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Abstract: In this paper, we incorporate the notion of convex function and establish new integral
inequalities of type Hermite-Hadamard via Riemann—Liouville fractional integrals. It is worth
mentioning that the obtained inequalities generalize Hermite-Hadamard type inequalities presented
by Ozdemir, M.E. et. al. (2013) and Sarikaya, M.Z. et. al. (2011).
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1. Introduction and Preliminaries

One of the generalizations of classical differentiation and integration is fractional calculus.
The contribution of fractional calculus presents in diverse fields, such as pure mathematics, economics,
and physical and engineering sciences. The role of inequalities found to be very significant in all fields
of mathematics and an attractive and active field of research. Recently, convexity has become the major
part in different fields of science. A function g : I C R — R is named as convex, if the inequality

glwx+(1-w)y) <wg(x)+(1-w)g(y)

holds for all x,y € I and w € [0,1]. In fact, large number of articles has been written on inequalities
using classical convexity, but one of the most important and well known is Hermite— Hadamard’s
inequality. In [1], this double inequality is stated as: Let g : I C R — R be a convex function on the
interval I of real numbers and x,y € I with x < y. Then,

g<x;y> < yix/j g(t)dt < g(x);g(y)'

Both inequalities hold in the reversed direction for g to be concave. In the field of mathematical
inequalities, Hermite-Hadamard’s inequality has been given more attention by many mathematician
due to its applicability and usefulness. Many researchers have extended the Hermite-Hadamard’s
inequality, to different forms using the classical convex function. For further details involving
Hermite-Hadamard’s type inequality on different concept of convex function and generalizations,
the interested reader is referred to [2-12] and references therein.

First, we recall some important definitions and results that will be used in the sequel.
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Definition 1. For g € L'[x,y]. The left-sided and right-sided Riemann-Liouville fractional integrals

of order « > 0 with a > 0 are defined as ], g(x) = ﬁfax(x — )% lo(t)dt, fora < «x,

and J;_g(x) = ﬁ fxb(t —x)%1g(t)dt, for x < b, respectively, where T(.) is Gamma function and
is defined as T(a) = [~ e~ "u®~'du. It is to be noted that J°, g(x) = J}_g(x) = g(x).

In the case of & = 1, the fractional integral reduces to the classical integral.

Properties relating to these operators can be found in [7]. For useful details on Hermite-Hadamard
type inequalities connected with fractional integral inequalities, the readers are directed to [8-14].

In [15], Ozdemir et. al proved some inequalities related to Hermite-Hadamard’s inequalities
for functions whose second derivatives in absolute value at certain powers are s-convex functions
as follows:

Theorem 1. Let f : [ C [0,00) — R be a twice differentiable mapping on I° (where I° is the interior of I) such
that " € L{a,b], where a,b € I witha < b.If |f"| is s-convex on [a,b], for some fixed s € (0,1], then the
following inequality holds:

‘f(aer) bia/ﬂbf(x)dx (b—a)?

S B0 12 (43~
{|f”<a>| F(5+1)(s+2) If”(

1+ (s+2)217] (b—a) " ,
8(S+1)(S+2) S—|—3 {|f |+|f()|}

a+b

I+17 o)l

Corollary 1. Under the assumptions of Theorem 1, if s =1, then we get

1 (S50) - s [ o] < SR L0, "

Theorem 2. Let f : I C [0,00) — R be a twice differentiable mapping on I° (where 1° is the interior of I) such
that f"" € La,b], where a,b € [ witha < b. If |f"| is s-concave on [a, b], for some fixed s € (0,1] and for

q > 1 with % + % , then the following inequality holds:
1 b a+b (b—a)? 21 , (3a+Db n (a+3b
— < Y .
s (57| < B [ G50l (59)]) o
<1,forp>1,

Corollary 2. Under the assumptions of Theorem 2, if we choose s = 1 and < W

‘bia/abf(x)dx—f(a;b)‘g (b;6a)2{ ,,<3azb>‘+ ,,(az%)” @

In [6], Sarikaya et al. proved some inequalities related to Hermite-Hadamard’s inequalities for
functions whose derivatives in absolute value at certain powers are convex as follows:

we have
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Theorem 3. Let I C R be an open interval, a,b € [ witha < band f : [a,b] — R be a twice differentiable
function such that " is integrable and 0 < A < 1on (a,b) witha < b. If | f"|1 is convex on [a,b], forqg > 1,
then the following inequality holds:

‘()\—l)f(aer) Af() %/f )dx
2 (£+ 2‘?)1 . 1/
([ +ng@ Jirr@ir+ [0 18 1w
_ ({ (1+2)( 22;2627} ()| + [%4+ ?,;82?] f”(b)|q)1/q}’ for0<A<1/2;

b—a)? _\1-1/q B 1/q
b (o) { (B2 1@+ R o)

1/q
(R @+ 321w, prizsas

Corollary 3. Under the assumptions of Theorem 3, if A = 0, then we get the following inequality,

‘bia /abf(x)dx _f <a42rb>' < ;8a)2 (5|f”(a)|‘1_g3|f//(b)q>l/q

(b—a)® (3]f"(@)]7 + 5" (a)| 7\ "/
e @

The aim of this article is to establish Hermite-Hadamard type inequalities for Riemann-Liouville
fractional integral using the convexity as well as concavity, for functions whose absolute values
of second derivative are convex. We derive a general integral inequality for Riemann-Liouville
fractional integral.

2. Main Results

To prove our main results, we need to prove the following lemma, which plays the key role in the
next developments:

Lemma 1. Let f : [a,b] — R be a twice differentiable function on (a,b) witha < b. If f" € L|[a,b] and
n € N, then the following equality for fractional integrals holds with 0 < a < 1:

ﬁ « « _ n 1
(n+ 17 (b —a) Tttty PO sy PO~ (g0 ig?)

B (b—a)2 1 atl ,,n+w 1—w " w n+w
S (n+1)" (a+1) [/0 -y (f(”+1 +"+1 +f(”+1 +"+1b))dw

n-+w 1
nrl Tt +1b)d“’}

/0~1((1—|—a])0é+1_2a (1_‘_‘0)_‘_“2& (1_‘*’))f”(1T0; +7’l—:_(;i

b) + f(

Proof. To compute each integral, we use integration by parts successively and get
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1 _
= [ 0@ e e
0
(1) (- ) (et i !
a—>
0
n+1)(a+1) st n+w 1-w
+( a)—(b )/0 (1_w)“f,(n+la+n—|—lb
_ A 1N ) (4D (20 @) 2+ =gb)dw|!
b—a n+1 n+1 a—>b a—>b 0
n+1a (1 n+w 1-w
+(a—b) /0(1—w)"‘f(n+1a+n+1b)dw]
_(n+1) ,( n 1 (n+1)(a+1) [ =2 1
o b—af n+1a+n+lb * a—>b a—bf n+1a+n+1b
_(n+1)zx/1 L wlgntw 1-w
b—a 0(1 @) f(n+1a+n+1b)dw
_(n+1),( n 1 _(n—i—l)z(oc—i-l) n
TR A S Ca (b—a) st ast?
(n+1)""2
+mr( +2)]jila+n}#1b_ (a)
1 l-w n+4w
— at+l _ Ha a1 _ 1"
Pz_/o (14 @)™ =2 (14 @) +a2* (1= @) f (G50 + =T b)dw
2[4+ @) =28 (14w) + 027 (1 - w) | f(A59a + 4 b)dw)
N b—a
2(a+1) 1 PR i l—w  ontw
__n+1 Q. / 1 n
= b_a[1—|—2 (a—1)] f (n+1a+n+1b)
(n+l)(¢x+1)/1 e I )
t o A [(a4+1)(1+w)" =2 ocz]f(in_l_la—i-n_l_lb)dw)
__n+1 (. / 1 n
= b_a[1+2 (a —1)] f (n+1a+n—|—1b)
L) 1) [0 1) [ 1) (14 0)" ~ 24— a2 £ (i + b)) |
b—a b—a 0
_oc(n+1)(oc+1)/1 el (l-w  n4w
e 1+w)" f 7n+1a+n—|—1b dw
_ n+l wl y 1 n (n+1)%(x+1) B
= b_a[1+2 (a—1)] f (n+1a+n+lb)+ b0 1)
1 n (n+1)~*2
<t (n+1”+ n+1b) o ay T e SO
2 a2
Analogousbl: Py = _Zi;f/ (ni-&-la—i_n-li-lb) _%J((ﬂil n+1b)+ EZ:BHQF(!X-F
2)J« _f(a).
(rotatb)

2
P4:—%[2“(1—a)—1}f’(ig+ n b)_%
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a+2
x (28 =1) f (e + 7igb) + ((Zfi))mf(vc FJE L L fO)
n+1 n+1
Adding above equalities, we get
n+1 n 1 ['(a+2)
a+ b) - “ _ + X
i (e 12— oty 7O H ey /)

= P +Py+ P;+ Py
This completes the proof. [

Theorem 4. Let f : [a,b] — R be a twice differentiable function on (a,b) with a < band n € N*.
If f € Lla,b] and |f"| is convex on [a,b], then the following inequality for Riemann—Liouville fractional
integrals holds:

06 ooy Oy FO) 7 <+1+—1Hb>’

20‘_1 (2+( _1) ) 1 1!

< (b—a)2

Proof. Using Lemma 1 and properties of modulus, we have

M « « n 4 L

CER () {mﬂmm USRS )] f(n+1 +n+1b)\
(b—a)’

= (n+1)*" (a+1) ZI Bil

Now, using convexity of | f”|, we have

75 Ve 7O iy /0] =7 (30590
= (n+ Y))“_“QEZJF 1) /01 =)t f"(iicf * %b)d‘“
i +§§’a+f zz oy '/01 (1—w)*! f”<fq;‘;’a+%b>dw
B iiais”il 0 /01“1 £ T2t (14 @) +a2t (1 ) f (a4 = b
+ WJFS;S?ZH) /01((1+w)a+1_2a (1+w) +a2" (1—@))f”(%a+%b)dw
s e e L e

o 0 G e A

(n+§l)7“_+:zi+1) /01((1+w)“+1—2”‘(1+w)+a2“( - ))\fﬂ(”“" +%b)\dw
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+(n+S’” Z+1 ol 1+wHl_Za(1+w)+“2a(1_w))|f”(%a+:l:tw )deo
<t Lo [ e (559 o] o

2 " ,
Jr(nJrl s zzx+1 /01 a+1[<”+1)|fﬂ I (”il)v (b)|]dw

—a?

W) =2 (1 4+ w) +a2¢ (1 - w))

(n+1 "‘+3(¢x—|—1 0

(5 o <2+1> o]

(1+w)* ™ —2% (1 + w) + a2 (1 — w))

(n+1 ”‘*3 (a+1) /

| (G2 @+ (555 o) de.

This completes the proof. [

Remark 1. If we take « = n =1 in Theorem 4, then the inequality (5) reduces to the inequality (1).
The inequality (1) was obtained by Ozdemir [15].

The corresponding version for powers of the absolute value of the derivative is incorporated in
the following theorem.

Theorem 5. Let f : [a,b] — R be a twice differentiable function on (a,b) with a < bandn € N.If f"" €
L[a,b] and |f"|1 is convex on [a, b], then the following inequality for Riemann—Liouville fractional integrals
holds with0 < o < 1:

ﬁ 3 o - n 1
(Vl—|—1)2 (b_ﬂ)lx |:](ni+1a+n-l+lb) f( )+](n+lu+nilb)+f(b):| f<n+1a 7’l+1b>

(b—a) Ly [ (W@ Wl @)Y (Wl @)]7+ U ()]0
S ) ) (US)llq{(l o) (BEEETEE) e e

(U6)11/q{ (U3‘f”(a)(|q + U4|f”(b)ti>1/’1+ <U4\f”(a)|q+ U3|f”(b)’7>1/q }:| .

n+1) (n+1)
where
U noe+3n+1 1
! (@+2)(@+3) > a+3
U — 6+2% (a3 +50—6) +3n(a+3)(—24+2* 2+ (x — 1) a))
3T 6 (x+2) (a+3)
U — —3(a+4)+2%(124+ (a —1)a (v +4)) Us — 1
£ 3(x+2) (a+3) e I
a2
and Ug = 2 L gutt g goe1 4 gut _gpon1,

x4+ 2
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Proof. Using Lemma 1, well-known power-mean integral inequality and the fact that | f”|7 is convex,,
we have

N @ nbyf(b)}—f(nil“nlﬂb)’

(n+1)2(b—a)* | (Grotam (ot

< (b—a)z (/1 (1_w)a+1dw>1_1/q
T+ 1) (e +1) o
1 q 1/q
el | g Rt W l-w
X(/o (1-w) f(n—|—1a+7n+1 dw)

b_ )2 1 1-1/q
(n—f—i)”‘% 2a+1) (/0 (1—w)**? dw)
1/q

s 1l—w  ntw, |
Feat e e

» (/01 (1 - w)**!
) (/01((1+w)“+1 —2%(1+ w) + a2" (1—w))dw>

b)

b)

(b—a)? 1-1/q

(n+1)*P (a+1

1 o q 1/q
x (/O (1+w)*! = 2% (14 w) + 2% (1 - w)) f”(r;icfa+%b) dw)
(b—a)? ( 1 ot o o >1l/q
Ho ey U (@@ -2 @) a2 (- @)
1 _ q 1/q
y (/O (1+@)™ =2 (14 @) +a2* (1= @) | Ya+ LT %) dw>
b— 2 1 . 1-1/q 1 . o+ 1_— q 1/q
— —(n+§)“+3az“+l) (/0 (1-w) +1dw) (/0 (1-w) +1 f (Z+c;a+ﬁb) dw)
b— 2 1 . 1-1/q 1 . g1 + q 1/q
+—(n+§)“+3uzzx+l) (/0 (1-w) +1dw) (/0 (1—w)* ™ f (ﬁa—l—,:l_’_(;b) dw)

. (b—a)? 1-1/q
(n+1)"" (a +1)
x (/01((1 + @) 2% (14 w) + a2 (1 —w)) | f(

(b—a)
(n+1)" (a+1)

<[+ -2 0w a2 - @) |

(/Ol(u + W) 2% (14 w) + a2 (1 —w))dw)

1/q
n+w 1—w, |7
n+1a+ n+1b) dw)
1-1/q

(/Ol((l ) 2% (14 w) +a2% (1 —w))dw)

l-w n+w, |1 4
—_— b)| d
n+1a n+1 ) w)
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1/q

IN

+

(b—a)

1) (

(b — a)z 1 =1/ 1 a+1 11 q 1 q 4
ey (a+2) (/O (1 - (=) @[ + (1 +w) | (b)|)dw>

1) (i) ([ a-er (@rolr@r 0 -0l o )

+

(b—a)? <zw+2 —1
(n+1)7 (1) \ *F2

1 1/q
x (/0 (140 2% (14 w) +a2* (1-w)) (1 + @) | @]+ (1= @) [f"®)]") dw)

(b—a)? (2“2 -1
41T (as1) \ 2+2

([0 -2 k0 a2 (- @) (40 [ @+ (1= @) [ O do)

1-1/q
_ 20(+1 + 0‘211—1 +20¢—1 _ 30(204—1)

+

1-1/q
_ 21x+1 + lxzt)(fl +2a¢71 _ 3“20471)

1/q

Simple computations give

1 3n+1
1 - 0(-‘1-1 = —na + =
/0 1-w)"" (n+w)dw @52 @t3) Uy,
1 1
/0 (1—w) (1-w)dw e U,

/0.1((1%%0)‘)“rl 214+ w)+a2*(1—w)) (n+ w)dw

642 (a®+50—6) +3n(a+3) (—24+2 (24 (a —1)a)) 1y
B 6(ax+2)(x+3) Ty

/Ol((l+w)““ (14 w)+ a2t (1 w)) (1 - w)dw

_ Bt 2 (124 (@ -Da(atd)
- 3(a+2)(a+3) -

1
/(1_w)“+1dw = = Us,
0

/01((1 + )" =2 (14 w) +a2* (1 — w))dw

20¢+2 -1
= o et et osatl = U

This completes the proof. [

Remark 2. If we take « = n = 1 in Theorem 5, then the inequality (6) reduces to the inequality (4).
The inequality in (1) was obtained by Sarikaya [6].

In the following theorem, we obtain estimate of Hermite-Hadamard inequality for
concave function.
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Theorem 6. Let f : [a,b] — R be a twice differentiable function on (a,b) witha < bandn € N.If f" €
L [a,b] and |f"|7 is concave on [a, b, then the following inequality for Riemann—Liouville fractional integrals
holds with0 < & < 1:

I'(a+2) N N
(n+1)* (b a)"‘ {I(Hanl b)’f( HI(M nilb)*f(b)} f( +1” n+1b>‘

e R O (G )| R GO [
() |- ()]

Proof. Using the concavity of |f”|7 and the power-mean inequality, we obtain

<

+Usg

f"(Aa+ (1 =M)p)" > Alf () [T+ (1= M) (B)]
> (Alf" @]+ @ =) ®))7.

Hence,
[f"(Aa+ (1= A)b)| = Alf"(a)| + (1 = A)|f"(D)],

thus |f”| is also concave. Using Jensen integral inequality, we have

r(“+2) « « " L
—a)(x |:] " 1 h),f(a)+](%ﬂﬂ+ﬁb)+f(b):| _f(n+1a+mb)

(n+1)*(b— (et
q
(b—a) N I [ LI
: (n+1)"" (a+1) </0 (= dw) ! ( Jo (1= @) dew
q
(b—a)? Lo e fo (1-w Hl(n+1“+71i(fb)‘ dw
T ) @) </o (= dw) ( 0w dw

2
+ % (/01((1 + @) = 2% (14 w) +a2% (1 - w))dw)

« |5 (fol((l +w)“+1 —2°(1+w)+a2*(1-w))(%a+ }H‘i’b)dw)
fol((l + @)t =201 w4 a2% (1 — w))dw

2
T U (T -2 )+t 1w

x f”(fol((lw)m_za (14 @) +02* (1 - w))(55¢a+ G b)dw )
fol((l—i—w)tu-l_za (1—w)+zx2”‘(1— ))d(u

(b— ‘1)2 y (Up (@) + Uz (b) 1 (b— ‘1)2 y Uy (b) + Uz (a) 1
= (n+1)"3 (a+1) (Us) |f < Us (n+1) ) * (n+1)"3 (a+1) (Us) |f < Us (n+1) )

(b—a) o ((Us (a) + Uy (b) | (b—a) y (((Us (b) + Uy (a)\ |
- (n+1)"3 (a+1) (Us) | ( Us (n+1) > (n+1)"3 (a+1) (Us) |f < Us (n+1) )

F(oc+2) « «
T 1)) ety TO TS0 1 (e

f~<{wm (B
(bl

i)
:fi Sl

(b —a)®
= <n+1>“+3<a+1>x[ A

e (U552
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The proof is completed. [

Corollary 4. On letting &« = n = 1 in Theorem 6, the inequality in Equation (8) becomes:

‘bla/abf(x)dx_f(a;b)‘ < (b;8a)2 J <5a—g3b)‘+ I (3,1;;5b>‘ ®

Remark 3. The inequality in (8) is an improvement of the obtained inequality in Corollary 4 of [15]. This gives
us a comparatively better estimate.

3. Conclusions

We have derived some inequalities of Hermite-Hadamard type by establishing more general
inequalities for functions that possesses second derivative on interior of an interval of real numbers,
by using the Holder inequality and the assumptions that the mappings |(f")|?, for ¢ > 1 are convex,
as well as concave. The results presented here, certainly, provided refinements of those results proved
in [6,15], since, by putting « = n = 1 in our obtained inequalities, we achieve the already-presented
inequalities in [6,15].
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