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Abstract: The present paper aims to establish the first order differential subordination relations
between functions with a positive real part and starlike functions related to the Bell numbers.
In addition, several sharp radii estimates for functions in the class of starlike functions associated
with the Bell numbers are determined.
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1. Introduction

LetA be a class of analytic functions f in the open unit disk D := {z ∈ C : |z| < 1} and normalized
by the conditions f (0) = 0 and f ′(0) = 1. Suppose S is a subclass of A consisting of univalent
functions. An analytic function f is subordinate to g, written as f ≺ g, if there exists an analytic
function w : D→ D with |w(z)| ≤ |z| such that f (z) = g(w(z)) (z ∈ D). Moreover, if g is univalent in
D, then the equivalent conditions for subordination can be written as f (0) = g(0) and f (D) ⊆ g(D).
By imposing some geometric and analytic conditions over the functions in the class S , many authors
considered several subclasses of S . Various subclasses of starlike and convex functions were studied in
the literature, and they can be unified by considering an analytic univalent function ϕ with a positive
real part in D, symmetric about the real axis and starlike with respect to ϕ(0) = 1, and ϕ′(0) > 0.
Ma and Minda [1] studied the class

S∗(ϕ) :=
{

f ∈ A :
z f ′(z)

f (z)
≺ ϕ(z)

}
.

The class S∗(ϕ) for various choice of the domain ϕ(D) was considered in recent years. The class
S∗[A, B] := S∗((1+ Az)/(1+ Bz))(−1 ≤ B < A ≤ 1) was introduced by Janowski [2]. For 0 ≤ α ≤ 1,
the class S∗(α) := S∗[1− 2α,−1] is the class of starlike functions of order α. Uralegaddi et al. [3]
defined the class

M(β) :=
{

f ∈ A : Re
(

z f ′(z)
f (z)

)
< β (β > 1)

}
= S∗

(
1 + (1− 2β)z

1− z

)
.
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Several authors considered various special cases of the class of Janowski starlike functions
by considering some specific functions, namely ϕq(z) := z +

√
1 + z2, ϕ0(z) := 1 +

(z/k)((k + z)/(k− z)) (k =
√

2 + 1) , ϕs(z) := 1 + sin z, and Gα(z) := 1 + z/(1− αz2). Some of
those classes are: S∗L := S∗(

√
1 + z) [4], S∗q := S∗(ϕq(z)) [5], S∗e = S∗(ez) [6], S∗R = S∗(ϕ0) [7],

S∗s = S∗(ϕs) [8]) , BS∗(α) := S∗(Gα(z)), 0 ≤ α < 1 [9,10]. For a brief survey on these classes, readers
may refer to [11,12].

It should be noted that the special cases of ϕ, mentioned above, are univalent in the unit disk.
In 2011, Dziok et al. [13,14] considered ϕ to be a non-univalent function associated with the Fibonacci
numbers, defined by

p̃(z) := ϕ(z) =
1 + τ2z2

1− τz− τ2z2 , τ :=
(

1−
√

5
)

/2

which maps the unit disk D on to a shell-like domain in the right-half plane. Further, they defined the
class S∗F := { f ∈ A : z f ′(z)/ f (z) ≺ p̃(z)}. The functions f ∈ S∗F are starlike of order

√
5/10.

Motivated by the above defined classes, we consider a function associated with the Bell Numbers.
For a fixed non-negative integer n, the Bell numbers Bn count the possible disjoint partitions of a set
with n elements into non-empty subsets or, equivalently, the number of equivalence relations on it.
The Bell numbers Bn satisfy a recurrence relation involving binomial coefficients Bn+1 = ∑n

k=0 (
n
k)Bk.

Clearly B0 = B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, and B6 = 203. For more details, see [15–21].
Kumar et al. [22] considered the function

Q(z) := eez−1 =
∞

∑
n=0

Bn
zn

n!
= 1 + z + z2 +

5
6

z3 +
5
8

z4 + · · · (z ∈ D)

which is starlike with respect to 1 and it’s coefficients generate the Bell numbers. Kumar et al. [22]
defined the class S∗B by S∗B := S∗(Q). From [1], note that the function f ∈ S∗B if and only if there exists
an analytic function q, satisfying q(z) ≺ Q(z) (z ∈ D), such that

f (z) = I(q(z)) = z exp
(∫ z

0

q(t)− 1
t

dt
)

.

The above representation shows that the functions in the class S∗B can be seen as an integral
transform I(q(z)) of the function q with f (0) = 0 and f ′(0) = 1. The reader may refer to the paper [23]
and the references cited therein for integral transform related works. The authors in [22] determined
sharp coefficient bounds on the six initial coefficients, Hankel determinant, and on the first three
consecutive higher order Schwarzian derivatives for functions in the class S∗B.

Let P be the class of analytic functions p : D→ C with p(0) = 1 and Re p(z) > 0 (z ∈ D). In 1989,
Nunokawa et al. [24] showed that if 1 + zp′(z) ≺ 1 + z, then p(z) ≺ 1 + z. In 2007, Ali et al. [25]
computed the condition on β, in each case, for which

1 +
βzp′(z)

pj(z)
≺ 1 + Dz

1 + Ez
(j = 0, 1, 2) implies p(z) ≺ 1 + Az

1 + Bz
,

A, B, C, D, E, F ∈ [−1, 1]. Further, Ali et al. [26] determined some sufficient conditions for normalized
analytic functions to lemniscate starlike functions. Recently, Kumar and Ravichandran [27] obtained
sufficient conditions for first order differential subordinations so that the corresponding analytic
function belongs to the class P . In 2016, Tuneski [28] gave a criteria for analytic functions to be
Janowski starlike. For more details, see [11,29–33].

Motivated by above works, in Section 2, using the theory of differential subordination developed
by Miller and Mocanu, a sharp bound on parameter β is determined in each case so that p(z) ≺ Q(z),
whenever 1 + βzp′(z)/pj(z)(j = 0, 1, 2) is subordinate to the function ϕ0(z) or

√
1 + z or Gα(z) or

(1+ Az)/(1+ Bz) or ϕs(z) or ϕq(z). Further, various sufficient conditions are obtained for f ∈ A to be
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in the class S∗B as an application of these subordination results. In Section 3, S∗B-radius for the class of
Janowski starlike functions and some other well-known classes of analytic functions are investigated.

2. Differential Subordinations

Theorem 1 provides estimate on β so that p(z) ≺ Q(z) holds, whenever 1 + βzp′(z) ≺ ϕ0(z) or
ϕs(z) or

√
1 + z or Gα(z) or (1 + Az)/(1 + Bz) or ϕs(z) or ϕq(z) or ez.

To prove our main results, we need the following lemma due to Miller and Mocanu:

Lemma 1. ([32] Theorem 3.4h, p. 132) Let q be analytic in D and let ψ and ν be analytic in a domain U
containing q(D) with ψ(w) 6= 0 when w ∈ q(D). Set

Q(z) := zq′(z)ψ(q(z)) and h(z) := ν(q(z)) +Q(z).

Suppose that

(i) either h is convex, or Q is starlike univalent in D and

(ii) Re
(

zh′(z)
Q(z)

)
> 0 for z ∈ D.

If p is analytic in D, with p(0) = q(0), p(D) ⊆ U and

ν(p(z)) + zp′(z)ψ(p(z)) ≺ ν(q(z)) + zq′(z)ψ(q(z)),

then p ≺ q, and q is most dominant.

Theorem 1. Let l(e) = (1− e(1−e)/e)−1, 0 < α < 1, 0 < B < A < 1, and p be an analytic function defined
in D with p(0) = 1.

Set
Υβ(z, p(z)) = 1 + βzp′(z).

Then, the following are sufficient for p(z) ≺ Q(z).

(a) Υβ(z, p(z)) ≺ ϕ0(z) for β ≥ l(e)(1−
√

2 + log 2) ≈ 0.59533.
(b) Υβ(z, p(z)) ≺

√
1 + z for β ≥ l(e)(2(1− log2)) ≈ 1.30984.

(c) Υβ(z, p(z)) ≺ Gα(z) for β ≥ l(e) 1
2
√

α
log 1+

√
α

1−
√

α
.

(d) Υβ(z, p(z)) ≺ 1+Az
1+Bz for β ≥ l(e) A−B

B log (1− B)−1.
(e) Υβ(z, p(z)) ≺ ϕs(z) for β ≥ l(e)∑∞

n=0
(−1)n

(2n+1)!(2n+1) ≈ 2.01905.
(f) Υβ(z, p(z)) ≺ ϕq(z) for β ≥ l(e)(2−

√
2− log 2 + log (1 +

√
2)) ≈ 1.65198.

(g) Υβ(z, p(z)) ≺ ez for β ≥ l(e)∑∞
n=0

(−1)n−1

n!n ≈ 0.785166.

The lower bound on β in each case is sharp.

Proof. Let the functions ν and ψ be defined by ν(w) = 1 and ψ(w) = β.
(a) Define the function qβ : D→ C by

qβ(z) = 1− 1
βk

(
z + 2k log

(
1− z

k

))
is a solution of the differential equation βzq′(z) = ϕ0(z) − 1 and is analytic in D. Now consider
the function

Q(z) = zq′β(z)ψ(qβ(z)) = ϕ0(z)− 1 =
k + z− 2k2

k− z
.

It can be easily seen that Q is starlike in D and the function h is defined by

h(z) := ν(q(z)) +Q(z) = 1 +Q(z)
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satisfies the following inequality

Re
(

zh′(z)
Q(z)

)
= Re

(
zQ′(z)
Q(z)

)
> 0 (z ∈ D).

Therefore, from Lemma 1, we conclude that

1 + βzp′(z) ≺ 1 + βzq′β(z) implies p ≺ qβ. (1)

Now the subordination p ≺ Q holds if subordination qβ ≺ Q. Thus, the subordination qβ ≺ Q
holds if the inequalities

Q(−1) ≤ qβ(−1) ≤ qβ(1) ≤ Q(1)

hold and these yield a necessary condition for subordination p ≺ Q to hold. In view of the graph
of the respective function, the necessary condition is also sufficient condition. The inequalities
qβ(−1) ≥ Q(−1) and qβ(1) ≤ Q(1) yield β ≥ β1 and β ≥ β2, where

β1 =
1−
√

2 + log 2
1− e(1−e)/e

and β2 =
1−
√

2− 2 log(2−
√

2)
e(e−1)/e − 1

.

Now the subordination qβ ≺ Q holds if β ≥ max {β1, β2} = β1.
(b) The function

qβ(z) =
β + 2(

√
1 + z− log(1 +

√
1 + z) + log 2− 1)

β

is an analytic solution of the first order differential equation βzq′(z) =
√

1 + z− 1 in D. The function
Q defined by Q(z) = zq′β(z)ψ(qβ(z)) =

√
1 + z − 1 is starlike in D and the function h(z) :=

ν(q(z)) + Q(z) satisfies Re (zh′(z)/Q(z)) = Re (zQ′(z)/Q(z)) > 0, z ∈ D. Therefore, in view of
the subordination relation 1, the required subordination p ≺ Q holds if subordination qβ ≺ Q holds.
Thus, the subordination qβ ≺ Q holds if the inequalities

Q(−1) ≤ qβ(−1) ≤ qβ(1) ≤ Q(1)

hold which in-turn yield a necessary condition for subordination p ≺ Q. The inequalities qβ(−1) ≥
Q(−1) and qβ(1) ≤ Q(1) yield β ≥ β1 = 2(1 − log 2)/1 − e(1−e)/e and β ≥ β2 = 2(

√
2 − 1 +

log 2− log(1 +
√

2))/(e(1−e)/e − 1), respectively. Therefore, the subordination qβ ≺ Q holds if β ≥
max {β1, β2} = β1.

(c) The analytic function

qβ(z) =
2
√

αβ + log 1+
√

αz
1−
√

αz

2
√

αβ

is a solution of the differential equation βzq′β(z) = Gα(z)− 1 in D. Now computation shows that

Q(z) = zq′β(z)ψ(qβ(z)) =
z

1− αz2

is starlike in D. Note that the function h(z) := ν(q(z)) +Q(z) = 1+Q(z) satisfies Re (zh′(z)/Q(z)) =
Re (zQ′(z)/Q(z)) > 0 in D. Therefore, in view of the subordination relation 1, the required
subordination p ≺ Q holds if subordination qβ ≺ Q. Similar to as in part (a), the desired subordination
p ≺ Q holds if β ≥ max{β1, β2} = β1, where β1 = l(e)g(α) and β2 = −l(e)g(α) such that

g(α) =
1

2
√

α
log

1 +
√

α

1−
√

α
.
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(d) Consider the analytic function

qβ(z) =
Bβ + (A− B) log(1 + Bz)

Bβ

which is a solution of differential equation

βzq′(z) =
(A− B)z

1 + Bz
.

Since the function (A− B)z/(1 + Bz) is starlike in D, it follows that Q(z) = zq′β(z)ψ(qβ(z)) is
starlike in D. The function h : D → C defined by h(z) := ν(qβ(z)) + Q(z) = 1 + Q(z) satisfies
Re(zh′(z)/Q(z)) > 0 (z ∈ D). Thus, as in previous case, the subordination p ≺ Q holds if
β ≥ max{β1, β2} = β1, where

β1 =
(A− B) log(1− B)−1

B(1− e(1−e)/e)
and β2 =

(A− B) log(1 + B)
B(e(1−e)/e − 1)

.

(e) The differential equation
dq
dz

=
sin z
βz

has an analytic solution

qβ(z) = 1 +
1
β

∞

∑
n=0

(−1)nz2n+1

(2n + 1)!(2n + 1)

in D. Now the function Q(z) = zq′β(z)ψ(qβ(z)) = sin z is starlike in D and the function h(z) :=
ν(q(z)) +Q(z) = 1 +Q(z), satisfies Re (zh′(z)/Q(z)) = Re (zQ′(z)/Q(z)) > 0 holds. As in part (a),
the desired subordination p(z) ≺ Q(z) holds if β ≥ max{β1, β2} = β1, where

β1 =
1

(1− e(1−e)/e)

∞

∑
n=0

(−1)n

(2n + 1)!(2n + 1)
≈ 2.01905

and

β2 =
1

(e(e−1) − 1)

∞

∑
n=0

(−1)n

(2n + 1)!(2n + 1)
≈ 0.206779.

(f) The differential equation
dq
dz

=
z +
√

1 + z2 − 1
βz

has an analytic solution

qβ(z) =
β + (z +

√
1 + z2 − log(1 +

√
1 + z2)− 1 + log 2)

β
.

Computation shows that the function

Q(z) = zq′β(z)ψ(qβ(z)) = z +
√

1 + z2 − 1

is starlike in D. As before, the function h(z) := ν(q(z)) +Q(z) satisfies Re (zh′(z)/Q(z)) > 0, z ∈ D.
Therefore, the desired subordination p ≺ Q holds if β ≥ max{β1, β2} = β1, where

β1 =
2−
√

2− log 2 + log(1 +
√

2)
1− e(1−e)/e

≈ 1.65198
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and

β2 =

√
2 + log 2− log(1 +

√
2)

e(1−e)/e − 1
≈ 0.267979.

(g) The differential equation
dq
dz

=
ez − 1

βz

has an analytic solution

qβ(z) = 1 +
1
β

∞

∑
n=0

zn

n!n
.

Note that the function Q(z) = zq′β(z)ψ(qβ(z)) = ez is starlike in the unit disk D and the function
h(z) := ν(q(z)) +Q(z) = 1 +Q(z) satisfies Re (zh′(z)/Q(z)) = Re (zQ′(z)/Q(z)) > 0. Now the
subordination p ≺ Q holds if β ≥ max{β1, β2} = β1, where

β1 =
1

(1− e(1−e)/e)

∞

∑
n=0

(−1)n−1

n!n
≈ 0.785166 and β2 =

1
(e(e−1) − 1)

∞

∑
n=0

1
n!n
≈ 0.288069.

This ends the proof.

Theorem 1 also provides the following various sufficient conditions for the normalized analytic
functions f to be in the class S∗B.

Let function f ∈ A and set

Υβ

(
z,

z f ′(z)
f (z)

)
= 1 + β

z f ′(z)
f (z)

(
1− z f ′(z)

f (z)
+

z f ′′(z)
f ′(z)

)
.

If either of the following subordination holds

(a) Υβ

(
z, z f ′(z)

f (z)

)
≺ ϕ0(z) (β ≥ 0.59533),

(b) Υβ

(
z, z f ′(z)

f (z)

)
≺
√

1 + z (β ≥ 1.30984),

(c) Υβ

(
z, f ′(z)

f (z)

)
≺ Gα(z) (β ≥ 1

(1−e(1−e)/e)
1

2
√

α
log 1+

√
α

1−
√

α
),

(d) Υβ

(
z, f ′(z)

f (z)

)
≺ 1+Az

1+Bz (β ≥ 1
(1−e(1−e)/e)

A−B
B log (1− B)−1),

(e) Υβ

(
z, z f ′(z)

f (z)

)
≺ ϕs(z) (β ≥ 2.01905),

(f) Υβ

(
z, z f ′(z)

f (z)

)
≺ ϕq(z) (β ≥ 1.65198),

(g) Υβ

(
z, z f ′(z)

f (z)

)
≺ ez (β ≥ 0.785166),

then f ∈ S∗B.
The next result gives sharp lower bound on β such that subordination p ≺ Q holds, whenever

1 + βzp′(z)/p(z) ≺ ϕ0(z) or ϕs(z) or
√

1 + z or Gα(z) or (1 + Az)/(1 + Bz) or ϕs(z) or ϕq(z) or ez.

Theorem 2. Let 0 < α < 1, 0 < B < A < 1, and p be an analytic function defined in D with p(0) = 1.
Set

Ωβ(z, p(z)) = 1 + β
zp′(z)
p(z)

.

Then, the following conditions are sufficient for subordination p ≺ Q.

(a) Ωβ(z, p(z)) ≺ ϕ0(z) for β ≥ e(2(1+
√

2) log
√

2−1
(e−1)(1+

√
2)

≈ 0.441266.

(b) Ωβ(z, p(z)) ≺
√

1 + z for β ≥ 2e(1−log 2)
e−1 ≈ 0.970868.

(c) Ωβ(z, p(z)) ≺ Gα(z) for β ≥ e
2(e−1)

√
α

log 1+
√

α
1−
√

α
.

(d) Ωβ(z, p(z)) ≺ 1+Az
1+Bz for β ≥ e

B(e−1) (A− B) log(1− B)−1.
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(e) Ωβ(z, p(z)) ≺ ϕs(z) for β ≥ e
e−1 ∑∞

n=0
(−1)n

(2n+1)!(2n+1) ≈ 1.49655.
(f) Ωβ(z, p(z)) ≺ ϕq(z) for β ≥ e

e−1 (2−
√

2 + log(1 +
√

2)− log 2) ≈ 1.22447.
(g) Ωβ(z, p(z)) ≺ ez for β ≥ 1

e−1 ∑∞
n=0

1
n!n ≈ 0.766987.

The lower bound on β in each case is sharp.

Proof. Let us define ν(w) = 1 and ψ(w) = β/w for all w ∈ C.
(a) The function

qβ(z) = exp
(
− 1

βk

(
z + 2k log

(
1− z

k

)))
satisfies the differential equation βzq′(z)/q(z) = ϕ0(z)− 1. Clearly, the function Q : D → defined
by Q(z) = zq′β(z)ψ(qβ(z)) = (z − 2k2 + k)/(k − z) is starlike in D. Further, the function h(z) :=
ν(qβ(z)) +Q(z) satisfies Re(zh′(z)/Q(z)) > 0 (z ∈ D). Thus, using Lemma 1, it follows that

1 + β
zp′(z)
p(z)

≺ 1 + β
zq′β(z)

qβ(z)
implies p ≺ qβ. (2)

Now using Theorem 1 (a), the subordination p ≺ Q holds if β ≥ max {β1, β2} = β1, where

β1 =
(−1 + 2(1 +

√
2) log

√
2)e

(e− 1)(1 +
√

2)

and

β2 = − (1 + 2(1 +
√

2) log (2−
√

2))
(e− 1)(1 +

√
2)

.

(b) The function

qβ(z) = exp
(

2
β

(√
1 + z− log(1 +

√
1 + z) + log 2− 1

))
is a solution of the differential equation

β
zq′(z)
q(z)

=
√

1 + z− 1.

Moreover, the function Q(z) = zq′β(z)ψ(qβ(z)) =
√

1 + z− 1 is starlike in D and a computation
shows that the function h(z) := ν(q(z)) +Q(z) satisfies Re (zh′(z)/Q(z)) > 0 (z ∈ D). Now the
desired subordination p ≺ Q holds if β ≥ max {β1, β2} = β1, where β1 = 2e(1− log 2)/(e− 1) and
β2 = 2(−1 +

√
2 + log 2− log(1 +

√
2))/(e− 1).

(c) Consider the function qβ defined by

qβ(z) = exp
(

1
2
√

αβ
log

1 +
√

αz
1−
√

αz

)
.

It can be verified that the function qβ is a solution of the differential equation

β
zq′(z)
q(z)

=
1

1− αz2 .

Now the function Q(z) = zq′β(z)ψ(qβ(z)) = 1/(1− αz2) is starlike in D and the function h(z) :=
ν(q(z)) +Q(z) satisfies Re (zh′(z)/Q(z)) > 0 (z ∈ D). Now, as in previous cases, p ≺ Q holds only if
β ≥ max {β1, β2} = β1, where
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β1 =
e

2(e− 1)
√

α
log

1 +
√

α

1−
√

α
and β2 =

1
2(e− 1)

√
α

log
1 +
√

α

1−
√

α
.

(d) Let the function qβ(z) = exp ((A− B) log(1 + Bz)/βB) be an analytic solution of the
differential equation

1 + β
zq′(z)
q(z)

=
1 + Az
1 + Bz

.

Now the desired subordination p ≺ Q holds if β ≥ max {β1, β2} = β1, where β1 = e(A −
B) log(1− B)−1/B(e− 1) and β2 = e(A− B) log(1 + B)/B(e− 1).

(e) The differential equation βzq′(z)/q(z) = sin z has an analytic solution given by

qβ(z) = exp

(
1
β

∞

∑
n=0

(−1)nz2n+1

(2n + 1)!(2n + 1)

)
.

As in part Theorem 2 (a), the subordination p ≺ Q holds if β ≥ max {β1, β2} = β1 where

β1 =
e

e− 1

∞

∑
n=0

(−1)n

(2n + 1)!(2n + 1)
≈ 1.49655

and

β2 =
1

e− 1

∞

∑
n=0

(−1)n

(2n + 1)!(2n + 1)
≈ 0.55055.

(f) The solution of the differential equation

dq
dz

=
z +
√

1 + z2 − 1
βz

is given by

qβ(z) = exp

(
z +
√

1 + z2 − log(1 +
√

1 + z2)− 1 + log 2
β

)
.

As in proof of Theorem 2 (a), the desired result holds if β ≥ max{β1, β2} = β1, where β1 =

e(2−
√

2 + log(1 +
√

2)− log 2)/(e− 1) and β2 = (
√

2− log(1 +
√

2) + log 2)/(e− 1).
(g) The differential equation βzq′(z)/q(z) = ez − 1 has a solution

qβ(z) = exp

(
1
β

∞

∑
n=1

zn

n!n

)

analytic in D. Thus, as previous, the subordination p ≺ Q holds if β ≥ max {β1, β2} = β2, where

β1 =
e

e− 1

∞

∑
n=0

(−1)n−1

n!n
≈ 0.581976 and β2 =

1
e− 1

∞

∑
n=0

1
n!n
≈ 0.766987.

This ends the proof.

Next, Theorem 2 also provides the following various sufficient conditions for the normalized
analytic functions f to be in the class S∗B. Let the function f ∈ A and set

Ωβ

(
z,

z f ′(z)
f (z)

)
= 1 + β

(
1− z f ′(z)

f (z)
+

z f ′′(z)
f ′(z)

)
.

If either of the following subordination conditions are fulfilled:
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(a) Ωβ

(
z, z f ′(z)

f (z)

)
≺ ϕ0(z) (β ≥ 0.441266),

(b) Ωβ

(
z, z f ′(z)

f (z)

)
≺
√

1 + z (β ≥ 0.970868),

(c) Ωβ

(
z, z f ′(z)

f (z)

)
≺ Gα(z) (β ≥ e

2(e−1)
√

α
log 1+

√
α

1−
√

α
),

(d) Ωβ

(
z, z f ′(z)

f (z)

)
≺ 1+Az

1+Bz (β ≥ e
B(e−1) (A− B) log(1− B)−1),

(e) Ωβ

(
z, z f ′(z)

f (z)

)
≺ ϕs(z) (β ≥ 1.49655),

(f) Ωβ

(
z, z f ′(z)

f (z)

)
≺ ϕq(z) (β ≥ 1.22447),

(g) Ωβ

(
z, z f ′(z)

f (z)

)
≺ ez (β ≥ 0.766987),

then f ∈ S∗B.
In the following theorem, the sharp lower bound on β is obtained so that the subordination p ≺ Q

holds, whenever 1+ βzp′(z)/p2(z) ≺ ϕ0(z) or ϕs(z) or
√

1 + z or Gα(z) or (1+ Az)/(1+ Bz) or ϕs(z)
or ϕq(z) or ez. These results can be proved by defining the functions ν, ψ : D→ defined by ν(w) = 1
and ψ(w) = β/w2 and proceeding in a similar fashion as in the proofs of Theorems 1 and 2.

Theorem 3. Let 0 < α < 1, 0 < B < A < 1, and p be an analytic function defined in D with p(0) = 1.
Set

Ξβ(z, p(z)) = 1 + β
zp′(z)
p2(z)

.

Then, the following conditions are sufficient for p ≺ Q.

(a) Ξβ(z, p(z)) ≺ ϕ0(z) for β ≥ 1+2(
√

2+1) log(2−
√

2)
(1+
√

2)(e(1−e)−1)
≈ 0.798642.

(b) Ξβ(z, p(z)) ≺
√

1 + z for β ≥ 2(−1+
√

2+log 2−log(1+
√

2))
1−e1−e ≈ 0.550768.

(c) Ξβ(z, p(z)) ≺ Gα(z) for β ≥ ee−1

ee−1−1
1

2
√

α
log 1+

√
α

1−
√

α
.

(d) Ξβ(z, p(z)) ≺ 1+Az
1+Bz for β ≥ e(1−e)/e

1−e(1−e)/e
(A−B) log (1−B)−1

B .

(e) Ξβ(z, p(z)) ≺ ϕs(z) for β ≥ ee−1

ee−1−1 ∑∞
n=0

(−1)n

(2n+1)!(2n+1) ≈ 1.15278.

(f) Ξβ(z, p(z)) ≺ ϕq(z) for β ≥ ee−1

ee−1−1 (
√

2− log(1 +
√

2) + log 2) ≈ 1.49397.

(g) Ξβ(z, p(z)) ≺ ez for β ≥ ee−1

ee−1−1 ∑∞
n=0

1
n!n ≈ 1.60597.

The lower bound on β in each case is sharp.

Let f ∈ A and set

Ξβ

(
z,

z f ′(z)
f (z)

)
= 1 + β

(
z f ′(z)

f (z)

)−1 (
1− z f ′(z)

f (z)
+

z f ′′(z)
f ′(z)

)
.

If either of the following subordination holds

(a) Ξβ

(
z, z f ′(z)

f (z)

)
≺ ϕ0(z) (β ≥ 0.798642),

(b) Ξβ

(
z, z f ′(z)

f (z)

)
≺
√

1 + z (β ≥ 0.550768),

(c) Ξβ

(
z, z f ′(z)

f (z)

)
≺ Gα(z) (β ≥ ee−1

ee−1−1
1

2
√

α
log 1+

√
α

1−
√

α
),

(d) Ξβ

(
z, z f ′(z)

f (z)

)
≺ 1+Az

1+Bz (β ≥ e(1−e)/e

1−e(1−e)/e
(A−B) log (1−B)−1

B ),

(e) Ξβ

(
z, z f ′(z)

f (z)

)
≺ ϕs(z) (β ≥ 1.15278),

(f) Ξβ

(
z, z f ′(z)

f (z)

)
≺ ϕq(z) (β ≥ 1.49397),

(g) Ξβ

(
z, z f ′(z)

f (z)

)
≺ ez (β ≥ 1.60597),

then f ∈ S∗B.
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3. Radius Estimates

Let θ1 and θ2 be two sub-families of A. The θ1 radius of θ2 is the largest number ρ ∈ (0, 1) such
that r−1 f (rz) ∈ θ1, 0 < r ≤ ρ for all f ∈ θ2. Grunsky [34] obtained the radius of starlikeness for
functions in the class S . Sokół [35] computed the radius of α-convexity and α-starlikeness for a class
S∗L . In 2016, authors [7] determined the S∗R-radius for various subclasses of starlike functions. For more
results on radius problems, see [36–41].

The main technique involved in tackling the S∗B-radius estimates for classes of functions f is the
determination of the disk that contains the values of z f ′(z)/ f (z). The associated technical lemma is
achieved as:

Lemma 2. Let Q(z) := eez−1, z ∈ D. Define the function r : [e1/e−1, ee−1]→ R+ by

r(a) :=

{
ea−e1/e

e , e
1
e−1 ≤ a ≤ e1/e+ee

2e ;
ee−ea

e , e1/e+ee

2e ≤ a ≤ ee−1.

Then, the following holds:

{w ∈ C : |w− a| < r(a)} ⊂ ΩB ⊂
{

w ∈ C : |w− 1| < ee − e
e

}
.

Proof. To prove the assertion, we let z = eit, t ∈ (−π, π]. Therefore,

Q(eit) = eeeit−1 = u(t) + iv(t)

with
u(t) := cos

(
sin(sin t)ecos t) exp

(
ecos t cos(sin t)− 1

)
and

v(t) := sin
(
sin(sin t)ecos t) exp

(
ecos(t) cos(sin t)− 1

)
.

Now, consider the square of the distance of an arbitrary point (u(t), v(t)) on the boundary of
∂Q(D) from (a, 0) and is given by

h(t) = d2(t) = a2 − 2aeecos t cos(sin t)−1 cos
(
sin(sin t)ecos t)+ e2ecos t cos(sin t)−2.

Now we need to prove |w− a| < r(a) is the largest disk contained in Q(D). For this, we need
to show that min−π≤t≤π d(t) = r(a). Since h is an even function, i.e., h(t) = h(−t), we need to
only consider the case when t ∈ [0, π]. Now h′(t) = 0 has three roots viz. 0, π and t0(a) ∈ (0, π).
Among these roots, the root t0(a) depends on a and graphics reveals that h is increasing in the interval
[0, t0(a)] and decreasing in [t0(a), π], and therefore, h attains its minimum either at 0 or π. Further

computations give h(π) =
(

ea− e1/e
)2

/e2 and h(0) = (ee − ea)2 /e2. Hence, we have

min
−π≤t≤π

h(t) = min {h(0), h(π)} =
{

h(π), e
1
e−1 ≤ a ≤ e1/e+ee

2e ;
h(0), e1/e+ee

2e ≤ a ≤ ee−1.

Therefore, we can write

min
−π≤t≤π

d(t) =

{
ea−e1/e

e , e
1
e−1 ≤ a ≤ e1/e+ee

2e ;
ee−ea

e , e1/e+ee

2e ≤ a ≤ ee−1.
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To find the circle of minimum radius with center at (1, 0) containing the domain Q(D), we need
to find the maximum distance from (1, 0) to an arbitrary point on the boundary of the domain Q(D).
The square of this distance function is given by

φ(t) = −2eecos t cos(sin t)−1 cos
(
sin(sin t)ecos t)+ e2ecos t cos(sin t)−2 + 1.

The equation φ′(t) = 0 has two roots in [0, π], namely 0 and π. It is easy to see that

φ(0) = (e− ee)2 /e2 and φ(π/2) =
(

e− e1/e
)2

/e2. Therefore,

max {φ(0), φ(π)} = φ(0) =
(e− ee)2

e2 .

Hence, the radius of the smallest disk containing Q(D) is (e− ee) /e. This ends the proof.

We now recall some classes and results related to them which are to be used for further
development of this section. For −1 ≤ B < A ≤ 1, let

Pn[A, B] :=

{
p(z) = 1 +

∞

∑
k=n

cnzn : p(z) ≺ 1 + Az
1 + Bz

}
.

Let us denote Pn(α) := Pn[1− 2α,−1] and P1(0) =: P . For f ∈ A, if we set p(z) = z f ′(z)/ f (z)
and p(z) = 1 + z f ′′(z)/ f ′(z), then the class P [A, B] is denoted by S∗[A, B] and K[A, B], respectively.
These classes were introduced and studied by [2]. Further, let S∗(α) := S∗[1− 2α,−1].

The following results will be needed:

Lemma 3. [42] If p ∈ Pn[A, B], then, for |z| = r,∣∣∣∣p(z)− 1− ABr2n

1− B2r2n

∣∣∣∣ ≤ (A− B)rn

1− B2r2n .

In particular, if p ∈ Pn(α), then, for |z| = r,∣∣∣∣p(z)− (1 + (1− 2α))r2n

1− r2n

∣∣∣∣ ≤ 2(1− α)rn

1− r2n .

Lemma 4. [43] If p ∈ Pn(α), then, for |z| = r,∣∣∣∣ zp′(z)
p(z)

∣∣∣∣ ≤ 2(1− α)nrn

(1− rn)(1 + (1− 2α)rn)
.

The main objective of this section is to determine the S∗B-radii constants for functions belonging to
certain well-known subclasses of A. Let G denote the class of functions f ∈ S for which f (z)/z ∈ P .
The following theorem gives the sharp S∗B-radius for the class G.

Theorem 4. Let f ∈ G. Then, the sharp S∗B-radius is

RS∗B(G) :=
e− e1/e√

2e2 − 2e1+ 1
e + e2/e + e

≈ 0.222654.

Proof. Since f ∈ G, therefore, f (z)/z ∈ P . Then, from Lemma 2, we must have∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ ≤ 2r

1− r2



Symmetry 2019, 11, 219 12 of 17

Therefore, f ∈ S∗B if 2r/(1− r2) ≤ (e− e1/e)/e, or equivalently if

(e− e1/e)r2 + 2er + e1/e − e ≤ 0

which holds for all

r ≤ e− e1/e√
2e2 − 2e1+ 1

e + e2/e + e
=: RS∗B(G) ≈ 0.222654.

For verification of sharpness, consider the function f (z) = z(1 + z)/(1− z). Then, f (z)/z ∈ P
and at z = RS∗B(G), we have

RS∗B(G) f ′(RS∗B(G))
f (RS∗B(G))

− 1 =
RS∗B(G)

1− RS∗B(G)
= 1− e

1
e−1.

Hence the result is sharp.

In the following theorem, we shall investigate sharp S∗B-radius for the class S∗[A, B].

Theorem 5. Let f ∈ S∗[A, B]. Then,

1. for 0 ≤ B < A ≤ 1, the sharp S∗B-radius for the class S∗[A, B] is

RS∗B(S
∗[A, B]) = min

{
1;

√
e− e1/e

√
eAB− e1/eB2

;
e1/e − e

e1/eB− eA

}
.

2. for −1 ≤ B < 0 ≤ A ≤ 1, the sharp S∗B-radius for the class S∗[A, B] is

RS∗B(S
∗[A, B]) = min

1;

√
−2e + e1/e + ee

−2eAB + e1/eB2 + eeB2 ;
e1/e − e

e1/eB− eA

 .

Proof. Let f ∈ S∗[A, B]. Then using Lemma 4, we see that f maps the disk |z| ≤ r onto the disk∣∣∣∣ z f ′(z)
f (z)

− 1− ABr2

1− B2r2

∣∣∣∣ ≤ (A− B)r
1− B2r2 .

The center of the above disk is at (c, 0) and the radius is R, where

c :=
1− ABr2

1− B2r2 and R :=
(A− B)r
1− B2r2 .

(1) We see that c ≤ (e1/e + ee)/(2e) holds for all 0 ≤ B < A ≤ 1 and 0 < r < 1. Further, the
condition 1− e1/e ≤ c is equivalent to

−eABr2 + e1/eB2r2 − e1/e + e ≥ 0

which holds for all

r ≤

√
e− e1/e

eAB− e1/eB2 =: r1.

Further computation shows that the condition R ≤ (eea− e1/e)/e is equivalent to eAr− e1/eBr +
e1/e − e ≤ 0 which holds for all

r ≤ e1/e − e
e1/eB− eA

=: r2.

Now from Lemma 2, f ∈ S∗B for all |z| ≤ RS∗B(S
∗[A, B]) = min {1; r1; r2} .
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(2) Let −1 ≤ B < 0 ≤ A ≤ 1. Then we see that e1/e−1 ≤ c holds for all 0 < r < 1. Further,
c ≤ (ee + e1/e)/2e is equivalent to

−2eABr2 + e1/eB2r2 + eeB2r2 − e1/e − ee + 2e ≤ 0

which holds for

r ≤

√
−2e + e1/e + ee

−2eAB + e1/eB2 + eeB2 =: r3.

Now, as in the previous case R < (ec− e1/e)/e holds if r ≤ r2. Therefore, S∗B-radius for the class
S∗[A, B] is RS∗B(S

∗[A, B]) = min {1; r2; r3} .
The equality holds in case of the function f0 defined by

f0(z) =

{
z(1 + Bz)

A
B−1, B 6= 0;

zeAz, B = 0.

This ends the proof.

Remark 1. Let f ∈ S∗. Then, since S∗ = S∗[0,−1], it follows from the above theorem, that the S∗B-radius for
starlike functions is r4 := (e− e1/e)/(e + e1/e) ≈ 0.30594. To see the sharpness, consider the Koebe function
k(z) = z/(1− z)2. Then, at z = r4, we have

r4 f ′(r4)

f (r4)
=

1 + r4

1− r4
= e1− 1

e .

Because the function k is univalent too, it follows that the S∗B-radius for the class S and S∗ is r4. Therefore,
the radius r4 can not be increased. Thus, we have the following:

Corollary 1. The sharp S∗B-radius for the classes S and S∗ is (e− e1/e)/(e + e1/e) ≈ 0.30594.

Let the class F1 be defined by

F1 :=
{

f ∈ A : Re
f (z)
g(z)

> 0 and Re
g(z)

z
> 0, g ∈ A

}
.

The following theorem gives the sharp S∗B-radius for the class F1.

Theorem 6. Let f ∈ F1. Then, the sharp S∗B-radius is

RS∗B(F1) =
e− e1/e√

5e2 − 2e1+ 1
e + e2/e + 2e

≈ 0.11557.

Proof. Since f ∈ F1, there is g ∈ A such that Re(g(z)/z) > 0. Define the functions p, h : D→ C by

p(z) =
g(z)

z
and h(z) =

f (z)
g(z)

.

Then, through some assumptions, we have p, h ∈ P . Now using Lemma 4, we get∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ ≤ ∣∣∣∣ zh′(z)

h(z)

∣∣∣∣+ ∣∣∣∣ zp′(z)
p(z)

∣∣∣∣
≤ 4r

1− r2 ≤
e− e1/e

e
,
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this holds if and only if (e− e1/e)r2 + 4er + e1/e − e ≤ 0, that is if

r ≤ e− e1/e√
5e2 − 2e1+ 1

e + e2/e + 2e
=: RS∗B(F1) ≈ 0.11557.

Consider the functions f2 and g2 defined by

f2(z) = z
(

1 + z
1− z

)2
and g2(z) = z

(
1 + z
1− z

)
.

Further, we have Re( f2(z)/g2(z)) > 0 and Re(g2(z)/z) > 0, and therefore f ∈ F1. Now a
computation shows that, for z = RS∗B(F1),

RS∗B(F1) f ′2(RS∗B(F1))

f2(RS∗B(F1))
− 1 =

4RS∗B(F1)

1− RS∗B(F1)2 = 1− e
1
e−1.

Hence the result is sharp.

Let us define the class F2 by

F2 :=
{

f ∈ A : Re
f (z)
g(z)

> 0 and Re
g(z)

z
> 1/2, g ∈ A

}
.

The following theorem gives the sharp S∗B-radius for the class F2.

Theorem 7. Let f ∈ F2. Then, the sharp S∗B-radius is

S∗B(F2) =
2
(

e− e1/e
)

√
17e2 − 12e1+ 1

e + 4e2/e + 3e
≈ 0.145776.

Proof. Since f ∈ F2 and g ∈ A satisfies Re(g(z)/z) > 1/2. Now define the functions p, h : D → C
by p(z) = g(z)/z and h(z) = f (z)/g(z). Then, it is clear that p ∈ P(1/2) and h ∈ P . Further, since
f (z) = zp(z)h(z), it follows from Lemma 4, get∣∣∣∣ z f ′(z)

f (z)
− 1
∣∣∣∣ ≤ 3r + r2

1− r2 ≤
e− e1/e

e

provided −e1/er2 + 2er2 + 3er + e1/e − e ≤ 0. This holds for

r ≤
2
(

e− e1/e
)

√
17e2 − 12e1+ 1

e + 4e2/e + 3e
=: S∗B(F2) ≈ 0.145776.

Thus, f ∈ S∗B for r ≤ S∗B(F2).
For the sharpness of the result, consider the functions

f3(z) =
z(1 + z)
(1− z)2 and g3(z) =

z
1− z

.

Then, we see that Re( f3(z)/g3(z)) > 0 and Re(g3(z)/z) > 1/2, and therefore, f ∈ F2. Now from
the definition of f0, we see that at z = S∗B(F2),
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S∗B(F2) f ′3(S∗B(F2))

f3(S∗B(F2))
− 1 =

3S∗B(F2) + S∗B(F2)
2

1− S∗B(F2)2 = 1− e
1
e−1.

This confirms the sharpness of the result.

Define the class F3 by

F3 :=
{

f ∈ A :
∣∣∣∣ f (z)

g(z)
− 1
∣∣∣∣ < 1 and Re

g(z)
z

> 0, g ∈ A
}

.

The next result gives the sharp S∗B-radius for the class F3.

Theorem 8. Let f ∈ F3. Then, the sharp S∗B-radius is

S∗B(F3) =
2
(

e− e1/e
)

√
17e2 − 12e1+ 1

e + 4e2/e + 3e
≈ 0.145776.

Proof. Since f ∈ F3, it follows that p ∈ P and h ∈ P(1/2), where the functions p, h : D → C are
defined by p(z) = g(z)/z and h(z) = g(z)/ f (z). Now since f (z) = zp(z)/h(z) from Lemma 4,
we have ∣∣∣∣ z f ′(z)

f (z)
− 1
∣∣∣∣ ≤ 3r + r2

1− r2 ≤
e− e1/e

e

which holds for all r ≤ S∗B(F3).
Consider the functions f4 and g4 defined by

f4(z) =
z(1 + z)2

(1− z)
and g4(z) =

z(1 + z)
1− z

.

The results are sharp, since at z = S∗B(F3), we have

S∗B(F3) f ′4(S∗B(F3))

f4(S∗B(F3))
= 2− e

1
e−1.

This completes the proof.
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