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Abstract: The paper presents an innovative approach to solving interdisciplinary problems emerging
in the design process of building free forms roofed with elastically transformed corrugated shells.
The effectiveness and rationality of shaping such free forms and the creativeness in searching for the
parametric forms require the application of their regular and symmetric models which have to be
derived from the geometric and mechanical properties of the rationally transformed subsequent folds
of these shells. Simplified smooth models used for engineering developments and accurate folded
models implemented for scientific research have to be created by means of unconventional methods
different from those presented in classical courses. Owing to the variety of the forms of the proposed
innovative reference tetrahedrons and their parametric description, the algorithms developed by
the authors have to be implemented in computer programs. The rationality of the transformed
roof shells, revealed in the limitation of the level of the fold’s initial stresses resulting from the
shape transformation, and the attractiveness of these forms are achieved by the axial symmetry and
contraction of each shell fold at its half-length. The symmetries adopted in the process of modeling
such roof shells are also exploited by the discussed new method to obtain coherent unconventional
general forms of entire buildings.

Keywords: unconventional building free forms; transformed corrugated steel roof shells;
geometrical smooth surface models; thin-walled folded mechanical models; symmetrical roof
shape transformations; parametric shaping

1. Introduction

Single or double-curvature vaults and roof shells have been used since the Gothic era. Complete
and complex curved metal shell roofs appeared and became very popular in the Renaissance due to
their attractive architectural forms and stable constructions [1–3]. Nowadays, space grids and complete
shells are combined into various consistent shell structures to achieve large internal column-free
spaces, strengthen the shell roof constructions, and improve their stability [4–6]. Laminated glass
shells made of reinforced polymers are employed as members in building constructions to increase the
attractiveness and simplicity of the architectural free forms [7,8].

In order to obtain a corrugated steel roof shell (Figure 1), nominally flat sheets folded in one
direction can be connected with their longitudinal edges into one strip and then transformed into a
spatial shape [9]. Such an operation is performed when the strip is spread on two skew directrices so
that the transverse edges of this strip pass along the directrices.
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effectively transformed corrugated shell can be modeled with a smooth sector of a regular warped 

surface [14,15] with a satisfactory accuracy for engineering developments. The border of the section 

is a closed spatial quadrangle, whose two opposite sides modeling the directrices are curved or 

straight sections, while the other two are sections modeling two straight longitudinal edges of the 

shell [10]. 
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Figure 1. Two asymmetric experimental corrugated shells supported by: (a) curvilinear; (b) straight
skew directrices.

If all folds of such a strip are provided with freedom of their transverse shape deformations, thus
allowing the folds to freely adapt their shape to the arbitrary directrices, a relatively large continuous
range of various shell forms can be achieved depending on the shape and mutual position of these
directrices. A particular feature of the subsequent shell folds of the transformed strip is their tendency
to maintain symmetrical forms with a contraction passing halfway along the length of each transformed
fold [10]. The shape transformations are effective because they allow the designed shell roof forms
to maintain the smallest possible pre-stress and give them the ability to carry live loads despite
large cross-sectional deformations and mutual displacements of the subsequent folds in a corrugated
shell roof.

In order to obtain special, innovative, attractive and rational forms of roof shells and their structural
systems [11,12], the designer has a relatively large amount of freedom in using the effective shape
transformations for engineering purposes. Diversified symmetrical arrangements of directrices, entire
roof shells, entire building free forms and their structural systems can be employed effectively [13]
(Figure 2).
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Figure 2. Symmetric roof shells of two structures of: (a) shopping stories; (b) a silo.

In such a transformed shell, the longitudinal axes of each transformed fold and two opposite
longitudinal straight edges of each fold in the shell are skew straight lines. Therefore, each effectively
transformed corrugated shell can be modeled with a smooth sector of a regular warped surface [14,15]
with a satisfactory accuracy for engineering developments. The border of the section is a closed spatial
quadrangle, whose two opposite sides modeling the directrices are curved or straight sections, while
the other two are sections modeling two straight longitudinal edges of the shell [10].

2. State of the Art

The transformed folded shells are most often formed as central sectors of hyperbolic
paraboloids [16] (Figure 3) or quarters of the sectors arranged symmetrically in different
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configurations [17] (Figure 4). The geometrical and mechanical properties of the thin-walled folded
hyperbolic-paraboloid shells, which are called hypars, have been investigated by such researchers as
Winter, Fisher, Edger and Resinger [17], Gergely, Banavalkar and Parker [18], Brayan and Davis [19],
and Petcu and Gioncu [20]. However, all of the investigated shells had undergone irrational forced
shape transformations, allowing them to only obtain shallow shells.
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(b) geometrical smooth models.

Adam Reichhart has shaped corrugated shell roofs that have been freely transformed, as he called
them, because he thought that the investigated type of the shape transformations does not affect
large unnecessary pre-stresses (Figure 2). Reichhart’s concept consists of modeling the subsequent
transformed shell folds with the right hyperbolic paraboloids [13]. However, he did not formulate the
condition regarding the equilibrium state of a freely transformed shell fold, resulting in the location of
the contraction of the fold and the entire transformed shell. He did not define a sufficient number
of quantities describing the shape of the shell fold for the case when its longitudinal axis is not
perpendicular to the directrices. Thus, Reichhart’s method is only useful and accurate for engineering
developments in the cases when the axes of all folds in the transformed shell are perpendicular to the
adopted directrices or really close to perpendicular [11].

Abramczyk showed [11,21] that the Reichhart algorithm does not provide the freedom of the fold’s
shape changes resulting from the shape transformations. The lack of symmetry and wrong positions of
the contraction of the fold’s smooth models in many cases are the effect of Reichhart’s method, which
results in the differentiation of the form and effort of both transverse ends of the same fold.
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In order to create an accurate method of shaping the considered transformed shells, Abramczyk
has proposed a condition requiring the contraction of the entire shell to pass halfway along the length
of each shell fold, which ensures the effectiveness of the transformations used. This condition exploits
some specific geometrical properties of ruled undevelopable surfaces called warped surfaces, primarily
their lines of striction. The other condition employed relates to calculations of the surface areas of
the created smooth shell models. Both conditions are based on the results of the experimental tests
presented in his doctoral thesis [9].

3. Aims

The aim of the paper is to present the applicability of the authors’ method used for the effective
geometric and static-strength shaping of buildings characterized by attractive, symmetric, architectural
free forms and roofed with steel shells made up of many nominally flat folded thin-walled sheets of
open profiles. The diversified roof shell systems of these sheets can be obtained by connecting them
by their longitudinal edges into one continuous folded strip, followed by their elastic and rational
transformation into spatial corrugated shell forms characterized by the smallest possible pre-stress to
transfer roof live loads.

The authors have observed the need to use various kinds of symmetry because of the many issues
they have encountered in their research related to geometric, architectural and static-strength shaping of
buildings characterized by unconventional architectural free forms. One of the most important favorite
effects of using symmetry is the visual attractiveness of the designed transformed roof shells [22,23].

4. Concept

The implementation of the adopted aim requires a discussion of creating simplified, smooth
models of corrugated shell roofs obtained by elastic transformations of nominally flat, thin-walled,
rectangular steel sheets profiled in one direction and connected by longitudinal edges into a single
continuous folded strip. These models should be characterized by a high visual attractiveness of
their spatial shell forms, resulting also from their unconventional forms and symmetry. In addition,
the innovative symmetrical forms of the ruled shell roofs should affect the attractiveness of the
unconventional architectural free forms of entire buildings, and lead to the rationality and efficiency of
their structural systems.

The one-directional corrugation of a nominally flat sheet enables one to achieve large deformations
of its folds in directions transverse to the longitudinal axes of these folds. Thus, it is necessary to
examine significant changes of the fold’s widths and the mutual position of the adjacent folds in the
sheet achieved with the help of a very small force acting perpendicularly to the plane of the sheet in
order to adapt the sheet’s shape to the mutual location and shape of two skew directrices.

The process of accurate modeling and rational structural shaping of such transformed shell
sheeting is significantly complicated by the fact that the above deformations and displacements are
different along each single fold and often for subsequent folds in the sheeting. However, due to
the diversity, it is possible to shape the diversified unconventional shapes of the transformed shell
roofs. The achieved unconventional corrugated shell forms of roofs whose folds have straight axes
and straight longitudinal edges are a positive visual result of the effective sheet’s transformations. A
pre-stress induced by these transformations is the negative effect, but the effective transformations
enable the shell folds to preserve sufficient capacity to carry live loads (Figure 5).

During the authors’ tests [9,21], linear constitutive relations were observed for all types of stresses
including the one presented in Figure 6.
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Figure 5. Folded mechanical thin-walled model of nominally plane folded sheet transformed elastically
and initially into a shell shape and the graphical expression of the “effective” stresses in MPa on its
top surface. (a) The direction of the view according to the longitudinal axis of the edge fold. (b) The
direction of the view skew to the longitudinal axis of any fold. (c) An initially transformed and
uniformly loaded sheeting.
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Therefore, the following linear constitutive relations can be employed [24]:

[σ] = [E] ([ε] − [ε0]) (1)

where
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where σz = τzx = τxz = τyx = τyz � 0, [E] is the matrix of elastic stiffness, and v is Poisson’s ratio.
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To obtain the generalized displacements of the adopted nodes, the following equilibrium of
generalized nodal forces has to be satisfied [24]:

[F] = ([Ke] + [Ge]) · [D] − [R] (2)

where [R] is the vector of applied nodal loads, [F] is the vector of nodal forces and moments, [D] is
the solution vector of displacements (translations and rotations), [Ke] is the symmetrical mechanical
element stiffness matrix, and [Ge] is the symmetrical geometrical element stiffness matrix.

To obtain formulas for the element stiffness matrix, load vector, strain vector and body forces
vector, the principle of virtual work must be satisfied. It is based on interpolation of generalized
displacements referring to nodal degrees of freedom and requires relatively simple calculations. The
principle of virtual work can be expressed as [13]:∫

[δε]T[σ]dV =

∫
[δu]T[F]dV +

∫
[δu]T[Φ]dS (3)

where [δε] is the vector of strains, [δu] is the virtual displacement, [F] is the body forces in volume V,
and [Φ] is the tractions on surface S.

Because the effective initial shape transformations are used to obtain transformed corrugated
roof shells, then large displacements and rotations are applied but small strains are achieved. During
experimental tests, linear constitutive relations were observed in the examined range of the total twist of
each shell fold, so total Lagrangian (TL) formulation, second Piola–Kirchoff stress, and Green–Lagrange
stain, as well as dynamics methods, were employed [25].

The classical Newton–Raphson technique was implemented to realize the incremental iteration
method used in finite element analysis. This method is used to calculate an incremen ∆t [∆D(i)] in the
nodal point displacement, a new modified total displacement vector the incremental solution t+∆t[D](i)

at time t + ∆t in iteration i, instead of the previous one at time [D](i), and then t calculated during
iteration i − 1. The two equations that accomplished the Newton–Raphson iteration are as follows [26]:

t+∆t[K](i−1) [∆D(i)] = t+∆t[R] − t+∆t[F](i−1) (4)

t+∆t[D](i) = t+∆t[D](i−1) + [∆D(i)] (5)

In materially nonlinear analysis, only the following equations are employed:

(a) In static analysis:
t[K] [D] = t+∆t[R] − t[F] (6)

(b) In dynamic analysis:
[M] t+∆t[D”] + t[K] [D] = t+∆t[R] − t[F] (7)

However, if we use the TL formulation, the following conditions are used:

(a) In static analysis:
(t[KL] + t[KNL]) [D] = t+∆t[R] − t[F] (8)

(b) In dynamic analysis:

[M] t+∆t[D
′′

] + (t[KL] + t[KNL]) = t+∆t[R] − t[F] (9)

where [M] is the time-independent matrix, t[K] is the linear strain incremental stiffness matrix,
t[KL] is the linear strain incremental stiffness matrix, t[KNL] is the nonlinear strain incremental stiffness
matrix, t+∆t[R] is the vector of externally applied nodal point loads at time t + ∆t, t[F] is the vector of
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nodal point forces referring to the element stresses at time t, [D] is the vector of increments in the nodal
points displacements, and t+∆t[D”] is the vector of nodal point accelerations at times t and t + ∆t.

If a freedom of the transverse deformations of a transformed strip, including its width increments,
are ensured during the spreading of the strip on directrices, then the elastic shape transformation of
this strip is effective. This efficiency consists of obtaining the smallest possible pre-stress of all shell
folds caused by the shape transformation, and allows the sheeting to maintain sufficient capacity to
transfer the roof’s service loads. The effective transformation usually results in symmetrical forms
of the designed corrugated roof shells and their complete folds [9] (Figure 7a,b, Figures 8–10), and
leads to a balance of the internal forces in the transformed sheets after spreading these sheets on the
directrices [21] (Figure 5).

The diagrams presented in Figure 7a,b show the size of the relative width increments of three
folds (n = 1 to 3) of the same tested folded sheet, measured along seven transverse measuring lines
(i = 1 to 7) uniformly distributed on the top surface of the sheet’s folds (see Figures 8 and 9). The folded
geometric model of an effectively transformed sheet is shown in Figure 8, where the longitudinal lines
vj,a are the edges of these three folds (j = n = 1 to 3), and ui,a represent transverse measuring lines (i = 1
to 7). The scheme of the arrangement of the above edge and measuring lines is presented in Figure 9.
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Figure 7. Symmetrical character of the relative width increments dbw of three folds (n = 1 to 3) of the
same sheet measured as compatible with seven (i = 1 to 7) measuring lines passing perpendicularly
to the longitudinal fold’s axes in relation to the longitudinal axes of all folds of the length L = 4900
[mm] and the unit twist angle αjed = 6928 [o]. (a) The width increments presented along transverse
measuring lines. (b) The width increments presented along longitudinal axes of these folds.
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Figure 9. Scheme of the arrangement of measuring points Pi, j, α located at the intersection of
longitudinal lines (n = 1 to 3) separating single folds and transverse measuring lines (i = 1 to 7) on a
rectangular folded sheet.

Symmetry 2019, 11, x FOR PEER REVIEW 9 of 22 

 

Figure 9. Scheme of the arrangement of measuring points Pi, j, α located at the intersection of 

longitudinal lines (n = 1 to 3) separating single folds and transverse measuring lines (i = 1 to 7) on a 

rectangular folded sheet. 

 
(a) 

 

(b) 

Figure 10. Symmetrical character of the relative width increments dbw of shell folds along seven (i = 1 

to 7) measuring lines passing perpendicularly to the longitudinal fold′s axes obtained for: (a) four 

various sheets twisted by the same unit angle αjed = 6928 [o] and characterized by various lengths; (b) 

the same sheet of length L = 4900 [mm] and twisted by various unit angles. 

The diagrams presented in Figure 7a,b show the size of the relative width increments of three 

folds (n = 1 to 3) of the same tested folded sheet, measured along seven transverse measuring lines (i 

= 1 to 7) uniformly distributed on the top surface of the sheet′s folds (see Figures 8–9). The folded 

geometric model of an effectively transformed sheet is shown in Figure 8, where the longitudinal 

lines vj,a are the edges of these three folds (j = n = 1 to 3), and ui,a represent transverse measuring lines 

(i = 1 to 7). The scheme of the arrangement of the above edge and measuring lines is presented in 

Figure 9. 

From Figure 7a, we can read that both edge folds (n = 1 and 3) change their widths identically to 

each other at their entire length. In Figure 7b, we can see that each of the folds (n = 1 to 3) changes the 

width on its length symmetrically relative to the central measuring line (i = 4 = x). From both 

diagrams, we can deduce the symmetric nature of the shape changes at the length and width of the 

effectively transformed folded sheet. 

Figure 10a illustrates four experimental sheets of the same profile and different lengths. After 

effective shape transformations, inducing identical measure of a unit twist angle, these sheets differ 

in the size of the relative width increments of their folds. However, for each sheet, these increases are 

symmetric relative to the center measuring lines (i = 4) and the central longitudinal axis y. Figure 10b 

concerns four different shell forms of the same sheet of length L = 4900 mm, corresponding to four 

different degrees of its twist, resulting from four different values of the unit twist angle. The smallest 

degree of the effectively twisted sheet corresponds to the unit twist angle equal to 3.464° and leads to 

a form of this sheet characterized by the smallest Gaussian curvature. This figure shows that each of 

the achieved four corrugated shell shapes of this sheet is symmetric toward the straight line being 

normal to the middle surface of the sheet and passing through the central point of this surface. 

For the investigated effective shape transformations, diversified shapes of directrices, including 

straight or curved and flat or spatial ones, can be assumed. The simplest shape of a transformed shell 

can be obtained as a result of supporting a corrugated strip with two skew straight lines. On the 

basis of the above experimental research and properties of ruled surfaces [10], the authors assumed 

that a central sector of a hyperbolic paraboloid can be used for modeling some effectively 

transformed corrugated shells. If the directrices and the transformed shell have an identical twist 

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7

dbw

[%]

i [nr]

L= 4900 [mm]

L= 3998 [mm]

L= 3095 [mm]

L= 6200 [mm]

-4

-3

-2

-1

0

1

2

3

4

5

1 2 3 4 5 6 7

dbw

[%]

i [nr]
ajed = 3.464 [°]

ajed = 6.928 [°]
ajed = 10.392 [°]

ajed = 13,855 [°]

Figure 10. Symmetrical character of the relative width increments dbw of shell folds along seven (i = 1
to 7) measuring lines passing perpendicularly to the longitudinal fold’s axes obtained for: (a) four
various sheets twisted by the same unit angle αjed = 6928 [o] and characterized by various lengths;
(b) the same sheet of length L = 4900 [mm] and twisted by various unit angles.

From Figure 7a, we can read that both edge folds (n = 1 and 3) change their widths identically to
each other at their entire length. In Figure 7b, we can see that each of the folds (n = 1 to 3) changes
the width on its length symmetrically relative to the central measuring line (i = 4 = x). From both
diagrams, we can deduce the symmetric nature of the shape changes at the length and width of the
effectively transformed folded sheet.

Figure 10a illustrates four experimental sheets of the same profile and different lengths. After
effective shape transformations, inducing identical measure of a unit twist angle, these sheets differ in
the size of the relative width increments of their folds. However, for each sheet, these increases are
symmetric relative to the center measuring lines (i = 4) and the central longitudinal axis y. Figure 10b
concerns four different shell forms of the same sheet of length L = 4900 mm, corresponding to four
different degrees of its twist, resulting from four different values of the unit twist angle. The smallest
degree of the effectively twisted sheet corresponds to the unit twist angle equal to 3.464◦ and leads to a
form of this sheet characterized by the smallest Gaussian curvature. This figure shows that each of the
achieved four corrugated shell shapes of this sheet is symmetric toward the straight line being normal
to the middle surface of the sheet and passing through the central point of this surface.
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For the investigated effective shape transformations, diversified shapes of directrices, including
straight or curved and flat or spatial ones, can be assumed. The simplest shape of a transformed shell
can be obtained as a result of supporting a corrugated strip with two skew straight lines. On the basis
of the above experimental research and properties of ruled surfaces [10], the authors assumed that
a central sector of a hyperbolic paraboloid can be used for modeling some effectively transformed
corrugated shells. If the directrices and the transformed shell have an identical twist axis of symmetry
perpendicular to these directrices, then the smooth shell model can be adopted as a central sector of a
right hyperbolic paraboloid.

Therefore, the authors have proposed some methods for shaping the transformed corrugated
shells by means of smooth regular warped surfaces [22,23,27]. Two of these methods are discussed in
the present paper. Both methods employ the effective fold’s transformations resulting in the contraction
of each designed shell appearing at a half-length of its all folds.

The first method relies on the assumption that the shape of the contracting line of the surface
modeling the designed shell roof has to be adopted and the shape and position of roof directrices
is calculated. A finite number of rulings arranged on the investigated warped surface compatible
with the strictly defined relationships between the longitudinal straight edges of the subsequent folds
of the transformed shell has to be determined. Two points lying at each ruling at distances equal
to a half of the fold’s length are determined in both opposite directions from the line of contraction.
Such constructed points define two transverse boundary lines of the model representing the designed
transformed shell. All the selected rulings define a smooth shell model. The positions of these rulings
calculated by means of the condition that the surface area of each strip limited by two adjacent rulings
and modeling a single shell fold must be equal to the surface area of the rectangle modeling the fold
before the transformation. Thus, if we know the parametric equation of the examined warped surface:

x = ϕ(u, v), y = ψ(u, v), z = χ(u, v) (10)

then we can calculate the surface area Pwpi of its selected central section limited by its two rulings as
follows [9]: ∫ ukp

upp

∫ vkp

vpp

√
AA2 + BB2 + CC2dvdu (11)

where we must calculate the following Jacobi functions:

AA =

 ∂ψ
∂u

∂χ
∂u

∂ψ
∂v

∂χ
∂u

, BB =

 ∂χ
∂u

∂ϕ
∂u

∂χ
∂v

∂ϕ
∂u

, CC =

 ∂ϕ
∂u

∂ψ
∂u

∂ϕ
∂v

∂ψ
∂u


and ukp = −upp is half of the fold’s length, vpp = 0.0, and vkp = f (v) is the function describing the
position of the edge ruling on the hyperbolic paraboloid.

The presented second method consists of adopting two roof directices, searching for a finite
number of rulings modeling the longitudinal edges of the subsequent folds in the designed transformed
roof shell and determining the smooth surface model of the shell.

5. Method for Geometrical Shaping Transformed Folded Shells Based on Lines of Striction

A coherent method for geometrical shaping transformed corrugated shells was developed by the
authors based on specific properties of regular warped surfaces. They employed the following general
vector equation of warped surface ω:

r(u, v) = e(u) + p(u)·v (12)

where r(u, v) = [x(u, v), y(u, v), z(u, v)] is the vector of the position of any point on a ruled surface ω,
e(u) is the vector of the position of any point on directrix e intersecting all rulings ti of ω (Figure 11),
and p(u) is the unit director vector of ruling ti. All vectors p(u) have a common origin at point OL that
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determines the spherical indicatrix p contained in sphere f of the unit radius and center OL, and u, v are
two independent variables that are well-known to be curvilinear coordinates of ω.Symmetry 2019, 11, x FOR PEER REVIEW 11 of 22 
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Location of any point on a line of striction s(u) of a warped surface ω in relation to directrix e(u) of
ω, can be determined by the formula:

v(u) =
e′(u) + p′(u)

(p′(u))2 (13)

where s(u), also called a line of contraction, is a line composed of the central points of all rulings ti of ω,
and v is the parameter describing the position of any point of s(u) on respective ruling ti in relation
to directrix e(u). Therefore, if the line s(u) is to be the directrix e(u), the following condition must
be satisfied:

v(u) =
s′(u)·p′(u)

(p′(u))2 = 0 (14)

Therefore, the straight line s′(u) tangent to s(u) and the straight line p′(u) tangent to the spherical
indicatrix p(u) of ω have to be perpendicular to each other:

s′(u)·p′(u) = 0 (15)

If Equation (14) is preserved, the vector equation of the surface ω can be written as:

r(u, v) = s(u) + p(u)·v (16)

In the previous section, the possibilities of creating smooth models for the transformed folded
shells by means of sectors of various warped surfaces were presented. One type of these surfaces is
hyperbolic paraboloids (Figure 12), whose mathematical equation is as follows:

y2

b2 −
x2

a2 = z (17)

where a is a constant used to determine parabola p1 and b is a constant used to determine parabola p2.
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as a model for a corrugated transformed shell.

A parametric equation of a hyperbolic paraboloid can be obtained by means of Equation (3) and
the following parametric equations of its line of striction:

x(u) = 2·a3

a2+b2 ·u

y(u) = 2·b3

a2+b2 ·u

z(u) = 4·(a2
−b2)

a2+b2 ·u2

(18)

as well as the following parametric components of the director vector of any ruling of this paraboloid:

l(u) = a
m(u) = b
n(u) = 4v

(19)

where the line of contraction is the sum of two parabolas contained in the planes whose equations are
given as:

x
a3 ∓

y
b3 = 0 (20)

One of these parabolas is adopted as the line s1 of the contraction of Ω.
Another generally known type of surface used by the authors for modeling the transformed

folded shells is helicoid, whose line of contraction s is helix with a constant spiral lead and constant
curvature (Figures 13 and 14). In the case of the investigated type of helicoid, the creation of one
model Ωj of a single fold is enough to build the whole shell roof because all its folds are identically
transformed. A parametric equation of this surface can be given as:

x(u) = Ro· cos(u) + bs· sin(u)
√

Ro2+bs2
·v

y(u) = Ro· sin(u) − bs· cos(u)
√

Ro2+bs2
·v

z(u) = bs·u− Ro
√

Ro2+bs2
·v

(21)

where Ro is the radius, bs is a coefficient referring to the spiral lead, and u is the selected parameter of
the helix of striction of the helicoid. The helix s of contraction and ruling tj of the examined helicoid
are shown in Figure 13. The ruling tj is a binormal of the line s, i.e., it is perpendicular to the osculating
plane of s.



Symmetry 2019, 11, 1438 13 of 22

Symmetry 2019, 11, x FOR PEER REVIEW 13 of 22 

 

where Ro is the radius, bs is a coefficient referring to the spiral lead, and u is the selected parameter of 

the helix of striction of the helicoid. The helix s of contraction and ruling tj of the examined helicoid 

are shown in Figure 13. The ruling tj is a binormal of the line s, i.e., it is perpendicular to the 

osculating plane of s. 

. 

Figure 13. Line of contraction s and binormal ti of the respective Frenet′s frame (sj, nj, tj) of s used as a 

ruling of the designed helicoid. 

 

Figure 14. Geometrical shaping of consequent folds of a transformed corrugated shell with sectors Ωj 

limited by pairs of skew rulings tj-1 and tj distinguished on a helicoid. 

Three adjacent rulings tj-1, tj and tj+1 of the considered helicoid w, modeling the longitudinal 

edges of two adjacent shell folds Ωj and Ωj+1, are shown in Figure 14. The position of these rulings on 

the surface ω can be found from the condition that the surface area of each Ωj segment must be equal 

to the surface area of a rectangle modeling the respective shell fold before the transformation. The 

method of shaping the transformed shells using the lines of striction of warped surfaces will be 

presented in detail in one of the authors′ subsequent publications using a specific exemplary 

architectural free form roofed with a transformed roof shell. 

In order to model an entire building free form roofed with a transformed folded shell, the 

authors use the so-called reference tetrahedrons Γ of various types. The reference tetrahedron 

presented in Figure 15 has four triangular walls and four vertices H1 to H4. The axis of symmetry 

adopted for the reference tetrahedron is also taken as the axis of symmetry of the transformed roof 

shell. The way of creating axis-symmetric entire free forms roofed with transformed corrugated 

shells is presented in the next section by a detailed example based on two border plane directrices of 

a transformed roof shell. 

Figure 13. Line of contraction s and binormal ti of the respective Frenet’s frame (sj, nj, tj) of s used as a
ruling of the designed helicoid.

Symmetry 2019, 11, x FOR PEER REVIEW 13 of 22 

 

where Ro is the radius, bs is a coefficient referring to the spiral lead, and u is the selected parameter of 

the helix of striction of the helicoid. The helix s of contraction and ruling tj of the examined helicoid 

are shown in Figure 13. The ruling tj is a binormal of the line s, i.e., it is perpendicular to the 

osculating plane of s. 

. 

Figure 13. Line of contraction s and binormal ti of the respective Frenet′s frame (sj, nj, tj) of s used as a 

ruling of the designed helicoid. 

 

Figure 14. Geometrical shaping of consequent folds of a transformed corrugated shell with sectors Ωj 

limited by pairs of skew rulings tj-1 and tj distinguished on a helicoid. 

Three adjacent rulings tj-1, tj and tj+1 of the considered helicoid w, modeling the longitudinal 

edges of two adjacent shell folds Ωj and Ωj+1, are shown in Figure 14. The position of these rulings on 

the surface ω can be found from the condition that the surface area of each Ωj segment must be equal 

to the surface area of a rectangle modeling the respective shell fold before the transformation. The 

method of shaping the transformed shells using the lines of striction of warped surfaces will be 

presented in detail in one of the authors′ subsequent publications using a specific exemplary 

architectural free form roofed with a transformed roof shell. 

In order to model an entire building free form roofed with a transformed folded shell, the 

authors use the so-called reference tetrahedrons Γ of various types. The reference tetrahedron 

presented in Figure 15 has four triangular walls and four vertices H1 to H4. The axis of symmetry 

adopted for the reference tetrahedron is also taken as the axis of symmetry of the transformed roof 

shell. The way of creating axis-symmetric entire free forms roofed with transformed corrugated 

shells is presented in the next section by a detailed example based on two border plane directrices of 

a transformed roof shell. 

Figure 14. Geometrical shaping of consequent folds of a transformed corrugated shell with sectors Ωj

limited by pairs of skew rulings tj−1 and tj distinguished on a helicoid.

Three adjacent rulings tj−1, tj and tj+1 of the considered helicoid w, modeling the longitudinal
edges of two adjacent shell folds Ωj and Ωj+1, are shown in Figure 14. The position of these rulings on
the surface ω can be found from the condition that the surface area of each Ωj segment must be equal to
the surface area of a rectangle modeling the respective shell fold before the transformation. The method
of shaping the transformed shells using the lines of striction of warped surfaces will be presented in
detail in one of the authors’ subsequent publications using a specific exemplary architectural free form
roofed with a transformed roof shell.

In order to model an entire building free form roofed with a transformed folded shell, the authors
use the so-called reference tetrahedrons Γ of various types. The reference tetrahedron presented in
Figure 15 has four triangular walls and four vertices H1 to H4. The axis of symmetry adopted for the
reference tetrahedron is also taken as the axis of symmetry of the transformed roof shell. The way of
creating axis-symmetric entire free forms roofed with transformed corrugated shells is presented in the
next section by a detailed example based on two border plane directrices of a transformed roof shell.
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Figure 15. Shaping of an axial-symmetric unconventional building free form by means of a reference
tetrahedron Γ.

6. Method for Geometrical Shaping Transformed Folded Shells Based on Border Directrices

In the example presented in this section, an innovative authors’ method of creating free forms of
entire buildings roofed with transformed corrugated shells is presented in a brief way. The second
innovative method for creating the transformed corrugated shell roofs is employed here. It is based on
the adoption of two edge roof directrices and its algorithm is described in detail in the further part of
this section.

The mutual inclination of two skew directrices causes the inclination of all sections of the roof
eaves to a horizontal plane and the diversified inclination of subsequent shell folds to this plane. To
model a general free form of a building, the authors proposed using the so-called innovative reference
tetrahedrons [2,14]. A common type of such a tetrahedron Γ [21] is used in the example presented
below (Figure 16).
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Figure 16. (a) Simplified model Σ = Σ1 ∪ Σ2 of the discussed building free forms taking account of the
thickness and overhang of the transformed shell roof Σ2 and the spatial shape Σ1 limited by elevation
walls. (b) Visualization of the examined building free form Σ.
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The presented free form Σ is a sum of: (a) a tetrahedral spatial shape Σ1 limited by a horizontal
base plane, and (b) a roof form Σ2 bounded by two shells: upper Ωg and lower Ωd. The coordinates of
the characteristic vertices of Σ are given in Table 1. A visualization of Σ is shown in Figure 16.

Table 1. Coordinate of the vertices of the examined free form Σ shown in Figure 16.

Vertex X-Coordinate Y-Coordinate Z-Coordinate

P1 5000 −5000.0 0
P2 5000 5000 0
P3 −5000.0 5000 0
P4 −5000.0 −5000.0 0
B1 10,000.00 −7500.0 10,000.00
B2 7777.7 6388.9 5555.6
B3 −10,000.0 7500 10,000.00
B4 −7777.7 −6388.9 5555.6

Dg1 10,650.60 −8016.9 11,382.60
Dg2 8697 7448.5 5996.4
Dg3 −10,650.6 8016.9 11,382.60
Dg4 −8697.0 −7448.5 5996.4
Dd1 11,129.50 −8585.8 9526
Dd2 8156.6 6739.5 4206.1
Dd3 −11,129.5 8585.8 9526
Dd4 −8156.6 −6739.5 4206.1
H1 −5000 0 −20,000.0
H2 5000 0 −20,000.0
H3 0 −2500.0 −10,000.0
H4 0 2500 −10,000.0

Values in millimeters. In order to increase the attractiveness and integrity of an entire building free form consisting
of a spatial roof shape and a spatial shape limited by facade walls, the facade walls [5,6] have been appropriately
inclined to the vertical. The z-axis of the global coordinate system [x, y, z] (see Figure 16a) is also an axis of Γ. The Ωg
surface was modeled in the Rhino/Grasshopper program in the following way. The directrices e and f of Ωg were
adopted in the form of straight sections having ends in points Dgi (i = 1 to 4) at the beginning of the calculations. The
straight line (Dg3, Dg4) was adopted as an initial ruling tp of Ωg. Selected rulings ti of the surface Ωg modeling the
longitudinal edges of the subsequent folds of this shell are sought. The distance between two adjacent rulings tj−1
and tj, which are the longitudinal edges of the same smooth strip modeling a single shell roof fold, was determined
on the basis of two conditions related to the contraction of each transformed shell fold and the equality of the surface
areas of two smooth models of this fold before and after transformation.

Two straight directrices e and f were determined on the basis of their four adopted ending points
Dgi (for i = 1 to 4), whose coordinates are the entered initial data. Segments ei and fi of directrices
e and f, shown in Figure 17, are the determined auxiliary short lines modeling the supporting lines
of subsequent folds of the shell roof being sought. The lengths of these segments were calculated to
develop the simplified smooth shell model of each roof shell fold as a central sector Ωi of a warped
surface limited by two rulings ti−1 and ti. Each pair of these segments ei and fi was determined on the
basis of two points Ei and Fi displaced on e and f.

The positions of points Ei on e and Fi on f were changed in relation to points Ei−1 and Fi−1, and
the shape of ΩI was decided. This change makes it possible to satisfy the two conditions discussed in
the concept of the paper, and relate them to the surface areas of simplified models of transformed folds
and the optimal position of a contraction line along the length of each fold.
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Figure 17. Narrow smooth longitudinal shell strip Ωi modeling a complete shell fold, created by means
of a Loft component and limited by two rulings ti−1(Ei−1, Fi−1) and ti (Ei, Fi) as well as two curves ei

and fi.

Both aforementioned conditions are represented in the authors’ application of the
Rhino/Grasshopper program by two green containers shown in Figure 18. The green container on the
left is related to the equality of the surface areas of the fold’s models before and after transformation.
The second green container on the right requires that the contraction line pass transversely in relation
to the directions of the shell folds through the middle of these folds along their lengths. This container
controls the position of the contraction line s, so that it is perpendicular to the rulings ti−1 and ti.
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Figure 18. Two basic green components representing two basic conditions related to the fold’s surface
areas and line of contraction.

The discussed roof shell is limited from the top and bottom by two oblique surfaces Ωg and Ωd
(see Figure 16). The upper one of which is the sought-after symmetrical model of the transformed
folded shell sheeting. Half of this model is presented in Figure 19. It was determined using the
innovative application built by one of the authors in the Rhino/Grasshopper program.

The calculated values of the lengths of two supporting lines ei and fi, the lengths and unit twist
angles αj of the consequent folds of the investigated shell, are tabulated in Table 2. The properties of the
other symmetrical part can be obtained by using the z-axis symmetry of the set of the two directrices e
and f.
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Figure 19. Smooth model of the upper surface of the shell roof being sought.

Table 2. Parameters describing the subsequent shell folds in the transformed shell whose simplified
smooth model is shown in Figure 19.

Shell Fold
[no.]

Length of
Supporting Line ei

[mm]

Length of
Supporting Line fi

[mm]

Fold’s Length
[mm]

Fold’s Unit Twist
Angle αj [o]

1 286.8 294.1 16,467 1.809
2 286.9 294 16,416 1.8199
3 287 293.8 16,367 1.8306
4 286.4 293.1 16,319 1.8411
5 287.1 293.6 16,273 1.8514
6 287.2 293.5 16,227 1.8614
7 287.3 293.4 16,184 1.8713
8 287.4 293.2 16,142 1.8808
9 287.5 293.1 16,101 1.8902

10 287.5 293 16,061 1.8992
11 287.6 292.9 16,024 1.908
12 287.7 292.7 15,988 1.9165
13 287.8 292.6 15,953 1.9247
14 287.9 292.5 15,919 1.9326
15 288 292.4 15,887 1.9403
16 288.1 292.3 15,857 1.9476
17 288.2 292.1 15,828 1.9545
18 288.3 292 15,800 1.9612
19 288.3 291.8 15,774 1.9675
20 288.4 291.8 15,750 1.9735
21 288.6 291.6 15,727 1.9791
22 288.6 291.5 15,705 1.9843
23 288.7 291.4 15,685 1.9892
24 288.8 291.3 15,667 1.9938
25 288.9 291.2 15,650 1.998
26 289.1 291.1 15,635 2.0017
27 289.1 291 15,622 2.0051
28 289.3 290.8 15,610 2.0081
29 289.4 290.7 15,599 2.0108
30 289.5 290.6 15,590 2.013
31 289.6 290.5 15,583 2.0149
32 289.7 290.3 15,577 2.0163
33 289.8 290.3 15,573 2.0174
34 289.9 290.1 15,570 2.018
35 290 290 15,569 2.0183

In the example presented above, two symmetric parts are separated by an empty longitudinal
strip whose width along each directrix is 70 mm. This empty strip between two symmetric parts of
the roof shell should be filled with an unfolded smooth steel sheet. To obtain a continuous roof shell
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without the empty strip located centrally in the roof, a central longitudinal axis of this empty strip
should be found. Consequently, the calculations should start taking this axis as the initial ruling of the
designated shell.

Next, the longitudinal strips modeling subsequent folds passing from the central ruling of the
roof shell in the direction of the eaves that are outside the roof should be determined. In this way, a
smooth model of one of the two symmetric parts of the roof shell is obtained. This time, however, the
empty strip, of about half the width of the aforementioned central empty strip, appears between the
border fold of the modeled corrugated shell and the assumed straight line of the roof eaves. In the
discussed example, the width of the border empty strip is about 35 mm.

7. Discussion

The presented symmetric geometric and mechanical properties of folded orthotropic steel sheets
allow the use of symmetry in shaping attractive transformed folded roof shells and entire free forms of
buildings by adopting appropriate assumptions regarding the symmetry of shape and mutual position
of roof directrices as well as the position of the sheets relative to these directrices. These operations
include obtaining rational pre-stresses caused by these shape transformations.

The authors have perceived the need to use various kinds of symmetry by the method in many
issues they have come across in their research related to geometric, architectural and static-strength
shaping of buildings characterized by unconventional architectural free forms and their warped folded
shell roofs. From the authors’ experimental tests [9] and computer simulations [21] it follows that it is
justified to model these transformed shells with regular ruled surfaces. In addition, since the mutual
displacements of adjacent shell folds in their longitudinal directions are smaller than the displacements
in transverse directions many times, the modeling should be carried out by means of warped surfaces,
i.e., undeveloped ruled ones.

The visual attractiveness of the designed transformed roof shells and entire free form buildings is
one of the most important advantages of exploiting symmetry. The rationality and effectiveness of
the shape transformations of corrugated sheeting and the structural systems intended for free form
buildings are equally important.

The simplest operation leading to obtain a transformed roof shell is based on the adoption of
two directrices as a set of mutually skew straight lines, and then unfolding a continuous strip of
folded sheets on these directrices. If the mutual position and shape of the directrices is adopted so
that there exists an axis of symmetry of the set of these two directrices, the strip of many rectangular
sheets symmetrically distributed on these directrices allows one to obtain a symmetric form of the
transformed shell. Thus, the width of each fold of the effectively transformed shell decreases to a
minimum at its half-length and extends maximally and identically at its both transverse ends. The
maximum compressive forces appearing halfway along the length of each fold result in a contraction
in this place. The sum of the contractions of all shell folds is the contraction of the entire transformed
roof shell, and divides the shell into two symmetric parts.

Other important advantages of the method are as follows: simplicity, transparency and
intuitiveness of creating simplified geometric models for the transformed roof shells and entire
building free forms, usefulness for engineering developments. The parametrical shaping of building
free forms investigated by the authors was considerably simplified by using symmetry, reducing the
number of independent variables, making the method very intuitive, and carrying out parametric
computer applications written in the AutoLISP language of programming an AutoCAD visual editor
and a Rhino/Grasshopper program.

Two methods for shaping such transformed corrugated shells by means of smooth regular warped
surfaces are discussed in the paper. These methods employ fold’s effective transformations resulting in
the contraction of each designed shell appearing at a half-length of all its folds.

One method lies in the assumption that the shape of the contracting line of the surface modeling
the designed shell roof has to be adopted. The roof shell directrices are sought. A finite number of
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rulings arranged on the investigated warped surface compatibly with strictly defined relationships
between the longitudinal straight edges of the consequent folds of the transformed shell have to
be determined.

Each right hyperbolic paraboloid is characterized by exactly two straight lines perpendicular to
each other and belonging to two different families of rulings of this paraboloid. One of these straight
lines is usually accepted as a model for the straight contraction of the shell, while the other is the
twist axis and central ruling of the shell. In other cases, i.e., when such two straight lines do not exist,
the shell is modeled with an oblique hyperbolic paraboloid whose contracting line is a parabola, and
rulings are straight lines variously inclined to this contracting parabola.

Another particular and relatively simple form of a transformed shell is obtained by an oblique
arrangement of the folds of the sheeting in relation to two circle arc directrices contained in two
mutually parallel planes. In this case, the transformed shell and its contraction are modeled with
a central sector and the circle neck of the revolved hyperboloid respectively, if the inclination of all
shell folds to these arc directrices is identical. When the designed folded sheeting takes the form of a
revolved hyperboloid, the transverse ends of its folds must be obliquely cut in order to adjust these
ends to the direction of the directrices.

Another type of warped surfaces employed for modeling the transformed corrugated shells are
helicoids, whose line of striction is a helix and rulings are binomial lines of the helix. The correctness
of the selection of this type of warped surface for modeling the transformed shells is also justified
by the fact that the plane cross-sections of all transformed folds are arranged in accordance with the
contraction of the transformed shell, perpendicularly to the longitudinal axes of the shell folds if the
transformation of this shell is effective. Thus, for this case the shape transformation causes no high
initial stresses since the folds must retain the ability to carry roof live loads.

The advantage of this method is a relatively simple algorithm of operations and geometric models
leading to the determination of a finite number of rulings located on the determined surface. The
disadvantage is that the obtained transverse edge lines of the shell model are not planar lines, and the
projection of the designed roof shell onto a horizontal plane is not a rectangle or square. In addition,
the equation of each surface employed and its line of striction, or the way of rough approximation of
the surface by means of a polyhedron and its line of contraction by means of a multi-segment line,
must be known. In addition, we do not know, except for some rare cases of the surfaces verified by the
authors [10], whether the accepted surface provides the appropriate positions of all its selected rulings
along the line of contraction.

Another type of warped surfaces employed for modeling transformed corrugated shells are
helicoids, whose line of striction is a helix and rulings are binomial lines of the helix. The correctness of
the selection of this type of warped surfaces for modeling transformed shells is also justified by the fact
that the plane cross-sections of all transformed folds are arranged in accordance with the contraction of
the transformed shell, perpendicularly to the longitudinal axes of the shell folds if the transformation
of this shell is effective. Therefore, for this case the shape transformation does not cause high initial
stresses since the folds must retain the ability to carry live roof loads.

The authors find preferable the other proposed method of determining smooth models of
transformed corrugated shells. It consists in taking account of two roof directices as transverse plane
boundary lines of the determined smooth surface model and searching for a finite number of rulings
modeling the longitudinal edges of the subsequent folds in the designed shell. Two main conditions
have to be satisfied when searching for the smooth model of each shell fold [16]. The first condition
requires the contraction of each shell fold to appear halfway along its length. The other condition is
identical as the one of the first method and consists in maintaining the equality of surface areas of two
models created for the same fold before and after transformation. An architectural stadium of two
building free forms roofed with various transformed shells determined on the basis of straight and
curved directrices achieved by the authors with the help of this method is presented in Figure 20.
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8. Conclusions

The authors’ observations made so far on the basis of their experimental tests and computer
analyses show that the main geometric feature of each effectively transformed fold is its tendency to
obtain an axis-symmetric shape so that the resulting contraction divides the fold into two congruent
parts. The specific kinds of regular ruled surfaces discussed in the paper allow the most extensive
possible use of the geometric properties of effectively transformed folds. In particular, these surfaces
should be of constant curvature and constant spiral lead of its line of contraction and rulings being
binormal lines of the line of contraction. Axis-symmetric central sectors of these surfaces should be
selected as the correct models for the effectively transformed roof shells discussed. In addition, these
sectors must be divided by the lines of contraction into two congruent parts. Such a ruled surface is
usually an open helicoid whose line of striction is a helix.

The aforementioned helix can be deformed into a straight line of striction of a right hyperbolic
paraboloid of one sheet. It is also possible to position the shell folds obliquely in relation to the
contraction line. For this case, the axis-symmetric smooth surface is the central sector of the revolved
hyperboloid of one sheet. The neck circle is the line of contraction of the hyperboloid. The oblique
position of the shell folds relative to the contraction line and directrices, resulting from the adaptation
of the sheets to the shape of the revolved hyperboloid, requires an oblique cut of both transverse ends
of each shell fold of the designed roof shell to obtain a smooth transverse roof shell’s edge compatibly
with the direction of the roof directrices.

Various kinds of ruled surfaces can also be used as models for symmetric transformed shells,
whose lines of contraction have different curvature and rulings have different inclination to the
contraction and directrices. One type of these surfaces is an oblique hyperbolic paraboloid employed
by the authors due to its well-known and convenient geometric properties. However, the use of this
type of surface for strictly engineering developments still requires a wide range of experimental tests
and computer analyses.

The other method is presented on a specific example of geometric shaping of the axis-symmetric
roof shell, so that the axis is also adopted as an axis of symmetry of the designed entire building free
form. Obtaining the symmetric form of a transformed roof shell requires the adoption of a symmetric
set of two skew directrices and supplementing this set with a designated ruling modeling one of two
longitudinal edges of any fold of the shell, for example the border fold of the shell. On the basis of the
above set, a finite number of pairs of skew straight lines modeling two longitudinal straight edges of
subsequent folds of the designed shell are sought. The appropriate width of each warped surface’s
strip modeling a single fold of the shell is calculated based on two conditions related to the location of
its contracting line and the surface area of the fold model before and after its shape transformation. All
smooth models of the fold created by means of the second method are defined in a simplified and
approximate way. Therefore, it is not possible to derive the mathematical equations of such shaped
transformed shells.
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