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Abstract: This paper is mainly concerned with distributional chaos and the principal measure of
C0-semigroups on a Frechet space. New definitions of strong irregular (semi-irregular) vectors are
given. It is proved that if C0-semigroup T has strong irregular vectors, then T is distributional chaos
in a sequence, and the principal measure µp(T ) is 1. Moreover, T is distributional chaos equivalent
to that operator Tt is distributional chaos for every ∀t > 0.
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1. Introduction

Chaotic properties of dynamical systems have been ardently studied since the term chaos
(namely, Li-Yorke chaos) was defined in 1975 by Li and Yorke [1]. To describe unpredictability in the
evolution of dynamical systems, many properties related to chaos have been discussed (for example,
References [2–13], where References [4–7] are some of our works done in recent years). In 1994,
Schweizer and Smital in Reference [8] introduced a popular concept named distributional chaos for
interval maps, by considering the dynamics of pairs with some statistical properties. The goal was to
extend the definition of Li-Yorke chaos, and it was equivalent to positive topological entropy. Later,
Reference [9] summarizes the connections between Li-Yorke, distributional, and ω-chaos. The notions
of distributional chaos and principal measures were extended to general dynamical systems [10,11]
and especially to the framework of linear dynamics in the last few years. It seems that the first example
of a distributional chaotic operator on a Frechet space was given by Oprocha [14], whom investigated
the annihilation operator of a quantum harmonic oscillator. Wu and Zhu [15] further proved that the
principal measure of the annihilation operator studied in Reference [14] is 1. Since then, distributional
chaos for linear operators has been studied by many authors, see for instance References [16–21].

The study of hypercyclicity and chaoticity for operators and C0-semigroups has became a hot and
active research area in the past two decades (such as References [22,23]). In Reference [24], Devaney
chaos for C0-semigroup of unbounded operators was discussed. The extension of distributional chaos
to C0-semigroup on weighted spaces of integrable functions was done in Reference [25]. Devaney chaos
and distributional chaos are closely tied for the C0-semigroup. Distributionally chaotic C0-semigroups
on Banach spaces were found in Reference [16]. A systematic investigation of distributional chaos for
linear operators on Frechet space was given by Bernardes [17]. Recently, an extension of distributional
chaos for a family of operators (including C0-semigroups) on Frechet spaces were proposed by
Conejero [26]. For other studies of C0-semigroups or Frechet spaces see References [27–34] and others.

In the present work, in Section 2 we deal with the notion of strong irregular (semi-irregular)
vectors for C0-semigroups of operators on a Frechet spaces. It is proved that if a C0-semigroup T on
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a Frechet space admits a strong irregular vector, then T is distributionally chaotic in a sequence, and
the principal measure µp(T ) is 1. In Section 3, using the properties of the upper density and lower
density, we point out that the distributional chaoticity of T is equivalent to the distributional chaoticity
of Tt (∀t > 0).

Throughout this paper, the set of natural numbers is denoted by N = {1, 2, 3, · · · } and the set of
positive real numbers is denoted by R+ = (0,+∞).

2. Preliminaries

The Frechet space in this paper is a vector space X, endowed with a separating increasing sequence
(‖ · ‖k)k∈N of seminorms in the following metric.

ρ(x, y) =
∞

∑
k=1

1
2k ·

‖x− y‖k
1 + ‖x− y‖k

, ∀x, y ∈ X.

Throughout this paper, the Frechet space is denote by (X, (‖ · ‖k)k∈N, ρ) (or simply X) without
otherwise statements and we let L(X) be the space of continuous linear operators on X.

One parameter family T = {Tt}t≥0 ⊆ L(X) is called a C0-semigroup of linear operators on X if:

(i) T0 = I (where I is the identity operator on X);
(ii) TtTs = Tt+s, ∀s, t ≥ 0;
(iii) lim

s→t
Ts(x) = Tt(x), ∀x ∈ X, ∀s, t ≥ 0.

In References [17,33], Peris et al. introduced the notions of an irregular vector and a distributional
irregular vector for operators in order to characterize distributional chaos. Similarly, we give notions
of a strong irregular vector and strong semi-irregular vector.

x ∈ X is called a strong irregular vector for a C0-semigroup T on a Frechet space X if

limsup
t→∞

‖Ttx‖k = ∞ and liminf
t→∞

‖Ttx‖k = 0

for every k ∈ N.
x ∈ X is called a strong semi-irregular vector, if

limsup
t→∞

‖Ttx‖k = ∞ but liminf
t→∞

‖Ttx‖k 6= 0 f or some k ∈ N

and there exists a sequence {Tti}i∈N such that

liminf
i→∞

‖Tti x‖k = 0

for every k ∈ N.

3. Distributional Chaos in a Sequence of C0-Semigroup

For any x, y ∈ X and a sequence {pi}i∈N ⊂ R+, we define the distributional function in a sequence
of x and y with respect to T = {Tt}t≥0 as:

Φn
xy : R+ → [0, 1]

Φn
xy(ε) =

1
n card{1 ≤ i ≤ n : ρ(Tpi (x), Tpi (y)) < ε} (∀ε ∈ R+)

where card{M} denotes the cardinality of the set M (or denoted by |M|).
The upper and lower distributional functions of x and y are then defined by

Φ∗xy(ε, {pi}i∈N) = limsup
n→∞

Φn
xy(ε) and Φxy(ε, {pi}i∈N) = liminf

n→∞
Φn

xy(ε)
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respectively for ∀ε > 0.

Definition 1. Let (X, (‖ · ‖k)k∈N, ρ) be a Frechet space. A C0-semigroup of operators T = {Tt}t≥0 on X is
said to be distributionally chaotic in a sequence if there exists a sequence {pi}i∈N, an uncountable subset of
S ⊂ X and δ > 0 such that for ∀x, y ∈ S : x 6= y and ∀ε > 0, we have that:

Φ∗xy(ε, {pi}i∈N) = 1 and Φxy(δ, {pi}i∈N) = 0.

In this case, S is called a distributionally δ-scrambled set in a sequence, and (x, y) is called
a distributionally chaotic pair in a sequence.

To measure the degree of chaos for a given dynamical system, the concept of principal measure was
introduced for general dynamical systems accompanying the appearance of distributional chaos [8,11].
For the study of principal measures of certain linear operators, we refer to References [14,15,35].
Naturally, the concept for the case of C0-semigroup of operators on Frechet spaces can be extended.

Definition 2. Let T = {Tt}t≥0 be a C0-semigroup of operators on a Frechet space X. The principal measure
µp(T ) of T is defined as follows:

µp(T ) = sup
x∈X

1
diam(X)

∫ ∞

0
(Φ∗x,0(s)−Φx,0(s))ds ,

where Φ∗x,0(s) and Φx,0(s) are the upper and lower distributional functions of x and 0, and diam(X) is the
diameter of X.

Now we shall establish the relationship between strong irregular vectors and the distributional
chaos of the C0-semigroup of operators on Frechet spaces.

Theorem 1. Let T is a C0-semigroup on a Frechet space X. If T admits a strong irregular vector, then T is
distributionally chaotic in a sequence.

Proof. Let x ∈ X. Since T admits a strong irregular vector, there exists two increasing sequences
{nj}j∈N ⊂ R+ and {mj}j∈N ⊂ R+ such that

lim
j→∞
‖Tnj(x)‖

k
= ∞ and lim

j→∞
‖Tmj(x)‖

k
= 0

for every k ∈ N.
Let
b1 = l1 = 2, b2 = 2b1 , b3 = 2b1+b2 , · · · , bi = 2b1+···+bi−1 = 2∑i−1

k=1 bk for all i > 1;
l2 = b1 + b2, l3 = b1 + b2 + b3, · · · , li = ∑i

h=1 bh for all i > 1.
{nj
′}j∈N and {mj

′}j∈N are, respectively, the subsequence of {nj}j∈N and {mj}j∈N such that

mj
′ < nj

′ when j ≤ b1 or l2s < j < l2s+1, and nj
′ < mj

′ when l2s−1 < j < l2s for any s ∈ N.
Let

pj =

{
nj
′ j ≤ b1 or l2s < j < l2s+1, s ∈ N

mj
′ l2s−1 < j < l2s, s ∈ N

then, {pj}j∈N ⊂ R+ is an increasing sequence.

Denote Γ = {αx : α ∈ (0, 1)}. The following prove that Γ is a distributional δ-scrambled set of T
in {pj}j∈N for some δ > 0.

In fact, for any pair x, y ∈ Γ with x 6= y, it is clear that there exists α ∈ (0, 1) such that x− y = αx.
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Since lim
j→∞
‖Tmj(x)‖

k
= 0 (∀k ∈ N), then, for ∀ε > 0, there exists N ∈ N such that ‖Tmj

′(αx)‖
k
< ε

for each j ≥ N. Then, ∀k ∈ N,

‖Tpj(x)− Tpj(y)‖k
1 + ‖Tpj(x)− Tpj(y)‖k

=
‖Tpj(x− y)‖

k
1 + ‖Tpj(x− y)‖

k

=
α‖Tpj‖k

1 + α‖Tpj‖k

<
αε

1 + αε

So,
Φ∗xy(ε, {pj}j∈N) = limsup

n→∞

1
n card{1 ≤ j ≤ n : ρ(Tpj(x), Tpj(y)) < ε}

= limsup
n→∞

1
n card{1 ≤ j ≤ n :

∞
∑

k=1

1
2k

∥∥∥Tpj (x)−Tpj (y)
∥∥∥

k

1+
∥∥∥Tpj (x)−Tpj (y)

∥∥∥
k

< ε}

≥ limsup
n→∞

1
n card{1 ≤ j ≤ n :

∞
∑

k=1

1
2k

αx
1+αx < ε}

= limsup
s→∞

1
l2s

card{1 ≤ j ≤ l2s :
∞
∑

k=1

1
2k

αx
1+αx < ε}

≥ limsup
s→∞

b2s
l2s

= limsup
s→∞

2b1+b2+···+b2s−1

∑2s−1
h=1 bh+2b1+b2+···+b2s−1

= 1.

(1)

Let δ = 1.
Since lim

j→∞
‖Tnj(x)‖

k
= ∞ (∀k ∈ N), there exists M ∈ N such that ‖Tnj

′(αx)‖
k
> δ(∀k ∈ N) for

each j ≥ M.
Thus,

Φxy(δ, {pj}j∈N) = liminf
n→∞

1
n card{1 ≤ j ≤ n : ρ(Tpj(x), Tpj(y)) < δ}

= liminf
s→∞

1
l2s+1

card{1 ≤ j ≤ l2s+1 :
∞
∑

k=1

1
2k

αδ
1+αδ < δ}

≤ liminf
s→∞

l2s
l2s+1

= liminf
s→∞

∑2s
h=1 bh

∑2s
h=1 bh+2b1+b2+···+b2s

= 0.

(2)

By (1) and (2), Γ = {αx : α ∈ (0, 1)} is a distributionally δ-scrambled set of Γ in {pj}j∈N. So, Γ is
distributionally chaotic in a sequence as Γ is uncountable.

This completes the proof. �

As an important class of operators in linear dynamics, the backward shift [35,36] admits principal
measure 1 if it is distributionally chaotic. In addition, it is easy to see that every distributionally chaotic
operator on a Banach space (as a special Frechet space) has a principal measure of 1. So we wonder
whether the C0-semigroup on the Frechet space above with a principal measure of 1 is distributionally
chaotic. The answer is positive.

Theorem 2. Let T be a C0-semigroup of operators on a Frechet space X. Assume that T admits a strong
irregular vector X0, then the principal measure µp(T ) = 1.

Proof. From the definition of a strong irregular vector, for every k ∈ N, one has:

liminf
t→∞

‖Tt(x0)‖k = 0 and limsup
t→∞

‖Tt(x0)‖k = ∞.

Given arbitrary ε ∈ (0, 1), one can find a sequence {tε
i}i∈N ∈ R+ and a positive number N1 such

that ρ(Ttε
i
(x0), 0) < ε for all {tε

i : tε
i ∈ {tε

1, tε
2, · · · }, tε

i > N1}.
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Φ∗x0,0(ε, {tε
1}i∈N) = limsup

n→∞

1
n card{1 ≤ i ≤ n : ρ(Ttε

i
(x0), 0) < ε}

≥ limsup
n→∞

1
n (n− N1)

= 1.

On the other hand, we show that ∀k ∈ N, Φx0,0(ε) = 0 for every ε ∈ (0, diam(X)).
In fact, given ∀ε ∈ (0, diam(X)). Since limsup

t→∞
‖Tt(x0)‖k = ∞ for every k ∈ N, then for any

sequence {ti}i∈N ∈ N+, there exists a positive number N2 such that ρ(Tti (x0), 0) > ε for {ti : ti ∈
{ti}i∈N, ti > N2}. So

Φx0,0(ε, {tε
i}i∈N) = liminf

n→∞

1
n

card{1 ≤ i ≤ n : ρ(Tti (x0), 0) < ε} ≤ liminf
n→∞

N2

n
= 0.

Hence,
µn(T ) = sup

x∈X

1
diam(X)

∫ ∞
0 (Φ∗x,0(ε)−Φx,0(ε))dε

= sup
x∈X

1
diam(X)

∫ diam(X)
0 (Φ∗x,0(ε)−Φx,0(ε))dε

≥ 1
diam(X)

∫ diam(X)
0 (Φ∗x0,0(ε, {tε

i}i∈N)−Φx0,0(ε, {tε
i}i∈N))dε

= 1.

This completes the proof. �

4. Distributionally Chaotic C0-Semigroup

For any x, y ∈ X and any t > 0, the distributional function of x and y with respect to T = {Tt}t≥0
is defined as follows:

Φt
x,y : R+ → [0, 1]

Φt
x,y(ε) =

1
t µ({0 ≤ i ≤ t : ρ(Ts(x), Ts(y)) < ε}). ∀ε > 0

where µ denotes the Lebesgue measure on R.
The upper and lower distributional functions of x and y are then defined by:

Φ∗x,y(ε) = limsup
t→∞

Φt
x,y(ε) and Φx,y(ε) = liminf

t→∞
Φt

x,y(ε), ∀ε > 0

respectively.

Definition 3. Let (X, (‖ · ‖k)k∈N, ρ) be a Frechet space. A C0-semigroup of operators T = {Tt}t≥0 on X
is said to be distributionally chaotic if one can find an uncountable subset S ∈ X and δ > 0 such that,
for ∀x, y ∈ S : x 6= y and for ∀ε > 0, we have:

Φ∗x,y(ε) = 1 and Φx,y(δ) = 0.

In this case, S is called a distributionally δ-scrambled set and (x, y) a distributionally chaotic pair.
Let E ∈ R+ be a Lebesgue measurable set; the upper density and lower density of E are defined as:

Dens(E) = limsup
t→∞

µ(E ∩ [0, t])
t

and Dens(E) = liminf
t→∞

µ(E ∩ [0, t])
t

respectively. Then, the conditions Φ∗x,y(ε) = 1, Φx,y(δ) = 0 in Definition 3 are equivalent to:

Dens({t ≥ 0 : ρ(Tt(x), Tt(y)) < ε}) = 1 and Dens({t ≥ 0 : ρ(Tt(x), Tt(y)) < δ}) = 0

respectively.
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Given M ⊂ N+, the upper density and lower density of M are defined as

dens(M) = limsup
n→∞

card(M ∩ [0, n− 1])
t

and dens(M) = liminf
n→∞

card(M ∩ [0, n− 1])
t

respectively. The conditions in the definition of the distributional chaos for operator T are equivalent to

dens({n ∈ N : ‖Tn(x)− Tn(y)‖k < ε}) = 1, dens({n ∈ N : ‖Tn(x)− Tn(y)‖k < δ}) = 0.

Theorem 3. Let T be a C0-semigroup of operators on a Frechet space X. x ∈ X, t0 > 0, ∀k ∈ N,
let Ck

t0
= sup

0≤t≤t0

‖T(x)t‖k. Then for every ε, δ > 0 and all N > 0:

(i) µ({t ∈ [0, N] : ‖Tt(x)‖k > δ}) ≤ t0

∣∣∣∣{s ∈ N : s ≤ N
t0
+ 1, ‖Ts−1

t0
(x)‖

k
> δ

Ck
t0

}
∣∣∣∣;

(ii) t0

∣∣∣{s ∈ N : s ≤ N, ‖Ts
t0
(x)‖

k
> δ}

∣∣∣ ≤ µ({t ∈ [0, Nt0] : ‖Tt(x)‖k >
δ

Ck
t0

});

(iii) µ({t ∈ [0, N] : ‖Tt(x)‖k < ε}) ≤ t0

∣∣∣{s ∈ N : s ≤ N
t0
+ 1, ‖Ts

t0
(x)‖

k
< εCk

t0
}
∣∣∣;

(iv) t0

∣∣∣{s ∈ N : s ≤ N, ‖Ts
t0
(x)‖

k
< ε}

∣∣∣ ≤ µ({t ∈ [0, (N + 1)t0] : ‖Tt(x)‖k < εCk
t0
}).

Proof. (i) Let A = {t ≤ N : ‖Tt(x)‖k > δ}, B = {s ∈ N : ∃t∗ ∈ A ∩ [(s− 1)t0, st0]}, then,

B ⊆ {s ∈ N : 1 ≤ s ≤ N
t0

+ 1, ‖Ts−1
t0

(x)‖
k
>

δ

Ck
t0

}

Indeed, if there exists t∗ ∈ [(s− 1)t0, st0] such that t∗ ≤ N and ‖Tt∗(x)‖k > δ, then

1 ≤ t∗

t0
≤ s ≤ t∗

t0
+ 1 ≤ N

t0
+ 1.

and because t∗ − (s− 1)t0 ≤ t0, then

δ < ‖Tt∗(x)‖k = ‖Tt∗−(s−1)t0
T(s−1)t0

(x)‖
k
≤ ( sup

0≤t≤t0

‖Tt(x)‖k)‖T(s−1)t0
(x)‖

k

= Ck
t0
‖T(s−1)t0

(x)‖
k
= Ck

t0
‖Ts−1

t0
(x)‖

k
.

That is,

‖Ts−1
t0

(x)‖
k
>

δ

Ck
t0

.

Therefore,
µ(A) ≤ ∑

s∈B
µ([(s− 1)t0, st0]).

(ii) Let M = {s ∈ N : s ≤ N, ‖Ts
t0
(x)‖

k
> δ}. Then, for every t ∈ [(s− 1)t0, st0], we have that

δ < ‖Ts
t0
(x)‖k = ‖Tst0(x)‖k = ‖Tst0−tTt(x)‖k ≤ Ck

t0
‖Tt(x)‖k.

(The last inequality is right for the reason that st0 − t ≤ t0).
Hence,

∪
s∈M

[(s− 1)t0, st0] ⊆ {t ∈ [0, Nt0] : ‖Tt(x)‖k >
δ

Ck
t0

}.

Thus,

t0|M| ≤ µ({t ∈ [0, Nt0] : ‖Tt(x)‖k >
δ

Ck
t0

}).
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(iii) and (iv) can be obtained with analogous considerations.
This completes the proof. �

Theorem 4. Let T be a C0-semigroup of operators on a Frechet space X. x ∈ X, t0 > 0, ∀k ∈ N,
let Ck

t0
= sup

0≤t≤t0

‖T(x)t‖k. Then for ∀ε, δ > 0 and all N > 0:

(i) Dens({t ≥ 0 : ‖Tt(x)‖k > δ}) ≤ dens({s ∈ N : ‖Ts
t0
(x)‖

k
> δ

Ck
t0

});

(ii) dens
∣∣∣{s ∈ N : ‖Ts

t0
(x)‖

k
> δ}

∣∣∣ ≤ Dens({t ≥ 0 : ‖Tt(x)‖k >
δ

Ck
t0

});

(iii) Dens({t ≥ 0 : ‖Tt(x)‖k < ε}) ≤ dens
∣∣∣{s ∈ N : ‖Ts

t0
(x)‖

k
< εCk

t0
}
∣∣∣;

(iv) dens({s ∈ N : ‖Ts
t0
(x)‖

k
< ε}) ≤ Dens({t ≥ 0 : ‖Tt(x)‖k < εCk

t0
}).

Proof. (i)’ By (i) of Theorem 3,

Dens({t ≥ 0 : ‖Tt(x)‖k > δ}) = limsup
t→∞

1
t µ({[0, t] ∩ {t ≥ 0 : ‖Tt(x)‖k > δ}})

= limsup
N→∞

1
N µ({t ∈ [0, N] : ‖Tt(x)‖k > δ})

≤ limsup
N→∞

t0
N µ({s ∈ N : s ≤ N

t0
+ 1, ‖Ts−1

t0
(x)‖

k
> δ

Ck
t0

})

= limsup
N→∞

1
N

∣∣∣∣{s ∈ N : ‖Ts
t0
(x)‖

k
> δ

Ck
t0

} ∩ [0, N]

∣∣∣∣
= dens({s ∈ N : ‖Ts

t0
(x)‖

k
> δ

Ck
t0

}).

(ii)’, (iii)’ and (iv)’ can be obtained with analogous considerations.
This completes the proof. �

Theorem 5. Let T = {Tt}t≥0 be a C0-semigroup of operators on a Frechet space X. Then the following
properties are equivalent.

(i) T is distributionally chaotic;
(ii) ∀t > 0, Tt is distributionally chaotic;
(iii) There exists t0 > 0 such that Tt0 is distributionally chaotic.

Proof. Let S ⊂ X be a distributionally δ-scrambled set for T . Then, for ∀x, y ∈ S : x 6= y, there exists a
0 < δ < 1 such that

Dens({s ≥ 0 : ρ(Ts(x), Ts(y)) < δ}) = 0.

It means that

liminf
t→∞

µ({s ≥ 0 : ρ(Ts(x), Ts(y)) < δ} ∩ [0, t])
t

= 0.

i.e.,

limsup
t→∞

µ({s ≥ 0 : ρ(Ts(x), Ts(y)) > δ} ∩ [0, t])
t

= 1.

If ‖Ts(x)− Ts(y)‖k >
2kδ
1−δ (∀k ∈ N), then

∞

∑
k=1

1
2k ·

1
1 + ‖Ts(x)− Ts(y)‖k

< 1− δ.

So,

ρ(Ts(x), Ts(y)) =
∞

∑
k=1

1
2k ·

‖Ts(x)− Ts(y)‖k
1 + ‖Ts(x)− Ts(y)‖k

= 1−
∞

∑
k=1

1
2k ·

1
1 + ‖Ts(x)− Ts(y)‖k

> δ.
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Thus,

Dens({s ≥ 0 : ‖Ts(x)− Ts(y)‖k >
2kδ

1− δ
}) = 1.

By (i)’ of Theorem 4, for every t0 > 0, one has

dens({s ∈ N : ‖Tk
t0
(Ts(x)− Ts(y))‖k >

2kδ

Ck
t0
(1− δ)

}) = 1.

That is,

dens({s ∈ N : ‖Tkt0+s(x)− Tkt0+s(y)‖k <
2kδ

Ck
t0
(1− δ)

}) = 0.

On the other hand, for ∀x, y ∈ S : x 6= y and every 0 < ε < 1, since Dens({s ≥ 0 :
ρ(Ts(x), Ts(y)) < ε}) = 1, i.e.,

limsup
t→∞

µ({s ≥ 0 : ρ(Ts(x), Ts(y)) < ε} ∩ [0, t])
t

= 1,

and

ρ(Ts(x), Ts(y)) =
∞

∑
k=1

1
2k ·

‖Ts(x)− Ts(y)‖k
1 + ‖Ts(x)− Ts(y)‖k

< ε,

then
Dens({s ≥ 0 : ‖Ts(x)− Ts(y)‖k <

ε

2k(1− ε)
}) = 1

when ‖Ts(x)− Ts(y)‖k <
ε

2k(1−ε)
(∀k ∈ N).

By (iii)’ of Theorem 4, for every t0 > 0, one has

dens({s ∈ N : ‖Tk
t0
(Ts(x)− Ts(y))‖k <

εCk
t0

2k(1− ε)
}) = 1.

For the arbitrariness of ε > 0, we have

dens({s ∈ N : ‖Tkt0+s(x)− Tkt0+s(y)‖k < ε}) = 1.

Thus, S is a δ′-scrambled set for Tt, where δ′ = δ
Ck

t0

, t = kt0 + s (∀t0 > 0), i.e., for all t > 0, Tt is

distributionally chaotic.
(ii) implies (iii). It is trivial.
(iii) implies (i). The proof is analogous to the first implication.
This completes the proof. �

5. Discussion

Inspired by the definition of an irregular vector given by N.C. Bernardes Jr in Reference [17],
this paper defines the strong irregular vector. In particular, it is proved that a C0-semigroup on
a Frechet space is distributionally chaotic in a sequence if it admits a strong irregular vector.
In addition, the principal measure µp(T ) = 1. These results extend the corresponding results in
References [16,17,31,35]. In Section 4, using upper density and lower density, it is showed that the
distributional chaoticity of µp(T ) = {Tt}t≥0 is equivalent to the distributional chaoticity of some
Tt0 (t0 > 0). This result is consistent with the similar conclusion in Banach space or other Frechet spaces
(see References [17,27,29,31,33] and others). Then, some further results regarding C0–semigroups or
Frechet spaces may be obtained in the future.
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Since Li-Yorke chaos is a special case of distributional chaos, therefore, the conclusions of this
paper are also correct for Li-Yorke chaos.
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