. We start by showing that both, BS and skew-BS (SBS) models are not
able to capture bimodality present in this data set. Thus, the FBS model turned out to be a good option,
to fit the data even better than a mixture of two normal distributions, which is another competing
alternative to fit bimodal data. Second illustration is related to air pollution in New York city in USA,
which was previously analyzed in [16,30]. In this case, it is shown that FBS model again provides
a better fit than BS and SBS. As competing model the extended Birnbaum-Saunders (EBS) is also
considered. Recall that the EBS(α, β, σ, ν, λ) is a five-parameter model proposed in [16] where the
parameter σ affects the kurtosis; ν and λ affect the skewness; and α and β the shape and scale as in the
usual BS model. We highlight that, for this dataset, the FBS(α, β, δ, λ) model provides a better fit than
that given by the EBS(α, β, σ, ν, λ) in [16] with the merit of using less parameters.

4.1. Nickel Concentration

For illustrative purposes, we apply the FBS model to a data set related to nickel content in soil
samples. This data set encompasses 85 observations of the variable concentration of nickel with
sample mean = 21.588, sample standard deviation = 16.573, sample asymmetry = 2.392 and sample
kurtosis = 8.325, much higher than expected with the ordinary BS distribution.

4.1.1. FBS versus the BS and SBS distributions

To fit the nickel concentration variable, we use the BS, skew BS (SBS) and FBS models. Using
function optim from the R-package, [28], the following point estimates (and their standard errors) are
obtained for each of the three models under consideration
BS model: α̂ = 0.789 (0.060) and β̂ = 16.382 (1.296).
SBS model: α̂ = 1.073 (0.201), β̂ = 8.841 (1.998) and λ̂ = 1.252 (0.590).
FBS model: α̂ = 0.870 (0.104), β̂ = 5.072 (0.763), δ̂ = −1.520 (0.282) and λ̂ = 1.405 (0.341).

The bimodal hypothesis can be formally tested as follows

H0 : δ = 0 versus H1 : δ 6= 0,

which is equivalent to compare models SBS versus FBS. Given the nonsigularity of the Fisher
information matrix, and since these models are nested, we can consider the likelihood ratio
statistics, namely

Λ1 = LSBS(α̂, β̂, λ̂)/LFBS(α̂, β̂, δ̂, λ̂).

It is obtained −2 log(Λ1) = 5.618, which is greater than the 5% chi-square critical value with
one degree of freedom (df), which is equal to 3.84. Therefore, the null hypothesis of no-bimodality is
rejected at the 5% critical level, leading to the conclusion that FBS model fits better than the unimodal
SBS model to the nickel concentration data.
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To compare the FBS model with the BS model, consider to test the null hypothesis of a BS
distribution versus a FBS distribution, that is

H0 : (δ, λ) = (0, 0) vs H1 : (δ, λ) 6= (0, 0)

using the likelihood ratio statistics based on the ratio Λ2 = LBS(α̂, β̂)/LFBS(α̂, β̂, δ̂, λ̂). After
substituting the estimated values, we obtain −2 log(Λ2) = 7.628, which is greater than the 5%
chi-square critical value with 2 df, which is 5.99. Therefore the FBS is preferred to BS model for this
data set.

4.1.2. FBS versus a Mixture of Normal Distributions

Another model widely applied in such situations of bimodality is the mixture of two normal
distributions. The normal mixture model is given by:

f (x; µ1, σ1, µ2, σ2, p) = p f1(x, µ1, σ1) + (1− p) f2(x; µ2, σ2) (23)

where f j is a normal distribution with parameters (µj, σj), j = 1, 2 and 0 < p < 1. (23) is denoted by
MN(µ1, σ1, µ2, σ2, p).

To compare FBS model with the MN model, we propose the Akaike information criterion (AIC),
see [31], namely AIC = −2ˆ̀(·) + 2k, the modified AIC criterion (CAIC), typically called the consistent
AIC, namely CAIC = −2ˆ̀(·) + (1 + log(n))k and the Bayesian Information Criterion, BIC, BIC =

−2ˆ̀(·) + log(n)k, where k is the number of parameters and ˆ̀(·) is the log-likelihood function evaluated
at the MLEs of parameters. The best model is the one with the smallest AIC or CAIC or BIC.

Now we compare the FBS with MN(µ1, σ1, µ2, σ2, p). The estimated mixture model is

MN(15.348, 6.622, 40.908, 21.960, 0.755)

with AIC = 674.849, CAIC = 692.061 and BIC = 687.062. On the other hand, for the FBS model, we
have AIC = 671.859, CAIC = 685.628 and BIC = 681.630. According to these criteria, the FBS model
provides a better fit to the data of nickel concentration.

4.1.3. FBS versus a Mixture of Log-Normal Distributions

Following reviewer’s recommendations, a mixture of two log-normal distributions is also
considered. The log-normal mixture model will be given by (23) with f j the pdf of a log-normal
distribution with parameters (µj, σj), j = 1, 2 and 0 < p < 1, and it is denoted by MLN(µ1, σ1, µ2, σ2, p).
The estimated mixture model is

MLN(2.829, 0.177, 2.8275, 0.877, 0.327)

with AIC = 663.571, CAIC = 680.784 and BIC = 675.784. All of them are less than those
corresponding to FBS. So, according to these criteria, the mixture ot two log-normal distributions
provides a better fit to this dataset than the FBS model.

This discussion illustrates that, quite often, the final selection of a model is a matter of choice.
FBS model can be considered as appropriate if we want to use a more parsimonious model, and this
is better than other BS models and a mixture of two normal distributions. On the other hand, based
on AIC, CAIC and BIC, the mixture of two log-normal would be preferred but this model has more
parameters than the FBS distribution and may present problems of identifiability. Anyway, the final
choice must be properly justified.

Figure 4 depicts maximized likelihoods and empirical cdf for variable nickel concentration
revealing that FBS model fitting is quite good.
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Figure 4. (a) Plots for FBS, (solid line), MLN (dashed line), BS (dotted line) and SBS (dotted and dashed
line) models . (b) Empirical cdf with estimated FBS cdf (dashed line) and estimated BS cdf (dotted line).

Remark 3. Going through the origin of this data set, the bimodal behavior of the nickel concentration statistical
model seems to be due to the fact that the samples were taken according to different lithologies. Lithology classifies
according to the physical and chemical elements in rock formation. Mining operations found different lithologies
in these samples, as it is depicted in Figure 4.

4.2. Air Pollution

The concentration of average air pollutants has been used in epidemiological surveillance as an
indicator of the level of atmospheric contamination. Among its associated adverse effects in humans,
diseases such as bronchitis are found. The distribution of this concentration has a bias to the right, and is
always positive. It is typically assumed that the data on air pollutant concentrations are uncorrelated
and independent and thus they do not require the diurnal or cyclic trend analysis, see [32]. The data
set studied in this section corresponds to daily measures of ozone levels (in ppb = ppm× 1000) in the
city of New York, USA, from May to September, 1973, collected by the New York State Conservation
Department. The sample mean, standard deviation, asymmetry and kurtosis coefficients are given,
respectively, by 42.129, 32.987, 1.209 and 1.112.

4.2.1. FBS versus the BS and SBS Distributions

Maximum likelihood estimators, their estimated standard errors (in parenthesis), for the BS, SBS
and FBS models, were computed, the results are:
BS model: α̂ = 0.982 (0.064) and β̂ = 28.031 (2.265).
SBS model: α̂ = 1.270 (0.235), β̂ = 14.831 (4.019) and λ̂ = 1.066 (0.533).
FBS: α̂ = 5.160 (0.481), β̂ = 78.000 (0.008), δ̂ = 3.991 (0.050) and λ̂ = −9.135 (2.417).
For this data set, the log-likelihood ratio statistics to test BS vs FBS and SBS vs FBS are given by

−2 log(Λ1) = 12.812 and − 2 log(Λ2) = 5.828,

which are greater than the corresponding 5% critical values from the chisquare distribution, which are
5.99 (with 2 df) and 3.84 (with one df), respectively. So, we can conclude that the unimodal FBS model
provides a better fit to this dataset than BS and FBS models.
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4.2.2. FBS versus the Extended BS (EBS) Model

Fitting the five-parameter EBS model, EBS(α, β, σ, ν, λ), proposed in [16] as the best for this
dataset, and whose point estimates for the parameters and summaries for comparison are equal to

EBS(0.780, 0.596, 3.618,−3.539,−0.096),

CAIC = 1111.154 and BIC = 1106.154. On the other hand, for the FBS model, it was obtained
CAIC = 1108.396 and BIC = 1104.396. Then, according to the CAIC and BIC criteria, FBS model
presents the best fit to this data set dealing with the daily ozone level concentration in the atmosphere.

Figure 5 depicts the histograms and the fitted density curves for the data set studied and empirical
cdf for variable daily ozone level concentration in the atmosphere, while the dashed line corresponds
to the cfd for FBS model.
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Figure 5. (a) Plots for FBS, (solid line), BS (dotted line), SBS (dashed line) and EBS (dotted and dashed
line) models. (b) Empirical cdf with estimated FBS cdf (dashed line).

5. Conclusions

We have introduced a new family of distributions able to model skewness, unimodality and
bimodality in the BS distribution. We have discussed several of its properties. Explicit expressions
for the cdf are given in terms of the cdf of a bivariate normal variable. Non-linear equations to
obtain the modes of this distribution are provided. The estimation of parameters is carried out via
maximum likelihood. We highlight that the ML equations must be solved by using iterative methods.
The information matrix is non-singular and therefore likelihood ratio tests to compare this model with
other nested models can be implemented. The interest and flexibility of our proposal is supported
with two illustrations to real data in which we show that:

(i) the FBS model provides consistently better fits than the BS and SBS models (they can be considered
relevant precedents of our proposal)

(ii) the FBS distribution can improve the fit provided by other competing models designed to deal
with bimodality (such as a mixture of normal distributions). It can also perform better for
unimodal situations in which a generalized BS model with skewness parameters must be applied,
such as the EBS model proposed in [16]. We highlight that in both situations FBS provides a
better fit with a more parsimonious model (less number of parameters), and the problem of
identifiability of mixtures can be circumvented.

Therefore the outcome of these practical demonstrations show that the new family is very flexible
and widely applicable.
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Appendix A

Proof of Proposition 1 (cdf in the FBS model). From Equation (7), T is a monotonically increasing
function of Z ∼ FSN(δ, λ). Therefore the cdf of T is given by

FT(t) = FZ(at) (A1)

where FZ(·) denotes the cdf of Z and at was given in (6).
(i) First, we obtain the cdf of Z ∼ FSN(δ, λ)

It can be seen in Gómez et al. [2], Proposition 4, that the pdf of Z ∼ FSN(δ, λ) is

fZ(z) =

{
cδφ(z− δ)Φ(λz), if z < 0
cδφ(z + δ)Φ(λz), if z ≥ 0.

Let us consider the case for z < 0

FZ(z) =
∫ z

−∞
fZ(t)dt =

∫ z

−∞
cδφ(t− δ)Φ(λt)dt

By making the change of variable v = t− δ, and later, taking into account that Φ(·) is the cdf of a
N(0, 1) distribution, we have that

FZ(z) = cδ

∫ z−δ

−∞
φ(v)Φ(λ(v + δ))dv = cδ

∫ z−δ

−∞

∫ λ(v+δ)

−∞
φ(v)φ(s)dsdv (A2)

The integrand in (A2) is the joint pdf of two independent N(0, 1) rv’s, (S, V), i.e.,(
S
V

)
∼ N2

((
0
0

)
,

(
1 0
0 1

))

Note that (A2) can be rewritten as

FZ(z) = cδ Pr [S− λV ≤ λδ, V ≤ z− δ]

= cδ Pr
[

S− λV√
1 + λ2

≤ λδ√
1 + λ2

, V ≤ z− δ

]
= cδΦBNλ

(
λδ√

1 + λ2
, z− δ

)
(A3)

where ΦBNλ
(x, y) denotes the cdf of a bivariate normal distribution, with mean vector µ′ = (0, 0) and

covariance matrix Ωλ given in (10).
For z > 0, we have that

FZ(z) =
∫ 0

−∞
fZ(t)dt +

∫ z

0
fZ(t)dt

= FZ(0) + cδ

∫ z

0
φ(t + δ)Φ(λt)dt . (A4)
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From (A3), it follows that

FZ(0) = lim
z→0−

FZ(z) = cδΦBNλ

(
λδ√

1 + λ2
, −δ

)
(A5)

On the other hand, proceeding similarly to the previous case (change of variable v = t + δ), it can
be proved that

∫ z

0
φ(t + δ)Φ(λt)dt = Pr

[
S− λV√

1 + λ2
≤ − λδ√

1 + λ2
, δ < V ≤ z + δ

]
= ΦBNλ

(
− λδ√

1 + λ2
, z + δ

)
−ΦBNλ

(
− λδ√

1 + λ2
, δ

)
(A6)

Therefore, from (A3)–(A6), we have just proved that the cdf of Z is

FZ(z) =


cδΦBNλ

(
λδ√
1+λ2 , z− δ

)
, if z < 0

cδ

[
ΦBNλ

(
λδ√
1+λ2 ,−δ

)
+ ΦBNλ

(
− λδ√

1+λ2 , z + δ
)
−ΦBNλ

(
− λδ√

1+λ2 , δ
)]

, if z ≥ 0

(A7)

(ii) Finally, the expression for the cdf of T ∼ FBS(α, β, δ, λ) given in (9) follows from (A1)
and (A7).

Proof of Proposition 3 (Modes in the FBS model). Recall that, from (A1), the pdf of T is given by

fT(t) = fZ(at)a′t = cδa′tφ(|at|+ δ)Φ(λat)

where fZ(·) denotes the pdf of Z ∼ FSN(δ, λ), at was given in (6) and

a′t =
∂

∂t
at =

t−3/2β−1/2

2α
(t + β) . (A8)

For at < 0, or equivalently 0 < t < β, consider the first derivative with respect to t of fT(·) and
equating to zero, we have

f ′T(t) = cδ
∂

∂t
{

a′tφ(−at + δ)Φ(λat)
}
= 0 (A9)

By using that φ′(z) = −zφ(z), it can be proved that (A9) is equivalent to{
a′t
}2

[(δ− at)Φ(λat) + λφ(λat)] + a
′′
t Φ(λat) = 0 (A10)

Since a′t > 0, ∀t > 0 (β > 0), we have that (A10) is equivalent to (12).
Similarly, for at > 0, i.e., t > β, from f ′T(t) = cδ

∂
∂t {a

′
tφ(at + δ)Φ(λat)} = 0 , (13) is obtained.

Remark A1 (Comments to Proposition 3). In order to illustrate the use of Equations (12) and (13) next cases
are considered.

1. Consider the pdf given in Figure 1a, case α = 0.75, β = 1, λ = 1, δ = 0.75. In this setting there do not
exist t∗1 ∈ (0, β) and t∗2 > β satisfying (12) and (13), respectively. It can be checked than the distribution
is unimodal and the mode is at β.

2. Figure 1b, case α = 0.75, β = 1, λ = −1, δ = 0.75. There exists t∗1 ∈ (0, β) satisfying (12) and there
does not exists t∗2 > β satisfying (13). Then the distribution is unimodal and the mode is at t∗1 .

3. Figure 2a,b, in all cases under consideration, there exist t∗1 ∈ (0, β) and t∗2 > β satisfying (12) and (13).
Then the distribution is bimodal and the modes are t∗1 and t∗2 .
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Proof of Theorem 1 (pth quantile, change of scale and reciprocity). (i) (14) follows from the fact
that (7) is one-to-one function preserving the order from R to R+.

(ii) Note that the pdf of T can be rewritten as

fT(t) = cδa′t(α, β)φ(|at(α, β)|+ δ)Φ(λat(α, β)) (A11)

with cδ = (1−Φ(δ))−1, at = at(α, β) given in (6) and

a′t = a′t(α, β) =
∂

∂t
at(α, β) =

t−3/2β−1/2

2α
(t + β) . (A12)

Let Y = kT with k > 0. By applying the Jacobian technique fY(y) = |J| fT(
y
k ; α, β, δ, λ) with

|J| = 1
k . From (6), ay/k(α, β) = ay(α, kβ), and from (A12)

|J|a′y/k(α, β) =
y−3/2(kβ)−1/2

2α
(y + kβ) = a′y(α, kβ) .

Therefore
fY(y) = cδa′y(α, kβ)φ(|ay(α, kβ)|+ δ)Φ(λay(α, kβ)),

i.e., Y ∼ FBS(α, kβ, δ, λ).
(iii) Let be Y = T−1. In this case |J| = Y−2, ay−1(α, β) = −ay(α, β−1), and |J|a′y−1(α, β) = a′y(α, β−1).

Therefore

fY(y) = |J| fT(y−1; α, β, δ, λ) = cδa′y(α, β−1)φ
(
|ay(α, β−1)|+ δ

)
Φ
(
−λay(α, β−1)

)
,

i.e., Y = T−1 ∼ FBS(α, β−1, δ,−λ).
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