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Abstract: This paper aims to investigate the criteria of behavior of a certain type of third order neutral
generalized difference equations with distributed delay. With the technique of generalized Riccati
transformation and Philos-type method, we obtain criteria to ensure convergence and oscillatory
solutions and suitable examples are provided to illustrate the main results.
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1. Introduction

Difference equations and functional equations usually occur due to certain phenomena over time
and play essential roles in the field of discrete dynamical systems [1]. Difference equations and their
associated operators play a vital role as direct mathematical models of physical phenomena but also
provide powerful tools in numerical methods. Given a differential equation with symmetries, we can
construct a difference scheme, which appropriates it while preserving the symmetries. Difference
equations play an important role in Lie theory. An important and significant observation is that
difference equations either appear in themselves and they can be used in Lie theory to get classes
of exact solutions, or they can be obtained by discretizing the continuum equation in such a way to
preserve the symmetries. That is, we can create sets of discrete equations which provide numerical
schemes approximating the continuum equations. For a detailed study on this aspect one can refer
to [2–5].

In this article, we consider the neutral generalized difference equation with distributed delay of
the form

∆`

(
p1(λ)∆`

(
p2(λ)∆`

(
y(λ) + ∑b

s=a g(λ, s)y(λ + s`− τ`)
)))

+∑d
s=c h(λ, s) f (y(λ + s`− σ`)) = 0,

(1)

and analyze the behavior of its solutions. Here, ∆` is the forward generalized difference operator
defined by ∆`y(λ) = y(λ + `)− y(λ), N`(λ0) = {λ0, λ0 + `, λ0 + 2`, · · · }, λ0 ∈ [0, ∞), ` ∈ (0, ∞) and
a, b, c, d ∈ N(λ0) are being assumed.
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(c1) {pi(λ)} is a positive real sequence with
∞
∑

λ=λ0

1
pi(λ)

= ∞, and pi(λ) > 0, for i = 1, 2;

(c2) {g(λ, s)} and {h(λ, s)} are non-negative real sequences with 0 ≤
b
∑

s=a
g(λ, s) ≡ g(λ) ≤ g < 1;

(c3) f : R→ R is a continuous function such that
f (y)

y
≥ L > 0, for y 6= 0;

(c4) mi(λ) =
[

λ−λi−j−`
`

]
, λ̄ = λ + j and j = λ− λi −

[
λ−λi
`

]
`.

Define a function x(λ) by

y(λ) +
b

∑
s=a

g(λ, s)y(λ + s`− τ`) = x(λ). (2)

We consider only those solutions {y(λ)} of Equation (1) which satisfy sup{|y(λ)| : λ ≥ T} > 0 for
λ ∈ N`(λ0). A solution of Equation (1) is said to be non oscillatory if it is either eventually positive or
negative and oscillatory otherwise. The generalized difference operator defined for any real sequence
{y(λ)} by ∆`y(λ) = y(λ + `)− y(λ) ≡ z(λ), then its inverse is defined by

y(λ) = y(λ0 + j) +
m0(λ)

∑
r=0

z(λ0 + j + r`). (3)

Recently, many authors obtained certain behaviors of nonlinear difference equations and their
applications. See for example monographs by Agarwal [6], Gyori and Ladas [7], and Elaydi [8].
The study of third order delay difference equations has also received much attention. The oscillatory
and asymptotic behaviors of solutions of the third order difference equations were studied by
Schmeidal [9]. Behaviors of oscillation of the third order nonlinear delay difference equation by Riccati
transformation technique were obtained by several authors like Aktas et al. [10], Elabbasy et al. [11],
Saker et al. [12], Selvaraj et al. [13–15], Thandapani et al. [16].

Here, we obtain conditions for the existence of convergent oscillatory solutions of Equation (1)
with the help of the generalized Riccati transformation. In fact, by choosing an appropriate function,
we shall present several oscillation criteria easily. The technique adopted in the present paper are
different from technique used in the references cited earlier, and the results are the generalization of
the existing results.

This paper is structured as follows: A few standard definitions and preliminaries are discussed
in Section 2. Section 3 deals with new oscillation results for (1), and in Section 4 we provide suitable
examples to demonstrate the main findings.

2. Preliminaries

In this section, some basic definitions and preliminary results are presented, which will be useful
for further discussion.

We denote the polynomial factorial λ
(m)
` by the expression

λ
(m)
` = λ(λ− `)(λ− 2`) · · · (λ− (m− 1)`) = `m Γ(1 + λ/`)

Γ(λ/`− (m− 1))
(4)

Lemma 1 ([17]). Let ` ∈ [0, ∞). Then, ∆`(λ
(m)
` ) = (m`)λ

(m−1)
` .

Lemma 2 ([17]). Let u(λ) and v(λ) be any two real valued functions. Then,

∆`{u(λ)v(λ)} = u(λ + `)∆`v(λ) + v(λ)∆`u(λ) = v(λ + `)∆`u(λ) + u(λ)∆`v(λ).
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Lemma 3. Let y(λ) > 0 be a solution of (1). Then the function x(λ) satisfies exactly one of the following
two properties.

(i) x(λ) > 0, ∆`x(λ) > 0, ∆` (p2(λ)∆`x(λ)) > 0;
(ii) x(λ) > 0, ∆`x(λ) < 0, ∆` (p2(λ)∆`x(λ)) > 0,

where λ ≥ λ2 for large λ2.

Proof. Let {y(λ)} > 0 be a solution of Equation (1) for all λ ≥ λ0. Then from x(λ), we have
x(λ) ≥ y(λ) > 0 for λ ≥ λ1, and also from (1),

∆` (p1(λ)∆` (p2(λ)∆`x(λ))) = −
d

∑
s=c

h(λ, s) f (y(λ + s`− σ`)) < 0.

We know that p1(λ) (∆` (p2(λ) (∆`x(λ)))) is a decreasing function on [λ1, ∞) and it is either positive
or negative eventually. It is possible to prove that p1(λ) (∆` (p2(λ) (∆`x(λ)))) > 0 for λ ≥ λ1 ≥ λ0.
If not, then there exists a constant M1 > 0 such that

∆` (p2(λ)∆`x(λ)) < − M1

p1(λ)
< 0, for λ ≥ λ1.

Hence, by (3)

p2(λ) (∆`x(λ)) ≤ p2(λ1) (∆`x(λ1))−M1

m1(λ)

∑
r=0

1
p1(λ̄1 + r`)

. (5)

Letting λ→ ∞, and using condition (c1), lim
λ→∞

p2(λ) (∆`x(λ)) = −∞. Then we can find a λ2 ≥ λ1 and

a constant M2 > 0 with the condition

p2(λ) (∆`x(λ)) < −M2, for λ0 ≥ λ.

Dividing the last inequality by p2(λ) and summing from λ2 to λ− `, we get

x(λ) < x(λ2)−M2

m2(λ)

∑
r1=0

1
p2(λ̄2 + r1`)

. (6)

Letting λ → ∞ and using condition (c1), we get x(λ) → −∞. That is, x(λ) < 0 eventually, which is
contradictory to x(λ) > 0. Therefore, ∆` (p2(λ) (∆`x(λ))) is positive, that is ∆` (p2(λ) (∆`x(λ))) >
0 holds.

Since ∆` (p2(λ) (∆`x(λ))) > 0, p2(λ) (∆`x(λ)) is monotonically increasing in the interval [λ2, ∞).
Therefore, either ∆`x(λ) > 0 or ∆`x(λ) < 0 for all λ, which is either property (i) or (ii) for {x(λ)}.

Lemma 4. Let {y(λ)} be a positive solution of Equation (1), and x(λ) satisfies (ii) of Lemma 3. If

∞

∑
r2=λ3

1
p2(λ̄3 + r2`)

(
m2(r2)

∑
r1=λ1

1
p1(λ̄2 + r1`)

(
m1(r1)

∑
r=0

d

∑
s=c

h(λ̄1 + r`, s)

))
= ∞, (7)

then, the solution y(λ) of Equation (1) tends to zero as λ→ ∞.

Proof. Let {y(λ)} > 0 be a solution of Equation (1). From (ii) of Lemma 3, there exist γ ≥ 0 with
the condition

0 ≤ r = lim
λ→∞

x(λ).
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Now, we shall prove that γ = 0. Let γ > 0, γ + ε > x(λ) > γ ∀ ε > 0, where λ is sufficiently large.

Choosing 0 < ε <
1− g

g
γ, from (2), it follows that

y(λ) = x(λ)−∑b
s=a y(λ + s`− τ`)g(λ, s)

> γ−∑b
s=a y(λ + s`− τ`)g(λ, s) > γ− g(γ + ε) = γ−g(γ+ε)

γ+ε (γ + ε) > Mx(λ),
(8)

where M =
γ− g(γ + ε)

γ + ε
> 0. Hence, from Equation (1) and (c3), we have

∆` (p1(λ)∆` (p2(λ)∆`x(λ))) = −
d

∑
s=c

f (y(λ + s`− σ`))h(λ, s) ≤ −
d

∑
s=c

Ly(λ + s`− σ`)h(λ, s).

Now, using (8), we obtain

∆` (∆` (p2(λ)∆`x(λ)) p1(λ)) ≤ −ML
d

∑
s=c

h(λ, s)x(λ + s`− σ`).

Summing the last inequality form λ1 to λ− ` and form (3), we get

−p1(λ1)∆` (p2(λ1)∆`x(λ1)) ≤ −ML
m1(λ)

∑
r=0

d

∑
s=c

h(λ̄1 + r`, s)x(λ̄1 + r`+ s`− σ`).

The above equation can also be written as

∆` (p2(λ1)∆`x(λ1)) ≥
MLγ

p1(λ1)

m1(λ)

∑
r=0

d

∑
s=c

h(λ̄1 + r`, s).

Summing again form λ1 < λ2 to λ− `, we get

−∆`x(λ2) ≥
MLγ

p2(λ2)

m2(λ)

∑
r1=λ1

1
p1(λ̄2 + r1`)

(
m1(r1)

∑
r=0

d

∑
s=c

h(λ̄1 + r`, s)

)
.

Summing the last inequality form λ2 < λ3 to ∞, we get

x(λ3) ≥ MLγ
∞

∑
r2=λ3

1
p2(λ̄3 + r2`)

(
m2(r2)

∑
r1=λ1

1
p1(λ̄2 + r1`)

(
m1(r1)

∑
r=0

d

∑
s=c

h(λ̄1 + r`, s)

))
.

This contradicts condition (7). Thus γ = 0. Also, 0 < y(λ) < x(λ) gives that lim
λ→∞

x(λ) = 0. The proof

is now complete.

Lemma 5. Let y(λ) > 0 be a solution of Equation (1), and x(λ) satisfies (i). Then

∆`x(λ) ≥ p1(λ + `)∆` (p2(λ + `)∆`x(λ + `)) P(λ)
p2(λ)

, (9)

where P(λ) =
m1(λ)

∑
r=0

1
p1(λ̄1 + r`)

.

Proof. Let y(λ) > 0 be a solution of Equation (1). Since x(λ) satisfies (i),

∆` (p1(λ)∆` (p2(λ)∆`x(λ))) < 0.
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From (3) and for all λ1 ≥ λ0, we have

∆`x(λ)p2(λ) = ∆`x(λ)p2(λ) +
m1(λ)

∑
r=0

∆`

(
∆`x(λ̄1 + r`)p2(λ̄1 + r`)

)
≥

m1(λ)

∑
r=0

p1(λ̄1 + r`)∆`

(
p2(λ̄1 + r`)∆`x(λ̄1 + r`)

)
p1(λ̄1 + r`)

≥ ∆` (p2(λ + `)∆`x(λ + `)) p1(λ + `)
m1(λ)

∑
r=0

1
p1(λ̄1 + r`)

≥ ∆` (p2(λ + `)∆`x(λ + `)) p1(λ + `)P(λ).

Hence, we obtain

∆`x(λ) ≥ ∆` (p2(λ + `)∆`x(λ + `)) p1(λ + `)P(λ)
p2(λ)

, (10)

which completes the proof.

3. Main Results

In this section, we obtain new oscillation criteria for the Equation (1) by using the generalized
Riccati transformation and Philos type technique. For Philos type technique, we define functions
q, Q : N` ×N` → R such that

(I) Q(λ, λ) = 0 for λ ≥ λ1 ≥ 0;
(II) Q(λ, s) > 0 for λ > s ≥ λ1;
(III) ∆`(s)Q(λ, s) = Q(λ, s + `)−Q(λ, s) ≤ 0 for λ > s ≥ λ1 and a positive real sequence {ρ(λ)}with

the condition

− q(λ, s)
√

Q(λ, s) = ∆`(s)Q(λ, s) +
∆`ρ(s)

ρ(s + `)
Q(λ, s). (11)

Theorem 1. Consider the Condition (7) and {ρ(λ)} satisfies

m1(λ)

∑
r=0

(
C(λ̄1 + r`)− B2(λ̄1 + r`)

4A(λ̄1 + r`)

)
= ∞, (12)

where

A(λ) =
ρ(λ)P(λ)

ρ2(λ + `)p2(λ)
, B(λ) =

∆`ρ(λ)

ρ(λ + `)
, C(λ) = H(λ)ρ(λ) (13)

and

H(λ) = L(1− g)
d

∑
s=c

h(λ, s), (14)

then, every solution of Equation (1) is either oscillatory or converges to zero.

Proof. Assume that {y(λ)} is a non-oscillatory solution of Equation (1). Without loss of generality,
we may assume that y(λ) > 0, y(λ + s`− τ`) > 0 for λ ≥ λ1 ≥ λ0 ∈ N` and {x(λ)} is defined as in
(2). Then {x(λ)} will satisfy the two cases of Lemma 3.

Let {x(λ)} satisfies property (i) of Lemma 3. From Equation (2), we have

y(λ) ≥ x(λ)−
b

∑
s=a

x(λ + s`− τ`)g(λ, s) ≥ x(λ)

(
1−

b

∑
s=a

g(λ, s)

)
≥ x(λ) (1− g) . (15)
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Using condition (c3) in Equation (1),

∆` (p1(λ)∆` (p2(λ)∆`x(λ))) ≤ −
d

∑
s=c

h(λ, s)Lx(λ + s`− σ`)). (16)

Now, using Equation (15) in the above inequality, we obtain

∆` (p1(λ)∆` (p2(λ)∆`x(λ))) ≤ −L(1− p)∑d
s=c h(λ, s)x(λ + s`− σ`)

≤ −H(λ)x(λ + c`− σ`).
(17)

The generalized Riccati transformation is

w(λ) = ρ(λ)
p1(λ)∆` (p2(λ)∆`x(λ))

x(λ)
, λ ≥ λ1. (18)

Then, w(λ) > 0 for all λ ≥ λ1, and Equations (10) and (17) yield

∆`w(λ) ≤ −q1(λ)ρ(λ) + w(λ + `)
∆`ρ(λ)

ρ(λ + `)
− w2(λ + `)

ρ(λ)P(λ)
ρ2(λ + `)p2(λ)

. (19)

The above equation is also expressed as

∆`w(λ) ≤ −C(λ) + w(λ + `)B(λ)− w2(λ + `)A(λ), (20)

where

A(λ) =
P(λ)ρ(λ)

ρ2(λ + `)p2(λ)
, B(λ) =

∆`ρ(λ)

ρ(λ + `)
, C(λ) = ρ(λ)H(λ).

Using the inequality

Au− Bu
1+β

β ≤ ββ

(1 + β)1+β
× A1+β

Bβ
, (21)

Equation (20) can be written as

C(λ)− B2(λ)

4A(λ)
≤ −∆`w(λ). (22)

Summing (22) from λ1 to λ− ` gives

m1(λ)

∑
r=0

(
C(λ̄1 + r`)− B2(λ̄1 + r`)

4A(λ̄1 + r`)

)
≤ w(λ1)− w(λ) ≤ w(λ1). (23)

From w(λ) > 0, we get a contradiction to (12), and hence x(λ) is oscillatory. When x(λ) satisfies
property (ii), from (7) we obtain lim

λ→∞
y(λ) = 0, which completes the proof.

Theorem 2. Consider the Condition (7) and let {ρ(λ)} satisifies

lim sup
λ→∞

1
Q(λ, s)

λ−s̄−`
`

∑
r=0

[
Q(λ, s̄ + r`)C(s̄ + r`)− h2(λ, s̄ + r`)

4A(s̄ + r`)

]
= ∞, (24)

then, every solution of Equation (1) is either oscillatory or converges to zero.
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Proof. Assume that {y(λ)} is a non-oscillatory solution of Equation (1). As in Theorem 1, we have
Equation (20). Now, if the Inequality (20) is multiplied by Q(λ, s) and summing the resulting inequality
form λ2 to λ− ` for all λ ≥ λ2 ≥ λ0, we obtain

∑
m2(λ)
r=0 Q(λ, λ̄2 + r`)C(λ̄2 + r`) ≤ −∑

m2(λ)
r=0 Q(λ, λ̄2 + r`)∆`w(λ̄2 + r`)

+∑
m2(λ)
r=0

(
B(λ̄2 + r`)w(λ̄2 + r`+ `)− A(λ̄2 + r`)w2(λ̄2 + r`+ `)

)
Q(λ, λ̄2 + r`).

(25)

By summation by parts,

∑
m2(λ)
r=0 Q(λ, λ̄2 + r`)C(λ̄2 + r`) ≤ Q(λ, λ2)w(λ2)

+∑
m2(λ)
r=0

[
Q(λ, λ̄2 + r`)∆`(λ̄2)

+ Q(λ, λ̄2 + r`)B(λ̄2 + r`)
]

w(λ̄2 + r`+ `)

−∑
m2(λ)
r=0 Q(λ, λ̄2 + r`)A(λ̄2 + r`)w2(λ̄2 + r`+ `).

(26)
Inequality (21) becomes

∑
m2(λ)
r=0 Q(λ, λ̄2 + r`)C(λ̄2 + r`) ≤ Q(λ, λ2)w(λ2)

+∑
m2(λ)
r=0

[
∆`(λ̄2)

Q(λ,λ̄2+r`)+B(λ̄2+r`)Q(λ,λ̄2+r`)
]2

4A(λ̄2+r`)Q(λ,λ̄2+r`) .
(27)

From (11), we have

m2(λ)

∑
r=0

[
C(λ̄2 + r`)Q(λ, λ̄2 + r`)− h2(λ, λ̄2 + r`)

4A(λ̄2 + r`)

]
≤ Q(λ, λ2)w(λ2). (28)

1
Q(λ, λ2)

m2(λ)

∑
r=0

[
C(λ̄2 + r`)Q(λ, λ̄2 + r`)− h2(λ, λ̄2 + r`)

4A(λ̄2 + r`)

]
≤ w(λ2). (29)

On letting λ→ ∞, (24) is contradictory. If x(λ) satisfies property (ii) of Lemma 3, then by condition (7)
we have lim

λ→∞
y(λ) = 0.

Corollary 1. If (λ− s)(m)
` = Q(λ, s) for all 0 ≤ s ≤ λ, ρ(λ) = 1 and

lim sup
λ→∞

1

λ
(m)
`

λ−s̄−`
`

∑
r=0

(λ− s̄− r`)(m)
` C(s̄ + r`)−

(
m`(λ− s̄− r`)(m−1)

`

)2

4A(s̄ + r`)
√
(λ− s̄− r`)(m)

`

 = ∞, (30)

then for every m ≥ 1, each solution of (1) is oscillatory or converges to 0.

Corollary 2. If Q(λ, s) =
(

log λ+`
s+`

)m
f∀ λ ≥ s ≥ 0, ρ(λ) = 1 and

lim sup
λ→∞

1

(log(λ + `))
(m)
`

λ−s̄−`
`

∑
r=0

(log
λ + `

s̄ + r`+ `

)m
C(s̄ + r`)−

m
(

log λ+`
s̄+r`+`

)m−2
2

4(s̄ + (r + 1)`)A(s̄ + r`)

 = ∞, (31)

then, for every m ≥ 1, each solution of (1) is oscillatory or converges to 0.

Theorem 3. Assume that Condition (7) holds. Also, let

0 < inf
s≥λ0

[
lim inf

λ→∞

Q(λ, s)
Q(λ, λ0)

]
≤ ∞ (32)
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and

lim sup
λ→∞

1
Q(λ, λ0)

λ−s̄−`
`

∑
r=0

h2(λ, s̄ + r`)
A(s̄ + r`)

< ∞ (33)

hold. If there is a sequence {Φ(λ)} such that

λ−s̄−`
`

∑
r=0

A(s̄ + r`)Φ2
+(s̄ + r`+ `) = ∞, (34)

and

lim sup
λ→∞

1
Q(λ, s)

λ−s̄−`
`

∑
r=0

[
Q(λ, s̄ + r`)C(s̄ + r`)− h2(λ, s̄ + r`)

4A(s̄ + r`)

]
≥ Φ(s), (35)

where
Φ+(s̄ + r`+ `) = max{Φ(s̄ + r`+ `), 0}. (36)

Let A(λ), B(λ), C(λ), and Q(λ, s) be respectively defined in (13) and (11). Then, each solution of Equation (1)
is either oscillatory or y(λ)→ 0, as λ→ ∞.

Proof. Let y(λ) be a non oscillatory solution of Equation (1). As in Therorem 2, when x(λ) satisfies
property (i), from (26) and by rearranging the terms we obtain

w(λ2) ≥ lim sup
λ→∞

1
Q(λ, λ2)

m2(λ)

∑
r=0

[
C(λ̄2 + r`)Q(λ, λ̄2 + r`)− h2(λ, λ̄2 + r`)

4A(λ̄2 + r`)

]

+ lim inf
λ→∞

1
Q(λ, λ2)

m2(λ)

∑
r=0

[
Q(λ, λ̄2 + r`)

2
√

A(λ̄2 + r`)
+
√

A(λ̄2 + r`)Q(λ, λ̄2 + r`)w(λ̄2 + r`+ `)

]2

for λ ≥ λ2. It follows from (35) that

w(λ2) ≥ Φ(λ2)

+ lim inf
λ→∞

1
Q(λ, λ2)

m2(λ)

∑
r=0

[
Q(λ, λ̄2 + r`)

2
√

A(λ̄2 + r`)
+
√

A(λ̄2 + r`)Q(λ, λ̄2 + r`)w(λ̄2 + r`+ `)

]2

(37)

which implies,
w(λ2) ≥ Φ(λ2) (38)

and then

lim inf
λ→∞

1
Q(λ, λ2)

m2(λ)

∑
r=0

[
Q(λ, λ̄2 + r`)

2
√

A(λ̄2 + r`)
+
√

A(λ̄2 + r`)Q(λ, λ̄2 + r`)w(λ̄2 + r`+ `)

]2

< ∞. (39)

Therefore,

lim infλ→∞

[
1

Q(λ,λ2)
∑

m2(λ)
r=0 Q(λ, λ2 + r`)A(λ2 + r`)w2(λ2 + r`+ `)

+∑
m2(λ)
r=0 q(λ, λ2 + r`)

√
Q(λ, λ2 + r`)w(λ2 + r`+ `) 1

Q(λ,λ2)

+ 1
4Q(λ,λ2)

∑
m2(λ)
r=0

q2(λ,λ2+r`)√
A2(λ2+r`)

]
< ∞.

(40)
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Then,

lim infλ→∞

[
∑

m2(λ)
r=0 Q(λ, λ̄2 + r`)A(λ̄2 + r`)w2(λ̄2 + r`+ `) 1

Q(λ,λ2)

+∑
m2(λ)
r=0 q(λ, λ̄2 + r`)

√
Q(λ, λ̄2 + r`)w(λ̄2 + r`+ `) 1

Q(λ,λ2)

]
< ∞.

(41)

The above inequality can be expressed as

lim inf
λ→∞

[U(λ) + V(λ)] < ∞ for λ ≥ λ2, (42)

where

U(λ) =
m2(λ)

∑
r=0

Q(λ, λ̄2 + r`)A(λ̄2 + r`)w2(λ̄2 + r`+ `)
1

Q(λ, λ2)

V(λ) =
m2(λ)

∑
r=0

q(λ, λ̄2 + r`)
√

Q(λ, λ̄2 + r`)w(λ̄2 + r`+ `)
1

Q(λ, λ2)
.

We shall prove that
m2(λ)

∑
r=0

w2(λ̄2 + r`+ `)A(λ̄2 + r`) < ∞. (43)

Suppose to the contrary that

m2(λ)

∑
r=0

A(λ̄2 + r`)w2(λ2 + r`+ `) = ∞, (44)

from Equation (32), we have

inf
s≥λ0

[
lim inf

λ→∞

Q(λ, s)
Q(λ, λ0)

]
> µ (45)

for µ > 0, then
Q(λ, s)

Q(λ, λ0)
> µ for λ ≥ λ2 ≥ λ1. Then, we can find a positive constant M3 > 0 with

the condition
m2(λ)

∑
r=0

w2(λ̄2 + r`+ `)A(λ̄2 + r`) ≥ M3

µ
. (46)

Thus for λ ≥ λ3 and using Equation (45), we obtain

U(λ) =
1

Q(λ, λ2)

m2(λ)

∑
r=0

∆`

(
m2(λ)

∑
r1=0

A(λ̄2 + r1`)w2(λ̄2 + r1`+ `)

)
Q(λ, λ̄2 + r`)

+ A(λ̄2 + r`)w2(λ̄2 + r`+ `)

= − 1
Q(λ, λ2)

m3(λ)

∑
r=0

(
m2(r)

∑
r1=0

A(λ̄2 + r1`)w2(λ̄2 + r1`+ `)

)
∆`(λ3)

Q(λ, λ̄3 + r`)

− A(λ2)w2(λ2 + `)

Q(λ, λ2)

m3(λ)

∑
r=0

Q(λ, λ̄3 + r`) + A(λ̄2 + r`)w2(λ̄2 + r`+ `)

≥ 1
Q(λ, λ2)

m3(λ)

∑
r=0

(
m2(r)

∑
r1=0

A(λ̄2 + r1`)w2(λ̄2 + r1`+ `)

)(
−∆`(λ3)

Q(λ, λ̄3 + r`)
)

≥ M3

µQ(λ, λ2)

m3(λ)

∑
r=0

(
−∆`(λ3)

Q(λ, λ̄3 + r`)
)
≥ M3Q(λ, λ3)

µQ(λ, λ2)
≥ M3.
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Since M3 is arbitrary,
lim

λ→∞
U(λ) = ∞. (47)

Next, consider a sequence {λn} with the condition

lim
n→∞

[U(λn) + V(λn)] = lim inf
λ→∞

[Q(λ) + V(λ)] . (48)

It follows from (42) that we can find a number M4 such that

U(λn) + V(λn) ≤ M4 ∀ n = 0, 1, 2, · · · . (49)

In view of (47), we conclude that
lim

n→∞
V(λn) = −∞. (50)

By (49), for n large enough, we have

1 +
V(λn)

U(λn)
≤ M2

U(λn)
<

1
2

. (51)

In view of (50), this implies that

lim
n→∞

V2(λn)

U(λn)
= ∞. (52)

On the other hand, by Schwarz’s inequality, we have

V2(λn) =

(
1

Q(λn, λ2)

m2(λn)

∑
r=0

q(λn, λ̄2 + r`)
√

Q(λn, λ̄2 + r`)w(λ̄2 + r`+ `)

)2

≤
(

1
Q(λn, λ2)

m2(λn)

∑
r=0

Q(λn, λ̄2 + r`)A(λ̄2 + r`)w2(λ̄2 + r`+ `)

)
(

1
Q(λn, λ2)

m2(λn)

∑
r=0

q2(λn, λ̄2 + r`)
A(λ̄2 + r`)

)
≤ U(λn)

(
1

Q(λn, λ2)

m2(λn)

∑
r=0

q2(λn, λ̄2 + r`)
A(λ̄2 + r`)

)
.

Consequently,

V2(λn)

U(λn)
≤ 1

Q(λn, λ2)

m2(λn)

∑
r=0

q2(λn, λ̄2 + r`)
A(λ̄2 + r`)

.

≤ 1
µQ(λn, λ0)

m2(λn)

∑
r=0

q2(λn, λ̄2 + r`)
A(λ̄2 + r`)

.

It follows from (52) that

lim
n→∞

1
Q(λn, λ0)

m2(λn)

∑
r=0

q2(λn, λ̄2 + r`)
A(λ̄2 + r`)

= ∞, (53)

which contradicts (33). Then, (43) holds. Hence, by (38)

m2(λ)

∑
r=0

A(λ̄2 + r`)Φ2
+(λ̄2 + r`+ `) ≤

m2(λ)

∑
r=0

A(λ̄2 + r`)w2(λ̄2 + r`+ `) < ∞, (54)

which contradicts (34) and completes the proof. If x(λ) satisfies property (ii) of Lemma 3,
by Condition (7) we have lim

λ→∞
y(λ) = 0.
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Theorem 4. Assume that all hypotheses of Theorem 3 are satisfied except condition (33). Also let

lim inf
λ→∞

1
Q(λ, λ0)

λ−s̄−`
`

∑
r=0

Q(λ, s̄ + r`)C(s̄ + r`) < ∞ (55)

and

lim inf
λ→∞

1
Q(λ, s)

λ−s̄−`
`

∑
r=0

[
Q(λ, s̄ + r`)C(s̄ + r`)− q2(λ, s̄ + r`)

4A(s̄ + r`)

]
≥ Φ(s), (56)

then, every solution of (1) is convergent to zero or oscillatory.

Proof. The proof is similar to that of Theorem 3 and hence the details are omitted.

Corollary 3. Let m ≥ 1 be a constant, ρ(λ) = 1. Suppose that

lim sup
λ→∞

1
λ(m)

λ−s̄−`
`

∑
r=0

(
m`(λ− s̄− r`)(m−1)

`

)2√
(λ− s̄− r`)(m)

` A(λ̄2 + r`)
< ∞. (57)

If there is a sequence {Φ(λ)} satisfying (34) and

lim sup
λ→∞

1

(λ− s)(m)
`

λ−s̄−`
`

∑
r=0

(λ− s̄− r`)(m)
` C(s̄ + r`)−

(
m`(λ− s̄− r`)(m−1)

`

)2

4A(s̄ + r`)
√
(λ− s̄− r`)(m)

`

 ≥ Φ(s), (58)

then, every solution of Equation (1) is oscillatory or converges to zero.

Corollary 4. Let m ≥ 1 be a constant, and

lim inf
λ→∞

1
λ(m)

m2(λ)

∑
r=0

m`(λ− λ̄2 − r`)(
m
2 −1)

` C(λ̄2 + r`) < ∞. (59)

If there is a sequence {Φ(λ)} satisfying (34) and

lim inf
λ→∞

1

(λ− s)(m)
`

λ−s̄−`
`

∑
r=0

(λ− s̄− r`)(m)
` C(s̄ + r`)−

(
m`(λ− s̄− r`)(m−1)

`

)2

4A(s̄ + r`)
√
(λ− s̄− r`)(m)

`

 ≥ Φ(s), (60)

then every solution of Equation (1) will either oscillate or converge to 0.

4. Examples

Example 1. Consider the third order neutral generalized difference equation with distributed delay

∆3
`

(
y(λ) +

2

∑
s=1

1
4s

y(λ + s`− `)

)
+

2

∑
s=1

9
(

λ +
2
s

)
x(λ + s`− `) = 0. (61)

Here, p1(λ) = p2(λ) = 1, g(λ, s) = 1
4s , h(λ, s) = 9

(
λ + 2

s
)
, τ = σ = 1 and ρ(λ) = 1. Then, P(λ) = λ−λ1

`

and H(λ) = 45L
8 (2λ + 3), which implies

lim sup
λ→∞

m1(λ)

∑
r=0

45L
8

(2(λ̄1 + r`) + 3) = ∞ for 0 ≤ L ≤ 1.
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It follows from Theorem 1 that every solution of Equation (61) is oscillatory. In fact, {y(λ)} = {(−1)[
λ
` ]} is

one such oscillatory solution of Equation (61).

Example 2. Consider the third order neutral generalized difference equation with distributed delay

∆2
`

(
λ∆`

(
y(λ) +

1
2

y(λ− 2`) +
1
4

y(λ− `)

))
+ y(λ)10(λ + `) = 0. (62)

Here, p1(λ) = λ, p2(λ) = 1, g(λ, s) = 1
2s , h(λ, s) = 10s(λ + `), τ = 3, σ = 1, a = c = d = 1 and

b = 2. Choose ρ(λ) = 1 and Q(λ, s) = (λ − s)(2)` . By Theorem 2, P(λ) = λ−λ1
` , q(λ, s) = 2`

√
λ−s√

λ−s+`
,

H(λ) = 5
2 (λ + `), A(λ) = λ−λ1

λ` , B(λ) = 0, and C(λ) = 5(λ+`)
2 and

lim sup
λ→∞

λ−s−`
`

∑
r=0

[
Q(λ, s + r`)C(s + r`)− h2(λ, s + r`)

4A(s + r`)

]
1

Q(λ, s)
= ∞,

Hence, by Theorem 2, every solution of Equation (62) is oscillatory. In fact, {y(λ)} = {(−1)[
λ
` ]} is one such

oscillatory solution of Equation (62).

5. Conclusions

In this paper, we present new oscillation criteria for the generalized difference equation with
distributed delay, which is new in the literature. Similar results are available in the literature for
difference equations with delay involving the conventional difference operator ∆. The results we
obtained in this paper for difference equations involving the generalized difference operator ∆` with
distributed delay are rare and new in the literature. Also, the techniques we adopted are different
from the techniques adopted by other researchers. Our results generalize the results on the oscillatory
behavior of the continuous third order dynamical systems discussed in [5]. In addition, our results
generalize the results presented in [18]. Other researchers considered only the oscillation criteria, but
we obtained conditions for the solutions to be convergent apart form obtaining oscillation results.
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