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Abstract

:

We study standing waves of the NLS equation posed on the double-bridge graph: two semi-infinite half-lines attached at a circle. At the two vertices, Kirchhoff boundary conditions are imposed. We pursue a recent study concerning solutions nonzero on the half-lines and periodic on the circle, by proving some existing results of sign-changing solutions non-periodic on the circle.
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1. Introduction and Main Results


The study of nonlinear equations on graphs, especially the nonlinear Schrödinger equation (NLS), is a quite recent research subject, which already produced a plenty of interesting results (see [1,2,3]). The attractive feature of these mathematical models is the complexity allowed by the graph structure, joined with the one dimensional character of the equations. While they are an oversimplification in many real problems, they appear indicative of several dynamically interesting phenomena that are atypical or unexpected in more standard frameworks. The most studied issue concerning NLS is certainly the existence and characterization of standing waves (see, e.g., [4,5,6,7,8,9]). More particularly, several results are known about ground states (standing waves of minimal energy at fixed mass, i.e., L2 norm) as regard existence, non-existence and stability properties, depending on various characteristics of the graph [2,10,11,12,13].



In this paper, we are interested in a special example, which reveals an unsuspectedly complex structure of the set of standing waves. More precisely, we consider a metric graph G made up of two half lines joined by two bounded edges, i.e., a so-called double-bridge graph (see Figure 1). G can also be thought of as a ring with two half lines attached in two distinct vertices. The half lines are both identified with the interval [0,+∞), while the bounded edges are represented by two bounded intervals of lengths L1>0 and L2≥L1, precisely 0,L1 and [L1,L] with L=L1+L2.



A function ψ on G is a Cartesian product ψ(x1,…,x4)=(ψ1x1,…,ψ4x4) with xj∈Ij for j=1,…,4, where I1=[0,L1], I2=[L1,L] and I3=I4=[0,+∞). Then, a Schrödinger operator HG on G is defined as


HGψx1,…,x4=−ψ1″x1,…,−ψ4″x4,xj∈Ij,



(1)




with domain DHG given by the functions ψ on G whose components satisfy ψj∈H2(Ij) together with the so-called Kirchhoff boundary conditions, i.e.,




ψ1(0)=ψ2(L)=ψ3(0),ψ1(L1)=ψ2(L1)=ψ4(0),



(2)






ψ1′(0)−ψ2′(L)+ψ3′(0)=ψ1′(L1)−ψ2′(L1)−ψ4′(0)=0.



(3)





As is well known (see [14] for general information on quantum graphs), the operator HG is self-adjoint on the domain D(HG), and it generates a unitary Schrödinger dynamics. Essential information about its spectrum is given in ([15], Appendix A). We perturb this linear dynamics with a focusing cubic term, namely we consider the following NLS on G


idψtdt=HGψt−ψt2ψt



(4)




where the nonlinear term |ψt|2ψt is a shortened notation for (|ψ1,t|2ψ1,t,…,|ψ4,t|2ψ4,t). Hence, Equation (4) is a system of scalar NLS equations on the intervals Ij coupled through the Kirchhoff boundary conditions in Equations (2)–(3) included in the domain of HG. On rather general grounds, it can be shown that this problem enjoys well-posedness both in strong sense and in the energy space (see in particular ([2], Section 2.6)).



We are interested in standing waves of Equation (4), i.e., its solutions of the form ψt=e−iωtUx where ω∈R and U(x1,…,x4)=(u1x1,…,u4x4) is a purely spatial function on G, which may also depend on ω. Such a problem has already been considered in [11,12,15,16]. In particular, in [11,12], variational methods are used to show, among many other things, that Equation (4) has no ground state, i.e., no standing wave exists that minimizes the energy at fixed L2-norm. In a recent paper [16], information on positive bound states that are not ground states is given. The special example of tadpole graph (a ring with a single half-line) is treated in detail in [17,18].



As for the results in [15], they can be summarized as follows. Writing the problem of standing waves of Equation (4) component-wise, we get the following scalar problem:


−uj″−uj3=ωuj,uj∈H2(Ij)u1(0)=u2(L)=u3(0),u1(L1)=u2(L1)=u4(0)u1′(0)−u2′(L)+u3′(0)=0,u1′(L1)−u2′(L1)−u4′(0)=0.



(5)







Such a system has solutions with u3=u4=0 if and only if the ratio L1/L2 is rational. In this case, they form a sequence of continuous branches in the ω,UL2 plane, bifurcating from the linear eigenvectors of the Schrödinger operator HG (see Figure 2), and they are periodic on the ring of G, that is, u1 and u2 are restrictions to I1 and I2 of a function u belonging to the second Sobolev space of periodic functions Hper2([0,L])=u∈H2([0,L]):u(0)=u(L),u′(0)=u′(L). In particular, such function u is a rescaled Jacobi cnoidal function (see, e.g., [19,20] for a treatise on the Jacobian elliptic functions). If ω≥0, no other nonzero standing waves exist, since the NLS on the unbounded edges has no nontrivial solution. If ω<0, instead, the NLS on the half lines has soliton solutions, so that standing waves with nonzero u3 and u4 are admissible. The general study of this kind of solutions leads to a rather complicated system of equations, since, while u3 and u4 must be shifted solitons, each of u1 and u2 can be (at least in principle) a cnoidal function, a dnoidal function or a shifted soliton. To limit this complexity, the analysis in [15] is focused on the special case of standing waves that are non-vanishing on the half lines but share the above-mentioned periodicity feature with the bifurcation solutions. This amounts to study the following system:


−u″−u3=ωu,u∈Hper2([0,L]),ω<0u(0)=±u(L1)=2|ω|



(6)




where the sign ± distinguishes the cases of u3 and u4 with the same sign (which we may assume positive, thanks to the odd parity of the equation) or with different signs. In [15], it is shown that:



	(i)

	
If L1/L2∈Q, then the set of solutions to (6) is made up of a sequence of secondary bifurcation branches (ω,u˜n,ω):ω<0n≥1, originating at ω=0 from each of the previous ones, together with a sequence ωn,unn≥1 not lying on any branch (see Figure 2).




	(ii)

	
If L1/L2∉Q, then the set of solutions to (6) reduces to two sequences ωn+,un+n≥1 and ωn−,un−n≥1 alone, solving the problem in Equation (6) with sign ±, respectively, where the frequency sequences ωn±n≥1 are unbounded below and have at least a finite nonzero cluster point (see Figure 3). The functions un± oscillate n times on the ring of the graph.







These results come rather unexpectedly, so the aim of this paper is to pursue the study begun in [15] by deepening the understanding of such results in relation to the underlying physical model. In particular, we ask the following questions: Does Equation (4) admit standing waves that are non-periodic on ring of G? If so, do they form continuous branches to which the isolated periodic solutions belong?



With a view to especially answer the second question, we look for standing waves which include the ones given by Equation (6) but still change sign on the bounded edges. More precisely, we look for solutions to Equation (5) exhibiting the following features:

	
u1,u2 are sign-changing.



	
u3,u4 are nonzero.








The second feature implies ω<0 and


uj(x)=±2ηsechηx+aj,aj∈R,j=3,4



(7)




where we set η:=ω for brevity. Then, the first feature implies


uj(x)=η2kj22kj2−1cnη2kj2−1x+aj;kj,kj∈12,1,aj∈0,Tj,j=1,2



(8)




where cn·;k is the cnoidal function of parameter k and Tj=Tjkj,η:=Skj/η is the period of the function cnη·/2kj2−1;kj. Here and in the rest of the paper, S denotes the function


S(k):=42k2−1K(k)=42k2−1∫01dt((1−t2)(1−k2t2),



(9)




where K(k) is the so called complete elliptic integral of first kind. Notice that S:(1/2,1)→R is strictly increasing, continuous and such that S(1/2,1)=0,+∞.



Therefore, restricting ourselves for simplicity to the case with u3 and u4 of the same sign, which we may assume positive thanks to the odd parity of the system in Equation (5), we are led to study the existence of solutions η>0, k1,k2∈12,1, a1∈0,T1, a2∈0,T2, a3,a4∈R to the following system:   




k12k12−1cnηa12k12−1;k1=k22k22−1cnηL+a22k22−1;k2=sechηa3k12k12−1cnηL1+a12k12−1;k1=k22k22−1cnηL1+a22k22−1;k2=sechηa4tanhηa3sechηa3==−k12k12−1snηa12k12−1;k1dnηa12k12−1;k1+k22k22−1snηL+a22k22−1;k2dnηL+a22k22−1;k2tanhηa4sechηa4==k12k12−1snηL1+a12k12−1;k1dnηL1+a12k12−1;k1−k22k22−1snηL1+a22k22−1;k2dnηL1+a22k22−1;k2.



(10)





This set of equations turns out to be still rather difficult to study in his full generality, and indeed we have results only in the subcase where the two solitons in Equation (7) have the same height at the vertices, i.e., sechηa3=sechηa4 (which corresponds to θ1=θ2 in Section 2). More precisely, in Section 2 we reduce the system in Equation (10) to an equivalent one, which naturally splits into different cases. Then, we study three of such cases, all with sechηa3=sechηa4, leading to our existence results, which are the following three theorems.



The first two results only concern the case of irrational ratios L1/L2 and give solutions with k1≠k2, i.e., non-periodic on the ring of the graph.



Theorem 1.

Assume that L1/L2∈R\Q. Then, there exists a sequence of positive integers nhh∈N such that for every ω<−32K(1/2)2/(L1L2) there exists hω∈N (also depending on L1 and L2) such that for all h>hω the problem in Equation (5) has two solutions (u1,h+,u2,h+,u3,h+,u4,h+) and (u1,h−,u2,h−,u3,h−,u4,h−) of the form:


uj,h±(x)=2ωkj,h22kj,h2−1cnω2kj,h2−1x+aj,h±;kj,h,j=1,2



(11)






uj,h±(x)=2ωsechωx+aj,h±,j=3,4



(12)




where u1,h±(x) and u2,h±(x) have periods T1,h=L1/nhL1/L2+1 and T2,h=L2/nh, and for all h one has


12<k1,h<k2,h<1,a1,h±∈0,T1,h4,a2,h±∈0,T2,h,a3,h±<0,a4,h±>0,aj,h+≠aj,h−.



(13)









Remark 1.

More precisely, according to the proof, in Theorem 1, we have that


k1,h=S−1L1nhL1/L2+1ω,a1,h±=γ1(k1,h,ω,θh±),k2,h=S−1L2nhω,a2,h±=γ2(k2,h,ω,θh±)−L+pT2,h,−a3,h±=a4,h±=sech∣0,+∞−1(θh±),








where p is the unique positive integer such that a2,h±∈0,T2,h, θh± are the two distinct solutions in 0,1 of the equation θ21−θ2=tk1,h,k2,h with tk1,h,k2,h given by Equation (17), and γj(kj,h,ω,θh±) is the unique preimage in 0,Tj,h/4 of θh±2kj,h2−1/kj,h by the function cn·ω/2kj,h2−1;kj,h.





Theorem 2.

Assume that L1/L2∈R\Q. Then, there exists a sequence of positive integers nhh∈N such that for every ω<−32K(1/2)2/(L1L2) there exists hω∈N (also depending on L1 and L2) such that for all h>hω the problem in Equation (5) has two solutions (u1,h±,u2,h±,u3,h±,u4,h±) of the form of Equations (11)–(12), where u1,h±(x) and u2,h±(x) have periods T1,h=L1/nhL1/L2 and T2,h=L2/nh, the parameters a1,h±,a2,h±,a3,h±,a4,h± are as in Equation (13) and for all h one has   


12<k2,h<k1,h<1.













Remark 2.

More precisely, in Theorem 2 we have that


k1,h=S−1L1nhL1/L2ωandk2,h=S−1L2nhω,








whereas aj,h± are exactly as in Remark 1.





The third result does not need L1/L2 irrational and concerns the subcase of the system in Equation (5) which, if L1/L2∈R\Q and k1=k2, is exactly the system in Equation (6) with plus sign (see Remark 5).



Theorem 3.

Let m,n∈N be such that n>m≥1. Then, there exists ωm,n<0 (also depending on L1) such that for all ω<ωm,n the problem in Equation (5) has a solution u1,u2,u3,u4 of the form of Equations (7)–(8), with k1,k2∈3/2,1, a1∈0,T1/4, a2∈0,T2.





Remark 3.

According to the proof, in Theorem 3, a1,a2,a3,a4 can be described in a similar way of Theorems 1 and 2. On the contrary, the parameters k1,k2 do exist, but are not explicit as in the previous theorems.





As already mentioned, Theorems 1–3 do not exhaust the study of solutions to the problem in Equation (5), and thus of standing waves of (NLS), as they only concern the case of solitons having the same height at the vertices. In addition, they do not describe the whole family of this kind of solutions, but only give existence results. However, they still provide some answer to the questions raised above. Indeed, Theorems 1 and 2 answer in the affirmative to the first question, as they prove existence of standing waves which are non-periodic on the ring of G. As to Theorem 3, for any m and n, it provides a family of solutions which depend on the continuous parameter ω∈(−∞,ωm,n) and, roughly speaking, make m oscillations on the edge of length L1 and n−m oscillations on the one of length L2 (cf. the second and third equations of the system in Equation (33)). If L1/L2 is irrational and one of these families contain a solution with k1=k2, then such a solution is one of the isolated solutions found in [15] in the irrational case and we can answer affirmatively also to the second question. Unfortunately, the argument we used in proving Theorem 3 does not allow us to say wether we find solutions with k1=k2 or not, and therefore we do not have a final answer to the second question.




2. Preliminaries


In this section, we reduce the system in Equation (10) to a simpler equivalent one, which is the system in Equation (14) with the last two equations replaced by the system in Equation (19).



For brevity, we set


X1=ηa12k12−1,X2=ηL+a22k22−1,X3=ηL1+a12k12−1,X4=ηL1+a22k22−1,








and


σ1=sgnsnX1;k1,σ2=sgnsnX2;k2,σ3=sgnsnX3;k1,σ4=sgnsnX4;k2.











Then, using well known identities (see [20]) and the first equation of the system in Equation (10), we get   


snX1;k1=σ11−cn2X1;k1=σ11−2k12−1k12sech2ηa3,dnX1;k1=1−k12+k12cn2X1;k1=1−k12+2k12−1sech2ηa3








and hence


k12k12−1snX1;k1dnX1;k1=σ1k122k12−1−sech2ηa31−k122k12−1+sech2ηa3=σ1k121−k122k12−12+sech2ηa3−sech4ηa3.











Arguing similarly for the products snX2;k2dnX2;k2, snX3;k1dnX3;k1 and snX4;k2dnX4;k2, and defining


ck:=k21−k22k2−12,








we thus obtain that the system in Equation (10) is equivalent to


k12k12−1cnηa12k12−1;k1=k22k22−1cnηL+a22k22−1;k2=sechηa3k12k12−1cnηL1+a12k12−1;k1=k22k22−1cnηL1+a22k22−1;k2=sechηa4tanhηa3sechηa3=−σ1ck1+sech2ηa3−sech4ηa3+σ2ck2+sech2ηa3−sech4ηa3tanhηa4sechηa4=σ3ck1+sech2ηa4−sech4ηa4−σ4ck2+sech2ηa4−sech4ηa4.



(14)







Let us now focus on the last two equations. Setting


θ1=sechηa3,θ2=sechηa4,σ5=sgna3=sgntanhηa3,σ6=sgna4=sgntanhηa4








the couple of such equations is equivalent to


σ51−θ12θ1=−σ1ck1+θ121−θ12+σ2ck2+θ121−θ12σ61−θ22θ2=σ3ck1+θ221−θ22−σ4ck2+θ221−θ22.



(15)







Squaring the equations, we get


ck1+θ121−θ12+ck2−2σ1σ2ck1+θ121−θ12ck2+θ121−θ12=0,










ck1+θ221−θ22+ck2−2σ3σ4ck1+θ221−θ22ck2+θ221−θ22=0,








which are impossible if σ1σ2=−1 or σ3σ4=−1. Hence, we can add the conditions σ1=σ2 and σ3=σ4 to the system in Equation (15), and get




σ51−θ12θ1=σ1−ck1+θ121−θ12+ck2+θ121−θ12σ61−θ22θ2=σ3ck1+θ221−θ22−ck2+θ221−θ22σ2=σ1,σ4=σ3.



(16)





Moreover, both θ121−θ12 and θ221−θ22 must be solutions t∈0,1/4 of the equation


ck1+ck2+t−2ck1+tck2+t=0.











Such equation has the unique nonnegative solution


t=tk1,k2=132ck12−ck1ck2+ck22−ck1−ck2,



(17)




which belongs to 0,1/4 if and only if k1,k2 belongs to the set


A=k1,k2∈12,12:2ck12−ck1ck2+ck22−ck1−ck2≤34,








i.e., as one can easily see after some computations,


A=k1,k2∈R:k1∈12,1,4k12−12k1≤k2≤121−k12,k2<1








(the set A is portrayed in Figure 4).



In this case, the equation θ21−θ2=tk1,k2 with θ∈0,1 has two distinct solutions


θk1,k2±=1±1−4tk1,k22



(18)




if tk1,k2∈0,1/4, two coincident solutions θk1,k2+=θk1,k2−=1/2 if tk1,k2=1/4, and a unique solution θk1,k2+=1 if tk1,k2=0 (i.e., k1=k2). In this latter case, we still write θk1,k2+=θk1,k2−=1 for future convenience. We also observe that the function ck is positive and strictly decreasing from 1/2,1 onto 0,+∞, so that the terms within brackets on the right hand sides of the first two equations of Equation (16) have a fixed sign according as k1<k2 or k1>k2. Therefore, the system in Equation (15) turns out to be equivalent to


k1,k2∈A,θ1,θ2∈θk1,k2+,θk1,k2−sechηa3=θ1,sechηa4=θ2k1<k2σ5=−σ1σ6=σ3∨k1>k2σ5=σ1σ6=−σ3∨k1=k2a3=a4=0σ2=σ1,σ4=σ3.



(19)







As a conclusion, Equation (10) is equivalent to the system in Equation (14) with the last two equations replaced by the system in Equation (19).




3. Case θ1=θ2, σ1=σ3 and k1<k2. Proof of Theorem 1


We focus on the case σ1=σ3=1, which gives Theorem 1, leaving the analogous case σ1=σ3=−1 to the interested reader. In such a case, condition k1,k2∈A becomes


k1,k2∈A′=A∩k1,k2∈R:k1<k2=k1,k2∈R:12<k1<k2≤121−k12,k2<1








and, taking into account the equivalence between Equation (15) and Equation (19), the system in Equation (14) becomes:


k1,k2∈A′,θ∈θk1,k2+,θk1,k2−sechηa3=sechηa4=θ,a3<0,a4>0k12k12−1cnηa12k12−1;k1=k22k22−1cnηL+a22k22−1;k2=θk12k12−1cnηL1+a12k12−1;k1=k22k22−1cnηL1+a22k22−1;k2=θsnηa12k12−1;k1>0,snηL1+a12k12−1;k1>0snηL+a22k22−1;k2>0,snηL1+a22k22−1;k2>0.



(20)







We denote by γj=γjkj,η,θ the unique preimage in 0,Tj/4 of the value 2kj2−1kjθ by the function cnη2kj2−1·;kj. Then,


k12k12−1cnηa12k12−1;k1=θ,snηa12k12−1;k1>0k12k12−1cnηL1+a12k12−1;k1=θ,snηL1+a12k12−1;k1>0








means


a1=γ1L1+a1=γ1+mT1forsomem≥1,i.e.,a1=γ1L1=mT1forsomem≥1








while


k22k22−1cnηL+a22k22−1;k2=θ,snηL+a22k22−1;k2>0k22k22−1cnηL1+a22k22−1;k2=θ,snηL1+a22k22−1;k2>0








means


L+a2=γ2+pT2forsomep≥0L1+a2=γ2+qT2forsome0≤q<p,i.e.,L+a2=γ2+pT2forsomep≥0L2=p−qT2forsome0≤q<p.











Hence, the system in Equation (20) becomes


k1,k2∈A′,θ∈θk1,k2+,θk1,k2−sechηa3=sechηa4=θ,a3<0,a4>0L1=mT1k1,ηforsomem≥1L2=nT2k2,ηforsomen≥1a1=γ1k1,η,θa2=γ2k2,η,θ+pT2k2,η−Lforsomep≥n



(21)




(observe that θ depends on both k1 and k2, and so do a1 and a2 according to the last two equations).



Remark 4.

The equivalence between the systems in Equation (20) and Equation (21) does not need assumption k1<k2. On the other hand, if k1=k2, then T1k1,η=T2k2,η and thus the third and fourth equations of the system in Equation (21) imply L1/L2∈Q. This means that solutions to the system in Equation (10) with k1=k2 (which implies θ1=θ2=1) and σ1=σ3 cannot exist if the ratio L1/L2 is not rational.





Let us now focus on the following group of equations:


k1,k2∈A′L1=mT1k1,η,forsomem≥1L2=nT2k2,η,forsomen≥1.



(22)







Recalling that Tjkj,η=Skj/η, this system is equivalent to


12<k1<k2≤121−k12,k2<1k1=S−1ηL1mforsomem≥1k2=S−1ηL2nforsomen≥1.



(23)




and therefore, recalling that S is strictly increasing and continuous from (1/2,1) onto 0,+∞, we can obtain solutions by fixing η>0 and finding n,m≥1 such that




S−1ηL1m<S−1ηL2nS−1ηL2n≤121−S−1ηL1m2,i.e.,L1m<L2nηL2n≤S121−S−1ηL1m2.



(24)





Lemma 1.

One has


S121−S−1t2=t+132K02t3+ot3ast→0+








(where, we recall, K0=K1/2).





Proof. 

We have


limt→0+S−1t−12−t232K022t4=limk→1/2+S−1Sk−12−Sk232K022Sk4=limk→1/2+k−12−16Kk22k2−132K02228Kk42k2−12=1210K02limk→1/2+2K02−Kk22k+1Kk42k+12k−1/2








where, setting K0′=K′1/2, by De L’Hôpital’s rule, we get


limk→1/2+2K02−Kk22k+1k−1/2=−4K0K0′−K022.











Hence, we conclude


limt→0+S−1t−12−t232K022t4=−K0+22K0′2112K05,








i.e.,


S−1t=12+c1t2−c2t4+ot4ast→0+



(25)




where c1=1322K02 and c2=K0+22K0′2112K05. This implies


121−S−1t2=1212−22c1t2−c12−2c2t4+ot4=121−22c1t2−2c12−2c2t4+ot4=12+c1t2+22c12−c2t4+ot4.











Using De L’Hôpital’s rule again, we now compute


limk→1/2+Sk−211/4K0k−1/21/2k−1/23/2=limk→1/2+S′k−27/4K0k−1/2−1/232k−1/21/2










=23limk→1/2+8k2k2−1Kk+42k2−1K′k−27/4K0k−1/21/2k−1/21/2=215/43K0′+23limk→1/2+8kKk242k+1−27/4K0k−1/2=215/43K0′+23limk→1/2+8kKk−K0242k+1+8k242k+1−27/4K0k−1/2=25/4K0+211/4K0′








where the result follows because Kk−K0∼K0′k−1/2 as k→1/2+ and


8k242k+1−27/4=27/42k−2k+12k+1=27/44k2−2k−12k+12k+2k+1=27/44k+2k−1/22k+12k+2k+1.











This means


Sk=211/4K0k−1/21/2+25/4K0+211/4K0′k−1/23/2+ok−1/23/2



(26)




as k→1/2+ and therefore we deduce that as t→0+ one has (note that 211/4K0c1=1)


S121−S−1t2=211/4K0c1t1+22c12−c2c1t2+ot21/2++25/4K0+211/4K0′c1c1t31+22c12−c2c1t2+ot23/2+ot3=t1+1222c12−c2c1t2+ot2++25/4K0+211/4K0′c1c1t31+3222c12−c2c1t2+ot2+ot3=t+211/4K0c11222c12−c2c1+25/4K0+211/4K0′c1c1t3+ot3.











Simplifying the coefficient of t3, this gives the result. □





Thanks to Lemma 1, the system in Equation (24) becomes


0<mn−L1L2≤L13η232K02L21m2+ζm



(27)




where ζmm is a suitable sequence (also dependent on L1,L2,η) such that ζm=om−2 as m→∞. Notice that, according to systems (23) and (24), the equality sign in the second inequality amounts to k2=121−k12.



Proof of Theorem 1.

Since L1/L2∈R\Q, by ([21], Corollary 1.9) there exist infinitely many rational numbers m/n such that


0<mn−L1L2<1n2.



(28)







This implies nL1/L2<m<nL1/L2+1 and thus m=nL1/L2+1. Since the denominators of such rationals m/n must be infinite, we may arrange them in a diverging sequence nh⊂N; accordingly, the corresponding numerators are mh=nhL1/L2+1. Now, let η>42K0L1L2−1/2 and fix ε>0 such that


η2>L1L2+ε232K02L2L13.











Since Equation (28) implies that mh/nh→L1/L2 as h→∞, for h large enough, we have that mh/nh<L1/L2+ε, so that


1nh2<L1L2+ε21mh2<L13η232K02L21mh2.











Hence, up to further enlarging h, Equation (28) gives


0<mhnh−L1L2<L1L2+ε21mh2<L13η232K02L21mh2+ζmh,



(29)




so that nh and mh satisfy Equation (27). For every h, this provides solutions to the system in Equation (22) by taking k1=k1,h=S−1ηL1/mh and k2=k2,h=S−1ηL2/nh, and thus solutions to the system in Equation (21) by choosing θ=θh∈{θk1,h,k2,h+,θk1,h,k2,h−}, taking p as the unique integer such that


0≤γ2k2,h,η,θh+pT2k2,h,η−L<T2k2,h,η








(where T2k2,h,η=L2/nh), which turns out to be greater than or equal to nh, and defining a1,a2,a3,a4 according to the second, fifth and sixth equation of the system. Note that θk1,h,k2,h+ and θk1,h,k2,h− are different for all h, since tk1,h,k2,h≠0 (because k1,h≠k2,h) and tk1,h,k2,h≠1/4 (because of the strict inequality signs in Equation (29)). Up to discarding a finite number of terms of the sequence nh, the proof is complete. □






4. Case θ1=θ2, σ1=σ3 and k1>k2. Proof of Theorem 2


As in the previous section, we focus on the case σ1=σ3=1. In this case, the system in Equation (14) becomes again the system in Equation (21), but with k1,k2∈A′ replaced by k1,k2∈A″, where




A″=A∩k1,k2∈R:k1>k2=k1,k2∈R:4k12−12k1≤k2<k1<1.









Then, Equation (22) is now equivalent to the system


1−14k12≤k2<k1<1k1=S−1ηL1mforsomem≥1k2=S−1ηL2nforsomen≥1,








i.e.,


L2n<L1mηL2n≥S1−14S−1ηL1m2k1=S−1ηL1m,k2=S−1ηL2n



(30)




with η>0 and n,m∈N.



Lemma 2.

One has


S1−14S−1t2=t−132K02t3+ot3ast→0+








(where, we recall, K0=K1/2).





Proof. 

Since S−1t=12+c1t2−c2t4+ot4 as t→0+ (see Equation (25)), we have


1−12S−1t2=1−12S−1t−1/2+1/22=1−121S−1t−1/22+1/2+2S−1t−1/2/2=1−121c1t2−c2t4+ot42+1/2+2c1t2−c2t4+ot4/2=1−11+2c12t2+2c12−c22t4+ot4=2c12t2−23c12+c22t4+ot4








and therefore


1−14S−1t2=121+1−12S−1t2=121+121−12S−1t2−181−12S−1t22+o1−12S−1t22=12+c1t2−22c12+c2t4+ot4.











Hence, using the expansion in Equation (25), we deduce that


S1−14S−1t2=211/4K0c1t1−22c12+c2c1t2+ot21/2++25/4K0+211/4K0′c1c1t31−22c12+c2c1t2+ot23/2+ot3=t1−1222c12+c2c1t2+ot2++25/4K0+211/4K0′c1c1t31−3222c12+c2c1t2+ot2+ot3=t+25/4K0+211/4K0′c1c1−211/4K0c11222c12+c2c1t3+ot3.











Simplifying the coefficient of t3, the result ensues. □





By Lemma 2, the first two conditions of the system in Equation (24) become


0>mn−L1L2≥−L13η232K02L21m2+ζm








where ζmm is a suitable sequence such that ζm=om−2 as m→∞. Notice that the equality sign in the second inequality amounts to k2=4k12−12k1.



Proof of Theorem 2.

Since L1/L2∈R\Q, by ([21], Corollary 1.9) there exist infinitely many rational numbers m/n such that


0>mn−L1L2>−1n2.











This implies nL1/L2−1<m<nL1/L2 and thus m=nL1/L2. Proceeding exactly as in the proof of Theorem 1, the result follows. □






5. Case θ1=θ2 and σ1=−σ3. Proof of Theorem 3


We focus on the case θ1=θ2=θk1,k2+ and σ1=−σ3=1, which gives Theorem 3, leaving the analogous cases θ1=θ2=θk1,k2− or σ1=−σ3=−1 to the interested reader. In such a case, the system in Equation (14) becomes


k1,k2∈Ak12k12−1cnηa12k12−1;k1=k22k22−1cnηL+a22k22−1;k2=sechηa3=θk1,k2+k12k12−1cnηL1+a12k12−1;k1=k22k22−1cnηL1+a22k22−1;k2=sechηa4=θk1,k2+σ2=−σ4=1k1<k2σ5=σ6=−1∨k1>k2σ5=σ6=1∨k1=k2a3=a4=0








that is




k1,k2∈Ak12k12−1cnηa12k12−1;k1=k22k22−1cnηL+a22k22−1;k2=sechηa3=θk1,k2+k12k12−1cnηL1+a12k12−1;k1=k22k22−1cnηL1+a22k22−1;k2=sechηa4=θk1,k2+snηa12k12−1;k1>0,snηL1+a12k12−1;k1<0snηL+a22k22−1;k2>0,snηL1+a22k22−1;k2<0k1<k2σ5=σ6=−1∨k1>k2σ5=σ6=1∨k1=k2a3=a4=0



(31)





Defining γjkj,η,θ as in Section 3, we have that


k12k12−1cnηa12k12−1;k1=θk1,k2+,snηa12k12−1;k1>0k12k12−1cnηL1+a12k12−1;k1=θk1,k2+,snηL1+a12k12−1;k1<0








means


a1=γ1k1,η,θk1,k2+L1=mT1k1,η−2γ1k1,η,θk1,k2+forsomem≥1



(32)




and


k22k22−1cnηL+a22k22−1;k2=θk1,k2+,snηL+a22k22−1;k2>0k22k22−1cnηL1+a22k22−1;k2=θk1,k2+,snηL1+a22k22−1;k2<0








means


L2=n−mT2k2,η+2γ2k2,η,θk1,k2+forsomen≥ma2=γ2k2,η,θk1,k2+−L+pT2k2,ηforsomep≥n−m+1








where m is the same integer of the system in Equation (32). Hence, the system in Equation (31) amounts to




k1,k2∈AL1=mT1k1,η−2γ1k1,η,θk1,k2+forsomem≥1L2=n−mT2k2,η+2γ2k2,η,θk1,k2+forsomen≥ma1=γ1k1,η,θk1,k2+a2=γ2k2,η,θk1,k2+−L+pT2k2,ηforsomep≥n−m+1sechηa3=sechηa4=θk1,k2+k1<k2a3,a4<0∨k1>k2a3,a4>0∨k1=k2a3=a4=0.



(33)





Remark 5.

Suppose L1/L2∉Q. If we assume k1=k2 in the system in Equation (14), then we have θ1=θ2=1 and σ1=−σ3 (see Remark 4). Hence, a solution to the problem in. Equation (6) with plus sign gives rise to a solution to the system in Equation (33). On the other hand, a solution to the system in Equation (33) with k1=k2 is such that L=L1+L2=nT and a2=a1−L+pT=a1+(p−n)T, where T=T1k1,η=T2k2,η, a1∈(0,T/4) and a2∈[0,T). This forces p=n and thus a1=a2, so that the corresponding solution to the problem in Equation (6) is periodic on the circle.





Now, recall that Tjkj,η:=Skjη. By the definition of γj=γjkj,η,θk1,k2+, one has


cnη2kj2−1γj;kj=2kj2−1kjθk1,k2+



(34)




with γj∈0,Tj/4. This implies


0<η2kj2−1γj<η2kj2−1Skj4η=Skj42kj2−1=Kkj








and therefore Equation (34) yields that




γjkj,η,θk1,k2+=2kj2−1ηarccn2kj2−1kjθk1,k2+;kj.









Hence, defining


γk1,k2:=2k12−1arccn2k12−1k1θk1,k2+;k1=2k12−1∫2k12−1k1θk1,k2+1dt1−t21−k12(1−t2)








and observing that θk1,k2+=θk2,k1+, one has


γ1k1,η,θk1,k2+=1ηγk1,k2andγ2k2,η,θk1,k2+=1ηγk2,k1.











Thus, the first three equations of the system in Equation (33) are equivalent to




k1,k2∈AηL1=mSk1−2γk1,k2forsomem≥1ηL2=n−mSk2+2γk2,k1forsomen≥m.



(35)





To prove Theorem 3, we use the following lemma, concerning the existence of a globally defined implicit function. Its proof is classical, so we leave it to the interested reader.



Lemma 3.

Let bi∈R for i=1,…,4 and let G:(b1,b2)×(b3,b4)→R be a continuous function such that for all x∈(b1,b2) the following properties hold:

	
the mapping G(x,·) is strictly increasing on (b3,b4);



	
limy→b3+G(x,y)<0 and limy→b4−G(x,y)>0.





Then, the set of solutions to the equation G(x,y)=0 is the graph of a continuous function g:(b1,b2)→(b3,b4).





Proof of Theorem 3.

Let n>m≥1 and for k1,k2∈A define the continuous functions


Fmk1,k2:=mSk1−2γk1,k2andFm,nk1,k2:=n−mSk2+2γk2,k1.











We also define Fm and Fm,n on the segments k1,1:3/2≤k1<1 and 1,k2:3/2≤k2<1 of the boundary of A, respectively, where the above definitions also make sense.



Fix 3/2<λ<1 such that the square Q=[λ,1]×[λ,1] is contained into the closure of A and the partial derivatives ∂F1/∂k1 and ∂F1,2/∂k2 are strictly positive on Q. The existence of such a square can be checked by using the explicit expressions


F1k1,k2=22k12−12Kk1−∫2k12−1k1θk1,k2+1dt1−t21−k12(1−t2),



(36)






F1,2k1,k2=22k22−12Kk2+∫2k22−1k2θk1,k2+1dt1−t21−k22(1−t2),



(37)




where θk1,k2+ is given by Equation (18). Similarly, one checks that also F1 is strictly positive on Q, while F1,2 obviously is. Consequently, ∂Fm/∂k1, ∂Fm,n/∂k2, Fm and Fm,n are also strictly positive on Q (recall that the function S is strictly increasing and positive). Define


μm:=maxλ≤k2≤1Fmλ,k2,μm,n:=maxλ≤k1≤1Fm,nk1,λandηm,n:=maxμm,μm,nL1,








and let η>ηm,n, so that ηL2>ηL1>maxμm,μm,n. By continuity of Fm and Fm,n, and using again the explicit expressions in Equations (36)–(37) (with general m and n inserted) as k1,k2→1, we have that


limk1→λ+Fmk1,k2=Fmλ,k2≤μm<ηL1andlimk1→1−Fmk1,k2=+∞








for every fixed k2∈λ,1, and


limk2→λ+Fm,nk1,k2=Fm,nk1,λ≤μm,n<ηL2andlimk2→1−Fm,nk1,k2=+∞








for every fixed k1∈λ,1. Then, Lemma 3 ensures that the level sets


k1,k2∈Q:Fmk1,k2=ηL1andk1,k2∈Q:Fm,nk1,k2=ηL2








respectively, are the graphs k1=fk2 and k2=gk1 of two continuous functions f,g defined on λ,1. The first graph joins a point on the segment λ,1×1 to a point on λ,1×λ, the latter one joins a point on λ×λ,1 to a point on 1×λ,1, and therefore the two level sets must intersect in the interior of Q at a point k1,k2, which thus solves the system in Equation (35). Then, Lines 4–7 of the system in Equation (33) fix the values of a1,a2,a3,a4, by taking p as the unique integer such that the corresponding a4 belongs to 0,T2. This completes the proof. □





Remark 6.

In the proof of Theorem 3, the sign of the function F1 can be easily checked. Indeed, taking into account that θk1,k2+≥1/2, one has


F1k1,k2>22k12−1∫2k12−1k12111−t211−k12t2−11−k12(1−t2)>0.








On the contrary, the analysis of the sign of ∂F1/∂k1 and ∂F1,2/∂k2 over the set A is rather involved and we could not perform it exactly. Therefore, we based our argument concerning the existence of the square Q on the numerical evidence given by the plots of their graphs (see Figure 5), for which we used the software Wolfram MATHEMATICA 10.4.1.
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Figure 1. The double-bridge graph. 






Figure 1. The double-bridge graph.
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Figure 2. Bifurcation diagram for L1/L=p/q with p,q∈N coprime. 
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Figure 3. The appearance of each of the sequences {(ωn+,un+)}n∈N and {(ωn−,un−)}n∈N for L1/L∈R\Q. 
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Figure 4. The set A. The point (2/2,2/2) and the straight lines of the boundary are not included. 
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Figure 5. The functions ∂F1/∂k1 and ∂F1,2/∂k2 over the square [λ,1]2 with λ=0.88. 
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