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Abstract: We consider R + R2 relativistic quantum gravity with the action where all possible terms
quadratic in the curvature tensor are added to the Einstein-Hilbert term. This model was shown to
be renormalizable in the work by K.S. Stelle. In this paper, we demonstrate that the R + R2 model is
also unitary contrary to the statements made in the literature, in particular in the work by Stelle. New
expressions for the R + R2 Lagrangian within dimensional regularization and the graviton propagator
are derived. We demonstrate that the R + R2 model is a good candidate for the fundamental quantum
theory of gravity.
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1. Introduction

Creation of the fundamental quantum theory of gravity is one of the most important tasks of modern
theoretical physics.

Three of the four presently known fundamental interactions are perfectly described by Quantum Field
Theory. Electromagnetic and weak nuclear interactions are unified within the Standard Model and strong
nuclear interaction is currently described by Quantum Chromodynamics. But the fourth fundamental
interaction—gravitation—is presently described only by classical General Relativity by Einstein and
steadily escaped attempts at quantization.

It is well known that the problem arises because of the non-renormalizability [1] of General Relativity.
In Reference [1] it was shown that General Relativity without matter fields is renormalizable at the one
loop level but becomes unrenormalizable after inclusion of matter fields.

In 1977 K.S. Stelle showed [2] the renormalizability of the Lorentz invariant gravitational action,
which includes, as well as the Einstein-Hilbert R-term, the R2-terms with four derivatives of the metric. His
proof used the specific covariant gauge where the structure of ultraviolet divergences is particularly simple.
For more general gauges he made the assumption of the cohomological structure of divergences. Recently,
this hypothesis was shown to be correct for the general class of background gauges [3]. Thus, we consider
the renormalizability of gravity with four derivatives of the metric to be well established. We will call this
R + R2 model quadratic quantum gravity.

Stelle has also stated [2,4] that quantum gravity with four derivatives of the metrics is unphysical
since it violates either unitarity or causality. Thus, according to him the model can serve only as an example
of a renormalizable model or as an effective theory in some domain of energies. Since then, this model has
been commonly considered in the literature to be unphysical.
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In this article, we demonstrate that quadratic quantum gravity is, in fact, unitary. Hence, we state
that R + R2 gravity is a good candidate for the fundamental theory of quantum gravity.

We derive new expressions for the Lagrangian of quadratic quantum gravity and for the graviton
propagator within dimensional regularization. These items were also discussed in our papers [5,6].

2. Results

Let us consider the Lorentz invariant R + R2 action with all possible terms quadratic in the curvature
tensor Rµν

Ssym =
∫

dDxµ−2ε
√
−g
(
−M2

Pl R + αRµνRµν + βR2 + δRµνρσRµνρσ + M2
PlΛ

)
, (1)

where the first R-term is the Einstein-Hilbert action. The last term, the Λ-term, can be omitted in the action
since we will work within perturbation theory and it will not provide contributions in this case.

M2
Pl = 1/(16πG) is the squared Planck mass, Rµνρσ, Rµν and R are the Riemann tensor, the Ricci

tensor and the Ricci scalar correspondingly. α, β and δ are dimensionless coupling constants, D = 4− 2ε is
the space time dimension. ε and µ are the parameters of dimensional regularization.

The Riemann tensor is

Rρ
σµν = ∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓλ
νσ − Γρ

νλΓλ
µσ, (2)

where Christoffell symbols are

Γα
µν =

1
2

gαβ
(
∂νgµβ + ∂µgνβ − ∂βgµν

)
. (3)

We would like to underline that the dimensional regularization developed in Reference [7–11] is
presently the only practically available regularization of ultraviolet (and infrared) divergences which
preserves gauge invariance of quantum gravity.

Usually the term with the coupling δ in the action (1) is missed in the literature [2,3,12]. This is due to
the Gauss-Bonnet topological identity∫

d4x
√
−g
(

RµνρσRµνρσ − 4RµνRµν + R2
)
= 0, (4)

which is valid for space-times topologically equivalent to flat space only in 4-dimensions but the dimension
of the space within dimensional regularization is different from four. Thus, this extra term should be
added to the action with an independent interaction constant to ensure renormalizability.

It may seem that the introduction of three new independent gravitational constants into the
Lagrangian besides the Newton constant is too big a price for quantization but dimensional regularization
unavoidably demands it.

We will use perturbation theory. Hence, we will consider the linearized theory around the flat
space metric

gµν = ηµν + hµν, (5)

where the convention is used ηµν = diag(+1,−1,−1,−1) in four dimensions. In dimensional
regularization ηµνηµν = D. It is understood that indexes are raised and lowered with the tensor ηµν.

Gauge transformations of the Lagrangian are generated by diffeomorphisms xµ → xµ + ζµ(x) and are

hµν → hµν + ∂µζν + ∂νζµ +
(
hλµ∂ν + hλν∂µ + (∂λhµν)

)
ζλ, (6)
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where ζµ(x) are arbitrary functions.
According to standard Faddeev-Popov quantization [13]—for the review see Reference [14]—one

should add to the action the gauge fixing term which we choose in the form

Sg f = −
1

2ξ

∫
dDxFµ∂ν∂νFµ, (7)

where Fµ = ∂νhνµ, ξ is the gauge parameter. Of course, as usual, physical results do not depend on the
specific choice of the gauge condition.

One also adds the ghost term

Sghost =
∫

dDxdDyCµ(x)
δFµ(x)
δζν(y)

Cν(y) = (8)

∫
dDx∂νCµ

[
∂νCµ + ∂µCν + hλµ∂νCλ + hλν∂µCλ + (∂λhµν)Cλ

]
,

here C and C are ghost fields. As the result, one gets the generating functional for the Green functions
of gravitons

Z(J) = N
∫

dhµνdCλdCρ exp
[
i
(

Ssym + Sg f + Sghost + dDxµ−2ε Jµνhµν
)]

, (9)

where as usual N is the normalization factor and Jµν is the source of gravitons.
We will work in perturbation theory, hence we make the shift of the fields

hµν → MPlµ
−εhµν. (10)

Perturbative expansion goes in the inverse powers of the Plank mass MPl or in the Newton coupling
constant G ∝ 1/M2

Pl .
We want to derive the graviton propagator. We make the Fourier transform to the momentum space

and write the part of the Lagrangian which is quadratic in hµν

Qµνρσ =
1
4

∫
dDk hµν(−k)

[(
k2 + M−2

Pl k4(α + 4δ)
)

P(2)
µνρσ

+ k2
(
−2 + 4M−2

Pl k2(α + 3β + δ)
)

P(0−s)
µνρσ (11)

+
1
ξ

M−2
Pl k4

(
P(1)

µνρσ + 2P(0−w)
µνρσ

)]
hρσ(k),

here P(i)
µνρσ are the projectors to the spin-2, -1 and -0 components of the field h correspondingly:

P(2)
µνρσ =

1
2
(
ΘµρΘνσ + ΘµσΘνρ

)
− 1

3
ΘµνΘρσ, (12)

P(1)
µνρσ =

1
2
(
Θµρωνσ + Θµσωνρ + Θνρωµσ + Θνσωµρ

)
, (13)

P(0−s)
µνρσ =

1
3

ΘµνΘρσ, (14)

P(0−w)
µνρσ = ωµνωρσ, (15)
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where Θµν = ηµν − kµkν/k2 and ωµν = kµkν/k2 are the transverse and longitudinal projectors.
We would like to note that the expression (11) differs from the analogous one in Reference [12] where

ε-dependent contributions are present. Our expression (11) does not contain ε-dependent terms.
To obtain the graviton propagator Dµνρσ we should invert the matrix in the square brackets of (11):

[Q]µνκλDκλρσ =
1
2
(δ

ρ
µδσ

ν + δσ
µδ

ρ
ν). (16)

Then the propagator has the form

Dµνρσ =
1

i(2π)D

[
4
k2

(
1

1 + M−2
Pl k2(α + 4δ)

)
P(2)

µνρσ (17)

− 2
k2

 1 + 2ε
1−M−2

Pl k2(α+4β)

1+M−2
Pl k2(α+4δ)

1− ε−M−2
Pl k2 ((2α + 6β + 2δ)− ε(α + 4β))

 P(0−s)
µνρσ

+4ξ
1

M−2
Pl k4

(
P(1)

µνρσ +
1
2

P(0−w)
µνρσ

)]
.

Now we perform partial fractioning. The graviton propagator becomes

Dµνρσ =
1

i(2π)D

[
4P(2)

µνρσ

(
1
k2 −

1
k2 −M2

Pl/(−α− 4δ)

)
(18)

−2
P(0−s)

µνρσ

1− ε

(
1 + 2ε

1−M−2
Pl k2(α + 4β)

1 + M−2
Pl k2(α + 4δ)

)
(

1
k2 −

1
k2 −M2

Pl(1− ε)/(2α + 6β + 2δ− ε(α + 4β))

)

+
4ξ

M−2
Pl k4

(
P(1)

µνρσ +
1
2

P(0−w)
µνρσ

)]
.

We would like to underline that one of the poles in the term with P(0−s)
µνρσ depends on the parameter

of dimensional regularization ε. Also residues of both poles in this term depend on the regularization
parameter ε. Hence it should be clear that poles and residues of the tree level graviton propagator do not
have physical meaning.

In 4-dimensional space one gets for the graviton propagator

Dµνρσ =
4

i(2π)D

P(2)
µνρσ − 1

2 P(0−s)
µνρσ

k2 −
P(2)

µνρσ

k2 −M2
Pl/(−α− 4δ)

(19)

+

(
1
2

) P(0−s)
µνρσ

k2 −M2
Pl/(2α + 6β + 2δ)

+
ξ

M−2
Pl k4

(
P(1)

µνρσ +
1
2

P(0−w)
µνρσ

) ,
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Let us consider now classical four-derivative gravity. In this case, for a point particle with the
energy-momentum tensor Tµν = δ0

µδ0
ν Mδ3(x) the gravitational field is [4]

V(r) =
M

2πM2
Pl

(
− 1

4r
+

e−m2r

3r
− e−m0r

12r

)
. (20)

Here m2
2 = M2

Pl/(−α− 4δ) and m2
0 = M2

Pl/(2α + 6β + 2δ) are the squared masses of the massive
spin-2 and spin-0 gravitons. The values of the coupling constants α, β and δ can be chosen to ensure the
positivity of masses. In the works by Stelle [2,4] it was mentioned that the masses can be chosen to be large
enough in order to have agreements with experiments.

Our propagator (19) reproduces this expression (20). It can be seen after the calculation of the tree
level Feynman diagram describing an exchange of two point-like particles with a graviton.

The graviton propagator in Reference [2] contains some small technical errors. It dos not reproduce
the expression (20). To see this, one can put all coupling constants, except the Newton coupling constant,
equal to zero in the R + R2 Lagrangian. Then the Lagrangian is reduced to the Lagrangian of General
Relativity. Correspondingly, the graviton propagator should be reduced to the graviton propagator of
General Relativity:

Dµνρσ(k) =
1

i(2π)4

1
2 ηµρηνσ +

1
2 ηµσηνρ − 1

2 ηµνηρσ + terms ∝ k
k2 , (21)

where for simplicity one can take the gauge condition with ξ = 0.
Our propagator (19) reproduces the propagator (21) if one puts couplings α, β, δ equal to zero.

The graviton propagator of Reference [2] in the corresponding limit gives, in the third term of the numerator
of (21), the factor 1 instead of 1/2.

The second term in the graviton propagator (19) has the non-standard minus sign. That is why it
should be considered as the massive spin-2 ghost. To have renormalizability of the theory, one should
shift all poles of propagators in Feynman integrals in the same way k2 → k2 + i0. Thus, the ghost should
be considered as the state with the negative metric [2]. That is why Stelle made the statement [2,4] about
violation either unitarity or causality in the model with four derivatives of the metric.

However, this massive spin-2 ghost is unstable. It will unavoidably decay in two massless physical
gravitons. The width of this decay is presumably small. But independently of the numerical value of
the corresponding decay width, this spin-2 ghost particle does not appear as the asymptotic state of the
S-matrix. Hence, only physical gravitons with the positive metric participate as external particles of
S-matrix amplitudes. Thus, unitarity is preserved in the R + R2 theory.

There is the statement that theories with ghosts are unstable, that is, they do not have a stable vacuum
state [15]; for a brief review see Reference [16]. This statement is proved only for Quantum Mechanical
systems. Quantum Field Theory is a quite different story and renomalizability plus unitarity should be
enough to have a consistent theory.

It is necessary to mention that the S-matrix by construction satisfies the unitarity relation

S+S = 1 (22)

in the theories with Hermitian Lagrangians, see Reference [17].
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It can be seen that if one represents the S-matrix as the T-exponent within the operator formalism:

S = T
(

ei
∫

L(x)dx
)

. (23)

Let us present the corresponding proof. One should introduce a function g(x) with values in the
interval (0, 1) which describes the intensity of gravitational interactions. If g(x) = 0 then interactions are
switched off, if g(x) = 1 then interactions are switched on; if 0 < g(x) < 1 then interactions are partly
switched on. Substituting the real Lagrangian L(x) by the product L(x)g(x) one gets interactions switched
on with intensity g(x). Thus, the S-matrix becomes the functional

S(g) = T
(

exp i
∫

L(x)g(x)dx
)

. (24)

Then one should split the interaction region described by the function g(x) with space-like surfaces
t = const into an infinitely large number of infinitely thin segments ∆i. One gets

S(g) = T
(

exp i
∫

L(x)g(x)dx
)
= T

(
exp i ∑

j

∫
∆j

L(x)g(x)dx

)
= (25)

T

(
∏

j
exp i

∫
∆j

L(x)g(x)dx

)
.

S(g) is defined as the limit

S(g) = lim
∆j→0

T

(
∏

j

(
1 + i

∫
∆j

L(x)g(x)dx

))
. (26)

The right hand side of (26) is a usual product taken in the chronological order of segments ∆j. But for
sufficiently small ∆j each factor in this product is unitary up to small terms of higher orders. These higher
orders can be neglected in the considered limit according to mathematics. That is why the whole product
is unitary. Thus unitarity of S(g) and hence of the matrix

S = lim
g(x)→1

S(g) (27)

is proved.
Unitarity of the S-matrix in the presence of negative metric states was considered previously in

References [18–22] (see also references therein). The question of causality was also studied there.

3. Discussions

We should note that the tree level graviton propagator (19) is essentially modified after the summation
of one-loop corrections. As was mentioned, the second term of the expression (19) has the minus sign.
Hence the one-loop correction (due to the Feynman diagram with the massless graviton in the loop)
will move the pole of the spin-2 ghost from the real value k2 = M2

Pl/(−α − 4δ) to the complex value
k2 = M2

Pl/(−α− 4δ)− iΓ. Here, Γ is the width of the decay of the spin-2 ghost into the pare of physical
gravitons. This complex pole will be located not on the physical but on the unphysical Riemann sheet.
It is completely analogous to the well-known virtual level of the system of a neutron and a proton with
opposite spins [23].
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We would like to stress that we consider not pure R2 theory but the theory where the R2 terms
are added to the Einstein-Hilbert Lagrangian. Gravitational constants α, β and δ for these terms can be
chosen small enough in such a way that predictions of the considered theory on large scales will coincide
practically with predictions of General Relativity. The R2 terms are needed only to ensure renormalizability
of the theory and this is achieved for any choice of the gravitational constants α, β and δ.

We have considered here only purely gravitational R + R2 action. It was shown in Reference [2] that
the inclusion of the matter fields in the theory is straightforward.

4. Conclusions

We have demonstrated unitarity of quadratic quantum gravity with the R + R2 action. This model
was previously proved to be renormalizable in the work by K.S. Stelle [2]. Hence, one can conclude that
the considered model is a proper candidate for the fundamental quantum theory of gravitation.
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