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Abstract: The behaviour of many systems in chemistry, combustion and biology can be described
using nonlinear reaction diffusion equations. Here, we use nonclassical symmetry techniques to
analyse a class of nonlinear reaction diffusion equations, where both the diffusion coefficient and
the coefficient of the reaction term are spatially dependent. We construct new exact group invariant
solutions for several forms of the spatial dependence, and the relevance of some of the solutions to
population dynamics modelling is discussed.
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1. Introduction

Nonlinear reaction-diffusion equations have many applications in chemistry [1],
microwave heating [2] and in various areas of biology, including population genetics [3,4],
nerve impulses [5], cellular tissue growth [6], and calcium waves [7,8]. In more general situations,
where the problem involves some spatial heterogeneity, the relevant reaction-diffusion equations may
be written with spatially-dependent diffusion and reaction terms. Generally, this class of equations
takes the form:

ut = (D(x, u)ux)x + R(x, u)

where D(x, u) is a diffusion coefficient and R(x, u) is often a nonlinear reaction term.
There are many situations where the favorability (or otherwise) of a habitat or region of interest

impacts the dynamics of a situation, and in some cases, it is appropriate to include this spatial
inhomogeneity in the model equation. Contrell and Costner [9] included a step function change in
the growth rate to model a problem in population dynamics, while Benson et al. [10] included a step
function in the diffusion coefficient in a model for chick limb development. Other forms of spatial
heterogeneity in population dynamics were investigated by Shigesada et al. [11], and Pacala and
Roughgarden [12] included spatial inhomogeneities in the carrying capacity in a competing species
model. In non-biological problems, the effect of spatial heterogeneity has been studied with regard
to optical tomography problems [13] and flow through porous media (see Zappou and Knight [14],
where the spatially-dependent diffusion is considered quadratic).

A number of exact analytic solutions exist when D(u) = D is constant and R(x, u) = Q(u)
depends on u only. Dorodnitsyn [15,16] presented the complete classical Lie point symmetry
classification of reaction-diffusion equations. Travelling wave solutions have been found by
Kametaka [17], McKean [18] and Rinzel [19], while periodic solutions have been found by
Carpenter [20] and Hastings [21]. Other solutions presented in the context of population dynamics
were given by Conte [22], Chen and Gu [23] and Kawahara and Tanaka [24]. The complete nonclassical
symmetry classification was given by Arrigo et al. [25] and Clarkson and Mansfield [26], where it
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was shown that nonclassical symmetries can only be found when Q(u) is cubic. Similar solutions
can be found using Painlevé techniques [27]. Construction of Lie and nonclassical symmetries for
autonomous reaction-diffusion equations with convective terms was initiated in [28] (see [29–31] for
more results).

Analytic solutions also exist for a more general reaction term, R(x, u), with constant diffusivity,
D(u) = D. Joshi and Morrison [32] used Painlevé and Lie symmetry techniques to find solutions
for specific forms of R(x, u), while solutions to a similar class of equations were found by Hashemi
and Nucci [33] using nonclassical symmetry analysis and the method of heir equations. Other exact
solutions were presented by Bradshaw-Hajek et al. [4], Ivanova and Sophocleous [34] and Vaneeva
and Zhalij [35] when R(x, u) = r(x)Q(u).

In the case where the reaction term is a function of u only, R(x, u) = Q(u), while the diffusion
coefficient is spatially dependent, D(x, u) = D(x), analytic solutions have been found using
nonclassical symmetry techniques [36,37].

Various symmetry techniques have been used to find solutions to more general autonomous
reaction-diffusion equations with D(x, u) = D(u) and R(x, u) = R(u); see for example Arrigo and
Hill [38], Goard and Broadbridge [39] and Cherniha et al. [31]. Travelling wave solutions have also
been presented by Gilding and Kersner [40].

Fewer solutions exist for the case when both the diffusion and reaction terms are spatially
dependent. Vaneeva et al. [41] used group analysis to construct exact solutions for equations of
the form:

f (x)ut = (g(x)ux)x + h(x)um.

In this paper, we use nonclassical symmetry methods to find some reductions and exact solutions
for the case when D(x, u) = D(x) is a spatially-dependent diffusion coefficient and R(x, u) = r(x)Q(u)
is a nonlinear reaction term with spatial dependence, i.e., equations of the type:

ut = (D(x)ux)x − r(x)Q(u). (1)

The nonclassical, or Q-conditional, symmetry technique is a conditional symmetry method that
generalises Lie’s classical point symmetry method. A classical point symmetry of a differential
equation such as (1) is an invertible transformation of the dependent and independent variables of
the form:

t∗ = t + εT(t, x, u) + O(ε2)

x∗ = x + εX(t, x, u) + O(ε2)

u∗ = u + εU(t, x, u) + O(ε2)


generated by the vector field:

Γ = T(t, x, u)
∂

∂t
+ X(t, x, u)

∂

∂x
+ U(t, x, u)

∂

∂u

which leaves the governing equation invariant. For a second order partial differential equation such as
Equation (1), this requirement can be written as:

Γ(2)(F)|F=0 = 0 (2)

where F(t, x, u, ut, ux, uxx) is the governing Equation (1) and Γ(2) is the second prolongation of the base
vector or symmetry generator, Γ (see [42] for further detail). This requirement of invariance leads to an
overdetermined, but linear system of PDEs for T(t, x, u), X(t, x, u) and U(t, x, u).

The nonclassical symmetry method was pioneered by Bluman and Cole [43]. This technique
requires invariance of the governing equation as described above, augmented by the invariant
surface condition:

T(t, x, u)ut + X(t, x, u)ux = U(t, x, u) (3)
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and its differential consequences:

uttT + uxtX = U[t],

utxT + uxxX = U[x],

and so on. Here,
U[t] = Dt(U)− Dt(T)ut − Dt(X)ux,

U[x] is similarly defined, and Dt and Dx are total derivatives. The inclusion of this additional condition
leads to an overdetermined system of nonlinear PDEs for T(t, x, u), X(t, x, u) and U(t, x, u) and can
sometimes lead to the discovery of additional symmetries that cannot be found using the classical
method. A strictly nonclassical symmetry solution of a differential equation may not be found using
the classical point symmetries of the same equation.

Whilst in this paper, we consider infinitesimals that depend on the dependent and independent
variables only, i.e., (t, x, u), it would be interesting to consider a generalised vector field given by:

Γn = T(t, x, u, u(1), . . . , u(n))
∂

∂t
+ X(t, x, u, u(1), . . . , u(n))

∂

∂x
+ U(t, x, u, u(1), . . . , u(n))

∂

∂u

where u(i) represents all the ith order partial derivatives of u with respect to t and x (as suggested by an
anonymous referee). The search for a generalised nonclassical symmetry would then require that the
equation in question remain invariant (2) and that the invariant surface condition (3) and its differential
consequences be satisfied. It is possible that this may extend the class of symmetry-invariant diffusion
equations and broaden the forms of D(x), r(x) and Q(u) that allow new nonclassical symmetries and
solutions to be found.

A symmetry found by either the classical or nonclassical method can be used to find the invariants
of the equation, and subsequently, the number of independent variables in the original differential
equation may be reduced; for equations such as (1), the reduced equation will be an ordinary differential
equation. After solving the reduced equation and working back through the transformations, a solution
to the original differential equation may be found.

Here, we search for forms of D(x), r(x) and Q(u) that allow new classical and nonclassical
symmetries and solutions to be found. The paper is organised as follows: In Section 2, we list the
nonclassical determining equations for Equation (1), find admissible forms of D(x), r(x) and Q(u)
and give the infinitesimals that characterise some classical and nonclassical symmetry generators.
The admissible forms of the arbitrary functions are given in their simplest forms, but may be generalised
by simple scalings and translations of the dependent and independent variables where appropriate.
In Section 3, we obtain a number of example solutions, while in Section 4, we make some final remarks
and discuss the relevance to population dynamics of the solutions presented here.

2. Nonclassical Symmetries

For 1+ 1 dimensional equations, the case where T(t, x, u) = 0 is known to be unfeasible, as finding
a nonclassical operator is equivalent to solving the original governing equation [44]. Therefore,
without loss of generality, we set T(t, x, u) = 1 and proceed to solve the determining equations for
X(t, x, u) and U(t, x, u).

The action of the second prolongation of the base vector, Γ, on the differential
Equation (1), together with the requirement of invariance (2), gives an expression relating
X(t, x, u), U(t, x, u), Q(u), D(x) and r(x) and their derivatives. After making use of the invariant
surface condition (3), we find that this expression may be separated into four determining
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equations according to the coefficients of powers of ux. The nonclassical determining equations
for Equation (1) are:

DrQuX− DxrQX + DrxQX− DrQUu + 2DrQXx

−D2Uxx + DUt − DxXU − DDxUx + 2DXxU = 0 (4)

−DDxxX− DDxXx + 2DXuU − 2DXXx + DxX2

+D2
xX− DXt − 2D2Uxu + D2Xxx + 3DrQXu = 0 (5)

D2Uuu + 2DDxXu + 2DXXu − 2D2Xxu = 0 (6)

D2Xuu = 0 (7)

We have been unable to solve this set of determining equations completely; however, some solutions
have been found. From Equation (7), we see that:

X(t, x, u) = f1(t, x)u + f2(t, x).

Substituting this into Equation (6), we obtain a PDE that can be solved to give:

U(t, x, u) = − 1
3D(x)

f1(t, x)2u3 +
∂ f1(t, x)

∂x
u2 − D′(x)

D(x)
f1(t, x)u2

− 1
D(x)

f1(t, x) f2(t, x)u2 + f3(t, x)u + f 4(t, x).

After substitution into Equation (5), we find:

2
3 f 3

1 u3 + (3 f 2
1 Dx − 4 f1 f1xD + 2 f 2

1 f2)u2

+(3 f1xxD2 − 3 f1DDxx − 2 f1D f2x − 2 f1 f3D

+3 f1D2
x − 3 f1xDDx + 2 f1 f2Dx − 2 f1x f2D + f1tD)u

+ f2DDxx + f2xDDx + 2 f2 f2xD− 2 f1 f4D + 2 f3xD2

− f2xxD2 − f2D2
x − f 2

2 Dx + f2tD− 3 f1rDQ = 0. (8)

Since all unknown functions apart from Q(u) are functions of x and/or t and we wish to find the forms
of Q(u) that satisfy Equation (8), we see that either Q(u) must be cubic or f1(t, x) = 0. These two cases
are investigated below.

This outcome is identical to the case when both D(x) = D and r(x) = r are constants; the solutions
in this constant case were presented by Arrigo et al. [25], and their application to population dynamics
was discussed elsewhere [45,46].

2.1. Q(u) Cubic

After setting Q(u) = au3 + bu2 + cu + d and f1(t, x) 6= 0, Equation (8) can be separated in
terms of powers of u, enabling the the functions fi(t, x) to be determined in terms of the arbitrary
functions D(x) and r(x). Substituting these into Equation (4), we obtain two PDEs for D(x) and
r(x). Setting D(x) = D and r(x) = r constant, we can obtain the result obtained by Arrigo et al. [25].
Setting D(x) = D and leaving r(x) arbitrary, we obtain the result presented in [4], while setting
r(x) = r and leaving D(x) arbitrary, we obtain the results presented in [36,37].

If D(x) and r(x) are both arbitrary, we are able to find a solution to Equation (4); however, we have
not been able to solve it in general. If b = c = d = 0, i.e., Q(u) = au3, and the spatially-dependent
diffusion and reaction terms are given by:

D(x) = D0x2 and r(x) = x2n, (9)
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we find a nonclassical generator characterised by the infinitesimals:

T = 1, X =

[
3

√
aD0

2
xnu + D0(2n− 1)

]
x,

U = −1
2
[
3ax2nu2 + 3

√
2aD0nxnu + D0n(n + 1)

]
u.

This nonclassical symmetry was first found by Louw and Moitsheki [47], where they considered
the cases n = 1 and n 6= 1. The resulting solutions were discussed in the context of
population dynamics.

2.2. f1(t, x) = 0

Setting f1(t, x) = 0, Equations (4) and (5) become:

−( f3xxu + f4xx)D2 − ( f3xu + f4x)DDx + ( f3tu + f4t)D

+( f3u + f4)(DrQu − f2Dx + 2 f2xD)− f2DxrQ

+ f2DrxQ− f3DrQ + 2 f2xDrQ = 0, (10)

− f2DDxx − f2xDDx − 2 f2 f2xD + f2D2
x + f 2

2 Dx

−2 f3xD2 + f2xxD2 − f2tD = 0. (11)

In order to find the admissible forms of the arbitrary functions D(x), r(x) and Q(u), we must
consider the cases when f3(t, x) and f4(t, x) are either zero or nonzero.

Setting both functions to zero, f3(t, x) = f4(t, x) = 0, we see that Q(u) is a factor of all remaining
terms in Equation (10) and does not appear at all in Equation (11),

− f2DxrQ + f2DrxQ− f3DrQ + 2 f2xDrQ = 0, (12)

− f2DDxx − f2xDDx − 2 f2 f2xD + f2D2
x + f 2

2 Dx + f2xxD2 − f2tD = 0. (13)

Since we are not interested in the case when Q(u) = 0, any set of functions f2(t, x), D(x), r(x)
that satisfies Equations (10) and (11) and forms a nonclassical symmetry will be valid for any form of
the nonlinear reaction term Q(u). In this case, f2(t, x) may be written in terms of D(x) and r(x) by
solving Equation (12),

f2(t, x) = s(t)

√
D(x)
r(x)

or f2(t, x) = s(t)

√
−D(x)

r(x)
. (14)

By substituting this into Equation (13), we find:

2DxxDr2 + 2D2rrxx − 3D2r2
x − D2

xr2 − 4sDrrx

√
±D

r
+ 4

st

s
Dr2 = 0. (15)

Since s(t) is the only time-dependent function, one possible way of finding solutions is to require that
that s(t) takes one of three different forms described below.

2.2.1. f1(t, x) = 0 and s(t) = c1

In this case, s(t) = c1 6= 0 is a constant, so that f2(t, x) is a function of x only. In this case and
using the second form of f2(t, x) from (14), a simple relationship between D(x) and r(x) cannot be
found, but instead, we obtain a single ODE that must be satisfied by D(x) and r(x),

2(D′′r + r′′D)rD− D′2r2 − 3r′2D2 − 4c1D
√
−Drr′ = 0.
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This equation is satisfied by the combination:

D(x) = −(c1x− c2) ln x, and r(x) =
c1x− c2

ln x
(16)

when x > 1, while the infinitesimals characterising the corresponding symmetry generator are:

T = 1, X = c1 ln x, U = 0. (17)

This is a strictly nonclassical symmetry since the classical determining equations are not satisfied
unless the invariant surface condition (3) and its differential consequences are invoked. In addition,
it is valid for any form of the nonlinear reaction term, Q(u).

2.2.2. f1(t, x) = 0 and s(t) =
1

c1t + c2

In this case, we find that D(x) is related to r(x) via:

D(x) =
c2

1r(x)3

r′(x)2 ,

and subsequently, we find from (15) that r(x) must satisfy:

r′′′r′r + (r′2 − 2rr′′)r′′ = 0.

The form of r(x) that satisfies this and the corresponding spatially-dependent diffusion are
given by:

r(x) = γxα and D(x) = D0γxα+2 (18)

where D0 = c2
1/α2. The infinitesimals that characterise the symmetry generator are:

T = 1, X =
x

αt + c2
, U = 0.

This symmetry is a generalised version of the Boltzmann scaling symmetry,

Γ = x
∂

∂x
+ 2t

∂

∂t
,

and satisfies the classical determining Equation (2); it is not a nonclassical symmetry.

2.2.3. f1(t, x) = 0 and s(t) =
1

c1et/c2
2 + c2

For this form of s(t), we find that D(x) is related to r(x) via:

D(x) =
r(x)3

c2
2r′2

.

By substituting this relationship and the form of s(t) into the remaining determining Equation (15),
we find that r(x) must satisfy:

r′′′r′r3 + (r′2r2 − 2r′′r3)r′′ + r′4 = 0.
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While we have not solved this equation completely, a solution to this equation and the
corresponding spatially-dependent diffusion is:

r(x) =
1

ln x
, and D(x) = D0x2 ln x, (19)

while the infinitesimals that characterise the symmetry generator are:

T = 1, X =
D0x ln x

βeD0t − 1
, U = 0. (20)

This symmetry satisfies the classical determining Equation (2) and so is not a strictly nonclassical
symmetry; however, it is valid for any form of the nonlinear reaction term, Q(u).

Each of the three reduction operators described above arises from setting f3(t, x) = f4(t, x) = 0.
We have also investigated the cases where either one or both of f3(t, x) and f4(t, x) are nonzero;
however, we have been unable to find a solution to the determining equations in these cases.

The classical and nonclassical symmetries presented in this section are summarised in Table 1.

Table 1. Admissible forms of the nonlinear reaction terms and the spatially-dependent diffusion
and reaction coefficients when Equation (1) admit classical (c) and nonclassical (n) symmetries.
The infinitesimals are also given in each case.

D(x), r(x), Q(u) Symmetry Infinitesimals

1 D(x) = D0x2 n T = 1

r(x) = x2n X =

[
3

√
aD0

2
xnu + D0(2n− 1)

]
x

Q(u) = au3 U = −1
2
[
3ax2nu2 + 3

√
2aD0nxnu + D0n(n + 1)

]
u

2(a) D(x) = −(c1x− c2) ln x n T = 1

r(x) =
c1x− c2

ln x
X = c1 ln x

Q(u) arbitrary U = 0

2(b) D(x) = D0γxα+2 c T = 1

r(x) = γxα X =
x

αt + c2

Q(u) arbitrary U = 0

2(c) D(x) = D0x2 ln x c T = 1

r(x) =
1

ln x
X =

D0x ln x
βeD0t − 1

Q(u) arbitrary U = 0

3. Reduced Equations and Some Example Solutions

In this section, we find the reduced equations for the nonclassical and Lie point symmetries found
above, and in some cases, we give some new exact solutions.

3.1. Q(u) = au3, D(x) = D0x2, r(x) = x2n

The first case, where Q(u) is cubic and D(x) and r(x) are given by Equation (9), was examined
by Louw and Moitsheki [47]. They found the reduced equations for n = 1 and n 6= 1 and provided
analytic solutions in both cases. This class of equations (with Q(u) cubic) is of relevance in population
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dynamics and can be used to describe changes in the gene frequency in a diploid sexually-reproducing
population [45]. Louw and Moitsheki discussed briefly the relevance of the solutions to these types
of problems.

3.2. Q(u) Arbitrary

3.2.1. Q(u) Arbitrary, D(x) = −(c1x− c2) ln x, r(x) =
c1x− c2

ln x
If the spatially-dependent diffusion and reaction terms are given by the combination (16), while the

nonlinear reaction term remains arbitrary, the invariant surface condition (3) and the nonclassical
generator characterised by (17) can be used to eliminate ut from the original PDE (1) to obtain:

ln xuxx +
1
x

ux +
1

ln x
Q(u) = 0.

After multiplying through by ln xux, this equation may be integrated once to give:

ux =

√
−2
∫ u Q(u′)du′

| ln x|

which is separable. After separating, integration with respect to x yields an exponential integral,
while integration with respect to u depends on the form of Q(u). Here, we give two examples that
are relevant to modelling in population dynamics: the classic Fisher-type or logistic reaction term,
Q(u) = au(u − 1), which is often used to model cell populations or other asexually-reproducing
species, and the Huxley-type reaction term, Q(u) = au2(u − 1), which is more appropriate for a
sexually-reproducing species.

For Q(u) = au(u− 1), integration with respect to u gives:

− 2√
a tanh−1

(
1√
3

√
3− 2u

)
+ c(t) =

∫ x dx′

ln x′

where c(t) may be determined by substituting this into the original PDE. Upon doing this, we find
that c(t) must satisfy c′(t) = c1, so that:

u(x, t) = 3
2

[
1− tanh2

(√
a

2

(
c1t + c3 −

∫ x dx′

ln x′

))]
(21)

is a solution to Equation (1) when Q(u) is quadratic and the spatial dependence of the diffusion and
reaction terms are given by (16).

For Q(u) = au2(u− 1), integration with respect to u gives:

−
√

3
2a

√
4− 3u

u
+ c(t) =

∫ x dx′

ln x′

where c(t) may be determined by substituting this into the original PDE. After substitution, we find
that c(t) must satisfy c′(t) = c1, so that:

u(x, t) = 4

[
2a
3

(
c1t + c3 −

∫ x dx′

ln x′

)2

+ 3

]−1

(22)

is a solution to Equation (1) when Q(u) is cubic and the spatial dependence of the diffusion and
reaction terms are given by (16). Solutions (21) and (22) are new nonclassical symmetry solutions to
Equation (1) with the diffusion and reaction terms as specified.
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3.2.2. Q(u) Arbitrary, D(x) = D0γxα+2, r(x) = γxα

For this combination of spatially-dependent diffusion and reaction coefficient, the symmetry
operator found above is a classical point symmetry; however, we still present some example solutions
here. When Q(u) is arbitrary and D(x) and r(x) are given by Equation (18), Equation (1) may be
reduced to:

D0γφ2uφφ + (D0γ(α + 2)φ− φ1−α)uφ − γQ(u) = 0

where φ = x(αt− c2)
1/α. After introducing the transformation y = ln φ, this may be simplified to:

D0γuyy + (D0γ(α + 1)− e−αy)uφ − γQ(u) = 0.

It is difficult to progress any further without giving a specific form for the nonlinear reaction term,
and in fact, there are very few forms of Q(u) for which analytic solutions may be found. One example
that does admit analytic solutions is if Q(u) is linear. In this case, solutions may be written in terms of
Kummer functions, Bessel functions (if α = −1) or Whittaker functions (if α = −2) [48]. In the case
when α = −2, the diffusion coefficient is constant, and the symmetry generator reduces to:

Γ =
∂

∂t
+

x
c2 + 2t

∂

∂x

which is equivalent to the classical Boltzmann scaling symmetry.

3.2.3. Q(u) Arbitrary, D(x) = D0x2 ln x, r(x) =
1

ln x
When the spatially-dependent diffusion and reaction terms are given by combination (19) while

the nonlinear reaction term remains arbitrary, the classical generator characterised by (20) may be used
to reduced the original PDE (1) to:

D0φ2uφφ + D0(βφ + 1)φuφ −Q(u) = 0,

where φ = ln x/(β − e−D0t). This equation may be simplified by introducing the transformation
y = ln φ to give:

D0uyy + D0βeyuy −Q(u) = 0. (23)

No further progression can be made for general Q(u), and we have not been able to find any solutions
if β 6= 0. However, if β = 0, Equation (23) can be integrated twice after multiplying by uy to obtain:√

2
D0

y =
∫ u dũ√∫ ũ Q(ū)dū

.

The right-hand side can be evaluated for some forms of Q(u), and once again, we provide two
examples using the same forms as those above.

For a quadratic Fisher-type reaction term Q(u) = au(u− 1), integration yields:√
2

D0
y = 2

√
2√
a tan−1

(
1√
3

√
2u− 3

)
+ c̄

where c̄ is a constant, and the other constant of integration has been set to zero. After rearranging and
working back through the transformations, we find that a solution to the original PDE (1) with spatial
dependence as given by (19) is:

u(x, t) = 3
2 sec2

[ √
a

2
√

D0
(ln(− ln x) + D0t + c)

]
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for 0 < x < 1 and where c = −
√

D0 c̄.
For a cubic Huxley-type reaction term, Q(u) = au2(u− 1), integration yields:√

2
D0

y =

√
3(3u− 4)

au
+ c̄

where c̄ is a constant, and the other constant of integration has been set to zero. After rearranging and
working back through the transformations, a solution to the original PDE (1) with spatial dependence
as given by Equation (19) is:

u(x, t) = 4
[

3− 2a
3D0

(c + ln(− ln x) + D0t)2
]−1

where c = −(3D0/2a)c̄.

4. Discussion and Final Remarks

In this paper, we have investigated a class of nonlinear reaction diffusion equations with arbitrary
spatial dependence in both the diffusion coefficient and the coefficient of the reaction term. Although
we have not solved the determining equations completely, we have found some new forms of the
spatial dependence that admit nonclassical or classical point symmetries. For these forms of spatial
dependence, we have found the reduced equation, and for some examples, we have constructed new
analytic solutions. In this paper, we have considered traditional nonclassical symmetries, that is we
have looked for infinitesimals that depend on the independent and dependent variables only (t, x, u),
and not on the derivatives of u. It would be interesting to discover if the forms of D(x), r(x) and Q(u)
that allow construction of an analytic solution may be expanded by the use of generalised nonclassical
symmetries as described in the Introduction. We leave this for future work.

Unfortunately, none of the spatial dependencies that we have found here match the step function
dependence of the real-world applications discussed in the Introduction. However, we now discuss the
application of one of the solutions found here to a model of potential relevance to population dynamics.
Nonlinear reaction diffusion equations of type (1) can be used to describe changes in the frequency
of a new recessive gene. The quadratic Fisher-type logistic nonlinearity can be used to describe this
situation for an asexually-reproducing population, whereas the cubic Huxley-type nonlinearity is
more appropriate for a sexually-reproducing diploid population. In this case, the dependent variable,
u(x, t), might represent the density of one of the genotypes in the population. Figure 1a,b shows the
spatial dependence given by (16). For the parameter set chosen, individuals diffuse more readily at
the left side of the range, while at the right-hand side of the range, the diffusion coefficient becomes
slightly negative, indicating aggregation. The strength of the reaction term also varies throughout the
range, being greater at the right-hand end. Figure 1c,d shows the solutions presented in Equations (21)
and (22) for quadratic and cubic nonlinearities, respectively. Interestingly, the behaviour of the
population density is similar in both cases: the profile is similar, and the frequency decreases with
time. However, the decrease in the quadratic Fisher-type case is much faster than the decrease in
the cubic Huxley-type case. The final time shown for the quadratic case is (nondimensional) t = 1.5,
whereas the final time shown for the cubic case is (nondimensional) t = 2.5. At these different times,
the population profiles are of a similar magnitude. This difference in the time taken for the population
density to decrease again highlights the importance of choosing an appropriate model for the situation
under consideration [49].
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(a) (b)

(c) (d)

Figure 1. Plot of the spatial dependence and the example solutions arising from Symmetry 2(b).
(a) Spatially-dependent diffusion coefficient. (b) Spatially-dependent coefficient of the reaction term.
(c) Population density as given by the solution (21) for the quadratic Fisher-type reaction term
(t = 0, 0.3, . . . , 1.5). (d) Population density as given by the solution (22) for the cubic Huxley-type
reaction term (t = 0, 0.5, . . . , 2.5). In both cases, the arrow shows increasing time. In all plots,
the parameter values are a = 0.6, c1 = −2, c2 = −1.2, c3 = −1.
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