

Article On Sliced Spaces: Global Hyperbolicity Revisited

Kyriakos Papadopoulos ^{1,*}, Nazli Kurt² and Basil K. Papadopoulos ³

- ¹ Department of Mathematics, Kuwait University, PO Box 5969, Safat 13060, Kuwait
- ² Faculty of Science, Open University, PO Box 197, Milton Keynes MK7 6BJ, UK; nazkrt.96@gmail.com
- ³ Department of Civil Engineering, Democritus University of Thrace, 67100 Xanthi, Greece; papadob@civil.duth.gr
- * Correspondence: kyriakos.papadopoulos1981@gmail.com

Received: 24 January 2019; Accepted: 26 February 2019; Published: 1 March 2019

Abstract: We give a topological condition for a generic sliced space to be globally hyperbolic without any hypothesis on lapse function, shift function, and spatial metric.

Keywords: sliced space; product topology; Alexandrov topology; global hyperbolicity

1. Preliminaries

The definition of a sliced space, which one can read in Reference [1], is a continuation of a study in References [2] and [3] on systems of Einstein equations.

Let $V = M \times I$, where *M* is an *n*-dimensional smooth manifold, and *I* is an interval of the real line, \mathbb{R} . We equip *V* with a *n* + 1-dimensional Lorentz metric *g*, which splits in the following way:

$$g = -N^2 (\theta^0)^2 + g_{ij} \theta^i \theta^j,$$

where $\theta^0 = dt$, $\theta^i = dx^i + \beta^i dt$, $N = N(t, x^i)$ is the *lapse function*, $\beta^i(t, x^j)$ is the shift function and $M_t = M \times \{t\}$, spatial slices of *V*, are spacelike submanifolds equipped with the time-dependent spatial metric $g_t = g_{ij}dx^i dx^j$. Such product space *V* is called a sliced space.

Throughout the paper, we consider $I = \mathbb{R}$.

The author in Reference [1] considered sliced spaces with uniformly bounded lapse, shift, and spatial metric; by this hypothesis, it is ensured that parameter *t* measures up to a positive factor bounded (below and above) the time along the normals to spacelike slices M_t , the g_t norm of the shift vector β is uniformly bounded by a number, and the time-dependent metric $g_{ij}dx^i dx^j$ is uniformly bounded (below and above) for all $t \in I(=\mathbb{R})$, respectively.

Given the above hypothesis, in the same article, the following theorem was proved.

Theorem 1 (Cotsakis). Let (V,g) be a sliced space with uniformly bounded lapse N, shift β and spatial metric g_t . Then, the following are equivalent:

- 1. (M_0, γ) a complete Riemannian manifold.
- 2. Spacetime (V, g) is globally hyperbolic.

In this article, we review global hyperbolicity of sliced spaces in terms of the product topology defined on space $M \times \mathbb{R}$ for some finite dimensional smooth manifold M.

2. Strong Causality of Sliced Spaces

Let $(V = M \times \mathbb{R}, g)$ be a sliced space. Consider product topology T_P on V. Since M is finite-dimensional, a base for T_P consists of all sets of form $A \times B$, where $A \in T_M$ and $B \in T_{\mathbb{R}}$.

Here, T_M denotes the natural topology of manifold M where, for an appropriate Riemann metric h, it has a base consisting of open balls $B^h_{\epsilon}(x)$, and $T_{\mathbb{R}}$ is the usual topology on the real line, with a base consisting of open intervals (a, b). For trivial topological reasons, we can restrict our discussion on T_P to basic-open sets $B^h_{\epsilon}(x) \times (a, b)$, which can intuitively be called "open cylinders" in V.

We remind that the Alexandrov topology T_A (see Reference [4]) has a base consisting of open sets of the form $\langle x, y \rangle = I^+(x) \cap I^-(y)$, where $I^+(x) = \{z \in V : x \ll z\}$ and $I^-(y) = \{z \in V : z \ll y\}$, where \ll is the chronological order defined as $x \ll y$ iff there exists a future-oriented timelike curve joining x with y. By $J^+(x)$, one denotes the topological closure of $I^+(x)$, and by $J^-(y)$ that one of $I^-(y)$.

We use the definition of global hyperbolicity from Reference [4], where one can read about global causality conditions in more detail, as well as characterizations for strong causality. In particular, a spacetime is strongly causal iff it possesses no closed timelike curves, and global hyperbolicity is an important causal condition in a spacetime related to major problems such as spacetime singularities and cosmic cencorship.

Definition 1. A spacetime is globally hyperbolic iff it is strongly causal and the "causal diamonds" $J^+(x) \cap J^-(y)$ are compact.

We prove the following theorem:

Theorem 2. Let (V, g) be a Hausdorff sliced space. Then, the following are equivalent.

- 1. V is strongly causal.
- 2. $T_A \equiv T_P$.
- 3. T_A is Hausdorff.

Proof. Here, 2. implies 3. is obvious and that 3. implies 1. can be found in Reference [4].

For 1. implies 2., we consider two events $X, Y \in V$, such that $X \neq Y$; we note that each $X \in V$ has two coordinates, say (x_1, x_2) , where $x_1 \in M$ and $x_2 \in \mathbb{R}$. Obviously, $X \in M_x = M \times \{x\}$ and $Y \in M_y = M \times \{y\}$. Then, $\langle X, Y \rangle = I^+(X) \cap I^-(Y) \in T_A$. Let also $A \in M_a = M \times \{a\}$, where a < x (\langle is the natural order on \mathbb{R}) and $B \in M_b = M \times \{b\}$, where y < b. Consider some $\epsilon > 0$, such that $B^h_{\epsilon}(A) \in M$. Obviously, $B^h_{\epsilon}(A) \times (a, b) \in T_P$ and, for $\epsilon > 0$ sufficiently large enough, $\langle X, Y \rangle \subset B^h_{\epsilon}(A) \times (a, b)$. Thus, $\langle X, Y \rangle \in T_P$.

For 2. implies 1., we consider $\epsilon > 0$, such that $B^h_{\epsilon}(A) \in T_M$, so that $B^h_{\epsilon}(A) \times (a, b) = B \in T_P$. We let strong causality hold at an event P and consider $P \in B \in T_P$. We show that there exists $\langle X, Y \rangle \in T_A$, such that $P \in \langle X, Y \rangle \subset B$. Now, consider a simple region R in $\langle X, Y \rangle$ which contains P and $P \in Q$, where Q is a causally convex-open subset of R. Thus, we have $U, V \in Q$, such that $P \in \langle U, V \rangle \subset Q$. Finally, $P \in \langle U, V \rangle \subset Q \subset B$, and this completes the proof. \Box

3. Global Hyperbolicity of Sliced Spaces, Revisited

For the following theorem, we use Nash's result that refers to finite-dimensional manifolds (see Reference [5]).

Theorem 3. Let (V,g) be a Hausdorff sliced space, where $V = M \times R$, M is an n-dimensional manifold and g the n + 1 Lorentz metric in V. Then, (V,g) is globally hyperbolic iff $T_P = T_A$, in V.

Proof. Given the proof of Theorem 2, strong causality in *V* holds iff $T_P = T_A$ and, given Nash's theorem, the closure of $B^h_{\epsilon}(x) \times (a, b)$ is compact. \Box

We note that neither in Theorem 2 nor in Theorem 3 did we make any hypothesis on the lapse function, shift function, or spatial metric.

Author Contributions: Conceptualization, K.P. and N.K.; methodology, K.P., N.K. and B.K.P.; investigation, K.P. and N.K.; resources, K.P.; writing—original draft preparation, K.P.; writing—review and editing, K.P.; supervision, K.P. and B.K.P.; project administration, K.P. and N.K.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Cotsakis, S. Global hyperbolicity of sliced spaces. Gen. Rel. Grav. 2004, 36, 1183–1188. [CrossRef]
- Choquet-Bruhat, Y.; Ruggeri, T. Hyperbolicity of the 3+1 system of Einstein equations. *Com. Math. Phys.* 1983, *89*, 269–275. [CrossRef]
- 3. Choquet-Bruhat, Y.; Cotsakis, S. Global hyperbolicity and completeness. J. Geom. Phys. 2002, 43, 345–350. [CrossRef]
- 4. Penrose, R. *Techniques of Differential Topology in Relativity;* Society for INdustrial and Applied Mathematics: PhiladeIphia, PA, USA, 1972, ISBN 978-0-898710-05-2.
- 5. Nash, J. C¹ isometric imbeddings. Ann. Math. Second Ser. 1954, 60, 383–396. [CrossRef]

 \odot 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).