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Abstract: In this paper, we obtain a matrix formula of order n−1/2, where n is the sample size,
for the skewness coefficient of the distribution of the maximum likelihood estimators in the Weibull
censored data. The present result is a nice approach to verify if the assumption of the normality of
the regression parameter distribution is satisfied. Also, the expression derived is simple, as one only
has to define a few matrices. We conduct an extensive Monte Carlo study to illustrate the behavior of
the skewness coefficient and we apply it in two real datasets.

Keywords: maximum likelihood estimates; type I and II censoring; skewness coefficient; Weibull
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1. Introduction

In its first appearance, the Weibull distribution [1] claimed its wide applicability. Survival analysis,
reliability engineering, and extreme value theory are some of its applicability. To amplify the relevance
of the Weibull, a regression structure is added to one of the parameters, i.e., the behavior of the
distribution may be explained from covariates (explanatory variables) and unknown parameters to be
estimated from observable data.

In statistical inference, it is often desirable to test if there are regression parameters statistically
significant and the Wald test is commonly performed. Under standard regularity conditions, the null
distribution of the Wald statistic is asymptotically chi-squared, a consequence of the maximum
likelihood estimators (MLE) distribution. Therefore, the Wald test must be avoided if the sample size
is not large enough, because the distribution of the MLE will be poorly approximated by the normal
distribution.

Preventing the complexity of the statistical tests, the skewness coefficient (say γ) of the distribution
of the MLE is an easy way to verify if the approximation to normality is adequate. A value of γ far
from zero indicates a departure from the normal distribution. Pearson’s standardized third cumulant
defined by γ = κ3/κ3/2

2 , where κr is the rth cumulant of the distribution, is the most well-known
measure of skewness. When γ > 0 (γ < 0) the distribution is positively (negatively) skewed and
will have a longer (shorter) right tail and a shorter (longer) left tail. If the distribution is symmetrical,
γ equals zero. However, there are in [2] (Exercise 3.26) asymmetrical distributions with as many
zero-odd order central moments as desired, so, the value of γ must be interpreted with some caution.

In the statistical literature, there is not a closed-form for the skewness coefficient of γ of the MLE
in several regression models. Ref. [3] obtained a general n−1/2 γ expression (say γ1) for the distribution
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of the MLE, where n is the sample size. Following [3], several works have been developed in order
to obtain the γ1 coefficient. In the first, Ref. [4] determined its expression for the class of generalized
linear models and, the last one, Ref. [5] defined the γ1 for the varying dispersion beta regression model
and showed that this coefficient for the distribution of the MLE of the precision parameter is relatively
large in small to moderate sample sizes. This paper is the first focused on a censored model.

In this work, we derive the γ1 coefficient of the distribution of the MLE of the linear parameters
in the Weibull censored data, assuming σ known, as σ = 1/2 and 1, the Rayleigh and exponential
models, respectively. We discuss the situation when σ is unknown, however, it can be replaced by a
consistent estimator, and then we can turn back to the original situation. This type of procedure was
performed, for instance, by [4].

The remainder of the paper is organized as follows. Section 2 defines the Weibull censored data.
In Section 3, we obtain a simple matrix expression, of order n−1/2, for the skewness coefficients of
the distributions of the MLEs of the linear regression parameters. In Section 4, some Monte Carlo
simulations are performed. Two applications are presented in Section 5. Concluding remarks are
offered in Section 6.

2. The Weibull Censored Data

We say that a continuous random variable T has Weibull distribution with scale parameter θ and
shape parameter σ, or T ∼WE(θ, σ), if its probability density function (pdf) is given by

f (t; θ, σ) =
1

σθ1/σ
t1/σ−1 exp

{
− (t/θ)1/σ

}
, (1)

with t > 0, σ > 0 and θ > 0. From (1), we can observe two particular distributions: the exponential
and the Rayleigh, where σ = 1 and σ = 1/2, respectively. In lifetime data, there is the censoring
restriction, i.e, if T1, . . . , Tn are a random sample from (1), instead of Ti, we observe, under right
censoring, ti = min(Ti, Li), where Li is the censoring time, independent of Ti, i = 1, . . . , n. In this work,
we consider an hybrid censoring scheme, where the study is finalized when a pre-fixed number, r ≤ n,
out of n observations have failed, as well as when a prefixed time, say L1 = . . . = Ln = L, has been
reached. The type I censoring is a particular case for r = n and the type II censoring appears when
L1, . . . , Ln = +∞. Additionally, we add the non-informative censoring assumption, i.e., the random
variables Li does not depend on θ. Under this setup, the log-likelihood function has the form

L(θ, σ) =
(

σθ1/σ
)−r

exp
{(

1
σ − 1

)
A1 − 1

θ1/σ A2

}
,

where r = ∑n
i=1 δi, A1 = ∑n

i=1 δi log ti, A2 = ∑n
i=1 t1/σ

i , δi = 1, if Ti ≤ Li and δi = 0, otherwise. Usually,
the regression modeling considers the distribution of Yi = log(Ti) instead of Ti. The distribution of Yi
is of the extreme value form with pdf given by

f (yi; xi) =
1
σ

exp
{

yi − µi
σ
− exp

(
yi − µi

σ

)}
, −∞ < yi < ∞, (2)

where µi = log θi. The regression structure can be incorporated in (2) by making θi = exp
(
x>i β

)
,

where β is a p-vector of unknown parameters and xi is a vector of regressors related to the ith
observation. From this moment, we assume that σ is known, then, the log-likelihood function derived
from (2) is given by

`(β) =
n

∑
i=1

[
δi

(
−n log σ +

yi − µi
σ

)
− exp

(
yi − µi

σ

)]
.

The total score function and the total Fisher information matrix for β are, respectively, Uβ =

σ−1X>W1/2v and Kββ = σ−2X>WX, where X = (x1, . . . , xn)>, the model matrix, assuming
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rank (X) = p, W = diag(w1, . . . , wn), wi = E
[
exp

(
yi−µi

σ

)]
and v = (v1, . . . , vn)>, vi ={

−δi + exp
(

yi−µi
σ

)}
w−1/2

i . It can observed that the value of wi depends on the mechanism of

censoring. That means wi = q ×
(

1− exp
{
−L1/σ

i exp(−µi/σ)
})

+ (1 − q) × (r/n), where W(r)

denotes the rth order statistic from W1, . . . , Wn and q = P
(

W(r) ≤ log Li

)
. Note that q = 1 and q = 0

for types I and II censoring, respectively. The proof is presented in the Appendix A. The MLE of
β, β̂, is the solution of Uβ = 0. The β̂ can not be expressed in closed-form. It is typically obtained
by numerically maximizing the log-likelihood function using a Newton or quasi-Newton nonlinear
optimization algorithm. Under mild regularity conditions and in large samples,

β̂ ∼ Np

(
β, K−1

ββ

)
,

approximately.

3. Skewness Coefficient

As discussed, the skewness coefficient is simple way to verify whether the approximation to
normality is adequate. The model presented in (2) does not has a closed-form for this coefficient.
The alternative is to apply the [3] result. These authors derived an approximation of order O(n−2) for
the third cumulant of the MLE of the a-th regressor, i.e.,

κ3(β̂a) = E
{[

β̂a −E(β̂a)
]3}

,

a = 1, . . . , p, which can be expressed as

κ3(β̂a) = ∑′
κa,bκa,cκa,dm(d)

bc , (3)

where m(d)
bc = 5κ

(d)
bc − (κ

(b)
cd + κ

(c)
bd + κbcd), a = 1, . . . , p. Here, ∑′ represents the summation over all

combinations of parameters and over all the observations. From (3), after some algebra, we can express
the third cumulant of the distribution of β̂ for the Weibull censored data as

κ3(β̂) = −σ−3P(3) (W + 3σW ′) 1, (4)

where W ′ = diag(w′1, . . . , w′n), w′i = −σ−1L1/σ
i exp{−L1/σ

i exp(−µi/σ) − µi/σ}, P = K−1
ββ X> =

σ2
(

X>WX
)−1

X>, P(3) = P � P � P, � represents a direct product of matrices and 1 is a
n-dimensional vector of ones. Finally, by (4) and the Fisher information matrix, the asymmetry
coefficient of the distribution of β̂ to order n−1/2 is given by

γ1(β̂) = −σ−3P(3) (W + 3σW ′) 1�
{

diag
(

K−1
ββ

)
1
}−3/2

, (5)

for type II censoring, W ′ = 0, then (5) reduces to γ1(β̂) = −σ−3P(3)W1�
{

diag
(

K−1
ββ

)
1
}−3/2

. More
details about the involved expressions are presented in Appendix A. The study of asymptotic properties
of the Weibull censored data was the goal of many papers. Refs. [6,7] derived the Bartlett and the
Bartlett-type correction factors for likelihood ratio and score tests, respectively, for the exponential
censored data. Ref. [8] generalized these previous for the Weibull censored data and also derived the
Bartlett-type correction factors for the gradient test. Ref. [9] presented the asymptotic expansions up to
order n−1/2 of the non null distribution functions of the likelihood ratio, Wald, Rao score and gradient
statistics also for the censored exponential data. The result in expression (5) can be incorporated in
this gallery.
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4. Simulation Study

In this section, we compare the sample skewness coefficient (ρ) and the n−1/2 skewness
coefficients evaluated in the true and estimated parameters (γ̂?

1 and γ̂1, respectively) of the distributions
of the MLEs in the Weibull censored model. To draw the data, we consider three values for σ: 0.5, 1 and
3; five sample sizes: 20, 30, 40, 60 and 100; three values for the percent of censoring C: 10%, 25% and
50%; and two number of regressors p: 3 and 5, where we consider two vectors for β in each case:
(−2, 0.5, 1) and (1,−0.75, 0.5) for p = 3 and (−2, 0.5, 1,−0.3,−0.5) and (1,−0.75, 0.5,−1, 0.8) for p = 5.
For each combination of σ, β, % of censoring and sample size we considered 20,000 Monte Carlo
replicates. Each vector of covariates xi considers an intercept term and the p− 1 remaining covariates
were drawn independently from the standard normal distribution. Values from the Weibull model
are drawn considering the inverse transformation method. Therefore, the greater n× C/100 values
were censored at the observed (1− C/100)-th quantile (a type II censoring scheme). For each sample,
we considered the jackknife estimator for σ, say σ̂J . Therefore, the computation of γ̂?

1 and γ̂1 was
performed considering (β, σ) and (β̂, σ̂J), the true and estimated parameters, respectively. Additionally,
ρ is computed based on the 20,000 (marginal) skewness coefficient for the components of β̂. Table 1
summarizes the case β = (−2, 0.5, 1) (with p = 3 regressors) and C = 10%. The main conclusions are
the following:

Table 1. The n−1/2 and sample skewness coefficients of the distributions of the MLEs in the Weibull
censored data with p = 3 regressors and β = (−2, 0.5, 1).

β̂0 β̂1 β̂2

C σ n ρ γ̂?
1 γ̂1 ρ γ̂?

1 γ̂1 ρ γ̂?
1 γ̂1

20 −0.235 −0.080 −0.095 0.052 0.207 0.197 0.071 0.245 0.234
30 −0.169 0.009 0.001 0.037 0.040 0.041 0.097 0.212 0.204

0.5 40 −0.114 −0.013 −0.019 0.038 0.107 0.104 0.075 0.196 0.193
60 −0.139 −0.082 −0.083 0.011 0.061 0.061 0.033 0.171 0.170

100 −0.059 −0.055 −0.055 0.054 0.074 0.073 −0.005 0.087 0.087

20 −0.198 0.017 0.004 −0.008 0.225 0.197 0.068 0.298 0.284
30 −0.219 −0.101 −0.107 0.110 0.200 0.192 0.216 0.304 0.299

10% 1.0 40 −0.210 0.004 −0.002 0.083 0.140 0.137 0.109 0.185 0.182
60 −0.147 −0.005 −0.010 0.085 0.143 0.137 0.057 0.173 0.171

100 −0.092 −0.013 −0.015 0.019 0.048 0.047 0.116 0.132 0.131

20 −0.232 0.006 0.005 0.094 0.143 0.131 0.022 0.093 0.087
30 −0.178 −0.041 −0.040 0.004 0.054 0.048 −0.007 0.147 0.136

3.0 40 −0.185 0.005 0.003 0.002 0.024 0.023 0.064 0.156 0.151
60 −0.128 −0.020 −0.020 0.044 0.049 0.047 0.073 0.124 0.120

100 −0.117 −0.028 −0.028 0.084 0.100 0.095 0.039 0.077 0.075

• The terms γ̂?
1 and γ̂1 are closer in all the considered combinations, suggesting that γ̂1 approaches

γ̂?
1 in a reasonable way, even when the sample size is small.

• In general terms, γ̂1 approaches well ρ for β̂1 and β̂2. However, for β̂0 the terms seem discrepant
even for n = 100.

• Considering the 90 cases for p = 3, ρ ranges from (−0.245, 0.255), (−0.429, 0.340) and
(−0.819, 1.181) for C 10%, 25% and 50%, respectively. For p = 5, ρ ranges from (−0.373, 0.252),
(−0.402, 0.198) and (−0.787, 0.495) for C 10%, 25% and 50%, respectively. This suggest that
a higher percentage of censorship produce a higher skewness in the MLE estimators for the
components of β.

• Considering the 90 cases for p = 3, ρ ranges from (−0.819, 1.181), (−0.363, 0.867), (−0.351, 0.411),
(−0.305, 0.346) and (−0.273, 0.255), for n = 20, 30, 40, 60 and 100, respectively. For p = 5, ρ ranges
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from (−1.015, 0.740), (−0.529, 0.426), (−0.372, 0.413), (−0.318, 0.320) and (−0.225, 0.243) for
n = 20, 30, 40, 60 and 100, respectively. This suggest that, as expected, when n increases the
skewness coefficient of the MLE estimators for the components of β will be more symmetric.

Results suggest that, even with a moderate percentage of censored observations and small sample
sizes, the distribution of the MLE for the components of β in the Weibull censored model are closer
to the symmetry. The combinations of β, p and C not seem to affect the results. A simulation study
showing this finding was omitted for the sake of brevity.

5. Applications

In this section we illustrate with two real dataset the application of the estimated skewness
coefficient for the MLE estimators in the Weibull censored regression model. All the routine was
performed in the statistical software R, [10]. Codes can be found in the personal website from the first
author https://www.ufjf.br/tiago_magalhaes/downloads/.

5.1. Smokers Dataset

This dataset is related to a clinical trial on the effectiveness of triple-combination pharmacotherapy
for tobacco dependence treatment conducted by the Cancer Institute of New Jersey and Robert Wood
Johnson Foundation. The trial recruited 127 smokers 18 years or older with predefined medical illnesses
from the local community. The outcome were the time (in days) to first relapse (return to smoking).
The study lasted 182 days (26 weeks). Therefore, the times are subject to a censoring type I (32% of times
were censored). We only considered the 113 patients where such observed time was positive (non-zero).
Other measures were assigned randomly treatment group with levels combination or patch only (grp),
age in years at time of randomization (age) and employment (full-time or non-full-time). We consider
that timei ∼WE(θi; σ), where log θi = X>i β, β = (βintercept, βgrp, βage, βemployment)> and

X>i = (1, grpi, agei, employmenti)

We estimated σ̂J = 1.617008 based on the jackknife method, which was used as known in all
the computations. Table 2 shows the parameters estimates, their standard errors and the estimated
skewness coefficients and Figure 1 shows the estimated density function based on 1000 bootstrap
samples for the coefficients related to the covariates grp, age and employment. Note that the estimated
skewness for all parameters were closer to zero, suggesting a symmetric distribution for the estimators
which is corroborated by the estimated density based on the bootstrap.
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Figure 1. Estimated density function based on 1000 bootstrap samples and the asymptotic distribution
for β̂grp (left panel), β̂age (center panel) and β̂employment (right panel). The red line denotes the
estimated parameter.

https://www.ufjf.br/tiago_magalhaes/downloads/
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Table 2. Estimates for parameters and skewness coefficient in smokers dataset.

Parameter Estimate s.e. γ1

βintercept 3.1690 0.8136 −0.0478
βgrp −1.0303 0.3694 −0.0529
βage 0.0541 0.0167 0.1251
βemployment −1.1460 0.3935 −0.0753

5.2. Insulating Fluids Dataset

This dataset was presented in [11] on insulating fluids and it is related an accelerated test
performed in order to determine the relationship between time (in minutes) to breakdown and
voltage (in kilovolts). The authors assumed a regression structure based on the Weibull model and
a common censoring time at L = 200 (type I censoring), i.e., timei ∼WEI(θi, σ), where log θi = X>i β,
i = 1, . . . , 76, X>i = (βIntercept, βlog-voltage). We estimated σ̂J = 1.296704 based on the jackknife
method, which was used as known. Table 3 shows the estimates, standard errors and estimated
skewness coefficient for the MLE estimators and Figure 2 shows the estimated density function for
β̂Intercept and β̂log-voltage. Newly, the estimated skewness for both parameters are closer to zero,
suggesting a symmetric distribution for the estimators as also suggest the estimated density based
on bootstrap.

Table 3. Estimates for parameters and skewness coefficient in insulating fluids dataset.

Parameter Estimate s.e. γ1

βintercept 20.4342 1.8772 0.1451
βlog-voltage −0.5311 0.0557 −0.1517
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Figure 2. Estimated density function based on 1000 bootstrap samples and the asymptotic distribution
for β̂Intercept (left panel) and β̂log-voltage (right panel). The red line denotes the estimated parameter.

6. Concluding Remarks

Since its beginning, the Weibull distribution and regression showed how it is important. In the
frequentist context, this model depends strongly on the asymptotic properties of the MLE. Here,
we presented an expression of the skewness that, in practical applications, can be used as an indicator
of departure from the normal distribution of the MLE. Although the expression (3) entails a great deal
of algebra, the final expression (5) of the skewness of the MLE distribution has a very nice form only
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involving simple operations on diagonal matrices and can be easily implemented into a statistical
software, for instance, R, [10].
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Appendix A

In this Section we provided some additional details related to the computation of the manuscript.

Appendix A.1. W’s Quantities

In order to compute wi = E
[
exp

(
yi−µi

σ

)]
, i = 1, . . . , n, we first study the case type I censoring.

Note that

exp
(

yi − µi
σ

)
=

 exp
(

yi−µi
σ

)
, if yi ≤ log Li

exp
(

log Li−µi
σ

)
, otherwise

Therefore,

wi =
∫ log Li

−∞

1
σ

exp
(

2(yi − µi)

σ
− exp

(
yi − µi

σ

))
dyi + exp

(
log Li − µi

σ

)
P(Ti > Li)

= 1− exp
(
−L1/σ

i e−µi/σ
) (

1 + L1/σ
i e−µi/σ

)
+ L1/σ

i e−µi/σ exp
(
−L1/σ

i e−µi/σ
)

= 1− exp
(
−L1/σ

i e−µi/σ
)

.

Direct computation also shows that

vi = E

[
exp

(
2(yi − µi)

σ

)]
=
∫ log Li

−∞

1
σ

exp
(

3(yi − µi)

σ
− exp

(
yi − µi

σ

))
dyi + exp

(
2(log Li − µi)

σ

)
P(Ti > Li)

= 2− exp
(
−L1/σ

i e−µi/σ
) [

2 + 2L1/σ
i e−µi/σ + L2/σ

i e−2µi/σ
]
+ L2/σ

i e−2µi/σ exp
(
−L1/σ

i e−µi/σ
)

= 2
{

1− exp
(
−L1/σ

i e−µi/σ
) [

1 + L1/σ
i e−µi/σ

]}
= 2

{
wi + σw′i

}
.

On the other hand, for the type II censoring note that Wi = exp
(

yi−µi
σ

)
∼ E(1). By [12],

we have that

W(i)
D
=

i

∑
j=1

Zj

n− j + 1
, (A1)
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where W(i) is the ith order statistic from W1, . . . , Wn, D= denotes “equal in distribution” and Z1, . . . , Zn

are independent and identically distributed E(1) random variables. Therefore, E(W(j)) = Var(W(j)) =

∑
j
k=1(n− k + 1)−1 and

Wi =


W(1), with probability 1/n
...
W(r−1), with probability 1/n
W(r), with probability (n− r + 1)/n

Therefore,

wi = E(Wi) =
1
n

r−1

∑
j=1

j

∑
k=1

(n− k + 1)−1 +
(n− r + 1)

n

r

∑
k=1

(n− k + 1)−1.

With some manipulations, we obtain that E(Wi) = r/n. Also, we have that E(W2
(j)) = E(W(j)) +

E2(W(j)) and

Vi =



W2
(1), with probability 1/n
...

W2
(r−1), with probability 1/n

W2
(r), with probability (n− r + 1)/n

Therefore,

vi = wi +
1
n

r−1

∑
j=1

[
j

∑
k=1

(n− k + 1)−1

]2

+
(n− r + 1)

n

[
r

∑
k=1

(n− k + 1)−1

]2

.

Algebraic manipulations shows that

vi =
1
n

[
r +

r

∑
k=1

2(r− k) + 1
n− k + 1

]
.

Finally, as the hybrid scheme can be seen as a mixture between type I and II censoring, we obtain
directly that

wi = q×
(

1− exp
(
−L1/σ

i e−µi/σ
))

+ (1− q)× (r/n),

vi = q× 2
{

1− exp
(
−L1/σ

i e−µi/σ
) [

1 + L1/σ
i e−µi/σ

]}
+ (1− q)× 1

n

[
r +

r

∑
k=1

2(r− k) + 1
n− k + 1

]
,

where q is the mixing probability given by q = P(W(r) ≤ log L). By (A1), W(r) has hypoexponential [13]
distribution with vector of parameters λ = (λ1, . . . , λn), where λj = (n− j + 1)−1. Therefore,

q = 1−
n

∑
j=1

L−λj

Pj
,

where Pj = ∏n
k=1,k 6=j(k− j)/(n− j + 1).



Symmetry 2019, 11, 1351 9 of 10

Appendix A.2. Derivatives and Cumulants

Let Y1, . . . , Yn a random sample from Weibull censored data, the logarithm of the likelihood
function is given by

`(β) =
n

∑
i=1

{
δi

[
−n log σ +

yi − µi
σ

]
− exp

(
yi − µi

σ

)}
. (A2)

The first four derivatives of (A2) can be expressed, respectively, for

∂

∂βr
`(β) =

1
σ

n

∑
i=1

{
−δi + exp

(
yi − µi

σ

)}
xri;

∂2

∂βr∂βs
`(β) = − 1

σ2

n

∑
i=1

exp
(

yi − µi
σ

)
xrixsi;

∂3

∂βr∂βs∂βt
`(β) =

1
σ3

n

∑
i=1

exp
(

yi − µi
σ

)
xrixsixti.

The second- to third-order cumulants are

κrs = −
1
σ2

n

∑
i=1

wixrixsi; κr,s = −κrs =
1
σ2

n

∑
i=1

wixrixsi;

κrst =
1
σ3

n

∑
i=1

wixrixsixti; κ
(t)
rs = − 1

σ2

n

∑
i=1

w′ixrixsixti;

where wi = E
{

exp
(

yi−µi
σ

)}
,

wi = 1− exp
{
−L1/σ

i exp(−µi/σ)
}

,

w′i = −
1
σ

L1/σ
i exp{−L1/σ

i exp(−µi/σ)− µi/σ},

It can be observed that w′i = 0 for type II censoring.
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