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Abstract: With the explosive growth of the scale of complex networks, the existing community
detection algorithms are unable to meet the needs of rapid analysis of the community structure
in complex networks. A new algorithm for detecting communities in complex networks based on
the Hadoop platform (called Community Detection on Hadoop (CDOH)) is proposed in this paper.
Based on the basic idea of modularity increment, our algorithm implements parallel merging and
accomplishes a fast and accurate detection of the community structure in complex networks. Our
extensive experimental results on three real datasets of complex networks demonstrate that the
CDOH algorithm can improve the efficiency of the current memory-based community detection
algorithms significantly without affecting the accuracy of the community detection.

Keywords: community detection; complex networks; Hadoop; modularity increment

1. Introduction

In the era of Web 2.0, objects are connected to each other by various technologies such as the
Internet and the Internet of Things, and form a variety of complex networks such as interpersonal
interaction, essay reference, transportation, and protein interaction networks. Various complex
networks are widely used in sociology, management, computer science, operations, biology, and other
disciplines, while their wide application prospects have attracted the interest of many researchers.
For example, Watts and Strogatz [1] applied the complex network theory in the field of biology and
considered the nervous system to be a complex network of large numbers of nerve cells connected
by nerve fibers. Faloutsos [2] applied the method of complex network analysis to study computer
networks and evaluated their stability by analyzing their robustness. Sen et al. [3] mapped the
transportation network to a complex network and implemented an optimal planning and configuration
of the transportation network using dynamic analysis of the complex network. Xiao et al. [4]
constructed a directed and weighted complex network based on the Beijing traffic network, analyzed
the traffic network load-bearing pressure, and mined the corresponding regional centers, which
provided a theoretical support for optimizing urban public transport network systems. Based on
the characteristic analysis of the complex network itself, Ruguo [5] proposed a method for social
coordination governance and provided ideas for solving mass public events based on a characteristic
analysis of complex networks.

Many studies analyzed the inherent characteristics of complex networks and discovered the
relationships between node attributes and connections within networks. To discover feature of complex
networks, several community detection algorithms have been proposed. The so-called “community”
is a sub-network composed of a group of nodes closely connected with their internal nodes and
sparsely connected with other external community nodes. The community structure is a common
feature of complex networks made up of one or more communities. The accurate identification of
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the community structure in complex networks play an important theoretical role for public opinion
monitoring, interest recommendation, identification of the network internal structure and other related
research. As a result, many researchers have studied community detection algorithms from the aspects
of modularity and edge structure. For examples, Newman and Girvan [6] proposed the concept of
modularity and mined the complex network community structure, Yang et al. [7] introduced a method
for analyzing the edge structure and node properties allowing to improve the accuracy of the detection
of the complex network community structure. The accurate identification of the community structure
in complex networks have broad applications, such as influence maximization, influences discovery
within a community, interest recommendation, edge intelligence empowered recommendation [8],
and so on.

However, the existing studies about complex network community detection algorithms focused
on small-scale data sets and limited to the improvement of the community detection accuracy while
neglecting its efficiency. At the same time, the number of nodes in complex networks demonstrates an
explosive growth trend considering the advent of big data era, increasing number of network users,
and exponential increase of the generated contents. At present, many social networking platforms
such as WeChat, Weibo, Facebook, and Twitter, have more than 100 million on-line users and various
interaction forms, including follow-ups, comments, and sharing. The large-scale complex network
data sets generated by such platforms have the characteristics of node diversity, complex structure,
multi-complexity fusion, which challenges the accuracy of the traditional complex network community
detection algorithms. Furthermore, the traditional community detection algorithms are based on matrix
iterations, which make the algorithms unable to adapt to the requirements of real-time and flexibility.

In this paper, we propose a new complex network community detection algorithm based on
Hadoop framework (called Community Detection on Hadoop (CDOH)). Hadoop is a distributed
system infrastructure developed by the Apache Foundation. Our contributions are as follows:

• Based on the idea of the maximum modularity, and combining the distributed characteristics of
the Hadoop platform, a new modularity matrix update method is proposed and a corresponding
community merging strategy is constructed to implement a fast and accurate detection and
discovery of complex network community structures;

• We theoretically analyze our proposed CDOH algorithm, and show the computational cost of our
algorithm can achieve O(n) computational cost when we use enough parallel nodes;

• Experimental results on 3 real datasets demonstrate that CDOH significantly outperforms the
traditional complex network community detection algorithm in terms of both the efficiency and
accuracy of the community detection of complex networks.

The rest of our paper are organized as follows. Section 2 introduces the related works. Section 3
describes our proposed CDOH algorithm and analyzed its computational complexity. In Section 4,
we show the experimental results with theoretical analysis. Section 5 concludes the paper and presents
the future works.

2. Related Works

Since Newman [6,9] proposed the module optimality algorithm, the modularity-based community
detection approach has been used in many network community mining algorithms such as the
classic fast Newman community division algorithm [9] and CNM algorithm [10]. The fast Newman
community detection algorithm is an agglomerative hierarchical clustering algorithm that starts with
a state, in which each node is the sole member of n communities, and repeatedly joins communities
together in pairs, choosing a joint at each step, which results in the greatest increase (or smallest
decrease) in modularity. Recently, domestic researchers such as Lei et al. [11] implemented an
edge community mining algorithm based on the local information of the considering network.
Xiong [12] proposed a community discovery algorithm that combined the user closeness with
clustering algorithms. Weiping [13] proposed the concept of new gravity of users for an accurate
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community discovery; Leng [14] proposed a new network community detection algorithm based on a
greedy optimization technology. Zhang et al. [15] further improved the fast Newman algorithm by
introducing an improved index for the closeness centrality to classify overlapping nodes; the proposed
method demonstrated a high classification accuracy in detecting overlapping communities with a time
complexity of O(n2).

Blondel et al. [16] improved the modular incremental solution method by merging communities
iteratively using a new calculation formula to achieve good results. Parsa et al. [17] used a probability
vector model based on a single variable edge distribution algorithm, that combines an evolutionary
algorithm with a community discovery method to enable the community detection; Oliverira et al. [18]
used an improved Kuramoto coupled oscillator synchronization model to analyze networks from their
dynamic factors and implemented a method for community discovery in complex networks. Ling
Xing et al. [19] proposed a method that combines the sliding time-window method with the hierarchical
encounter model based on association rules to increase the fidelity of the extracted networks by
alleviating the homophily effect. Yuhui Gong et al. [20] focused on the customers’ conformity behaviors
in a symmetry market where customers are located in a social network. Simulation results have shown
that topology structure, network size, and initial market share have significant effects on the evolution
of customers conformity behaviors. Recently, Aceto et al. [21,22] and Ruoyu Wang et al. [23] applied
deep learning and machine learning technologies in the research about social networking.

Recently, researchers have proposed complex network community detection algorithms based
on big data platforms. Clauset [24] proposed a community-based parallel detection method based on
the CNM algorithm. The basic idea of the algorithm proposed in [24] is to calculate the maximum
community modularity in parallel and recognize the communities of large-scale networks by
decreasing the communication overhead. The limitation of this algorithm is that it fails to run when
the network scale increases and the amount of data rises to a certain level. Jinpeng [25] proposed a
link community recognition algorithm based on the Hadoop platform. While this algorithm resolves
the limitation of the linked community method that cannot store and process large matrices when
analyzing big networks, its efficiency is still not efficient enough. Furthermore, its processing time
reaches more than 5000 seconds when the scale of nodes reaches 15,000. Riedy et al. [26] used servers
with multi-core processors to calculate the maximum community modularity in parallel to identify
communities. However, the proposed method has strong hardware dependencies.

Moon et al. [27] proposed a parallel GN algorithm [6] based on Hadoop that can be divided into 4
stages. Each stage includes the map and reduce process. In the first stage, the tuples of all node pairs are
generated; in the second and third stages, the edges with large edge betweenness values are identified
and removed, respectively; in the fourth stage, the tuples are recalculated according to the new
network. The experiment results demonstrated that the efficiency of the algorithm increases linearly
with the increase of the number of reducers which are in charge of reduce process. Weijiang et al. [28]
proposed a parallel Louvain algorithm that solved the main time-consuming problem of calculating
the modularity and ergodic modularity increment in the Louvain algorithm [29]. This proposed
algorithm outputs the information about all neighbors of a node in the map phase and decides the new
home community of the node in the reduce phase accordingly. When computing a new community
of a node, it is necessary to ensure that the neighbor’s community is up-to-date, which is hard to be
guaranteed in a distributed environment. Therefore, it is easy to face the problems of “community
interchange” and “community ownership delay,” which can be solved by resolving the associated
connected graph. To solve the problem of high complexity of the fast Newman algorithm [10] in
calculating the modularity of nodes. Bingzhou [30] proposed a parallel fast Newman algorithm based
on Hadoop that calculates the modularity increment of each node merged with its neighbors in the
map stage in parallel. In the reduce stage, the 2 nodes with the largest modularity increment are found
and merged. The map and reduce processes are executed iteratively until all nodes are merged into
1 community. To deal with the problems of the fast-unfolding algorithm in processing large-scale
networks. Bingzhou [30] also proposed a parallel fast-unfolding algorithm based on Hadoop and the
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divide and conquer principle. First, a large-scale network is partitioned and merged separately, then
the network is reconstructed according to the merging results of each partition, and finally the network
is merged iteratively and reconstructed until the structure of community does not change any more.
Conte et al. [31] proposed an algorithm which was able to find large k-plexes of very large graphs in just
a few minutes and scale up to tens of machines with tens of cores each. Vincenzo el al. [32] proposed a
novel algorithm for community detection in social networks based on game theory, and showed this
algorithm outperformed other algorithms in terms of computational complexity and effectiveness.
However, this algorithm cannot scale to a huge number of nodes and edges.

The traditional community detection algorithms focused on small-scale data sets and hard to scale
to a large scale data sets. While parallel community detection algorithms are more scalable, they cannot
achieve a good trade-off between the efficiency and accuracy. In order to overcome the shortcomings
of traditional community detection algorithms and parallel community detection algorithms, we
propose a new complex network community detection algorithm based on Hadoop, which effectively
implements a fast and accurate detection of complex network community structure. Compared with
traditional community detection algorithms, it can scale to a large scale data set. Compared with
parallel community detection algorithms, it achieves a good trade-off between efficiency and accuracy.

3. Complex Network Community Detecting Algorithm Based on Hadoop

The proposed CDOH algorithm is based on the idea of the maximal modularity increment, which
employs a new modularity matrix updating method and a community merging strategy.

3.1. Definitions

This section provides formal definition of the basic concepts involved in the proposed complex
network community detection algorithm. The symbols and their meanings are shown in Table 1.

Table 1. Symbols and Definitions.

Symbols Meanings

N A complex network

V a set of nodes

vi node i

E a set of edges

eij Denotes the connection between node vi and node vj, if they are connected, eij is 1; Otherwise eij is 0.

di the node degree of node vi

M the modularity of a network

C the set of detected network communities

ci a community i

lc the total number of edges interconnected between nodes within the community c

m the total number of edges in the network

Dc the sum of the node degrees of all nodes in the community c

ac The ratio of the sum of degrees of all nodes in the community c to the sum of degrees of all nodes in N

4M the modularity increment

Rij the number of connection edges between communities ci and cj

Definition 1. (Complex network) A complex network is a network consisting of a series of nodes and their
interconnected edges denoted as N = (V, E). Here, V = {vi | i = 1, 2, · · · , n} represents a set of nodes in a
complex network, and E = {eij | vi, vj ∈ V} represents a set of edges in a complex network, where eij denotes
the connection between nodes vi and vj. If they are connected, then eij = 1; otherwise, eij = 0.
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Definition 2. (Node degree) In a complex network N = (V, E), the node degree di of each node vi is defined as
the number of edges connected to node vi, which is defined by Equation (1),

di = ∑
vj∈V,i 6=j

eij (1)

Figure 1 illustrates a simple network community structure. According to Definitions 1 and 2,
there are 12 nodes in the network (from v1 to v2), where e12 = 1, e19 = 0, and v1 has a node degree
d1 = 4.

Figure 1. A Simple Network Community Structure.

Definition 3. (Modularity) The modularity of a network M is defined by Equation (2).

M = ∑
c∈C

(
lc
m
− a2

c ) (2)

Here, C = {ci | i = 1, 2, · · · , k} denotes the detected set of network community structures, lc
denotes the total number of edges interconnected between nodes within the community c, m denotes
the total number of edges in the network, and

ac =
Dc

2m
(3)

where Dc denotes the sum of the node degrees of all nodes in the community c, and Dc equals to 2 times
of the sum of lc and the total edges of connecting the community c and other external communities.

According to Equation (2), the modularity of complex networks measures the degree of closeness
within the community and the degree of sparseness between the communities. The closer the internal
connection of the community is and the thinner the connection between the communities is, the greater
the modularity M is, and vice versa. Thus, when the modularity M of a complex network is the
largest, the community detection results are optimal. However, it is quite difficult to determine
directly whether M has reached its maximum. Therefore, the concept of the modularity increment
4M proposed by Newman is adopted, where the increase or decrease in the modularity M caused by
merging communities ci and cj, which is defined as Equation (4).

4M =
2Rij

m
− 2× ai × aj (4)

Here, Rij denotes the number of connection edges between communities ci and cj in which
i 6= j. Then the modularity M increases progressively when 4M > 0. On the contrary, if 4M < 0,
the modularity M is the maximum and the process of the community detection ends.

When the number of nodes and edges in a complex network are kept the same, and different
communities are merged to form a new community, the number of edges among nodes within the new
community is the sum of the number of edges within the 2 merged communities and the number of
edges between the 2 merged communities. Accordingly, [14] points out that when the number of nodes
and edges are kept the same, the increase of the modularity between the new communities formed by
merging multiple known communities and other communities can be established as Equation (5).
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4M[cz][ck] =

{
4M[cz][ck] +4M[ci][ck],< ci, ck >∈ E, ci ∈ cz

4M[cz][ck]− 2× ai × ak,< ci, ck >/∈ E, ci ∈ cz
(5)

Here, cz denotes the new community after merging, ck denotes the old community that does not
belong to cz, ci denotes the old community merged to cz, and < ci, ck > denotes the edge set from
community ci to community ck.

Taking the network structure in Figure 1 as an example, we can see that each node represents
a community. Equation (4) can be used to calculate the modularity increment 4M among any 2
communities and form a matrix as shown in Table 2, where the first row and column represent the
community number. We focus only on the 2 same communities need to be merged, and the changes
within the community need not be considered, so the diagonal of the matrix can be initialized to 0.
From the values of the matrix, we can observe that communities that can be merged in this example
are c2 and c4, c2 and c5, c7 and c12, c11 and c12, where4M is the maximal value, that is, 0.036. Taking
the community c13 formed by merging c2 and c4 as an example, the results after merging are listed
in Table 3.

As can be noticed from Tables 2 and 3, the modularity increment between the community c13 and
other communities is the sum of the modularity increment between the communities c2, c4, and the
corresponding communities. For example, in Table 3, the modularity increment of the communities c1

and c13 is 0.021, which is the sum of the modularity increment, 0.033, of c1 and c2, and the modularity
increment, −0.012, of c1 and c4, as shown in Table 2.

Considering that the modularity matrix update algorithm has the characteristics of merging
communities in parallel and conforms to the characteristics of parallel processing on the Hadoop
platform, we select the modularity incremental update method represented by Equation (5) to construct
the proposed CDOH algorithm. According to the modularity increment represented by Equation (4),
we initialize the entire network, treat each node as a community, and calculate the modularity increment
when merging any 2 communities. Then, we iterate consecutively to find new communities. Based on
the MapReduce parallel programming model, all the 2 communities with the maximum modularity
increment are identified and merged in parallel. Equation (5) is used to update the modularity
increment when merging any 2 communities in parallel. The community discovery process ends when
the maximum modularity increment is negative. Finally, the CDOH algorithm stores the node set V
as (vId, cId), where vId denotes the node number and cId denotes the community number, and the
edge set E is represented as (s, d,4M), where s denotes the source node of the edge, d denotes the
destination node of the edge, and4M is the modularity increment corresponding to this edge.

Table 2. 4M Matrix before Network Merging.

1 2 3 4 5 6 7 8 9 10 11 12

1 0.000 0.033 0.025 −0.012 0.033 0.029 −0.012 −0.017 −0.021 −0.017 −0.012 −0.012

2 0.033 0.000 −0.015 0.036 0.036 −0.012 −0.009 −0.012 −0.015 −0.012 −0.009 −0.009

3 0.025 −0.015 0.000 0.030 −0.015 0.025 −0.015 0.025 −0.026 0.025 −0.015 −0.015

4 −0.012 0.036 0.030 0.000 −0.009 0.033 −0.009 −0.012 −0.015 −0.012 −0.009 −0.009

5 0.033 0.036 −0.015 −0.009 0.000 0.033 −0.009 −0.012 −0.015 −0.012 −0.009 −0.009

6 0.029 −0.012 0.025 0.033 0.033 0.000 −0.012 −0.017 −0.021 −0.017 −0.012 −0.012

7 −0.012 −0.009 −0.015 −0.009 −0.009 −0.012 0.000 0.033 0.030 −0.012 −0.009 0.036

8 −0.017 −0.012 0.025 −0.012 −0.012 −0.017 0.033 0.000 0.025 0.029 −0.012 −0.012

9 −0.021 −0.015 −0.026 −0.015 −0.015 −0.021 0.030 0.025 0.000 0.025 0.030 0.030

10 −0.017 −0.012 0.025 −0.012 −0.012 −0.017 −0.012 0.029 0.025 0.000 0.033 −0.012

11 −0.012 −0.009 −0.015 −0.009 −0.009 −0.012 −0.009 −0.012 0.030 0.033 0.000 0.036

12 −0.012 −0.009 −0.015 −0.009 −0.009 −0.012 0.036 −0.012 0.030 −0.012 0.036 0.000
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Table 3. 4M Matrix after Merging c2 and c4.

1 3 5 6 7 8 9 10 11 12 13

1 0 0.025 0.033 0.029 −0.012 −0.017 −0.021 −0.017 −0.012 −0.012 0.021

3 0.025 0 −0.015 0.025 −0.015 0.025 −0.026 0.025 −0.015 −0.015 0.015

5 0.033 −0.015 0 0.033 −0.009 −0.012 −0.015 −0.012 −0.009 −0.009 0.027

6 0.029 0.025 0.033 0 −0.012 −0.017 −0.021 −0.017 −0.012 −0.012 0.021

7 −0.012 −0.015 −0.009 −0.012 0 0.033 0.03 −0.012 −0.009 0.036 −0.019

8 −0.017 0.025 −0.012 −0.017 0.033 0 0.025 0.029 −0.012 −0.012 −0.025

9 −0.021 −0.026 −0.015 −0.021 0.03 0.025 0 0.025 0.03 0.03 −0.031

10 −0.017 0.025 −0.012 −0.017 −0.012 0.029 0.025 0 0.033 −0.012 −0.025

11 −0.012 −0.015 −0.009 −0.012 −0.009 −0.012 0.03 0.033 0 0.036 −0.019

12 −0.012 −0.015 −0.009 −0.012 0.036 −0.012 0.03 −0.012 0.036 0 −0.019

13 0.021 0.015 0.027 0.021 −0.019 −0.025 −0.031 −0.025 −0.019 −0.019 0

3.2. The CDOH Algorithm

Based on the research framework of complex network community detection algorithm on the
Hadoop platform shown in the Section 3.1. The CDOH has 4 steps, that is, first, we will initialize
the parameters; second, we will find the maximum modularity increment; third, we will merge the
communities and update the modularity increment; finally, we will generate the final community
discovery results. Step 2 and step 3 will be repeated to find new communities until the maximum
modularity increment is negative. We shown the flow charts of CDOH algorithm in Figure 2. Here, step
1 (Parameter initialization), step 2 (Finding the maximum modularity increment), and step 3 (Merging
communities and updating the modularity increment) are implemented based on MapReduce parallel
programming model of Hadoop.

N

Figure 2. Flow charts of Community Detection on Hadoop (CDOH) Algorithm.

3.2.1. Parameter Initialization

The initialization phase is responsible for calculating the necessary parameters of the algorithm,
which includes the total number of nodes n, total number of edges m, degree d of each node, vector a,
and the modularity increment4M between each pair of nodes. The process is listed in Algorithm 1,
the main steps of which include the following:

• First, we load the complex network data from the input file, then calculate the number of nodes n
and edges m of the complex network, and broadcast the number of edges (m) to all nodes;

• Second, we calculate the degree d of each node and the vector a according to Equation (3);
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• Finally, we use Equation (4) to calculate the modularity increment 4M between each pair of
nodes, and construct a new network N using this modularity increment.

Algorithm 1 Initialization of CDOH Parameters

Input:

D: Preprocessed network data;
Output:

4M: Modularity increment;

N: Network;
1: N = networkLoad(D);
2: n = getVertices(N);
3: m = getEdges(N);
4: Broadcast the number of edges m to all nodes in the cluster;
5: for each Node i in N do

6: ki = getDegree(i);
7: ai =

ki
2m ;

8: for each Edge e in N do

9: 4Mij =
Rij
m − 2× ai × aj;

Here, we firstly divide the n × n matrix into multiple sub matrix, then we deploy multiple
mappers, and let each mapper calculate the vector a of each node and calculate the modularity
increment between each pair of nodes of each sub matrix. Each mapper works in parallel.

3.2.2. Find the Maximum Modularity Increment

After completing the modularity increment calculation, we initiate the iterative community
discovery, and find multiple community pairs with the largest modularity increment, and merge
them into the corresponding new communities. Taking the network shown in Figure 1 as an example.
According to the4M matrix shown in Table 2, communities c2 and c4, c2 and c5, c7 and c12, c11 and
c12 can be merged. Clearly, communities c2, c4, c5 and c7, c11, c12 should be merged to the community
c13 and community c14, respectively.

Algorithm 2 describes the steps involved in finding the modularity increment, which has 4 steps.

• First, we compare the 4M value of each edge e in network N, find the maximum modularity
increment max(4M), and broadcast it to all nodes in the cluster;

• Second, we get the cartesian product T of the edge set E and node set V, T = (s, sc, d, dc,4M),
s denotes the number of the source node, d denotes the number of destination node, sc and dc
denote the community numbers of the source node and destination node respectively, and4M
denotes the modularity increment between the source node and destination node;

• Third, we find the sub-set MC in the set T, where4M equals to max(4M);
• Finally, to organize the merged communities, we obtain the community number (i) of the source

node and the community number (j) of the destination node, which represent the current
communities to be merged. If i or j already belongs to a new community in C, we will get
the new community to merge i and j into it, or merge i and j into another new community, whose
number is n + 1. The final output is the community C after merging.
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Algorithm 2 Find the Maximum Modularity Increment and Communities that need to be Merged

Input:

4M: Modularity increment;

N(E, V): Network;
Output:

C = {c1, c2, · · · , cl}: Communities;

max(4M): Maximum Modularity increment;
1: max(4M) = searchMaxDeltaM(N);
2: Broadcasting4M to all nodes in the cluster;
3: T = E×V;
4: for each quintuple t in T do

5: if getDeltaM(t) == max(4M) then

6: MC = insert(t);
7: for each quintuple t in MC do

8: (i, j) = getCommuNum(t);
9: if i ∈ C or j ∈ C then

10: k = Get the new number of community i or j from C;
11: ck = insert(i,j);
12: else

13: n = n+1;
14: cn = insert(i, j);

Here, we find the maximum modularity increment max(4M) based on the MapReduce.
After dividing the n × n matrix into multiple sub matrix, in the map phrase, each mapper finds
the maximum modularity increment of each sub matrix and output the results to the reducer, and then
in the reduce phrase, the reduce output the maximum modularity increment max(4M). Afterwards,
we find the community pairs with the largest modularity increment based on MapReduce. Each mapper
finds the community pairs with the largest modularity increment of each sub matrix in parallel.

3.2.3. Merging and Updating Communities

Merging and updating communities are the core of the proposed algorithm. Since after step 2,
the community pairs with the maximum modularity increment are identified to be merged, the mapper
updated the number of the communities that need to be merged and the community number of the
corresponding nodes to their corresponding new community number in parallel, and the4M of any 2
communities are updated by the mapper in parallel.

The steps of merging and updating of communities listed in Algorithm 3 are the following.

• First, we obtain the Cartesian product T of the node set V and edge set E. Then, we look for
the new community number corresponding to sc and dc in t = (s, sc, d, dc,4M). Let X to be the
set of community numbers to be merged in this round contained by the new community of the
community t.sc and Y to be the set of community numbers to be merged in this round contained
by the new community of the community t.dc;

• Second, using Equation (5), we will merge and update community i in X and community j in
Y. If there is an edge connecting communities i and j, then the modularity increment between
new communities X and Y should include the modularity increment between communities i
and j. However, if there is no edge connecting communities i and j, the modularity increment
between new communities X and Y should be reduced by the doubled product of vector value ai
of community i and vector value aj of community j.
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Algorithm 3 Merging and Updating Communities

Input:

C = {c1, c2, · · · , cl}: Communities;

N(E,V): Network;
Output:

N(E, V): Updated Network;
1: Update the number of the communities that need to be merged and the community number of the

corresponding nodes to their corresponding new community number;
2: T = V × E;
3: for each quintuple t in T do

4: tsc = getNewCommuNum(t.sc);
5: tdc = getNewCommuNum(t.dc);
6: if (tsc ∈ C or tdc ∈ C) and tsc 6= tdc then

7: X = a set of community numbers to be merged in this round contained by the new community

corresponding to t.sc;
8: Y = a set of community numbers to be merged in this round contained by the new community

corresponding to t.dc;
9: for each community i in X and each community j in Y do

10: if there exists at least an edge connecting i and j then

11: 4MXY = 4MXY +4Mij
12: else

13: 4MXY = 4MXY − 2× ai × aj

3.2.4. Generating Community Discovery Results

After the community discovery finishes, redundant data in the data set (primarily the matrix
data) should be cleared, while the initial node set and their community number should be kept. Here,
the node storage structure in the network is considered to be V = (vId, cId), where vId denotes the
node number and cId denotes the community number indicating which community each node belongs
to. Algorithm 4 presents the process of generating the results of the community partitions, which has
2 steps:

• We will first traverse all nodes and keep the nodes with the same community number cId together.
If cId is already in C, it means that the corresponding community of cId has already appeared.
The node Ids in the community cId that have been stored in C need to be taken out, merged with
the current node Id, and then stored in C; otherwise they are stored in C directly;

• Then we store the community and community’s node set on the Hadoop distributed file system
(HDFS) one by one. Thus, CDOH stores the final results of community discovery with a set of the
tuple (cId, vIds), and finishes the detection and discovery of complex network communities on
Hadoop platform.
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Algorithm 4 Generating Community Discovery Results

Input:

N(E, V): Network;
Output:

C = {c1, c2, · · · , cl}: Communities;
1: for each v = (vId, cId) in N do

2: if cId ∈ C then

3: g = getNodeId(C, cId);
4: c = insert(g, vId);
5: C = insert(cId, c);
6: else

7: C = add(cId, vId);
8: for each community c in C do

9: output c;

3.3. Computational Complexity Analysis of the CDOH Algorithm

As presented before, in step 1, we let multiple mappers take charge of the initializing process of
n× n sub-matrix. Supposed the matrix is divided into m matrices, and let each mapper takes charge of
each sub-matrix in parallel, so the computational complexity of the initializing process of the matrix is
the computational complexity of the initializing process of the sub-matrices, that is O( n2

m ). In step 2,
the maximum modularity increment max(4M) and the community pairs with the largest modularity
increment is found based on MapReduce. Again, if we divide the matrix into m sub-matrices, and let
each mapper takes charge of each sub-matrix in parallel, the computational complexity of step 2 is
also O( n2

m ). In step 3, the mapper updated the number of the communities that need to be merged
and the community number of the corresponding nodes to their corresponding new community
number in parallel, whose computational complexity is O(1). After merging, the4M values of any
2 communities are updated by the mapper in parallel. Supposing that each mapper works on a
sub-matrix, the computational complexity of updating4M is O( n2

m ). In step 4, all nodes are traversed
and the nodes with the same community number are kept together, whose computational complexity
is O(n). Since step 2 and step 3 are repeated until the the maximum modularity increment max(4M)

becomes negative, and after some iterations, the n× n matrix will shrink to a constant computing cost.
As a result, our algorithm can achieve a performance that is in reverse proportion to the number of
sub-matrices, which is determined by the number of nodes in the Hadoop platforms. Supposing we
have n nodes to conduct the parallelly computing, we can achieve a O(n) computing cost.

4. Experimental Results

4.1. Datasets and Evaluation Algorithms

To evaluate the accuracy and running time of CDOH, 3 real complex network data sets obtained
from the Stanford Network Analysis Project (SNAP) were selected. The data sets contain the nodes
and connection status of real complex networks and mark the communities to which the nodes belong.
Table 4 gives the characteristics of the data sets used in the experiments.
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Table 4. Characteristics of Datasets.

Dataset No. of Nodes No. of Edges Node Average Degree Description

Soc-Epinions 75,879 508,837 13.4118 Epinions.com Date Set

Web-NotreDame 325,729 1,497,134 9.1925 Web Graph Data Set

Soc-Pokec 1,632,803 30,622,564 37.5092 Poke Social Data Set

To evaluate our algorithm, we use 2 state-of-the-art algorithms in our experiments, that is,
the traditional complex network community detection algorithm Fast Community Detection (FCD)
proposed by Newman [9] and the non-overlapping community detection algorithm Non-Overlapping
Community Detection Idea (OCDI) proposed by Zhang et al. [15].

All the algorithms were implemented with Java, and our algorithm was deployed on Hadoop
cluster made of 3 different computers, of which 1 serving as a master node and the other 2 serving as
slave nodes. The following experimental results are represented as average across the 10 runnings.

4.2. Analysis of Community Detection Accuracy

We used the community detection accuracy (CDA) metric to measured the accuracy of community
detection. CDA is defined as the ratio of the number of nodes in the correctly identified communities
to the total number of nodes in the network, which is shown in Equation (6).

CDA =

k
∑

i=1
max{|Ci ∩ C′j | | C′j ⊂ Ci}

n
, j = 1, 2, · · · , l (6)

Here, C = {c1, c2, · · · , ck} denotes the original and accurate community set, C′ = {c′1, c′2, · · · , c′l}
denotes the community set identified by the community detection algorithm, max{|Ci ∩ C′j | | C′j ⊂ Ci}
denotes the maximum number of the common nodes between all community sets and the i-th accurate
community ci, and n denotes the number of nodes. As can be seen, the larger the value is, the higher the
accuracy of a community detection algorithm is and the better the quality of the resulting community is.
Figure 3 shows the community discovery accuracies of the considered algorithms on the 3 different
data sets.
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Figure 3. Comparison of the Accuracy of the Community Detection Algorithms.

It can be noticed from Figure 3 that the accuracy of the CDOH algorithm is slightly lower than
that of the FCD algorithm (on average by 1.7%) and similar to that of OCDI. The reason for this is

Epinions.com
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that CDOH and OCDI have similar community merging strategies and module update principles.
While multiple communities are merged at one time in the same iteration according to CDOH and
OCDI, FCD only supports one-time merging of 2 communities in a single iteration, which results in
the accuracy gap between FCD and the other 2 algorithms.

We also used the normalized mutual information (NMI) to evaluate our algorithm in comparison
to the other 2 algorithms. NMI [33] is a standard factor which is often used to detect the difference
between the results of the division and the true partition of the network. NMI can be described in
Equation (7), in which H(X) is the entropy of X, and H(X|Y) = H(X, Y)− H(Y).

NMI(X, Y) =
H(X)− H(X|Y) + H(Y)− H(Y|X)

2max(H(X), H(Y))
(7)

We can see from Figure 4 that the NMI of the 3 algorithms can reach at least 75%. Our algorithm,
CDOH, has a very similar NMI score to the FCD algorithm and has a slightly higher score than OCDI.
Again, we consider this is due the fact that our algorithm has similar community merging strategies
and module update principles.

However, the computing cost of our algorithm is much better than that of FCD, which will be
discussed in Section 4.3.
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Figure 4. Comparison of the normalized mutual information (NMI) of the Community Detection
Algorithms.

4.3. Analysis of Community Detection Efficiency

CDOH is a community detection algorithm based on Hadoop platform for large-scale complex
networks. For processing large scale data, the run time of the algorithm is an important metric to
evaluate its performance of the algorithm. Figure 5 shows the comparison of the run time of the 3
considered algorithms.

It can be noticed from Figure 5 that CDOH is highly efficient. To compared with OCDI and
FCD, we can see that CDOH is about 2.1 times and 3.2 times faster, respectively, which is mainly
determined by the number of slave nodes on the Hadoop platform. Compared with the traditional
community detection algorithms, CDOH uses significantly less time required for community merging
and modularity updating.
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Figure 5. Comparison of the Runtime of Community Detection Algorithms.

5. Conclusions and Future Works

5.1. Conclusions

In this paper, we proposed a community detection algorithm called CDOH based on the Hadoop
platform to implement accurate and fast community identification in large-scale complex networks.
The algorithm was based on the modularity increment calculation method, which employed the
theory of complex networks to find multiple communities satisfying certain merging conditions.
The parallel merging and modularity updating of communities based on MapReduce used in the
proposed algorithm reduce the number of iterations. CDOH was compared with traditional complex
network algorithms using real large-scale complex networks. The experimental results evaluated the
effectiveness of CDOH in large-scale network community detection.

5.2. Future Works

Our proposed CDOH algorithm is independent of the underlying big data platform. To prove
its effectiveness and efficiency, we implemented the CDOH algorithm and other complex network
community detection algorithms based on the Hadoop platform. However, in the Hadoop platform,
the MapReduce intermediate results are first stored in disk files, and a large number of I/O operations
will affect the whole calculation time; while in the Spark platform, the intermediate results are stored
in memory, which avoids the performance overhead brought by I/O. In the future, we will implement
the CDOH algorithm on the Spark platform and evaluate the efficiency. Furthermore, our proposed
CDOH algorithm focused on static complex network community discovery, in the future, we plan to
adapt the proposed algorithm to the evolving community networks.
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