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Abstract: In this study, we define new classes of convexity called h-Godunova-Levin and
h-Godunova-Levin preinvexity, through which some new inequalities of Hermite-Hadamard type
are established. These new classes are the generalization of several known convexities including
the s-convex, P-function, and Godunova-Levin. Further, the properties of the h-Godunova-Levin
function are also discussed. Meanwhile, the applications of 1i-Godunova-Levin Preinvex function
are given.
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1. Introduction

Recently, the theory of convexity has become a broad area of study since it is related to the
theory of inequalities. Many such inequalities are frequently reported in the literature as a result
of applications of convexity in both pure and applied sciences (see [1-4]). Considering its many
applications in different branches of mathematics, convexity can provide a basis for estimating error
bounds in a large class of problems [5]. One example of these is how the convexity was applied to
estimate errors when using a trapezoidal formula for numerical integration [6,7]. Others include
studying problems in nonlinear programming and applying them to special means [8]. Among them,
an interesting inequality for convex function is of Hermite-Hadamard type, which can be stated
as follows:

Let S be a nonempty subset in R,  : S — R be a convex function on S, and u1,uy € S,uq < uy,
then we have

4](”1 + uz) < 1 /uz p()dx < P(ug) + gb(uz). 1)

2 u2 - u] Uy 2

If ¢ is a concave function, the two inequalities can be held in the reverse direction. These
inequalities have been extensively improved and generalized. For example, see [1,9-12].

Definition 1. [13] A positive function ¢ : S C R — R is said to be a Godunova—Levin if

1,[1(5141 +(1-90)uy) < l/)(:;h) + f(fz(g,Vul,uz €S,5€(0,1).

Several other properties related to this class of functions are given in [14-16]. For example, both
the positive monotone and positive convex functions belong to this class.
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This concept has been recently extended to s-Godunova-Levin type of convexity by Dragomir [17].
Furthermore, studies were conducted on s-Godunova-Levin type convexity and can be found in the
literature [6]. Another important class of convex function is h-convexity, which was introduced by
Varosanec [18], through which several generalizations and extensions were made.

Definition 2. [18] Let ,w : S C R — R be two functions, such that uy, uy € S, the inequality ((uy) —
P(up))(w(ur) —w(up)) > 0is called similarly ordered for  and w on S.

Now, the following preliminaries on invexity analysis are necessary since they can be frequently
used throughout this study. Therefore, we let S be the nonempty subset in R and let ¢ : S — R and
¢(.,.) : S x S — R be a continuous function.

Definition 3. [19,20] A set S is said to be an invex set with respect to {(.,.) if, for every uy,uy € S, and
0e0,1]

uy +6C(up,uq) €S.
Definition 4. [20] A function 1 on the invex set S is said to be preinvex with respect to ( if
P(ug +0C(uz, u1)) < (1 —0)p(uy) + dp(up);Yuy, up € S;6 € [0,1]. ()

Usually, the preinvex functions can be convexity if ((up,u1) = up — 13 holds in (2).
Other properties of preinvex functions are given in [21,22].

We arrange this paper as follows. Section 2 introduces the new classes of h-Godunova-Levin,
denoted by SGX(4,t) and SGV(},t), together with their properties. This class of function unifies
different classes of convexity: s-Godunova—Levin, P-functions, s-convexity, and Godunova-Levin.
In Section 3, we prove new Hermite-Hadamard inequalities via h-Godunova-Levin preinvexity.
Section 4 introduces a new definition of h-Godunova-Levin preinvexity, which can be the
generalization of preinvexity. This Section also presents new Hermite-Hadamard type inequalities
for h-Godunova-Levin preinvexity. Section 5 gives some applications to special means, as well as an
application to numerical integration.

2. The h-Godunova-Levin Functions and Their Properties

This section introduces the notion of h-Godunova-Levin function together with their properties.
This class of function can be denoted by SGX (%, t) and SGV(%, t) for h-Godunova-Levin convex and
h-Godunova-Levin concave, respectively.

Definition 5. Suppose h : (0,1) — R. A non-negative function ¢ : S — R is said to be h-Godunova—Levin,
or that 1 belongs to the class SGX(%, S), forall uy, uy € Sand 6 € (0,1), we have

P(u2)
h(i—-0)"

P(0ur + (1= 06)uz) < ®)
Remark 1. If h(6) = 6, h(6) = 3, h(6) = &°,h(8) = 1, h(6) = F in inequality (3), the definition of
h-Godunova—Levin function can be clearly reduced to different types of convexity, such as Godunova—Levin
function, classical convex, s-Godunova—Levin function, P-function, and s-convex function. This indicates that
h-Godunova—Levin function is the generalization of these different classes.



Symmetry 2019, 11, 1500 30f10

Proposition 1. Suppose that hy, hy are two positive functions defined on the interval S satisfying the property
1 1
—— < —=, 0€(0,1).
MOREON
Ifp € SGX(y,S), then € SGX (45, S). If € SGV(y-,S), then € SGV (41, S), where Iy (t) # 0 and
ha(t) # 0.
Proof. If y € SGX(%, S), then for any uq,u; € Sand 6 € (0,1) we get

1 1
hl (5)‘/)(141) + mlp(uz)
1 1
2(5)1/’(”1) + mlp(”ﬂf

P(our + (1 —0)up) <

IN
=

ie, y € SGX(,S). O

Proposition 2. If ,w € SGX(4,5) and A > 0, then Y + w,Ap € SGX(4,S). If Y, w € SGV(},S) and
A >0, then  + w, A € SGV(},S).

Proof. The proof is clear from the definition of the classes h-Godunova-Levin convex and
h-Godunova-Levin concave, SGX(3,S) and SGV (3, S), respectively. [

Proposition 3. Suppose that 1 and w are two h-Godunova—Levin functions and satisfying the property given
in Definition 2. Then, the product of these two functions satisfies

Pl + (1= )6 + (1= 0)us) < | spleotin) + g pmatin)| [ + g |

Proof. Given that ¢ and w are h-Godunova-Levin functions, we have

Yoy + (1 - O)up)w(duy + (1 — 8)up) < <1/;l((b(‘51)) + hl(l’l(bfi)) (“’(”1) 1 wln) >

:mlp(m)w(m) + m[#’(”l)w(m)

FPl)o(n)) + b))

1 1 1 1
= {@1/](”1)“7(”1) + mlﬁ(”z)w(uz)} {@ + ik
O

Proposition 4. Suppose that { : S| — [0,00), w : Sy — [0,00) are two functions such that w(S;) C Sq.
If the function w is convex (concave), and the function v is increasing (decreasing), € SGX (%, S1), then the
composition 1 o w belongs to SGX (%, Sy). Meanwhile, if the function w is convex (concave) and the function
W is decreasing (increasing), € SGV (},S1), then the composition i o w belongs to SGV (1, S5).

Proof. Suppose that w is a convex function, ¥ is increasing, and ¢ € SGX (%, S1). Then, we have

(9 o) (s + (1= 8)u)) < (oo (a) + (1 = o(uz)) < 15 (¥ o @)0) + g5 (¥ ) 12),

forall uy,up € Sp,and 6 € (0,1). O
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3. New Hermite-Hadamard Inequality for h-Godunova-Levin Convex Function
The following generalization of the Hermite-Hadamard inequalities for h-Godunova-Levin

convex function can be proved in this section.

Theorem 1. Let ¢ € SGX(%,S), uy,up € S, with uy < up and p € L1([uy, up]), whereh : (0,1) — Risa
positive function and h(6) # 0, we have

h(z 1 up 1
(22) ) (ul ;”2> < pr— /M1 P(x)dx < [p(uq) +¢(u2)}/0 md&. )
Proof. Since ¢ is h-Godunova-Levin, we have
(i) P(u2)
P(our + (1= 90)up) < 6 + L )

Considering v1 = auy + (1 — a)up, v3 = (1 — w)ug + aup, and § = % in (5), we obtain

lp(bil;—w) = h(ll/)(’wl +(1—ajuz) + L147((1 —w)uy + auy)

3) h(3)
< h<11)[¢<wu1 + (1= ) + (1 — )y + )] 6)
2

Thus, after integrating (6), we get the following

o(M52) < i | wtes+ (0= auaddacs [ (1= s+ )i

(2

2 Uy
D) P

This ends the proof of the first inequality. Now, taking v; = u; and v, = uy in (5) and integrating
the result over the interval [0, 1] with respect to J, we obtain

L [ g < [ptn) + ()] [ oo
x)dx u u ——do.
le—ul.ulw = [pin Pl Jo h(9)
This completes the proof of the second inequality (4).
O

Remark 2. In Theorem 1, choosing h(5) = 6°, we obtain the Hermite—Hadamard inequalities for s-convexity
in the second sense, Theorem 2.1. in [23]. If we choose h(8) = 1, Theorem 1 can be reduced to the result for
P-function [12]. Taking h(6) = %, the theorem reduces the result for classical Hermite-Hadamard inequalities
given in inequality (1).

4. Hermite-Hadamard Inequalities for 1-Godunova-Levin Preinvex Function

The definition of h-Godunova-Levin preinvex is introduced in this section. The inequalities of
Hermite-Hadamard type for functions whose first derivatives absolute values are h-Godunova-Levin
preinvex are also presented here.

Definition 6. A function i : S — R is said to be h-Godunova—Levin preinvex function with respect to ( if, for
all uy,uy € 5,6 € (0,1),

bl 50 ) < 3635+ 5
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holds.

The following lemma can be used to prove the generalization of the Hermite-Hadamard
inequalities for 1-Godunova-Levin preinvexity.

Lemma 1. [24] Suppose that ¢ : S = [uy,u; + {(up, u1)] — (0,00) is a differentiable function, where
uy, uy + {(up,uy) € Swithuy < uy + {(up, uy). If ' € L1[uy, uq + {(uz,uy)], we have

ur+{(uz,u1) 1
T oy - Pl ) Cmm) [ oy (a4 a8

Theorem 2. Suppose that ¢ : S = [uy, ug + {(uz,u1)] — (0,00) is a differentiable mapping on S°,
uy, {(up,uy) € S°, with uy < uy + {(up, uy). If |¢'| is a h-Godunova—Levin preinvex on [uy, uq + {(up,u1)],
then we get the following inequality:

< ) ) 4 1y ()]

/\1—25|{% R )}dé @)

P() + 9 +Z(u,u1)) 1 /‘“1+§(“2,M1)

7 Tlun, 1) P(x)dx

11

Proof. We use Lemma 1 to prove inequality (7) as follows:

ur 4 (uz,11) 1
lp(”l) +IIJ(H§+€(M2,M1)) _ g(uiul) / 1/J(x)dx‘ _ 'g(uzul) /O (1 _2(5)1/]/(”1 +(5€(u2,u1))d5‘

1
< S0) My gl a4+ )l

Uy, U 1 "(u "(u

< C(Mz,ul)

(19" (1) ] + ¢ (u2)]]

/|1 2o"|[—+ i )}dé‘

O

1 1 1
larv 1. Si _ : o . . it (7),
Corollary 1. Since /0 hi=9) 5)d(5 /0 6] dé, subsituting this fact in inequality (7), we get

u u 1+ (ug,u1) Uy, U
‘w(ul)w e 1))‘¢<u21,u1>/m T poar] < S ) gt )
« /0 ‘111;52)‘5'%. ®)

Corollary 2. Taking {(up, uq) = up — uq in inequality (8), we obtain the following inequality:

’lP(“l)Jzﬂ/J(”z) _ 1 /llzlp( )dx <

Uy — i

2 g )+ o/ )] 2L

Theorem 3. Suppose that ¢ : S = [uy, uy + {(u,u1)] — (0,00) is a differentiable function on S°,
uy, {(up,uy) € S°, with uy < uy + {(up, uy). If |¢'| is a h-Godunova—Levin preinvex on [uy,uq + {(up,u1)],
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with p > 1 such that q = %, we obtain

P(uy) +1’b(u;+ f(ug,u)) é(ul - /-u1+C(u2,u1) p(x)dx| < M(lwl(ul)|q
2,U1) Juy (p+1)r
1l
i ) [ o

Proof. Applying Lemma 1, we have

sy 4+ (up,uy) 1
P(uy) +¢(u;+§(uz,u1)) _ g(u;ul) /u1 lp(x)dx’ _ ‘?(uzz,m) /0 (1= 20)¢/ (11 +5§(u2,u1))d‘5'

1
< S02) 134 (s + 68 )],

We use Holder’s integral inequality as follows:

P(ur) + (ur + Z(uz, uq)) 1 w1+ (1,01 ) {1 |
2  Z(ug,uq) /ul l'b(x)dx‘ ST (/0 11 —2(5|F’d5>

X (/01 9’ (11 +5C(“2,u1))|qd5> %

where % + % =1
Now, since |¢'|? is a h-Godunova-Levin preinvex, we obtain

'l ! q ! q
<2 [ gy o/ (el + 1/ )|,

Using the basic calculus, we have fol |1 —26Pdé = ﬁ This completes the proof of the
Theorem 3. O

Corollary 3. Choosing {(up, 1) = up — uq in Theorem 3 reduces inequality (9) to the following:

(1) + ¢(u2) 1 U2 Uy —uy , Lt
e AR (L < Yl ) |

Theorem 4. With the assumptions of Theorem 3, we get the following:

IN

) + P + Lz, 1)) 1 o) Lluz,ur) ([1]1=26] )
’ > - ooy Lo Y i (/o o) d‘s)

< ([ () |7+ |9 (u2)|"). )
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Proof. We use Lemma 1 to show that

) +(ur +8(up,u1)) 1 ez
2 é(MZr ul) uy

(x)dx’ = ‘M /01(1 —28)" (uq + 0L (1, uq))ds

1
SM/O [1— 26| |9 (ug + 6 (up, u1))dd|.

Applying power-mean inequality, we get

(1) + p(ug + C(uz, u1)) 1 uy+ (up111) C(uz,u1) [ [ 1-1
‘ 2 Z (1, 11) / lP(x)dx‘ < 2(/0 11 —2z5|d(5>

1 i
X (/O |1—25||1p'(u1+(5§(u2,u1))qdd) .

Since |¢'|7 is a h-Godunova-Levin preinvex, we obtain

1 / ! |1_2‘S| / ‘1_25| /
/O|1—25||¢(u1+5§(u2,u1))|m(sg/0 < ) |IP(M1)|q+h(1_5)|lp(u2)|q>d5

1 _
< [ sty i+ 19/ ) ),

1
Applying the basic calculus, we have / |1 —25]dé = % a
0

Corollary 4. Taking {(up, uq) = up — ug, h(6) = 1 and g = 1 in inequality (9), we have

Uy —uUq

< =5 (W' )l + g (m)]),

2 Uy — Uy

P(u1) + ¢(u2) 1 /”1

P(x)dx

Uy
which is similar to Theorem 2.2 repoted by Dragomir and Agarwal [4].
5. Applications

5.1. Applications to Numerical Integration

As mentioned in the introduction, the convexity can be applied to many areas of studies. Here,
we give an example of how the h-Godunova—-Levin convex and preinvex functions can be used to
estimate the errors accumulated when using the trapezoidal formula for numerical integration.

Let d be a division of the interval [uy,us],ie, d:uy =vg < vy < - < v, 1 < vy =1y 0fa
given quadrature formula

[ wix = T, 0) + E,d),

1

where

T(l[],d) _ nZ: (4 (Ui) +9¢ (vi+1)

> (vig1 — ;)

is the trapezoidal formula. The associated approximation error is denoted by E(¢,d).
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Proposition 5. Let  be a differentiable mapping on S°, uy,uy € S° with uy < up. If |{/| is a
h-Godunova—Levin preinvex on [uy, uy + {(up, uq)), then for every division d of [uq, up|, we have

|En l/]/ % Z Uz+l_vi>2(’lp (vl)‘+|lp <Ui+1>|)/(; | h(z) ‘d(s
& (10)
n—1
) | . 25\
_1:0(v+1 ) M2|}/

Proof. We now apply Corollary (2) on the subinterval [v;,v;41] (i = 0,1,2,...,n — 1) of the division d.
This gives the following:

(i1 —2) (|¢' (@)] + 9’ (@is1)]) /1 [1-24] .5
0

‘w (vig1 — ;) ’/:]IH plx)dx| < 2 h(5)

i

Since |¢'| is hi-Godunova-Levin preinvex, using the triangle inequality and summing the result

over i from 0 ton — 1, we get

T - [

g—: Vit1 — ;) |lIJ )|+ ¥ (vis1)])

< max { ’lpl (v;)

n—1
1/’/ (Uz‘+l)|} l;,) (Vig1 — Ui)z/o L 6 2)5|d5

'y (= Vinq — |1_25|
¢(2)’}i§)(1+1 /0 ") ds.

O

The above inequality is an error bound of numerical integration obtained by h-Godunova-Levin
preinvex. Choosing different functions of 1() in inequality (10) can give different results (see [6]).

5.2. Applications to Special Means

We finally use Hermite-Hadamard inequalities for #-Godunova-Levin preinvex function to form
the inequalities for special means. Thus, the means of two positive numbers 11, uy, and 11 # uy can be

considered as follows:

1.  The arithmetic mean:
A= Alug,up) = —
2. The generalized log-mean:

1
ug’l+1 uT“rl m

(m+1)(uy —uq)

2,' uy, up € R, with uq,up > 0.

Ly (uq,up) = ,m# —1,0.

The following propositions are obtained from the results in Section 4 and the above applications

of special means.

Proposition 6. Let 0 < uy < up, where m > 2, then we have

< 20220 gt g [

Proof. This inequality is obtained from Corollary (2) and applied on the h-Godunova-Levin preinvex
functiony : R - R, ¢p(x) =x",m >2. O

\A(ua",u?) L )
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Proposition 7. Let 0 < u; < up, wherep > 1,9 = % and m > 2, then we get

m(u, —u (m=1)p m-1p 1 1 1
A(uy',uy') — Ly (u1, u2) S(zill)A(\ul\ 1 Jup| 1 )q/ 570
(r+1)r 0 h(s)

Proof. We derived this inequality from Corollary 3 applied to the h-Godunova-Levin preinvex function
p:R—=R O

6. Conclusions

Since the Hermite-Hadamard type inequalities, due to their importance, can be found in many
fields of study, the present study established new generalizations of such inequalities. Thus, two
classes of function, hi-Godunova-Levin and i-Godunova-Levin preinvex functions, along with some
of their properties were established here. The applications to special means and numerical integration
were also discussed in this study.
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