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Abstract: In this research paper, a hybrid method called Laplace Adomian Decomposition Method
(LADM) is used for the analytical solution of the system of time fractional Navier-Stokes equation.
The solution of this system can be obtained with the help of Maple software, which provide LADM
algorithm for the given problem. Moreover, the results of the proposed method are compared with
the exact solution of the problems, which has confirmed, that as the terms of the series increases the
approximate solutions are convergent to the exact solution of each problem. The accuracy of the
method is examined with help of some examples. The LADM, results have shown that, the proposed
method has higher rate of convergence as compare to ADM and HPM.
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1. Introduction

In engineering and natural sciences many problems are modeled by linear and non linear parabolic
and hyperbolic partial differential equations. For these classical partial differential equations LADM
can be used effectively with initial as well as boundary conditions. The present method was initially
used by Suheil-A-khuri for the solution of ordinary differential equations [1]. It is slightly difficult
to find the exact solutions of non linear differential equations, due to which the combination of two
powerful methods, laplace transform and Adomian Decomposition Method called LADM has been
used to find the exact solutions of non linear differential equations. The analytical solution of the well
known non linear fractional diffusion and wave equations by using LADM are presented in [2,3].

Adomian Decomposition Method (ADM) was first introduced by Gorge Adomian in 1980. It was
used very effectively on a wide range of physical models of partial differential equations, such as
Burger’s equation is a non linear PDE of second order, which have many applications in sciences and
technology. The numerical solutions of three dimensional Burger’s equation and Riccati differential
equations by using LADM have been discussed in [4,5]. LADM is also used for the numerical solution
of a special mathematical model for vector born diseases [6]. Delay differential equation have a vital
role in the field of biology and economics has been solved by LADM [7,8]. Nonlinear Volterra integral
and integro-differential equation solving for Modification LADM [9].

Fractional calculus is a branch of mathematical analysis which can be used in modeling to define
derivatives and integrations of fractional order. The fractional calculus is considered an old topic,
which is started from some observations of G.W. Leibniz (1695, 1697), and L. Euler (1730). After this,
fractional calculus has gained much interest of the researchers towards this subject. This including
the contributions of well known mathematicians such as P.S. Laplace (1812), J.B.J. Fourier (1822),
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N.H. Abel (1823–1826), J. Liouville (1832–1873). Although it is considered an old topic, but for the
last few decade, fractional calculus is launched as an important topic by the scientists and researchers
[10,11].

The Navier-Stokes equation is known as Newton second Law for fluid substance, has been derived
in 1822 by Claude Louis Navier and Gabriel Stokes. Navier-Stokes equation is an important model to
describe many physical phenomena in applied sciences. This model have the capacity of modelling
weather, ocean current, water flow in pipes and air flow around a wing. A very special case was
considered, which has established the relationship between pressure and external forces acting on
the fluid to the responses of fluid flow [12]. The Navier-Stock equation is also used to derive the
connection between viscous fluid with rigid bodies and considered a best tool in the field of thermo-
hydraulics, meteorology, petroleum industry, plasma physics and technology [13].

Several mathematicians have applied different techniques for the solution of Navier-Stock
equation. Among these methods, Kumar et al. have implemented modified Laplace decomposition
method for the analytical solution of fractional Navier-Stokes equation [14] coupled method is the
combination of He-Laplace transform (HLT) and Fractional Complex Transform (FCT) is used to solve
Navier-Stock equation [15]. Fractional Reduced Differential Transformation Method (FRDM) is also
implemented for the numerical solution of time fractional Navier-Stock equation [16], see also [17].

2. Definitions and Preliminaries Concepts

In this unit, among few definitions of fractional calculus, presented in the article due to Riemann
Liouville, Grunwald Letnikov, Caputo, etc., first folks simple descriptions and introductions are
reconsidered, which we want to comprehend our education.

Definition 1. The fractional integral of Riemann Liouville f ∈ Cn of the direction β ≥ 0 is defined by

Iβ
x g(x) =

g(x) if β = 0
1

Γ(β)

∫ x
0 (x− υ)β−1g(υ)dυ if β > 0,

where Γ denote the gamma function define by,

Γ(ω) =
∫ ∞

0
e−xxτ−1dx ω ∈ C,

In this study, Caputo et al. [18] suggested a revise fractional derivative operator in order to overcome
inconsistency measured in Riemann Liouville derivative [19,20]. The above mathematical statement described
Caputo fractional derivative operator of initial and boundary condition for fractional as well as integer
order derivative.

Definition 2. The Caputo definition of fractional derivative of order β is given by the following
mathematical expression

Dβ
x g(x) =

1
Γ(n− β)

∫ x

0
(x− t)n−β−1g(n)(t)dt.

for n− 1 < β ≤ n, n ∈ N, x > 0, g ∈ Ct,t ≥ −1.
Hence, we require the subsequent properties given in next Lemma.
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Lemma 1. If n− 1 < β ≤ n with n ∈ N and g ∈ Cx with x ≥ −1, then

Dβ
x Iβ

x g(x) = g(x),

Iβxλ =
Γ(λ + 1)

Γ(β + λ + 1)
xβ+λ, β > 0, λ > −1, x > 0,

Dβ
x Iβ

x g(x) = g(x)−
n

∑
k=0

g(k)(0+)
xk

k!
, for x > 0.

In this study, Caputo fractional derivative operator is reasonable because other fractional
derivative operators have certain disadvantages. Further information about fractional derivatives,
are found in [20].

Definition 3. The Laplace transform of g(x), x > 0 is defined by

G(s) = L[g(x)] =
∫ ∞

0
e−sxg(x)dx,

where s can be either real or complex.

Definition 4. The Laplace transform in term of convolution is given by

L[g1 × g2] = L[g1(x)]×L[g2(x)],

where g1 × g2, define the convolution between g1 and g2 ,

(g1 × g2)x =
∫ x

0
g1(t)g2(x− t)dx.

The Laplace transform of fractional derivative is given by

L
[

Dβ
x g(x)

]
= sβG(s)−

n−1

∑
k=0

sβ−1−kg(k)(0), n− 1 < β < n,

where G(s) is the Laplace transform of g(x).

Definition 5. The Mittag-Leffler function Eβ(p) for β > 0 is defined by the following subsequent series

Eβ(p) =
∞

∑
n=0

pn

Γ(βn + 1)
, β > 0, p ∈ C.
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3. Laplace Adomian Decomposition Method

In this unit, we present, Laplace Adomian decomposition method for solving, multi dimensional
Naiver-Stokes equation written in an operator form

Dβ
t ( f1) + f1

∂ f1

∂x1
+ f2

∂ f1

∂x2
+ f3

∂ f1

∂x3
= ρ

[
∂2 f1

∂x2
1
+

∂2 f1

∂x2
2
+

∂2 f1

∂x2
3

]

− 1
ρ

∂p
∂x1

,

Dβ
t ( f2) + f1

∂ f2

∂x1
+ f2

∂ f2

∂x2
+ f3

∂ f2

∂x3
= ρ

[
∂2 f2

∂x2
1
+

∂2 f2

∂x2
2
+

∂2 f2

∂x2
3

]

− 1
ρ

∂p
∂x2

,

Dβ
t ( f3) + f1

∂ f3

∂x1
+ f2

∂ f3

∂x2
+ f3

∂ f3

∂x3
= ρ

[
∂2 f3

∂x2
1
+

∂2 f3

∂x2
2
+

∂2 f3

∂x2
3

]

− 1
ρ

∂p
∂x3

,

(1)

with initial conditions 
f1(x1, x2, x3, 0) = f (x1, x2, x3),

f2(x1, x2, x3, 0) = h(x1, x2, x3),

f3(x1, x2, x3, 0) = g(x1, x2, x3).

(2)

Applying the Laplace transform to (1), we have

L
[

Dβ
t ( f1)

]
+ L

[
f1

∂ f1

∂x1
+ f2

∂ f1

∂x2
+ f3

∂ f1

∂x3

]
= Lρ

[
∂2 f1

∂x2
1
+

∂2 f1

∂x2
2
+

∂2 f1

∂x2
3

]

−L
[

1
ρ

∂p
∂x1

]
,

L
[

Dβ
t ( f2)

]
+ L

[
f1

∂ f2

∂x1
+ f2

∂ f2

∂x2
+ f3

∂ f2

∂x3

]
= Lρ

[
∂2 f2

∂x2
1
+

∂2 f2

∂x2
2
+

∂2 f2

∂x2
3

]

−L
[

1
ρ

∂p
∂x2

]
,

L
[

Dβ
t ( f3)

]
+ L

[
f1

∂ f3

∂x1
+ f2

∂ f3

∂x2
+ f3

∂ f3

∂x3

]
= Lρ

[
∂2 f3

∂x2
1
+

∂2 f3

∂x2
2
+

∂2 f3

∂x2
3

]

−L
[

1
ρ

∂p
∂x3

]
,

(3)
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and using the differentiation property of Laplace transform, we get

L( f1) =
f (x1, x2, x3)

s
− 1

sβ
L
[

f1
∂ f1

∂x1
+ f2

∂ f1

∂x2
+ f3

∂ f1

∂x3

]
+

ρ

sβ
L
[

∂2 f1

∂x2
1
+

∂2 f1

∂x2
2
+

∂2 f1

∂x2
3

]
− 1

sβ
L
[

1
ρ

∂p
∂x1

]
,

L( f2) =
h(x1, x2, x3)

s
− 1

sβ
L
[

f1
∂ f2

∂x1
+ f2

∂ f2

∂x2
+ f3

∂ f2

∂x3

]
+

ρ

sβ
L
[

∂2 f2

∂x2
1
+

∂2 f2

∂x2
2
+

∂2 f2

∂x2
3

]
− 1

sβ
L
[

1
ρ

∂p
∂x2

]
,

L( f3) =
g(x1, x2, x3)

s
− 1

sβ
L
[

f1
∂ f3

∂x1
+ f2

∂ f3

∂x2
+ f3

∂ f3

∂x3

]
+

ρ

sβ
L
[

∂2 f3

∂x2
1
+

∂2 f3

∂x2
2
+

∂2 f3

∂x2
3

]
− 1

sβ
L
[

1
ρ

∂p
∂x3

]
,

(4)

Adomian solutions are 
f1(x1, x2, x3, t) = ∑∞

j=0 uj,

f2(x1, x2, x3, t) = ∑∞
j=0 vj,

f3(x1, x2, x3, t) = ∑∞
j=0 wj,

(5)

and the nonlinear terms are define by the infinite series of Adomian polynomials,
N1( f1) = ∑∞

j=0 Aj,

N2( f2) = ∑∞
j=0 Bj,

N3( f3) = ∑∞
j=0 Cj.

(6)

Aj =
1
j!

[
dj

dλj

[
N1

∞

∑
i=0

(λjuj)

]]
λ=0

,

Bj =
1
j!

[
dj

dλj

[
N2

∞

∑
i=0

(λjvj)

]]
λ=0

,

Cj =
1
j!

[
dj

dλj

[
N3

∞

∑
i=0

(λjwj)

]]
λ=0

.

(7)
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using LADM solutions in equation (4), we get

L
(

∞

∑
j=0

uj+1

)
=

f (x1, x2, x3)

s
− 1

sβ
L
(

1
ρ

∂p
∂x1

)

− 1
sβ
L

( ∞

∑
j=0

f1 j

)
∂(∑∞

j=0 f1 j)

∂x1
+

(
∞

∑
j=0

f2 j

)
∂(∑∞

j=0 f1 j)

∂x2
+

(
∞

∑
j=0

f3 j

)
∂
(

∑∞
j=0 f1 j

)
∂x3


+

ρ

sβ
L
[

∂2(∑∞
j=0 f1 j)

∂x2
1

+
∂2(∑∞

j=0 f1 j)

∂x2
2

+
∂2(∑∞

j=0 f1 j)

∂x2
3

]
,

L
(

∞

∑
j=0

vj+1

)
=

h(x1, x2, x3)

s
− 1

sβ
L
(

1
ρ

∂p
∂x1

)

− 1
sβ
L

( ∞

∑
j=0

f1 j

)
∂(∑∞

j=0 f2 j)

∂x1
+

(
∞

∑
j=0

f2 j

)
∂(∑∞

j=0 f2 j)

∂x2
+

(
∞

∑
j=0

f3 j

)
∂
(

∑∞
j=0 f2 j

)
∂x3


+

ρ

sβ
L
[

∂2(∑∞
j=0 f2 j)

∂x2
1

+
∂2(∑∞

j=0 f2 j)

∂x2
2

+
∂2(∑∞

j=0 f2 j)

∂x2
3

]
,

L
(

∞

∑
j=0

wj+1

)
=

g(x1, x2, x3)

s
− 1

sβ
L
(

1
ρ

∂p
∂x1

)

− 1
sβ
L

( ∞

∑
j=0

f1 j

)
∂(∑∞

j=0 f3 j)

∂x1
+

(
∞

∑
j=0

f2 j

)
∂(∑∞

j=0 f3 j)

∂x2
+

(
∞

∑
j=0

f3 j

)
∂
(

∑∞
j=0 f3 j

)
∂x3


+

ρ

sβ
L
[

∂2(∑∞
j=0 f3 j)

∂x2
1

+
∂2(∑∞

j=0 f3 j)

∂x2
2

+
∂2(∑∞

j=0 f3 j)

∂x2
3

]
.

(8)

Applying the linearity of the Laplace transform,
L(uo) =

f (x1,x2,x3)
s + 1

sβL
(

1
ρ

∂p
∂x1

)
,

L(vo) =
h(x1,x2,x3)

s + 1
sβL

(
1
ρ

∂p
∂x2

)
,

L(wo) =
g(x1,x2,x3)

s + 1
sβL

(
1
ρ

∂p
∂x3

)
.

(9)
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L
(

∞

∑
j=0

uj+1

)
= − 1

sβ
L[
(

∞

∑
j=0

f1 j

)
∂(∑∞

j=0 f1 j)

∂x1
+

(
∞

∑
j=0

f2 j

)
∂(∑∞

j=0 f1 j)

∂x2

+

(
∞

∑
j=0

f3 j

)
∂
(

∑∞
j=0 f1 j

)
∂x3

] +
ρ

sβ
L
[

∂2(∑∞
j=0 f1 j)

∂x2
1

+
∂2(∑∞

j=0 f1 j)

∂x2
2

+
∂2(∑∞

j=0 f1 j)

∂x2
3

]
,

L
(

∞

∑
j=0

vj+1

)
= − 1

sβ
L[
(

∞

∑
j=0

f1 j

)
∂(∑∞

j=0 f2 j)

∂x1
+

(
∞

∑
j=0

f2 j

)
∂(∑∞

j=0 f2 j)

∂x2

+

(
∞

∑
j=0

f3 j

)
∂
(

∑∞
j=0 f2 j

)
∂x3

] +
ρ

sβ
L
[

∂2(∑∞
j=0 f2 j)

∂x2
1

+
∂2(∑∞

j=0 f2 j)

∂x2
2

+
∂2(∑∞

j=0 f2 j)

∂x2
3

]
,

L
(

∞

∑
j=0

wj+1

)
= − 1

sβ
L[
(

∞

∑
j=0

f1 j

)
∂(∑∞

j=0 f3 j)

∂x1
+

(
∞

∑
j=0

f2 j

)
∂(∑∞

j=0 f3 j)

∂x2

+

(
∞

∑
j=0

f3 j

)
∂
(

∑∞
j=0 f3 j

)
∂x3

] +
ρ

sβ
L
[

∂2(∑∞
j=0 f3 j)

∂x2
1

+
∂2(∑∞

j=0 f3 j)

∂x2
2

+
∂2(∑∞

j=0 f3 j)

∂x2
3

]
.

(10)

For j = 0, and j = 1, 2.......∞.

L(u1) = −
1
sβ
L
[

u0
∂(u0)

∂x1
+ v0

∂(v0)

∂x2
+ w0

∂(u0)

∂x3

]
+

ρ

sβ
L
[

∂2(u0)

∂x2
1

+
∂2(u0)

∂x2
2

+
∂2(u0)

∂x2
3

]
,

L(v1) = −
1
sβ
L
[

u0
∂(v0)

∂x1
+ v0

∂(v0)

∂x2
+ w0

∂(v0)

∂x3

]
+

ρ

sβ
L
[

∂2(v0)

∂x2
1

+
∂2(v0)

∂x2
2

+
∂2(v0)

∂x2
3

]
,

L(w1) = −
1
sβ
L
[

u0
∂(w0)

∂x1
+ v0

∂(v0)

∂x2
+ w0

∂(w0)

∂x3

]
+

ρ

sβ
L
[

∂2(w0)

∂x2
1

+
∂2(w0)

∂x2
2

+
∂2(w0)

∂x2
3

]
.

(11)

Next applying the inverse Laplace transform, we can calculate uj , vj and wj (j > 0). In specific
cases the exact result in the closed form can also be achieve.

Example 1. Consider time-fractional order of two-dimensional Navier-Stock equation with q1 = −q2 = q as,

Dβ
t ( f1) + f1

∂ f1

∂x1
+ f2

∂ f1

∂x2
= ρ

[
∂2 f1

∂x2
1
+

∂2 f1

∂x2
2

]
+ q,

Dβ
t ( f2) + f1

∂ f2

∂x1
+ f2

∂ f2

∂x2
= ρ

[
∂2 f2

∂x2
1
+

∂2 f2

∂x2
2

]
− q,

(12)

with initial conditions {
f1(x1, x2, 0) = − sin(x1 + x2),

f2(x1, x2, 0) = sin(x1 + x2).
(13)
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Applying the Laplace transform to (12), we have

L
(

∞

∑
j=0

uj+1

)
=

f1 j

s
− 1

sβ
L
[(

∞

∑
j=0

f1 j

)
∂(∑∞

j=0 f1 j)

∂x1
+

(
∞

∑
j=0

f1 j

)
∂(∑∞

j=0 f1 j)

∂x2

]

+
ρ

sβ
L
[

∂2(∑∞
j=0 f1 j)

∂x2
1

+
∂2(∑∞

j=0 f1 j)

∂x2
2

]
,

L
(

∞

∑
j=0

vj+1

)
=

f2 j

s
− 1

sβ
L
[(

∞

∑
j=0

f1 j

)
∂(∑∞

j=0 f2 j)

∂x1
+

(
∞

∑
j=0

f1 j

)
∂(∑∞

j=0 f2 j)

∂x2

]

+
ρ

sβ
L
[

∂2(∑∞
j=0 f2 j)

∂x2
1

+
∂2(∑∞

j=0 f2 j)

∂x2
2

]
.

(14)

uo = L−1
[
− sin(x1 + x2)

s

]
= − sin(x1 + x2),

vo = L−1
[

sin(x1 + x2)

s

]
= sin(x1 + x2),

(15)

L(u1) = −
1
sβ
L
[
− sin(x1 + x2)

∂(− sin(x1 + x2))

∂x1
+ sin(x1 + x2)

∂(sin(x1 + x2))

∂x2

]
+

1
sβ
Lρ

[
∂2(− sin(x1 + x2))

∂x2 +
∂2(− sin(x1 + x2))

∂x2
2

]
+

1
sβ
L(q),

L(v1) = −
1
sβ
L
[
− sin(x1 + x2)

∂(sin(x1 + x2))

∂x1
+ sin(x1 + x2)

∂(sin(x1 + x2))

∂x2

]
+

1
sβ
Lρ

[
∂2(sin(x1 + x2))

∂x2 +
∂2(sin(x1 + x2))

∂x2
2

]
− 1

sβ
L(q),

(16)

 u1 = L−1
[

2ρ sin(x1+x2)

sβ+1 + q
sβ+1

]
,

v1 = L−1
[
−2ρ sin(x1+x2)

sβ+1 − q
sβ+1

]
,

(17)

u1 = 2ρ sin(x1 + x2)
tβ

Γ(β + 1)
+

q
Γ(β + 1)

,

v1 = −2ρ sin(x1 + x2)
tβ

Γ(β + 1)
+

q
Γ(β + 1)

, u2 = −4ρ2 sin(x1 + x2)
t2β

Γ(2β+1) ,

v2 = 4ρ2 sin(x1 + x2)
t2β

Γ(2β+1) .
(18)

The LADM solution for example (1) is

f1(x1, x2, t) = u0(x1, x2, t) + u1(x1, x2, t) + u2(x1, x2, t) + u3(x1, x2, t) + ...un(x1, x2, t),

f2(x1, x2, t) = v0(x1, x2, t) + v1(x1, x2, t) + v2(x1, x2, t) + v3(x1, x2, t) + ...vn(x1, x2, t),
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f1(x1, x2, t) = − sin(x1 + x2) + 2ρ sin(x1 + x2)
tβ

Γ(β + 1)
+

q
Γ(β + 1)

− 4ρ2 sin(x1 + x2)
t2β

Γ(2β + 1)
+ ...

f2(x1, x2, t) = sin(x1 + x2)− 2ρ sin(x1 + x2)
tβ

Γ(β + 1)
+

q
Γ(β + 1)

+ 4ρ2 sin(x1 + x2)
t2β

Γ(2β + 1)
+ ...

(19)

when β = 1, then LADM solution is

f1(x1, x2, t) = −e2ρt(sin(x1 + x2)),

f2(x1, x2, t) = e2ρt(sin(x1 + x2)).

For q = 0 gave the exact result of classical Navier-Stokes equation for the velocity. The velocity profile of
the ordinary Naiver-Stokes equation is shown in Figures, and the velocity profile of Naiver-Stokes equation with
β = 1, 0.5 and 0.8 is shown in Figures 1–3.

Figure 1. For example 1, the velocity profiles f1, f2 of NS equation at β = 0.8, q = 0, ρ = 0.5, t = 3.
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Figure 2. For example 1, the velocity profiles f1, f2 of NS equation at β = 0.5, q = 0, ρ = 0.5, t = 3.

Figure 3. For example 2, the velocity profiles f1, f2 of NS equation at β = 0.5, q = 0, ρ = 0.5, t = 0.05.
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Example 2. The study of time fractional of order two dimensional Naiver-Stokes Equation (12) with
initial conditions {

u(x, y, 0) = −ex1+x2 ,

v(x, y, 0) = ex1+x2 .
(20)

Taking Laplace transform of (12)

{
L(uo) =

−ex1+x2
s ,

L(vo) =
ex1+x2

s ,
(21)

L(u1) = −
1
sβ
L
[
−ex1+x2

∂(−ex1+x2)

∂x1
+−ex1+x2

∂(ex1+x2)

∂x2

]
+

ρ

sβ
L
[

∂2(−ex1+x2)

∂x2
1

+
∂2(−ex1+x2)

∂x2
2

]
+

1
sβ
L(q),

L(v1) = −
1
sβ
L
[
−ex1+x2

∂(ex1+x2)

∂x1
+ ex1+x2

∂(ex1+x2)

∂x2

]
+

ρ

sβ
L
[

∂2(ex1+x2)

∂x2
1

+
∂2(ex1+x2)

∂x2
2

]
− 1

sβ
L(q),

(22)

L(u1) =

[
−2ρex1+x2

sβ+1

]
+

q
sβ+1 , L(v1) =

[
2ρex1+x2

sβ+1

]
− q

sβ+1 , (23)

L(u2) =

[
−4ρ2ex1+x2

s2β+2

]
, L(v2) =

[
4ρ2ex1+x2

s2β+2

]
. (24)

Applying the inverse Laplace transform,

uo = L−1
[
−ex1+x2

s

]
= −ex1+x2 ,

vo = L−1
[

ex1+x2

s

]
= ex1+x2 ,

u1 = L−1
[
−2ρex1+x2

sβ+1

]
+ L−1

[
q

sβ+1

]
= −2ρex1+x2

tβ

Γ(β + 1)
+

q
Γ(β + 1)

v1 = L−1
[

2ρex1+x2

sβ+1

]
−L−1

[
q

sβ+1

]
= 2ρex1+x2

tβ

Γ(β + 1)
+

q
Γ(β + 1)

u2 = L−1
[
−4ρ2ex1+x2

s2β+2

]
= −(2ρ)2ex1+x2

t2β

Γ(2β + 1)
,

v2 = L−1
[

4ρ2ex1+x2

s2β+2

]
= (2ρ)2ex1+x2

t2β

Γ(2β + 1)
,

The LADM solution for example (2) is

u(x1, x2, t) = u0(x1, x2, t) + u1(x1, x2, t) + u2(x1, x2, t) + u3(x1, x2, t) + ...un(x1, x2, t),

v(x1, x2, t) = v0(x1, x2, t) + v1(x1, x2, t) + v2(x1, x2, t) + v3(x1, x2, t) + ...vn(x1, x2, t),
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f1(x1, x2, t) = −ex1+x2 − 2ρex1+x2
tβ

Γ(β + 1)
+

q
Γ(β + 1)

− (2ρ)2ex1+x2
t2β

Γ(2β + 1)
+ ...

f2(x1, x2, t) = ex1+x2 + 2ρex1+x2
tβ

Γ(β + 1)
− q

Γ(β + 1)

+ (2ρ)2ex1+x2
t2β

Γ(2β + 1)
+ ...

(25)

when β = 1, then LADM solution is

f1(x1, x2, t) = −ex1+x2+2ρt,

f2(x1, x2, t) = ex1+x2+2ρt.

The exact result of usual Navier-Stokes problem for the velocity profile. The activities of velocity profile of
the Navier-Stokes problem is shown for β = 1 and 0.5 in Figure 4 correspondingly.

Figure 4. For example 3, the velocity profiles f1, f2, f3 of NS equation at β = 0.5, x3 = 0.5, t = 0.1.

Example 3. The study time fractional order three dimensional Navier-Stokes Equation (3.1) by q1 = q2 = q3
= 0, with initial conditions 

u(x1, x2, x3, 0) = −0.5x1 + x2 + x3,

v(x1, x2, x3, 0) = x1 − 0.5x2 + x3,

w(x1, x2, x3, 0) = x1 + x2 − 0.5x3.

(26)
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Taking Laplace transform of (1),

L(uo) =
−0.5x1 + x2 + x3

s
,

L(vo) =
x1 − 0.5x2 + x3

s
,

L(wo) =
x1 + x2 − 0.5x3

s
,

(27)

L(u1) =
−2.25x1

sβ+1 ,

L(v1) =
−2.25x2

sβ+1 ,

L(w1) =
−2.25x3

sβ+1 ,

(28)

L(u2) =
−(2.25)2x1

s3β+3 ,

L(v2) =
−(2.25)2x2

s3β+3 ,

L(w2) =
−(2.25)2x3

s3β+3 .

(29)

Applying the inverse Laplace transform,

uo = L−1
[
−0.5x1 + x2 + x3

s

]
= −0.5x1 + x2 + x3,

vo = L−1
[

x1 − 0.5x2 + x3

s

]
= x1 − 0.5x2 + x3,

wo = L−1
[

x1 + x2 − 0.5x3

s

]
= x1 + x2 − 0.5x3,

u1 = L−1
[
−2.25x1

sβ+1

]
= −2.25x1

tβ

Γ(β + 1)
,

v1 = L−1
[
−2.25x2

sβ+1

]
= −2.25x2

tβ

Γ(β + 1)
,

w1 = L−1
[
−2.25x3

sβ+1

]
= −2.25x3

tβ

Γ(β + 1)
,

u2 = L−1
[
−(2.25)2x1

s3β+3

]
= −(2.25)2x1

t3β

Γ(3β + 1)
,

v2 = L−1
[
−(2.25)2x2

s3β+3

]
= −(2.25)2x2

t3β

Γ(3β + 1)
,

w2 = L−1
[
−(2.25)2x3

s3β+3

]
= −(2.25)2x3

t3β

Γ(3β + 1)
,

The LADM solution for example (3) is

f1(x1, x2, x3, t) = u0(x1, x2, x3, 0) + u1(x1, x2, x3, 0) + u2(x1, x2, x3, 0) + u3(x1, x2, x3, 0)

+ ...uj(x1, x2, x3, 0),

f2(x1, x2, x3, t) = v0(x1, x2, x3, 0) + v1(x1, x2, x3, 0) + v2(x1, x2, x3, 0) + v3(x1, x2, x3, 0)

+ ...vj(x1, x2, x3, 0),

f3(x1, x2, x3, t) = w0(x1, x2, x3, 0) + w1(x1, x2, x3, 0) + w2(x1, x2, x3, 0) + w3(x1, x2, x3, 0)

+ ...wj(x1, x2, x3, 0),
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f1(x1, x2, x3, t) = −0.5x1 + x2 + x3 − 2.25x1
tβ

Γ(β + 1)
− (2.25)2x1

t3β

Γ(3β + 1)
− (2.25)4x1

t7β

Γ(7β + 1)

− (2.25)6x1
t15β

Γ(15β + 1)
+ ...

f2(x1, x2, x3, t) = x1 − 0.5x2 + x3 − 2.25x2
tβ

Γ(β + 1)
− (2.25)2x2

t3β

Γ(3β + 1)
− (2.25)4x2

t7β

Γ(7β + 1)

− (2.25)6x2
t15β

Γ(15β + 1)
+ ...

f3(x1, x2, x3, t) = x1 + x2 − 0.5x3 − 2.25x3
tβ

Γ(β + 1)
− (2.25)2x3

t3β

Γ(3β + 1)
− (2.25)4x3

t7β

Γ(7β + 1)

− (2.25)6x3
t15β

Γ(15β + 1)
+ ...

when β = 1, then LADM solution is

f1(x1, x2, x3, t) =
−0.5x1 + x2 + x3 − 2.25x1t

1− 2.25t2 ,

f2(x1, x2, x3, t) =
x1 − 0.5x2 + x3 − 2.25x2t

1− 2.25t2 ,

f3(x1, x2, x3, t) =
x1 + x2 − 0.5x3 − 2.25x3t

1− 2.25t2 .

4. Description of Figures

Figure 1 is consists of two graphs namely Graph 1 and Graph 2. Graph 1 and Graph 2 represents
the velocity profile f1 and f2 of the Navier-Stokes equation respectively in example 3.1 at β = 1.

Figure 2 is consists of two graphs namely Graph 3 and Graph 4. Graph 3 and Graph 4 represents
the velocity profile f1 and f2 of the Navier-Stokes equation respectively in example 3.1 at β = 0.8.

Figure 3 is consists of two graphs namely Graph 5 and Graph 6. Graph 5 and Graph 6 represents
the velocity profile f2 and f2 of the Navier-Stokes equation respectively in example 3.1 at β = 0.5.

Similarly in example 3.2, the plot of two velocity profiles f1 and f2 for the Navier-Stoke equation
are represented by Graph 7 and Graph 9 at β = 1 and Graph 8 and Graph 10 at β = 0.5 respectively.

Also, in example 3.3, the plot of three velocity profiles f1 , f2 and f3 for the Navier-Stoke equation
are represented by Graph 11, Graph 12 and Graph 13 at β = 1 and Graph 14, Graph 15 and Graph 16
at β = 0.5 respectively.

5. Conclusions

In this paper, Laplace Adomian decomposition technique is assumed for the time-fractional
classical Navier-Stokes solution of with given initial conditions. The analytical solution is given in for
the power series for the given problem. The solution of the above three problems has shown, that the
rate of convergence of the present method is overlapping or high than ADM and HAM. Moreover
LADM have minimum calculations, simplifications as compared to ADM [12] and HPM [6].
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