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Abstract: Motivated by connections to the study of sequences of integers, we study, from a dynamical
systems point of view, the orbit structure for certain sequences of maps of integers. We find sequences
of maps for which all individual orbits are bounded and periodic and for which the number of
periodic orbits of fixed period is finite. This allows the introduction of a formal ζ-function for the
maps in these sequences, which are actually polynomials. We also find sequences of maps for which
the orbit structure is more complicated, as they have both bounded and unbounded orbits, both
individual and global. Most of our results are valid in a general numeration base.

Keywords: orbit structure; bounded orbit; unbounded orbit; bARH-number; bMRH-number;
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1. Introduction

In this paper, motivated by their intrinsic interest and by applications to the study of certain
sequences of integers and Diophantine equations, we investigate from a dynamical systems point of
view certain sequences of maps of integerss. We are mostly interested in understanding the space of
orbits. We find sequences of maps for which all individual orbits are bounded and periodic and for
which the number of periodic orbits of fixed period is finite. This allows one to introduce a formal
ζ-function for all functions in these sequences. We also find sequences for which the orbit structure is
more complicated, as they have both bounded and unbounded orbits, both individual and global.

In what follows, let b ≥ 2 be a numeration base. We let N denote the set of integers {1, 2, 3, 4, 5, . . . }.
If N ∈ N, we let sb(N) denote the sum of base-b digits of N. If x is a string of digits, let (x)∧k denote
the base 10 integer obtained by repeating x k-times. Let [x]b denote the value of the string x in base b.

The starting point of this investigation was the observation that certain sequences of integers,
recently introduced on OEIS [1], such as A305130, A305131, A306830, A323190, have dynamical stems
interpretation in terms of sequences of maps of integers. Dynamical interpretations for sequences of
integers were studied before. For example, references [2–4] call a sequence of integers realizable if there
exists a dynamical system for which the sequence counts the periodic orbits of certain period. Here we
will realize certain sequences of integers as sets of fixed points for certain sequences of functions of
integers. Then we study the overall orbit structure of these sequences of functions.

Definition 1. Let ( fm)m = { fm : N→ N|m ∈ N} be a sequence of functions of integers.
A point N ∈ N is called individual fixed point for ( fm)m if there exists at least one m ∈ N such that

fm(N) = N.
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A point N ∈ N is called global fixed point for ( fm)m if fm(N) = N ∀m ∈ N.

Definition 2. Let f : N→ N be a function. A sequence of integers (Nk)k≥1 is called individual orbit for f if
f (Nk) = Nk+1, ∀k ≥ 1.

Let ( fm)m = { fm : N→ N|m ∈ N} be a sequence of functions. A sequence of integers (Nk)k≥1 is called
global orbit for ( fm)m if for all k ≥ 1 there exists mk such that fmk (Nk) = Nk+1.

An orbit (Nk)k≥1 is called bounded if there exists M ≥ 1 such that Nk ≤ M, ∀k ≥ 1. An orbit (Nk)k≥1
is called periodic if there exist 1 ≤ k1 < k2 such that Nk1 = Nk2 . Then k2 − k1 is called the period of the
periodic orbit.

Remark 1. It is clear that all bounded orbits of a sequence of maps of integersare periodic.

Motivated by some properties of the taxicab number 1729 [5], one of us introduced in [6]
the class of b-additive Ramanujan–Hardy or (bARH-numbers) and the class of b-multiplicative
Ramanujan–Hardy or (bMRH-numbers. The first class consists of all integers N for which there
exists an integer M, called additive multiplier, such that the sum of base b digits of N times M added to
the reversal of the product gives N. The second class consists of all integers N for which there exists
an integer M, called multiplicative multiplier, such that the sum of base b digits of N times M multiplied
by the reversal of the sum gives N. In [7] we change the definitions above. We replace the product
between the sum of digits and the multiplier by the sum of the sum of base b digits of N and a positive
extra term which we call additive respectively multiplicative extra term. This gives two new classes of
numbers, b-wARH and b-wMRH. These are strictly larger than those above. Another motivation for
the study of these new classes of numbers is the study of numerical palindromes. All palindromes that
either have an even number of digits or an odd number of digits and the middle digit even belong to
the first class, and all squares of palindromes with al least two digits belong to the second class.

The following sequences of functions of integers are naturally related to the sequences of numbers
introduced above and will be studied in the paper from a dynamical systems point of view.

Definition 3. We let weak b-Additive Ramanujan–Hardy sequence (or b-wARH) be the sequence:

fM : N→ N, fM(N) = (Sb(N) + M) + (Sb(N) + M)R, M ∈ N, (1)

We let Dual weak b-Additive Ramanujan–Hardy sequence (or Dual b-wARH) be the sequence:

fM : N→ N, fM(N) = (Sb(M) + N) + (Sb(M) + N)R, M ∈ N, (2)

We let weak b-Multiplicative Ramanujan–Hardy sequence (or b-wMRH) be the sequence:

fM : N→ N, fM(N) = (Sb(N) + M).(Sb(N) + M)R, M ∈ N, (3)

We let Dual weak b-Multiplicative Ramanujan–Hardy sequence (or Dual b-wMRH) be the sequence:

fM : N→ N, fM(N) = (Sb(M) + N).(Sb(M) + N)R, M ∈ N, (4)

We let b-Additive Ramanujan–Hardy Sequence (or b-ARH) be the sequence:

fM : N→ N, fM(N) = (Sb(N).M) + (Sb(N).M)R, M ∈ N, (5)

We let dual b-Additive Ramanujan–Hardy Sequence (or dual b-ARH) be the sequence:

fM : N→ N, fM(N) = (Sb(M).N) + (Sb(M).N)R, M ∈ N, (6)

We let b-Multiplicative Ramanujan–Hardy Sequence (or b-MRH) be the sequence:
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fM : N→ N, fM(N) = (Sb(N).M).(Sb(N).M)R, M ∈ N, (7)

We let Dual b-Multiplicative Ramanujan–Hardy Sequence (or dual b-MRH) be the sequence:

fM : N→ N, fM(N) = (Sb(M).N).(Sb(M).N)R, M ∈ N, (8)

We observe that the operations of addition and multiplication are independent of the base, but the operation
of taking the reversal is not. In order to have a match with what was done in [6–8], in Formulas (1)–(8), the
notation (N)R means the reversal of the base b-representation of the operand N.

2. Statements of the Main Results

The following proposition shows the relationship between the sequences of integers introduced
in [6–8] and the sequences of functions of integers introduced in Definition 3.

Proposition 1. (a) The individual fixed points of the b-ARH sequence are the b-ARH-numbers.
(b) The individual fixed points of the b-MRH sequence are the b-MRH-numbers.
(c) The individual fixed points of b-the wARH sequence are the b-wARH-numbers.
(d) The individual fixed points of the b-wMRH sequence are the b-wMRH-numbers.
(e) The indices M for which the maps fM in the dual b-ARH sequence have individual fixed points are

those for which sb(M) are additive multipliers of b-ARH-numbers.
(f) The indices M for which the maps fM in the dual b-MRH sequence have individual fixed points are

those for which sb(M) are multiplicative multipliers of b-MRH-numbers.
(g) The indices M for which the maps fM in the dual b-wARH sequence have individual fixed points are

those for which sb(M) are additive extra terms of b-wARH-numbers.
(h) The indices M for which the maps fM in the dual b-wMRH sequence have individual fixed points are

those for which sb(M) are multiplicative extra terms of b-wMRH-numbers.

The proof of Proposition 1 is straighforward and follows from the basic definitions.

Proposition 2. Neither of the sequences of functions introduced in Definition 3 has a global fixed point.

Proof. Let N ∈ N.
If fM belongs to one of the b-ARH, b-MRH, b-wARH, or b-wMRH sequences, choose M > N.

Then it follows from (1), (3), (5), and (7) that fM(N) > N. Therefore, N is not an individual fixed point
for fM and, consequently, N is not a global fixed point for any of the sequences of functions above.

Assume now that fM belongs to one of the dual b-ARH, dual b-MRH, dual b-wARH, or dual
b-wMRH sequences, and M satisfies sb(M) > N. Then it follows from (2), (4), (6), and (8) that
fM(N) > N, so N is not an individual fixed point for fM and, consequently, N is not a global fixed
point for any of the sequences of functions above.

Proposition 3. All the sequences of functions introduced in Definition 3 have unbounded global orbits for all
points in the domain.

The proof of Proposition 3 is done in Section 3.
We show in Figures 1–3 individual orbits for several functions of integers introduced in

Definition 3. We observe that all of them are bounded. Moreover, all orbits are attracted to a finite
number of periodic cycles. The following proposition shows that this is a general fact.
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N Orbits

1
1 6 16 18 22 12 10

2
2 8 20

3
3 10 6 16 18 22 12

4
4 12 10 6 16 18 22

5
5 14

6
6 16 18 22 12 10

7
7 18 22 12 10 6 16

8
8 20

Figure 1. Individual orbits of N ∈ {1, 2, 3, 4, 5, 6, 7, 8} under the function f2 from the 10-wARH
sequence. given by f2(N) = (s10(N) + 2) + (s10(N) + 2)R.
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N Orbits

1
1 12 16 20

2
2 16 20

3
3 12 16 20

4
4 16 20

5
5 10 16 20

6
6 16 20

7
7 10 16 20

8
8 16 20

Figure 2. Individual orbits of N ∈ {1, 2, 3, 4, 5, 6, 7, 8} under the f6 function from the 3-wARH sequence
given by f6(N) = (s3(N) + 6) + (s3(N) + 6)R.

Proposition 4. All the sequences of functions b-ARH, b-wARH, b-MRH, b-wMRH have all individual orbits
bounded, and are consequently periodic. Moreover, all orbits are attracted to a finite number of periodic cycles.

The proof of Proposition 4 is done in Section 4.
The orbit structure of the dual sequences of functions is quite different.

Proposition 5. (1) The sequences of functions dual b-ARH, dual b-wARH, dual b-MRH, and dual b-wMRH
have all individual orbits starting with an integer N such that N > b unbounded.

The proof of Proposition 5 is done in Section 5.

Proposition 6. All functions in the sequences of functions b-ARH, b-wARH, b-MRH, b-wMRH have a finite
number of periodic orbits of fixed period.
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N Orbits

1
1 10

2
2 40 160 490 4030

3
3 90 810

4
4 160 490 4030

5
5 250 490 4030

6
6 360 810

7
7 490 4030

8
8 640 100 10

Figure 3. Individual orbits of N ∈ {1, 2, 3, 4, 5, 6, 7, 8} under the f10 function from the 10-MRH sequence
given by f10(N) = (s10(N) · 10) · (s10(N) · 10)R.

Proof. The proofs for all sequences are similar and follow the idea of some of the proofs from [6,7],
where we prove that all functions in the sequences b-ARH, b-wARH, b-MRH, b-wMRH have a finite
number of fixed points. Assume that f is a function and k is a fixed period. A number N ∈ N has an
orbit of period k if

f k(N) = N. (9)

By writing what this means explicitely one observes that the left hand side of (9) grows
polynomially in terms of the number of digits of N, because sb(N) grows polynomially in terms
of of the number of digits of N. In contrast, the right hand side of (9), N itself, grows exponentially in
terms of the number of digits. This discrepancy allows to bound the number of digits of N in terms of
k, which allows to bound the number of periodic orbits of period k.

Remark 2. Proposition 6 allows to define a ζ function for all functions in the sequences b-ARH, b-wARH,
b-MRH, b-wMRH. If f : N→ N is a function, we denote by pn( f ) the number of periodic orbits of f of length n.
Then the following function is well defined.

ζ( f ) =
∞

∑
n=1

pn( f )xn. (10)

The computation of the coefficients pn( f ) can be numerically challenging. For example we show in [6] that
for the function f1 from the 10-MRH sequence one has p1( f1) = 4. This is a restatement of the fact that the only
MRH numbers with multiplier M = 1 are 1, 18, 1729, 1458. We show below that all ζ functions associated
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with the functions in the sequences b-ARH, b-wARH, b-MRH, b-wMRH are polynomials. For each function f
the sequence {pn}n has only a finite number of nonzero terms. This is true because all functions in the sequences
b-ARH, b-wARH, b-MRH, b-wMRH cannot have periodic orbits of arbitrary large period. Indeed, as we proved
in Proposition 4 all orbits are attracted by a finite number of periodic cycles.

The following propositions are of independent interest and will be used in the proof of
Proposition 4.

Proposition 7. If N is a positive integer with at least two digits, then sb(N) ≤ N.

Proof. If N has at least two digits the statement follows from ([8], Proposition 5a). If N has one digit,
the statement is obvious.

Proposition 8. All individual functions f in the sequences of functions b-ARH, b-wARH, b-MRH, b-wMRH
have the following property: there exists an integer N0, depending on f , such that f (N) < N, ∀N ≥ N0.

Proof.

• We show the proof for the b-wARH-sequence. Let fA be an element of the sequence. Let k be
a positive integer that satisfies k(b−1)

bk−2 < 1
2 . Choose N0 = max{2(b− 1)A, (b)k−1}. Let N > N0.

Then N has at least k digits and
sb(N) ≤ k(b− 1). (11)

The assumption bk−1 ≤ N implies

b ≤ N
bk−2 . (12)

From (11) and (12) it follows that

sb(N) ≤ k(b− 1) ≤ kb ≤ Nk
bk−2 . (13)

We use now that the base b-reversal of an integer can increase it by at most b times and (11) to
conclude that

fA(N) = sb(N) + A + (sb(N) + A)R ≤ Nk
bk−2 (1 + b) + A(1 + b). (14)

Using now that N > 2A(1 + b) and that k(b−1)
bk−2 < 1

2 , Equation (14) becomes

fA(N) <
N
2
+

N
2

< N. (15)

• We show the proof for the b-ARH-sequence. Let fM be an element of the sequence.

Let k be a positive integer that satisfies

(b− 1)2k2M2

bk−2 < 1. (16)

Choose N0 = (b)k−1. Let N > N0. Then N has at least k digits and (11) and (12) holds.
Using now that the base b-reversal of an integer can increase it by at most b times, and (16),

we conclude that:

fM(N) = (sb(N) ·M) · (sb(N) ·M)R ≤ (b− 1)kM(b− 1)kMb

≤ (b− 1)2k2M2 N
bk−2 < N.
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• We show the proof for the b-MRH-sequence. Let fM be an element of the sequence. Let k be a
positive integer that satisfies

(b− 1)2k2M2

bk−2 < 1. (17)

Choose N0 = (b)k−1. Let N > N0. Then N has at least k digits and (11) and (12) holds.
Using now that the base b-reversal of an integer can increase it by at most b times, and (17),

we conclude that:

fM(N) = (sb(N) ·M) · (sb(N) ·M)R ≤ (b− 1)kM(b− 1)kMb

≤ (b− 1)2k2M2 N
bk−2 < N.

• We show the proof for the b-wMRH-sequence. Let fM be an element of the sequence. Let k be a
positive integer that satisfies

[M(b− 1)k + M]2

bk−2 < 1. (18)

Choose N0 = (b)k−1. Let N > N0. Then N has at least k digits and (11) and (12) holds.
Using now that the base b-reversal of an integer can increase it by at most b times, and (18),

we conclude that:

fM(N) = (sb(N) + M) · (sb(N) + M)R ≤ b[M(b− 1)k + M]2

≤ [M(b− 1)k + M]2
N

bk−2 < N.
(19)

3. Proof of Proposition 3

Proof. Let N ∈ N.

• We show the proof for the b-wARH sequence. Choose k0 such that bk0 − sb(N) > 0.

We construct by induction on k a sequence of integers (Ak)k≥k0 such that

fAk ◦ fAk−1 ◦ · · · ◦ fA2 ◦ fAk0
(N) = bk + 1, ∀k ≥ k0. (20)

If k = k0 choose Ak0 = bk0 − sb(N)(> 0). Then

fAk0
(N) = bk0 + (bk0)R = bk0 + 1.

Assume (20) true for k > ko and prove it for k + 1. Define Nk = bk + 1. Define Ak+1 =

bk+1 − sb(Nk) = bk+1 − 2. Then

fAk+1 ◦ fAk ◦ fAk−1 ◦ · · · ◦ fA2 ◦ fAk0
(N)

= fAk+1

(
fAk ◦ · · · ◦ fA2 ◦ fAk0

(N)
)

= fAk+1(Nk) = sb(Nk) + Ak+1 + (sb(Nk) + Ak)
R = bk+1 + 1

and (20) holds true for k + 1.

• We show the proof for the b-wMRH sequence. Choose k0 such that bk0 − sb(N) > 0.

We construct by induction on k a sequence of integers (Ak)k≥k0 such that

fAk ◦ fAk−1 ◦ · · · ◦ fA2 ◦ fAko
(N) = bk, ∀k ≥ k0. (21)
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If k = k0 choose Ak0 = bk0 − sb(N)(> 0). Then

fAk0
(N) = bk0 · (bk0)R = bk0 · 1 = bk0 .

Assume (21) to be true for k > k0 and prove it for k + 1. Define Nk = bk. Define Ak+1 =

bk+1 − sb(Nk) = bk+1 − 1. Then

fAk+1 ◦ fAk ◦ fAk−1 ◦ · · · ◦ fA2 ◦ fAk0
(N)

= fAk+1

(
fAk ◦ · · · ◦ fA2 ◦ fAk0

(N)
)

= fAk+1(Nk) = (sb(Nk) + Ak+1) · (sb(Nk) + Ak)
R = bk+1 · 1 = bk+1.

and (21) holds true for k + 1.

• We show the proof for the b-MRH sequence. Choose k0 such that bk0
sb(N)

≥ 1.

We construct by induction on k a sequence of integers (Ak)k such that

fAk ◦ fAk−1 ◦ · · · ◦ fA2 ◦ fAk0
(N) ≥ bk, ∀k ≥ k0. (22)

If k = k0 choose an integer Ak0 ≥
bk0

sb(N)
≥ 1. Then

fAk0
(N) ≥ bk0 · (sb(N) · Ak0)

R ≥ 10k0 · 1 = bk0 .

Assume now (22) true for k > ko and prove it for k + 1. Define Nk = fAk · · · ◦ fA2 ◦ fAk0
(N).

Choose an integer Ak+1 ≥ bk+1

sb(Nk)
> 1. Then

fAk+1 ◦ fAk ◦ · · · ◦ fA2 ◦ fAk0
(N) = fAk

(
fAk−1 · · · ◦ fA2 ◦ fAk0

(N)
)

= fAk+1(Nk) = (sb(Nk) · Ak+1) · (sb(Nk) · Ak+1)
R ≥ bk+1.

and (22) holds true for k + 1.

• We show the proof for the b-ARH sequence. Choose k0 such that 10k0 − sb(N) > 0.

We construct by induction on k a sequence (Ak)k such that

fAk ◦ fAk−1 · · · ◦ fA2 ◦ fAk0
(N) = bk + 1, ∀k ≥ k0. (23)

If k = k0 choose Ak0 = bk0 − sb(N)(> 0). Then

fAk0
(N) = bk0 + (10k0)R = bk0 + 1.

Assume now (23) is true for k > k0 and prove it for k + 1. Define Nk = bk0 + 1. Define Ak+1 =

bk+1 − sb(Nk) = bk − 2. Then

fAk ◦ fAk−1 · · · ◦ fA2 ◦ fAko
(N) = fAk (Nk) = sb(Nk) + Ak = (sb(Nk) + Ak)

R = bk + 1

and (23) holds true for k + 1.

• We show the proof for the dual b-wARH sequence. Choose integers k0 and Ak0 ≥ 1 such that
sb(Ak0) + N = bk0 .
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We construct by induction on k a sequence (Ak)k≥k0 such that

fAk ◦ fAk−1 ◦ · · · ◦ fAk0+1 ◦ fAk0
(N) = bk + 1, ∀k ≥ k0. (24)

If k = k0 then

fAk0
(N) = sb(Ak0) + N +

(
sb(Ak0) + N

)R
= bk0 + (bk0)R = bk0 + 1.

Assume now (24) is true for k > k0 and prove it for k + 1. Define Nk = bk + 1. Choose Ak+1 such
that sb(Ak+1) + Nk = bk+1. Then

fAk+1 ◦ fAk ◦ · · · ◦ fA2 ◦ fAk0
(N) = fAk+1

(
fAk · · · ◦ fA2 ◦ fAk0

(N)
)

= fAk+1(Nk) = (sb(Ak+1) + Nk) + (sb(Ak+1) + Nk)
R = bk+1 + 1,

and (24) holds true for k + 1.

• We show the proof for the dual b-MRH sequence. Choose k0 and Ak0 ≥ 1 such that (sb(Ak0)) ·
(N) = bk0 .

We construct by induction on k a sequence of integers (Ak)k such that

fAk ◦ fAk−1 ◦ · · · ◦ fAk0+1 ◦ fAk0
(N) = bk, ∀k ≥ k0. (25)

If k = k0. Then

fAk0
(N) = (sb(Ak0) · N) ·

(
sb(Ak0) · N

)R
= bk0 · (bk0)R = bk0 .

Assume now (25) to be true for k > ko and prove it for k + 1. Define Nk = bk. Choose Ak+1 such
that sb(Ak+1) · (Nk) = bk+1. Then

fAk+1 ◦ fAk ◦ · · · ◦ fA2 ◦ fAk0
(N) = fAk+1

(
fAk · · · ◦ fA2 ◦ fAk0

(N)
)

= fAk+1(Nk) = (sb(Ak+1) · Nk) · ((sb(Ak+1) · Nk)
R) = bk+1,

and (25) holds true for k + 1.

• We show the proof for the dual b-wMRH sequence. Choose k0 and Ak0 ≥ 1 such that
sb(Ak0) + (N) = bk0 .

We construct by induction on k a sequence of integers (Ak)k such that

fAk ◦ fAk−1 ◦ · · · ◦ fAk0+1 ◦ fAk0
(N) = bk, ∀k ≥ k0. (26)

If k = k0. Then

fAk0
(N) = (sb(Ak0) + N) ·

(
sb(Ak0) + N

)R
= bk0 · (bk0)R = bk0 .

Assume now (26) is true for k > ko and prove it for k + 1. Define Nk = bk. Choose Ak+1 such that
Nk = bk. Define sb(Ak+1) + Nk = bk+1. Then

fAk+1 ◦ fAk ◦ · · · ◦ fA2 ◦ fAk0
(N) = fAk+1

(
fAk · · · ◦ fA2 ◦ fAk0

(N)
)

= fAk+1(Nk) = (sb(Ak+1) + Nk) · ((sb(Ak+1) + (Nk)
R)) = bk+1,

and (26) holds true for k + 1.
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• We show the proof for the dual b-ARH sequence. Choose integers k0 and Ak0 ≥ 1 such that
(sb(Ak0)) · (N) = bk0 .

We construct by induction on k a sequence (Ak)k≥k0 such that

fAk ◦ fAk−1 ◦ · · · ◦ fAk0+1 ◦ fAk0
(N) = bk + 1, ∀k ≥ k0. (27)

If k = k0 then

fAk0
(N) = (((sb(Ak0)) · (N)) +

(
sb(Ak0) · (N)

)R
= bk0 · (bk0)R = bk0 + 1.

Assume now (27) is true for k > k0 and prove it for k + 1. Define Nk = bk + 1. Choose Ak+1 such
that (sb(Ak+1)) · N = bk+1. Then

fAk+1 ◦ fAk ◦ · · · ◦ fA2 ◦ fAk0
(N) = fAk+1

(
fAk · · · ◦ fA2 ◦ fAk0

(N)
)

= fAk+1(Nk) = (sb(Ak+1) · Nk) + ((sb(Ak+1) · (Nk)
R)) = bk+1 + 1,

and (27) holds true for k + 1.

4. Proof of Proposition 4

Proof.

• We show the proof for the b-wARH sequence. Let fA be a map from the sequence. Let N0 be the
integer from Proposition 8 corresponding to fA. Then

fA(N) < N if N ≥ N0. (28)

It follows from Proposition 7 that

fA(N) = (sb(N) + A) + (sb(N) + A)R ≤ (N + A)(b + 1)

< (N0 + A)(b + 1), if N < N0.
(29)

Let {Nk}k be an orbit of fA. Define M = max{N1, (N0 + A)(b + 1)}. Then conditions (28), (29)
imply that |Nk| ≤ M, ∀k ≥ 1, so the orbit is bounded.

• We show the proof for the b-ARH sequence. Let fM be a map from the sequence. Let N0 be the
integer from Proposition 8 corresponding to fM. Then

fM(N) < N if N ≥ N0. (30)

It follows from Proposition 7 that

fM(N) = (sb(N) ·M) + (sb(N) ·M)R ≤ (N + M)(b + 1)

< (N0 + M)(b + 1), if N < N0.
(31)

Let {Nk}k be an orbit of fA. Define M̄ = max{N1, (N0 + M)(b + 1)}. Then conditions (30), (31)
imply that |Nk| ≤ M̄, ∀k ≥ 1, so the orbit is bounded.

• We show the proof for the b-wMRH sequence. Let fA be a map from the sequence. Let N0 be the
integer from Proposition 8 corresponding to fA. Then

fA(N) < N if N ≥ N0. (32)
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It follows from Proposition 7 that

fA(N) = (sb(N) · A) + (sb(N) · A)R ≤ (N + A)(b + 1)

< (N0 + A)(b + 1), if N < N0.
(33)

Let {Nk}k be an orbit of fA. Define M̄ = max{N1, (N0 + A)(b + 1)}. Then conditions (32), (33)
imply that |Nk| ≤ M̄, ∀k ≥ 1, so the orbit is bounded.

• We show the proof for the b-MRH sequence. Let fM be a map from the sequence. Let N0 be the
integer from Proposition 8 corresponding to fM. Then

fM(N) < N if N ≥ N0. (34)

It follows from Proposition 7 that

fM(N) = (sb(N) ·M) · (sb(N) ·M)R ≤ (NM)2(b + 1)

< (N0M)2(b + 1), if N < N0.
(35)

Let {Nk}k be an orbit of fA. Define M̄ = max{N1, (N0M)2(b + 1)}. Then conditions (28) and (29),
(34), (35) imply that |Nk| ≤ M̄, ∀k ≥ 1, so the orbit is bounded.

To prove the last statement in Proposition 4, we observe that the pairs of Inequalities, (34) and (35),
(32) and (33), (30) and (31), and (28) and (29), provide an upper and lower treshhold that will eventually
contain an element from each orbit, as the interval betwen the treshholds contains only a finite number
of integers we conclude that each orbit is going to colaps into a periodic cycle.

5. Proof of Proposition 5

Proof. We assume throughout the proof that N > 1
b .

• We show the proof for the dual b-wARH sequence. Let fA be a function in the sequence and
N ∈ N. We observe that the base b reversal of an integer decrease the integer by at most a factor
of 1

b . Therefore:

fA(N) = (sb(A) + N) + (sb(A) + N)R ≥ (1 +
1
b
)(sb(A) + N) ≥ (1 +

1
b
)N. (36)

As 1 + 1
b > 1, the iteration of (38) shows that the orbit of N is unbounded.

• We show the proof for the dual b-ARH sequence. Let fA be a function in the sequence and
N ∈ N. We observe that the base b reversal of an integer decrease the integer by at most a factor
of 1

b . Therefore:

fA(N) = (sb(A) · N) + (sb(A) · N)R ≥ (1 +
1
b
)(sb(A) · N) ≥ (1 +

1
b
)N. (37)

As 1 + 1
b > 1, the iteration of (39) shows that the orbit of N is unbounded.

• We show the proof for the dual b-MRH sequence. Let fM be a function in the sequence and
N ∈ N. We observe that the base b reversal of an integer decrease the integer by at most a factor
of 1

b . Therefore:

fM(N) = (sb(M)× N)× (sb(M)× N)R ≥ 1
b
(sb(M)× N)2 ≥ 1

b
N2. (38)

As N
b > 1, the iteration of (38) shows that the orbit of N is unbounded.
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• We show the proof for the dual b-wMRH sequence. Let fA be a function in the sequence and
N ∈ N. We observe that the base b reversal of an integer decrease the integer by at most a factor
of 1

b . Therefore:

fA(N) = (sb(A) + N) · (sb(A) + N)R ≥ (1 · 1
b
)(sb(A) + N)2 ≥ 1

b
N2. (39)

As N
b > 1, the iteration of (39) shows that the orbit of N is unbounded.

6. Conclusions

In this paper, motivated by their intrinsic interest and by applications to the study of certain
sequences of integers, we investigate from a dynamical systems point of view certain sequences of
maps of integers. We are mostly interested in understanding the space of orbits. We find sequences of
maps of integers for which all individual orbits are bounded and periodic and for which the number of
periodic orbits of fixed period is finite. This allows us to introduce formal ζ-functions for all functions
in these sequences, which are actually polynomials. We also find sequences of maps of integers for
which the orbit structure is more complicated, as they have both bounded and unbounded orbits, both
individual and global. We observe that the notion of a chaotic dynamical system for single maps is
very well established in the literature. Nevertheless, the notion of a chaotic system for a larger group
of symmetries it is not yet crystalized. We hope that our results will provide a collection of useful
examples that together with further additional research may lead to a general theory of chaotic families
of maps, and in particular a general theory of chaotic sequences of maps of integers.

Author Contributions: The authors share equal responsibility for the content of the paper.

Funding: This research received no external funding.

Acknowledgments: While working on this project, J.M. was a Visiting Scholar at West Chester West Chester
University of Pennsylvania participating in the Summer 2019 ISURI Program.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sloane, N.J.A. The On-Line Encyclopedia of Integer Sequences. Available online: http://oeis.org (accessed
on 7 June 2019).

2. Everest, G.; Miles, R.; Stevens, S.; Ward, T. Orbit-counting in non-hyperbolic dynamical systems. J. Reine
Angew. Math. 2007, 608, 155–182. [CrossRef]

3. Everest, G.; Miles, R.; Stevens, S.; Ward, T. Dirichlet series for finite combinatorial rank dynamics. Trans. Am.
Math. Soc. 2010, 362, 199–227. [CrossRef]

4. Everest, G.; van der Poorten, A.J.; Puri, Y.; Ward, T. Integer sequences and periodic points. J. Integer Seq.
2002, 5, 1–10.

5. Hardy, G.H. Ramanujan: Three Lectures on Subjects Suggested by His Life and Work; Chelsea Pub Co.: Chelsea,
UK, 1999.
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