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1. Introduction

A famous mathematician Bernstein [1] constructed polynomials nowadays called Bernstein
polynomials, which are familiar and widely investigated polynomials in theory of approximation.
Bernstein gave a simple and very elegant way to obtain Weierstrass approximation theorem with
the help of his newly constructed polynomials. For any continuous function f(x) defined on C[0,1],
Bernstein polynomials of order n are given by

u i
Bu(fin) = 1 (5) builn) (re 1), )
i=0
where the Bernstein basis functions b, ;(x) are defined by

byi(x) = <1:> X (1 —x)" (i=0,...,n).

Stancu [2] presented a generalization of Bernstein polynomials with the help of two parameters «
and B such that 0 < a < 3, as follows:

Snap(fix) = ;Of ( ;1”;) (’f)xi (1-x)"" (xe[01)). @
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If we take both the parameters « = B = 0, then we get the classical Bernstein polynomials.
The operators defined by (2) are called Bernstein-Stancu operators. For some recent work, we refer
to [3-6].

In the recent past, Cai et al. [7] presented a new construction of Bernstein operators with the help
of Bézier bases with shape parameter A and called it A-Bernstein operators, which are defined by

Zf() Bs(Aix)  (neN) G

where b, ;(A; x) are Bézier bases with shape parameter A (see [8]), defined by

A

En,O(/\?x) = bn,O(x) - ?brwl 1(x),

~ 2i+1 n—2i—1 .

by,i(A;x) = by i(x) + W/\bn-&-l i(x) — ﬁ/\bn-&-l,i—l—l (x), i=12...,n—-1, (4
- A

buu(A;x) = bun(x) — mbnﬂ,n(x)/

in this case A € [—1,1] and b, ;(x) are the Bernstein basis functions. By taking the above operators into
account, they established various approximation results, namely, Korovkin- and Voronovskaja-type
theorems, rate of convergence via Lipschitz continuous functions, local approximation and other
related results. In the same year, Cai [9] generalized A-Bernstein operators by constructing
the Kantorovich-type A-Bernstein operators, as well as its Bézier variant, and studied several
approximation results. Later, various approximation properties and asymptotic type results of the
Kantorovich-type A-Bernstein operators have been studied by Acu et al. [10]. Very recently, Ozger [11]
obtained statistical approximation for A-Bernstein operators including a Voronovskaja-type theorem in
statistical sense. In the same article, he also constructed bivariate A-Bernstein operators and studied
their approximation properties.

The Bernstein operators are some of the most studied positive linear operators which were
modified by many authors, and we are mentioning some of them and other related work [12-23].

We are now ready to construct our new operators as follows: Suppose that « and § are two
non—negative parameters such that 0 < o« < B. Then, the Stancu-type modification of A-Bernstein
operators Bn . ﬁ(f; x) : C[0,1] — CJ[0, 1] is defined by

Bhaplf) = L f (5 ) i) ©)

for any n € N and we call it Stancu-type A-Bernstein operators or A-Bernstein-Stancu operators, where
Bézier bases by, ;(A; x) are defined in (4).

Remark 1. We have the following results for Stancu-type A-Bernstein operators:

(i) If we take A = 0 in (5), then Stancu-type A-Bernstein Stancu operators reduce to the classical
Bernstein—Stancu operators defined in [2].
(ii) The choice of « = B = 0 in (5) gives A-Bernstein operators defined by Cai et al. [7].
(iii) If we choose o = B = A = 0, then (5) reduces to the classical Bernstein operators defined in [1].

The rest of the paper is organized as follows: In Section 2, we calculate the moments of (5) and
prove global approximation formula in terms of Ditzian-Totik uniform modulus of smoothness of
first and second order. The local direct estimate of the rate of convergence by Lipschitz-type function
involving two parameters for A-Bernstein-Stancu operators is investigated. In Section 3, we establish
quantitative Voronovskaja-type theorem for our operators. The final section of the paper is devoted to
study the bivariate case of A-Bernstein-Stancu operators .
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2. Some Auxiliary Lemmas and Approximation by Stancu-Type A-Bernstein Operators

In this section, we first prove some lemma which will be used to study the approximation
results of (5).

Lemma 1. For x € [0, 1], the moments of Stancu-type A-Bernstein operators are given as:

B,)z"“/ﬁ(l;x) =1;

L _aar 12k @D -0" T a(1- 0"
qu\,tx,ﬁ(t,x)— Tl+ﬁ /\|: (Tl—i—ﬁ)(n—l) n+ﬁ :|,
Bﬁ,tx,ﬁ(tz}x) = (71—1—1[3)2 {n(n —1)x% + (14 2a)nx + “2}
2nx — 1 — 4nx? + (2n + 1)x"+1 +(1- x)”‘“ a2 — dax
#a| (n+BP(n—1) T B —1)

N 2an — 20 (o + n) (2" 4+ (1 — x)") + a?x(n? +1)(1 — x)"
(n+p)*(n*>—1) } '

Proof. Using the definition of operators (5) and Bézier-Bernstein bases INJW-(A; x) (4), we write

e A
n+pn+1

n—2i+n+1 n—2i—1
[bn,i(x) +A (712_1 by1,i(x) — nz_lbnﬂ,ﬂ—l(x)ﬂ

. _nt+a A
n+pn+1

= i Lo bn,i(x) +)\(91(Tl,l¥,ﬁ,x) _92(”,01,ﬁ,3()),

"ita . a
Bg,a,ﬁ(t;x) = Z byi(Ax) = Py b,0(x) byuii,1(x)

bn+1,n (x)

where

Now, we compute the expressions 6 (n,«, B, x) and 6,(n,a, B, x). Since the Bernstein—Stancu
operators are linear, and Bernstein—-Stancu operators and fundamental Bernstein bases satisfy the
following equality:

it nx o
Z bn,i(x) = +
i=1

n+p n+p n+p’
one writes
1 Eita 2 L2t
01(n,ua,B,x)= b (x) — b (x
1( 5 ) n_lig(]n+’3 l’l+1,l() ”2_11';0”4‘,5 l’l+1,l()
1 n 1 1 n o
Tl*lg)n+,3 n+1,1(x)+n71§)n+‘5 n+1,z(x)
2 &L P 2 N i
- —— bup1,i(x) — buy1i(x)
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n

 (n+1)x—2x '
_(n—i—,B n—l anz n—i—,B Tl—l Z n+11

20x n-l 2nx

CEDICE) g bp,i(x) — CEDICED) z;;) by_1,i(x)
x—x" o — 2pa oy — L — 2 4 !
n+p (n+ﬁ)(n—1)+ n+p (n+pB)(n—1)

2 n=li2 g

9 . _ b
2(” w, B, x n+1 21 n+1,z+1(x) n2 —1 l; Vl—l—ﬁ n+1,z+1(x)
K= 1 =
= b1 b
n+1 = n+[3 n+1,1+1(x) + n+1 = I’l—i—ﬁ n+1,z+l( )
2 - _
Z buytiv( buy1iv1(x)
i= i=
71 1 n—1

HM

- W l; bui1,iv1(x)

2nx2 n—2 b 2x n=l b
_ W Z n— 11 W ; n,i(x)
2 o n—1
T TP & Z byt1,i+1( m l; bpy1,iv1(x)

2ux n_l 0w n—
N W 1:21 bn,i(x) + W 1; bn+1,i+l (x)

Cx—x"l x(1-x)" 11— (1—x)"T —x(n+1)(1—x)" — 2"
T on+p n+p (n+p)(n+1)
2—(1—x)"! —2x(n+1)(1 —x)" — 2" a—a(1—
- (n+p)(n*—1) (n+p)(n+1)
2x —2x(1—x)" —2x"*1  2px? — 2nx™ 1 ax(1 — x)"
(n+p)(n—1) (n+p)(n—1) n+p
 2ax — 2ax" ! N 20 — 2 (1 — x)"H — 2yt
(n+p)(n+1) (n+p)(n*—1)

x)nJrl _ axn+1

We get the desired result for Bﬁ, ., ﬁ(t; x) by combining the results obtained for 6 (1, «, 8, x) and

02(n,a, B, x).
Again, by using the following identity;

& I—I—a 1
; (n+ B2 ni(X) = CEOE {n(n—l)x2+(l+2a)nx+a2}

together with (4) and (5), we can write

oy et o a2 A
Bﬁ,a,ﬁ(tz,x) = ;} (n_'_mzbn,l()‘rx) = (n +ﬁ)2 nO( ) — menﬂ,l(x)
n-1 ¢; 2 Y .
+ e 2 (T () = L b))
(n +a)? (n+a)? A
+ mbn,n(x) - (n+ B)2 m%-&-l,n(ﬂ



Symmetry 2019, 11, 316 5o0f 22

n 2
= ;) ((rlzio/;))zb (x) + A (63(n,a,B,x) — 04(n,a,B,x))
where
0(n, x):i(iJrzx)z n-2i+1, (x)
3\ &, Py = (1’1 i ‘3)2 21 n+1,i ’
n—1 2 _
Os(n,a, B, x) = &~ ((71110/;))2 - nzzi 1 1bn+1,i+1(x),

We now compute the expressions 63 (1, «, B, x) and 64(n, a, B, x) as follows:

n . n . 2
3(n,,Bx) = > ((;j‘;)) bt ()~ o > E;ﬁ“;);bﬂl,i(x)
1 & i2 20 & i
_n_ll;)(n+‘3)2 ”+1l(x)+n_1i§)(n+‘3)2 n+lz(x)
a? & 2 &P
+ 1l§bn+1z(x) nz—lg CEE i (%)
4 n i2 2 2 n :
n2 i 1 Z[:) (niﬁ)zbnﬂ,i(x) - nza_ 1 iZ(:) (n_;ﬁ)zbn-&-l,i(x)
o on(m+ 1) S n+1x 'S
= G B 1) 2”" L+ G Byt =) 2 Z b

2 6nx
R L) g B e

X = 2ax(n4+1) =L
G & G )
o . danx?
: WD’” T D i e
4ax = 20%x
AR 5 G
211( n+1 _x3) X —x n+l ( —51’1)( _ n+1)
= + +
(n+pB)? (n+pB)? (n+pB)2(n—1)
20(n 4+ 1)x" ™ 4 a2 (1 — x + x" 1) — danx? 20x
(n+p)*(n—1) (n+B)?
n=1 (= 2 _
94(”/“/ /x) - Tl—li-l ~ ((;:‘;))2 anrl i+1( )* n22,1 2 E;—:Dg) bn+l,i+1(x)
n—1 2 n—1 .
— nj—l & n—j—ﬁ)z bn+l,i+1( )+ i’lz—fl L ( ;18)2 bn+1,i+l(x)
062 n—1 1 ) n—1 13
* n+1 ; (n+p)2 bi+1,i41(%) ] )3 (n+B) by+1,i+1(x)
40 "1 2 242 1=l
_nzil = (n—:—‘B)Z ni1,i+1(%) Oilz(n+/3)2 n1,i+1(%)
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1 n—1

n n—2
- ﬁ ;0 bn—l,i(x) + W Z bn+1,i+1 (X)

2nyd 13 —2x -
- m ; bn72,i(x) - W Z nz

2 n—1
T A\D /.. a4\ bn 1
+(n+ﬁ)(n—1 Z +1+1( ”+5 Zi
2 n-l

*Gf%ﬁ§¥wwf‘aiﬁﬁa:7*ZbHUHw>

2 nd danx?
+GEE?G?TXW“W““_61?4EH’ZW11
4ox - 4 nl
" (n+B)3(n—1) Z;  (n+p)2(n2-1) gb”+1’i+1(x)
-1

202x 2u nl
- (n n ,3)2(1’1 — 1) Lo bn,i(x) + (I’l +‘B)2(1’12 — 1) 1:21 bn+1,i+1 (x>
o+ (n4 D"t —x —2nx3 1 (1—x)tH - x
- (n+p)? (n+p)*(n+1)
2xMH 2y N 2 —2(1 — x)mHl — 2yt
(n+p)2(n—1) (n+p)2(n* —1)
20x + 2ax™ —a?x(1—x)"  a(a —2)(1— 2" — (1 —x)"H)

_|_

(n+ B2 * (1t B2 +1)
20 — 2)x((1 — x)"+1 — 1) + 20251+ . 2a(x"H1 4 (1 — x)"+1 — 1)
(n+ B2(n—1) (n+p22—1)

which completes the result for B;‘, a,ﬁ(tz ; X) by combining the results obtained for 63(n, «, B, x) and
O4(n,a, B, x). O

Corollary 1. The following relations hold:

Bﬁ/a,ﬁ(t—x;x) = i;i‘; io
Ca—px  1—2x+x"T—(1—x)"tt
e A TR Ty
ax(1—x)" a(l—x)"t
MY SRR
+ g
BQ’“’ﬂ((t_x)z"x):g(%;) ; i(A:) +x22bm Ax)
nx(1—x) + (Bx — a)?
(n+p)?
Y 4% —2x = 22" 2 —2(a — D)x(1 — )" 20x?(1 —x)"
[ (n+p)(n—1) n+p

2nx — 1 —4nx® + (2n + )™ 4 (1 — )" + a2 — dax
(n+p)2(n—1)

2an — 20 (a4 n) (X" 4 (1 — x)™) + a?x(n? + 1) (1 — x)"
(n+ p)*(n*—1) '

+A

+A
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Corollary 2. The following identities hold:

hmanaﬁ( xx) =a—Bx;

n—o0

lim n Bnaﬁ((t—x)z;x) =x(1—x).

n—o0

We obtain the uniform convergence of operators Bﬁ N ﬁ( f;x) by applying well-known
Bohman-Korovkin-Popoviciu theorem.

Theorem 1. Let C|0, 1] denote the space of all real-valued continuous functions on [0,1] endowed with the
supremum norm. Then

lim Bntxﬂ(f x) = f(x) (f € C[O,l])

n—oo

uniformly in [0, 1].
Proof. It is sufficient to show that
. A i i . .
lim [[B;, o 5(#; %) = #llcpoa) = 0, j=012
as stated in Bohman-Korovkin-Popoviciu theorem. We have the following relations by Lemma 1:

lim ||Bn,xﬁ( x) =t cjon =0 and Jim HB;);,,x,ﬁ(t;x) — tllcjo,1) = 0

n—oo

It is easy to show

n(n+1)x% + (1 + 2a)nx + a?
(n+p)?
2nx +1+4nx® + (2n + 1)x" 1 4 (1 — x)"H N a? +dox
(n+p)*(n—1) (n+p)*(n—1)
n 2an + 2a (e +n) (2™ + (1 — x)") + a?(n? + 1)x(1 — x)"
(n+p)2(n* —1)

Br)z\,a,ﬁ(tz; X) <

+A

and hence

lim ||B ( ;X A) — tZHC[O,l] =0.

n—o0
This implies Bn op(f; X) converge uniformly to f on [0,1]. O

Recall that the first and second order Ditzian-Totik uniform modulus of smoothness are given by

we(f,8) := sup sup  {|f(x +he(x)) = f(x)[}

0<|h|<6 x,x+hé(x)€[0,1]

and

WJ(f,6) = sup sup  {|f(x+hp(x)) = 2f(x) + f(x — h(x))]},

0<|h|<6 x,x+h¢(x)€[0,1]

respectively, where ¢ is an admissible step-weight function on [a, b], that is, ¢(x) = [(x — a) (b — x)]1/?
if x € [a, D] (see [24]). Let

Ko p(x) (f,0) = e%/{/lzf {I1f = 8llcio) +9119°8"lIcp : & € C2[0,1]} (6> 0)



Symmetry 2019, 11, 316 8 of 22

be the corresponding K-functional, where
W2(¢) = {g € C[0,1] : g’ € AC[0,1], ¢°¢" € C[0,1]}

and
C2[0,1] = {g € C[0,1] : ¢, ¢" € C[0,1]}.

In this case, ¢’ € ACJ0,1] means that g’ is absolutely continuous on [0, 1]. It is known by [25] that
there exists an absolute constant C > 0, such that

(f \[) < Ko g (f,0) < sz (f, f) (6)
We are now ready to obtain global approximation theorem.

Theorem 2. Let A € [—1,1] and f € C[0,1]. Suppose that ¢(# 0) such that ¢? is concave. Then

Bl p(fi2) = f(2)] < c@"@/W) +w§(f'W>

for x € [0,1] and C > 0, where uy(a, B, A;x) = Bﬁ/“,ﬁ(t —x;x), Su(a, B, A;x) = (vale, B, A;x) +
(e, B, 450) () F and v, B,25) (x) = B (= 1)),
Proof. Consider the operators

naﬁ(fx)“Bnaﬁ(fx)4*f()

ax(1—x)" 1 —2x+x"1 4+ (a —1)(1—x)"*! @)
(5 +ﬁ nep (n+ B)(n—1) )

for A € [-1,1], x € [0,1]. We observe that By, xp(Lix) =1and Bﬁaﬁ(t x) = x, that is Bﬁ,a,ﬁ(t —x;x) =0.
Letu = px+ (1 —p)t, p € [0,1]. Since ¢? is concave on [0,1], we have ¢?(u) > p¢?(x) + (1 —

p)¢?(t) and hence

f—ul o pl—t =] .
P = o)+ (- 0920~ P o
So
1B p(fi %) = f(0)] < 1By p(f = &2)| + By p(85%) — g(3)| + [f (x) — g(x)] ©)
< 4lIf = gl + 1B ap(g:0) — g(x)]-
We obtain the following relations by applying the Taylor’s formula:
1By o p(8%) — g ()]
t X+pn
< Bhag(| [ 10—l ldlx) | [ o 2520 w7 0]
(10)

|du

t
<||4>2g"||qo,u82,a,ﬁ(] '4,2() )+|¢28”||C[0,1]

< ¢ 201198 lcio.1)Bra,p((t = %)%2) +¢72(0)l1¢8" llcio,)B7 (%)-

Tt |x 4 g (a, B, A;x) — ul
/ it
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By using the definition of K-functional together with (6) and the inequalities (9) and (10), we have

1B p(fi2) = F(0)] < 72 () 19°8" llcpon) (v, B, As ) + pi(a, B, A5 %)) + 41 = gllcpony

(vl B, A %) + 122 (w, B, As X)) )
20(x) ‘

Also, by first order Ditzian—Totik uniform modulus of smoothness, we have

G pon) — £(3)] = ‘f(HC(@W) )

o5l

< ng’ (f,

Therefore, the following inequalities hold:

1B p(fi2) = ()] < Bl p(f32) = FQO 4 |f(x+ i, B, As %)) = f ()]

< wa(f,W) +w§(f,?*n(”g(if)/\f'x)>,

which completes the proof. [J

In order to obtain next result, we first recall some concepts and results concerning modulus of
continuity and Peetre’s K-functional. For § > 0, the modulus of continuity w(f,d) of f € Cla, b] is
given by

w(f,6) = sup{|f(x) = f(y)|: x,y € [a,b], [x—y| <5}

It is also well known that, for any § > 0 and each x € [a,b],

x —
60 = )l < wir0) (528 1)), an
For f € CJ0, 1], the second-order modulus of smoothness is given by

wa(f, V) = sup sup  {|f(x +20) = 2f(x + 1) + f(x)]},

0<h<+/$ x,x+2h€(0,1]

and the corresponding Peetre’s K-functional [26] is

Ka(f,8) = inf {||f — gllcoa) + 118" lIco,) = § € W?[0,1]},

where
W2[0,1] = {g € C[0,1] : ¢, §" € C[0,1]}.

It is well-known that the inequality
Ka(f,8) < Cwa(f,V6)  (6>0) (12)

holds in which the absolute constant C > 0 is independent of § and f (see [25]).
We are now ready to establish a direct local approximation theorem for operators Bﬁ/ N (f;x) via
second order modulus of smoothness and usual modulus of continuity.
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Theorem 3. Assume that f € C[0,1] and x € [0,1]. Then there exists an absolute constant C such that
1
1B p(fi ) = F(X)] < Cava(f, 500 (0, B,4:%) ) + w0l pn(w, B, ;%)
for the operators B} “ﬁ(f x), where uy(a, B, A; x) and 6, (w, B, A; x) are given in Theorem 2.

Proof. Consider the operators Bn N /5( f;x) as defined in Theorem 2. Assume that t,x € [0,1] and
g € W2[0,1]. The following equality yields by Taylor’s expansion formula:

gy =gx)+(t—x)g +/ u. (13)

If we apply B} . /3( x) to both sides of (13) and keeping in mind these operators preserve constants
and linear functions, we obtain

Blap(5i%) — 8(0) = 8 (0Bt = )+ Bl [ (0= )" ()

Bﬁ,ﬂc,ﬂ < /xt(t —u)g" (u)du; x) — /:ﬂln (x + pala, B, A x) — 1) g" (u)du.

)
X+pn ”

—/ I + pa e, B, A %) — | |g” (u)| du
X

< 118" lco1] (Bl p (£ = 2)%2) + (B o ot — ;%)) ).

With the help of (7), one obtains

Therefore,

B ot
Bhap(si) — 901 < B (| [ 161"l

B3, (85 ) o) < 1Bra,8(85 ) o) + 18 () llcqo) + 18 (x + pa (e, B, A; ) llcpon

(14)
< [I13gllcpo,-

Now, for f € C[0,1] and g € W?[0, 1], using (7) and (14), we get

‘Bnaﬁ( ) f( )| < |Bnoc[%(f_g;x)‘+|B£\l,uc,ﬁ(g;x)_g(x)‘
+18(x) = F()| + [f (x + pu(a, B, A; %)) — f ()]
< 02(a, B, ;)18 lcpoy + w(f pn e, B, A %)) + 41 f = gllcpon-

Finally, by assuming the infimum on the right-hand side of the above inequality over all
g € W?2[0,1] togrther with inequality (12), we obtain

2 .
Bl pf3) = 0] < 4K (£, PR g o, 153)

< Cw, (f, %5,1(04, 8, A;x)) +w(f, (B2 %)),

which completes the proof. O
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In the following theorem, we obtain a local direct estimate of the rate of convergence via
Lipschitz-type function involving two parameters for the operators B/ | g Before proceeding further,
let us recall that

|t — x|

. (kyka) . :
LZPM (17) = {f S C[O/ 1] : |f(t) _f(x)| < M(k1x2 4+ kox + t)

- x€(01], te[o,l]}
2
fork; > 0,k > 0, where 7 € (0,1] and M is a positive constant (see [27]).

Theorem 4. If f € Lipg\il’kz)(iy), then

vZ(zx,ﬁ,)\;x)
|Bn1x,B(f x) = f(x)| < m

forall A € [—-1,1], x € (0,1] and y € (0, 1], where v, («, B, A; x) is defined in Theorem 2.

Proof. Let f € sz(k1 k2) () and 7 € (0,1]. First, we are going to show that statement is true for 7 = 1.
We write

B p(fi2) = F(0)] < By g(If(5) = F)[x)| + f(x) B p(Lix) =1

L i+a s
<3| (aip) 0] Bt
n i+a _xl
<my —"F By i(x; 1)

for f € sz(k1 kZ)( 1). By using the relation
(k1x2 + kox + t)71/2 < (k1x2 + kzx)il/z (k1 >0,ky > 0)
and applying Cauchy-Schwarz inequality, we obtain

o

+p
= M(kyx? 4 kox)~ 1/2|B7‘ plt—x; x)]|
SMlvn(vc,ﬁ,A,x)l”z(klx + kpx)~1/2,

1B 5(fi%) — f(2)] < M(kix® + ko) Wzﬁ — x| Byi(x; 1)

Hence, the statement is true for 7 = 1. By the monotonicity of Bn N 5( f;x) and applying Holder’s
inequality two times with a = 2/5 and b = 2/(2 — 77), we can see that the statement is true for

1 € (0,1] as follows:
17 () o

(£ (225) o
M(i: (;’11% —x)zfﬂn,i(x;)\)>g

0 711?73 + k1x2 + kzx

naﬁ ‘ = En,i(x;/\)

2
U

IN

IN
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n 2 2
§M(k1x2+k2x ;7/2{2<1+¢X —x> bn,i(x;/\)}

M(kyx* + kox + t) { ﬁ (t—x) x;/\)}

vZ(a, B, A; x)
(k1x2 + kz?(')’7 ’

O

Theorem 5. The following inequality holds:

1B o (F:) = F(O)] < [un(, B, 4 0)] | ()] + 24/ v, B, A; ) (f, v (o, B, A x) )
for f € C1[0,1] and x € [0, 1], where un(a, B, A; x) and vy (a, B, A; x) are defined in Theorem 2.

Proof. We have
£(8) = F(x) = (t—x)f (x) + / x))du (15)
forany t € [0,1] and x € [0, 1]. By applying the operators Bn op(+; X) to both sides of (15), we have
t
Bl (1) = F002) = F/ (0B p (0~ 52) + Bl ([0 = F (0 ).

The following inequality holds for any § > 0, u € [0,1] and f € C[0,1]:

() - F(x)] < w(f,6>(”gx‘ +1>.

Thus, we obtain

2
/xt(f/(u)—f’(x))du Sw(f’,5)<(t 5x) +|t—x|>.

Hence
|Brap(f:) = F()] < |f' ()] |By g p(t = x32)|
07" 0){ §Bhapl(t = 0%3) + Bl ot — 7). (16)
By applying Cauchy-Schwarz inequality on the right hand side of last inequality (16), we have
|Biap(fix) = fO] < |f ()] |pn(at, B, 2:0)]
+w(f, 5{ \/Bwﬁ ((t —x)2 )+1} B) (It — x|;%).

Consequently, we obtain the desired result if we choose J as vy 2 (a, B, Ax). O

3. Voronovskaja-Type Theorems

Here, we prove the following Voronovskaja-type theorems by Bé‘, @B (f;x).
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Theorem 6. Let f, f', f” € Cg0,1], where Cg|0,1] is the set of all real-valued bounded and continuous
functions defined on [0,1]. Then, for each x € [0, 1], we have

Tim 1B, o) — (1)} = (= px) /() + “f (x)

uniformly on [0,1].

Proof. We first write the following equality by Taylor’s expansion theorem of function f(x) in Cp[0,1]:

I

£ = FO (= x)f () (= xPf () + (= x) ral), (17)

where rx(t) is Peano form of the remainder, ry € C[0,1] and r(t) — 0 as t — x. Applying the operators
n N ﬁ( x) to identity (17), we have

Blap(f1) — F(2) = £ (0B p(t — x5) + B, (= )%0) 4 B (0 = 2)Pra(t):).

Using Cauchy-Schwarz inequality, we have

B p((t—x \/BM/S ((t— x)* \/Bwﬁr (18)

We observe that lim,, Bﬁ/ a,ﬁ(ri(t) ;x) = 0 and hence

Tim n{B), 5 ((t — x)2re(t);x)} =0

Thus
nlgr.}on{Bnaﬁ x)} = hm n{Bnaﬁ (t—x;x)f'(x) flx )Bﬁaﬁ((t—x)z;x)

+ By p (£ —x)Pre(1); ) }.
The result follows immediately by applying the Corollaries 1 and 2. [

For f € C[0,1] and § > 0, the Ditzian-Totik modulus of smoothness is given by

wg(f,0) :== sup {’f<x+w)2(x))f(xw)2(x)) ,xihgb(x)e[o,l]},

0<|h|<6 2

where ¢(x) = (x(1 — x))'/2, and let

Ky(f,86) = inf - S|’ clio,1
o(f.0) gel/l\lr;[o,l]{Hf gl +llgg'l| : g € C'[0,1]}

be the corresponding Peetre’s K-functional, where
Wyl0,1] = {g: g € ACic[0,1], [lp8"]| < oo}

and ACj,[0,1] denotes the class of absolutely continuous functions defined on [a,b] C [0,1].
There exists a constant C > 0 such that Ky(f,9) < C wy(f,9).

Next, we give a quantitative Voronovskaja-type result for Bz'ﬁ (f;x;M).
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Theorem 7. Suppose that f € C[0,1] such that f', f” € C[0,1]. Then

By o (f:0)f(x) = F(x) = ptu(at, B, A;0) f' (x) = {vm(w, B, A; ) + 1} fllz(x)

1 (19)

<Soom{r5)

for every x € [0, 1] and sufficiently large n, where C is a positive constant, p,(«, B, A; x) and vy (a, B, A; x) are
defined in Theorem 2.

Proof. Consider the following equality
£ = F) — (=) () = [ (6= w)f" ()

for f € C[0,1]. It follows that

£(6) - £ — (6= 0 = LR (=27 41) < [ -0l 00 - . @0

Applying B} a5 (5 X) to both sides of (20), we obtain

By op(fix) = f(x) - Bﬁ,a,,s«t—x);x)f’(x)—fﬂz(x)@ﬁ«/s(( X)%%) + By p(1:%))

(21)
< Bhp(| [ =l 170 = /) ).
The quantity in the right hand side of (21) can be estimated as
[l ) - 0l ] <2057 =gl 0= xR+ 2l @l @
where ¢ € W0, 1]. There exists C > 0 such that
Blap((t =070 < Sg2(0)  and  Bl((t- %) < 594 (x) @)

for sufficiently large n. By taking (21)—-(23) into our account and using Cauchy-Schwarz inequality,
we have

B (F55) = £(x) = Blap((t =)0/ (0) — L0 (B2 (6 = 0)%) + B, (1)
<2f" — gl1BL (¢t~ 1)) + 2019597 (x)Ble (£~ 2%2)
@)l — sl + 200 10 (B pl(t — 2220} 2 (B (1~ x)2)} 2
Cr@{Is" sl +n2lgg ).

IN

IA

Finally, by taking infimum over all g € W0, 1], this last inequality leads us to the assertion (19)
of Theorem 7. [

As an immediate consequence of Theorem 7, we have the following result.
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Corollary 3. If f € C[0,1] such that f', f"" € C[0,1], then

lm B, 5 (£32)£(2) — F(3) — o B, A0 £/ () — i, B 4 ) 13 02 =

n—o0

where uy(a, B, A; x) and vy (a, B, A; x) are defined in Theorem 2.

4. The Bivariate Case of the Operators B} | ﬁ( f;x)

We construct bivariate version of Stancu-type A-Bernstein operators defined which was defined
in the first section of this manuscript as (5) and study their approximation properties.
For0 < a; < B; (i = 1,2), we defined the bivariate version of Stancu-type A-Bernstein operators by

/\ h+a ih4ar) - ~
5 = 3 (et ) Baa O s (i o
11 012

for (x,y) € I and f € C(I), where I = [0,1] x [0,1] and b, ;, (A1; x) and by, (A2; x) are Bézier bases
defined in (4).

We remark that if we take A; = A, = 0in bivariate A-Bernstein-Stancu operators, then (24) reduces
to the classical bivariate Bernstein—Stancu operators defined in [28]. Also, for a1 = 1 = A; = 0 and
&y = PBp = Ay = 0, the bivariate A-Bernstein—-Stancu operators (24) reduce to classical bivariate
Bernstein operators defined in [29].

Lemma 2. The following equalities hold for bivariate A-Bernstein—Stancu operators:

ByaF(1;x,y) = 1;

wp g +nx 1—2x+x" 4 (g —1)(1—x)""t  agx(1—x)"7
b = (o B =) <)
A @ +my 1=2y+y"™ 4 (= DA —y)" ! ay(1-y)"]
Buon (853,y) = m+ pa A [ (m + B2)(m —1) Tt B ]
B/\“ﬂ(s X, Y) = (n_i_lﬁl)Z{n(n—l)x2+(1+2a1)nx+w%}
N 2nx — 1 —4nx? + (2n + 1)x™ + (1 — x)"H! a — 4oy x
h (n+ Br)2(n—1) MR

N 209 — 201 (g + 1) (2" 4+ (1 — x)") + adx(n® + 1) (1 —x)" |
(n+ p1)*(n?>—1) ’

Mﬁ 1 C1),2 2
By ( JX,Y) = it Ba)? {m(m 1)y +(1+21x2)my+042}
A 2my — 1 —4my? + (2m + 1)y 1 + (1 — y)"H! N a3 — dayy
(m + B2)?(m —1) (n+B2)?(m—1)

4 2ram — 2ep(ap + m)(y"™ T+ (1 —y)™) + ady(m® + 1)1 —y)"
(m + p2)?(m* — 1) '

Theorem 8. Let e;j(x,y) = x'y/, where 0 < i+j < 2. Then, the sequence Bﬁl’z‘{ﬁ (f;x,y) of operators
converges uniformly to f on I for each f € C (I).

Proof. It is enough to prove the following condition

B, . — o
n}rlllll Bnm (el]/x/y) €ij
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converges uniformly on I. With the help of Lemma 2, one can see that

B . _
mlér_r} Bnm (e00; X, y) = ego,

. A,
" }’gl By b (e10;x,¥) = e, n}}gm Bn,mﬁ (eo1;x,y) = ep1

and

lim B’ mﬁ (eop + €20; X, y) = ep + exp.
n,m—oo

Keeping in mind the above conditions and Korovkin type theorem established by Volkov [30],
we obtain

lim Bnm (f;xy)=f

m,n—oo
converges uniformly. [

Now, we compute the rate of convergence of operators (24) by means of the modulus of continuity.
Recall that the modulus of continuity for bivariate case is defined as

w(f,8) = sup {17(5,6) = Fo ] /(s = x4 (=2 < 6}

for f € C(I;;) and for every (s, t), (x,y) € I, = [0,a] x [0,b]. The partial moduli of continuity with
respect to x and y are defined by

wi(f,0) = sup{|f(x1,y) - f(x2,y)| :y € [0,a] and [x; — x5 <5},
wy(f,0) = sup{|f(x,y1) = f(x,y2)]: x € [0,b] and [y —ya| < I}

Peetre’s K-functional is given by

K(f0) = it LIF = glleq +olgleza }

for 6 > 0, where C?(1,;) is the space of functions of f such that f, 5 g f and a]f (j =1,2)in C(1,p) [26].

We now give an estimate of the rates of convergence of operators Bn,m (f;x, y).

Theorem 9. Let f € C(I). Then

Bun (fix,y) = £ (x,9)| < 4w (fivh/ (o, B,2:3), 13/ 2(a, B, As1))

forall x € I, where
vn(e, B, A x) = BM‘ﬁ ((s—x)z;x,y) and vy (a, B, Ay) = B)”xﬁ (( y)z;x,y).

Proof. Since (24) is linear and positive, we have

Bun? (Fix,y) — fxy)l < Buwl (If(s,8) — f(x,y)li%y)
< /\txﬁ( (f\/sx y)2>;x,y)
<

w (f; va (o, B, A; %), \/Vm(“/ B, AW))
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x < il s—x )2y
[\/Vn(“/ﬁ,A;x)vm(a,[g,A;y) Biu/ni (\/( P+ (t=y)% y)] :

The Cauchy-Schwartz inequality gives that

|B nm (fx}/) f(xy)]
§w(f;\/vn(ac,ﬁ,/\;x),\/vm(zx,ﬁ,/\;y))
1

1+ @B BT {Bﬁ,’,’f{ﬁ ((s - x)2;x,y) Bﬁ,’fjﬁ ((t —y)z;X,y) }1/2

\/BM‘/S (s —x)? \/B)”X‘B X, Y)
V' Vn zxﬁ)tx vV Vm uc‘BAy '

If we choose

X

vn(a, B, A x) = BMﬁ ((s—x)z;x,y) and vy (a, B, A y) = BM’5 (( y)z;x,y>

for all (x,y) € I we complete the proof, where

BM’g((s—x) 'x,y) = BM’S(S X, y) 2xByf (s;x,9) + 2Byl (1;x,y)
o onx(1—x)+ (Brx —p)?
; (n+p1)?
A 4x? —2x — 2x™2 — 2(ag — 1)x(1 — x)" 1 247x%(1 — x)"
| (1) (n—1) T nth

2nx — 1 —4nx? + (2n + 1)x" 1 4+ (1 — x)" + a2 — dayx
CEY T
2aqn — 209 (g + 1) ("L + (1 — x)™) + ax(n? + 1) (1 — x)"

+Aq

o CET ALY ;
_ _ 2
Bid (- yimy) = MUY )
e {43/ — 2 = 2y" "2 = 2(ap — Dy(1— )" 20971 —y)"
(m + B2)(m —1) m+ B2
e 2my — 1 —4my? + 2m+ 1)y + (1 —y)" ! + o — dayy
(m + B2)?(m —1)

2a0m — 20y (aa + m) (y" ' + (1 —y)™) +ady(m* +1)(1 —y)"
(m+ B2)*(m? —1)

+Ay
O
Theorem 10. Let f € C (I). Then, the following inequality holds:

Bunt (fix,y) = f (x,9)| <2 [wn (Fiva/(a, B,45%)) + oz (£ (@ B, 1i) )|

where vy (&, B, A; x) and vy, (a, B, A; y) are defined in Theorem 9.
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Proof. By using the definition of partial modulus of continuity and Cauchy-Schwartz inequality,
we have

B’ (fi%,9) — f(x,y)]
< By (If(s,8) = ()2, )
< By (1F(s,8) = F(x, )x,9) + Buni? (1f (0, 0) = f(x,9) %)
< Byt (lwr(fils — x));x,y) + Bun® (lwa (3 £ = y1) 5 x,)

< wi(f,vn(a, B, A;x)) {1—}— ocﬁ)Lx)BAaﬁus_ﬂxy)}

+aoa(f, v B, ) |1+ ~ i)

(wﬁ/\ y) "

o 1/,11/2(1x,1ﬁ,/\;x) (B,)l‘,’fﬁl’ﬁ ((s —x)? xly))l/zl

1+ Uz(lxlﬁ/\y) (B;\,’ﬁrﬁ ((t_y)Z;xry)>l/2‘| :

< wl(f/Vrll/z(“rﬁr/\?x))

+ewa(f, v (B, 2; %))

Finally, by choosing vy (&, B, A; x) and vy, (&, B, A; i) as defined in Theorem 9, we obtain desired result. [

We recall that the Lipschitz class Lipp( El, Bz) for the bivariate is given by
f(s,8) = f(x,y)| < Ms — x|P' |t —y|P?
for Bl,‘gz € (0,1] and (s,t), (x,y) € L.
Theorem 11. Let f € Lippi(B1, Ba). Then, for all (x,y) € L, we have
A /2 /2
B (Fr,9) — Flxy)| < M (0, B, A )b (B, Asy),
where vy (&, B, A; x) and vy, (a, B, A; y) are defined in Theorem 9.
Proof. We have

BunP(1f(s,8) = fF(x,9) | %, y)
MBP (s — x [Pt — yIP2x, )

IA

Buil (f32,9) — f(x,y)]

IN

= MByP (s — xP;x,y)Buf (1t — 1P %)

since f € Lippi(B1, B2). Then, by applying the Holder’s inequality for

5 2 2
1= =/41 = =
P1 2-p1
and
B 1 2
P2 = =,q92 = =/
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we obtain

Bun? (Fx,y) = fx )| < M{Buwf (Is — x[%2,9) Yo /2By (1; %, ) }P1/2
s By (1t = yl%x,9) Y2 2 (B (1%, ) 1P2/2
= Muvy(a, B, A; x)ﬁl/zvm(zx, B, A;y)ﬁZ/z.

This completes the proof. [
Theorem 12. For f € CY(I), the following inequality holds:
B (i, y) = fey)l < fe llew vil @ B A0+ 1L fy llea vil (B, Asy),
where vy (&, B, A; x) and vy (a, B, A; y) are defined in Theorem 9.
Proof. We have

£ = £6) = [ fulws)u+ [ #o

for (s,t) € I. Thus, by applying the operators defined in (24) to the above equality, we obtain

;x,y).

Bun’ (Fix,y) = F(x,9)]
< B/\“ﬁ (‘/ fu(u,s)du|;x, y) JrBMl3 (’/ysfz,(x,v)du

By taking the following relations into our consideration
t

‘ / fu(u,s)du
X

(x,v)du

<N fx lleqyy) 15 — x|

and

< fyllca, It =yl
one obtains
A,
[Bani” (fix,) = ()
BV
< fr llew Bam® (s = xbxy) + | fy e Ban (1= ylixy).
Using Cauchy-Schwarz inequality, we have
A
B’ (fix,y) = f(,)
A, A,
<l e llewy (Ban ((s = )% xy) Y2 (B (1%,9) 117
A, A,
11 fy ey (B (8= y)%xy) Y2 (BuAE (1x,y) 172
O

Finally, we presents a Voronovskaja-type theorem for Bﬁ/’ﬁ’ﬁ (f;x,y).
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Theorem 13. Let f € C?(I). Then

sim 1 [ByP(fixy) = fxy)] = (@ = Br)fet (w0 — Bay)fy
x(1-x)  yi-y)
te et T

Proof. Let (x,y) € I and write the Taylor’s formula of f (s, t) as
flst) = floy)+ fals =)+ fy(t—y)
+% {fxx(s —x)? +2fxy(s —x)(t —y) + fyy(t — y)z}
+e(s, t) ((s —x)? 4 (t— y)z) , (25)

where (s,t) € I and (s, t) — O as (s,t) — (x,y). If we apply sequence of operators B,);,’ff’ﬁ(-;x,y)
on (25) keeping in mind linearity of operator, we have

Bun® (fr5,1) — f(xy)
= £ y)Bun (s — )%, y) + fy(x, 1) BanP (= )i %)

g { B (5 = 2053, ) + 2 B (5 = )t = )
A,
+fuyBun (8 —y)z;x,w} +Bun® (e(s,) (s =22+ (1= )?) sxy)
Applying limit to both sides of the last equality as n — oo, we have

lim n(Byw? (fis,t) — f(x,y))

n—o00
= lim 1 { fx(x,y)BuP (s = x)ix,9) + £y (e 9)Ban (t = y)ixy) |
. n
+ nlg’f(}o Z{fxxBi)i\,,fz‘”B((S - x)z} X, Y)
12 BRiP (s — x)(t—y);x,y) + “B((t—y)%
xyBnn y);x,y) + fyyB nn ((t=y)%xy)
. Aua,
+nlg£10 anﬁﬁ (s(s, £) ((s —x)2 4+ (t— y)z) ;x,y) .
Using Holder inequality for the last term of above equality, we have
Bun® (e(s,8) (s =22+ (t=v)?) sxy)
< \f\/BM’ﬁ €2(s, t);x,y)

\/Bws (s — )4+ (t— 1)) ; %, v).

Since
. A,
Jlim BynP <€z(s,t);x,y) =& (x,y) =0
we have

lim n B,i‘ﬁ’ﬁ (s(s, t) ((s —x)t 4 (- y)4) ;x,y) =0. (26)

n—
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Consequently, we obtain

nhm n By ((s —x);x,y) = a1 — B1x, (27)
Lim 1 By (= y)ix,y) = a2 — Bay, (28)
nli_r)r;on B ’,‘f’ﬁ((s —x)%xy) = x(1-x), (29)
Tim n By (= y)%x,y) = y(1—y), (30)

Combining (26)—(30), we deduce the desired result. [
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