Article

Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions

Shahid Mahmood ${ }^{1}$, Hari M. Srivastava ${ }^{2,3}$ © , Nazar Khan ${ }^{4}$, Qazi Zahoor Ahmad ${ }^{\text {4,* }}$ (D) Bilal Khan ${ }^{4}$ (D) and Irfan Ali ${ }^{5}$
1 Department of Mechanical Engineering, Sarhad University of Science and Information Technology, Ring Road, Peshawar 25000, Pakistan; shahidmahmood757@gmail.com
2 Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada; harimsri@math.uvic.ca
3 Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
4 Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad 22010, Pakistan; nazarmaths@gmail.com (N.K.); bilalmaths789@gmail.com (B.K.)
5 Department of Mathematical Sciences, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan; irfan.ali@buitms.edu.pk
* Correspondence: zahoorqazi5@gmail.com; Tel.: +92-334-96-60-162

Received: 1 January 2019; Accepted: 23 February 2019; Published: 7 March 2019
Abstract: The main purpose of this article is to find the upper bound of the third Hankel determinant for a family of q-starlike functions which are associated with the Ruscheweyh-type q-derivative operator. The work is motivated by several special cases and consequences of our main results, which are pointed out herein.

Keywords: analytic functions; Hadamard product; starlike functions; q-derivative (or q-difference) operator; Hankel determinant; q-starlike functions

MSC: Primary 05A30, 30C45; Secondary 11B65, 47B38

1. Introduction

We denote by $\mathcal{A}(\mathbb{U})$ the class of functions which are analytic in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\}
$$

where \mathbb{C} is the complex plane. Let \mathcal{A} be the class of analytic functions having the following normalized form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(\forall z \in \mathbb{U}) \tag{1}
\end{equation*}
$$

in the open unit disk \mathbb{U}, centered at the origin and normalized by the conditions given by

$$
f(0)=0 \quad \text { and } \quad f^{\prime}(0)=1
$$

In addition, let $\mathcal{S} \subset \mathcal{A}$ be the class of functions which are univalent in \mathbb{U}. The class of starlike functions in \mathbb{U} will be denoted by \mathcal{S}^{*}, which consists of normalized functions $f \in \mathcal{A}$ that satisfy the following inequality:

$$
\begin{equation*}
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0, \quad(\forall z \in \mathbb{U}) \tag{2}
\end{equation*}
$$

If two functions f and g are analytic in \mathbb{U}, we say that the function f is subordinate to g and write in the form:

$$
f \prec g \quad \text { or } \quad f(z) \prec g(z),
$$

if there exists a Schwarz function w which is analytic in \mathbb{U}, with

$$
w(0)=0 \quad \text { and } \quad|w(z)|<1
$$

such that

$$
f(z)=g(w(z))
$$

In particular, if the function g is univalent in \mathbb{U}, then it follows that (cf., e.g., [1]; see also [2])

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}) \Rightarrow f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U})
$$

Moreover, for two analytic functions f and g given by

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(\forall z \in \mathbb{U})
$$

and

$$
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \quad(\forall z \in \mathbb{U})
$$

the convolution (or the Hadamard product) of f and g is defined as follows:

$$
f(z) * g(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}
$$

We next denote by \mathcal{P} the class of analytic functions p which are normalized by

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n} \tag{3}
\end{equation*}
$$

such that

$$
\Re(p(z))>0 \quad(z \in \mathbb{U})
$$

We now recall some essential definitions and concept details of the basic or quantum $(q-)$ calculus, which are used in this paper. We suppose throughout the paper that $0<q<1$ and that

$$
\mathbb{N}=\{1,2,3, \cdots\}=\mathbb{N}_{0} \backslash\{0\} \quad\left(\mathbb{N}_{0}=\{0,1,2,3, \cdots\}\right)
$$

Definition 1. Let $q \in(0,1)$ and define the q-number $[\lambda]_{q}$ by

$$
[\lambda]_{q}= \begin{cases}\frac{1-q^{\lambda}}{1-q} & (\lambda \in \mathbb{C}) \\ \sum_{k=0}^{n-1} q^{k}=1+q+q^{2}+\cdots+q^{n-1} & (\lambda=n \in \mathbb{N})\end{cases}
$$

Definition 2. Let $q \in(0,1)$ and define the q-factorial $[n]_{q}!b y$

$$
[n]_{q}!= \begin{cases}1 & (n=0) \\ \prod_{k=1}^{n-1}[k]_{q} & (n \in \mathbb{N})\end{cases}
$$

Definition 3. Let $q \in(0,1)$ and define the generalized q-Pochhammer symbol $[\lambda]_{q, n}$ by

$$
[\lambda]_{q, n}= \begin{cases}1 & (n=0) \\ \prod_{k=0}^{n}[\lambda+k]_{q} & (n \in \mathbb{N})\end{cases}
$$

Definition 4. For $\omega>0$, let the q-gamma function $\Gamma_{q}(\omega)$ be defined by

$$
\Gamma_{q}(\omega+1)=[\omega]_{q} \Gamma_{q}(\omega) \quad \text { and } \quad \Gamma_{q}(1):=1
$$

Definition 5. (see $[3,4]$) The q-derivative (or the q-difference) operator D_{q} of a function f in a given subset of \mathbb{C} is defined by

$$
\left(D_{q} f\right)(z)= \begin{cases}\frac{f(z)-f(q z)}{(1-q) z} & (z \neq 0) \tag{4}\\ f^{\prime}(0) & (z=0)\end{cases}
$$

provided that $f^{\prime}(0)$ exists.

We note from Definition 5 that

$$
\lim _{q \rightarrow 1-}\left(D_{q} f\right)(z)=\lim _{q \rightarrow 1-} \frac{f(q z)-f(z)}{(1-q) z}=f^{\prime}(z)
$$

for a differentiable function f in a given subset of \mathbb{C}. It is readily deduced from (1) and (4) that

$$
\begin{equation*}
\left(D_{q} f\right)(z)=1+\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n-1} \tag{5}
\end{equation*}
$$

The operator D_{q} plays a vital role in the investigation and study of numerous subclasses of the class of analytic functions of the form given in Definition 5. A q-extension of the class of starlike functions was first introduced in [5] by using the q-derivative operator (see Definition 6 below). A background of the usage of the q-calculus in the context of Geometric Funciton Theory was actually provided and the basic (or q-) hypergeometric functions were first used in Geometric Function Theory by Srivastava (see, for details, [6]). Some recent investigations associated with the q-derivative operator D_{q} in analytic function theory can be found in [7-13] and the references cited therein.

Definition 6. (see [5]) A function $f \in \mathcal{A}(\mathbb{U})$ is said to belong to the class \mathcal{S}_{q}^{*} if

$$
\begin{equation*}
f(0)=f^{\prime}(0)-1=0 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{z}{f(z)}\left(D_{q} f\right)(z)-\frac{1}{1-q}\right| \leqq \frac{1}{1-q} \quad(\forall z \in \mathbb{U}) \tag{7}
\end{equation*}
$$

The notation \mathcal{S}_{q}^{*} was first used by Sahoo et al. (see [14]).

It is readily observed that, as $q \rightarrow 1-$, the closed disk given

$$
\left|w-\frac{1}{1-q}\right| \leqq \frac{1}{1-q}
$$

becomes the right-half plane and the class \mathcal{S}_{q}^{*} reduces to \mathcal{S}^{*}. Equivalently, by using the principle of subordination between analytic functions, we can rewrite the conditions in (6) and (7) as follows (see [15]):

$$
\frac{z}{f(z)}\left(D_{q} f\right)(z) \prec \widehat{p} \quad\left(\widehat{p}=\frac{1+z}{1-q z}\right) .
$$

Definition 7. (see [16]) For a function $f \in \mathcal{A}(\mathbb{U})$, the Ruscheweyh-type q-derivative operator is defined as follows:

$$
\begin{equation*}
\mathcal{R}_{q}^{\delta} f(z)=\phi(q, \delta+1 ; z) * f(z)=z+\sum_{n=2}^{\infty} \psi_{n-1} a_{n} z^{n} \quad(z \in \mathbb{U} ; \delta>-1), \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi(q, \delta+1 ; z)=z+\sum_{n=2}^{\infty} \psi_{n-1} z^{n} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{n-1}=\frac{\Gamma_{q}(\delta+n)}{[n-1]_{q}!\Gamma_{q}(\delta+1)}=\frac{[n+1]_{n-1, q}}{[n-1]_{q}!} . \tag{10}
\end{equation*}
$$

From (8) it can be seen that

$$
\begin{gathered}
\mathcal{R}_{q}^{0} f(z)=f(z) \text { and } \mathcal{R}_{q}^{1} f(z)=z D_{q} f(z), \\
\mathcal{R}_{q}^{m} f(z)=\frac{z D_{q}^{m} f(z)\left(z^{m-1} f(z)\right)}{[m]_{q}!} \quad(m \in \mathbb{N}) \\
\lim _{q \rightarrow 1-} \phi(q, \delta+1 ; z)=\frac{z}{(1-z)^{\delta+1}}
\end{gathered}
$$

and

$$
\lim _{q \rightarrow 1-} \mathcal{R}_{q}^{\delta} f(z)=f(z) * \frac{z}{(1-z)^{\delta+1}}
$$

This shows that, in case of $q \rightarrow 1-$, the Ruscheweyh-type q-derivative operator reduces to the Ruscheweyh derivative operator $D^{\delta} f(z)$ (see [17]). From (8) the following identity can easily be derived:

$$
\begin{equation*}
z D_{q} \mathcal{R}_{q}^{\delta} f(z)=\left(1+\frac{[\delta]_{q}}{q^{\delta}}\right) \mathcal{R}_{q}^{\delta+1} f(z)-\frac{[\delta]_{q}}{q^{\delta}} \mathcal{R}_{q}^{\delta} f(z) \tag{11}
\end{equation*}
$$

If $q \rightarrow 1-$, then

$$
z\left(\mathcal{R}^{\delta} f(z)\right)^{\prime}=(1+\delta) \mathcal{R}^{\delta+1} f(z)-\delta \mathcal{R}^{\delta} f(z)
$$

Now, by using the Ruscheweyh-type q-derivative operator, we define the following class of q-starlike functions.

Definition 8. For $f \in \mathcal{A}(\mathbb{U})$, we say that f belongs to the class $\mathcal{R} \mathcal{S}_{q}^{*}(\delta)$ if the following inequality holds true:

$$
\left|\frac{z D_{q} \mathcal{R}_{q}^{\delta} f(z)}{f(z)}-\frac{1}{1-q}\right| \leqq \frac{1}{1-q} \quad(z \in \mathbb{U} ; \delta>-1)
$$

or, equivalently, we have (see [15])

$$
\begin{equation*}
\frac{z D_{q} \mathcal{R}_{q}^{\delta} f(z)}{f(z)} \prec \frac{1+z}{1-q z} \tag{12}
\end{equation*}
$$

by using the principle of subordination.
Let $n \geqq 0$ and $j \geqq 1$. The j th Hankel determinant is defined as follows:

$$
\mathcal{H}_{j}(n)=\left|\begin{array}{llllll}
a_{n} & a_{n+1} & \cdot & \cdot & \cdot & a_{n+j-1} \\
a_{n+1} & \cdot & & & \cdot \\
\cdot & \cdot & & & \cdot \\
\cdot & \cdot & & & \cdot \\
\cdot & \cdot & & & \cdot \\
a_{n+j-1} & \cdot & \cdot & \cdot & \cdot & a_{n+2(j-1)}
\end{array}\right|
$$

The above Hankel determinant has been studied by several authors. In particular, sharp upper bounds on $\mathcal{H}_{2}(2)$ were obtained by several authors (see, for example, [18-21]) for various classes of normalized analytic functions. It is well-known that the Fekete-Szegö functional $\left|a_{3}-a_{2}^{2}\right|=\mathcal{H}_{2}(1)$. This functional is further generalized as $\left|a_{3}-\mu a_{2}^{2}\right|$ for some real or complex μ. In fact, Fekete and Szegö gave sharp estimates of $\left|a_{3}-\mu a_{2}^{2}\right|$ for real μ and $f \in \mathcal{S}$, the class of normalized univalent functions in \mathbb{U}. It is also known that the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ is equivalent to $\mathcal{H}_{2}(2)$. Babalola [22] studied the Hankel determinant $\mathcal{H}_{3}(1)$ for some subclasses of analytic functions. In the present investigation, our focus is on the Hankel determinant $\mathcal{H}_{3}(1)$ for the above-defined function class $\mathcal{R} \mathcal{S}_{q}^{*}(\delta)$.

2. A Set of Lemmas

Each of the following lemmas will be needed in our present investigation.
Lemma 1. (see [23]) Let

$$
p(z)=1+c_{1} z+c_{2} z^{2}+\cdots
$$

be in the class \mathcal{P} of functions with positive real part in \mathbb{U}. Then, for any complex number v,

$$
\left|c_{2}-v c_{1}^{2}\right| \leqq \begin{cases}-4 v+2 & (v \leqq 0) \tag{13}\\ 2 & (0 \leqq v \leqq 1) \\ 4 v-2 & (v \leqq 1)\end{cases}
$$

When $v<0$ or $v>1$, the equality holds true in (13) if and only if

$$
p(z)=\frac{1+z}{1-z}
$$

or one of its rotations. If $0<v<1$, then the equality holds true in (13) if and only if

$$
p(z)=\frac{1+z^{2}}{1-z^{2}}
$$

or one of its rotations. If $v=0$, the equality holds true in (13) if and only if

$$
p(z)=\left(\frac{1+\rho}{2}\right) \frac{1+z}{1-z}+\left(\frac{1-\rho}{2}\right) \frac{1-z}{1+z} \quad(0 \leqq \rho \leqq 1)
$$

or one of its rotations. If $v=1$, then the equality in (13) holds true if $p(z)$ is a reciprocal of one of the functions such that the equality holds true in the case when $v=0$.

Lemma 2. (see $[24,25]$) Let

$$
p(z)=1+p_{1} z+p_{2} z^{2}+\cdots
$$

be in the class \mathcal{P} of functions with positive real part in \mathbb{U}. Then

$$
2 p_{2}=p_{1}^{2}+x\left(4-p_{1}^{2}\right)
$$

for some $x,|x| \leqq 1$ and

$$
4 p_{3}=p_{1}^{3}+2\left(4-p_{1}^{2}\right) p_{1} x-\left(4-p_{1}^{2}\right) p_{1} x^{2}+2\left(4-p_{1}^{2}\right)\left(1-|x|^{2}\right) z
$$

for some $z \quad(|z| \leqq 1)$.
Lemma 3. (see [26]) Let

$$
p(z)=1+p_{1} z+p_{2} z^{2}+\cdots
$$

be in the class \mathcal{P} of functions positive real part in \mathbb{U}. Then

$$
\left|p_{k}\right| \leqq 2 \quad(k \in \mathbb{N})
$$

and the inequality is sharp.

3. Main Results

In this section, we will prove our main results. Throughout our discussion, we assume that

$$
q \in(0,1) \quad \text { and } \quad \delta>-1
$$

Our first main result is stated as follows.
Theorem 1. Let $f \in \mathcal{R} \mathcal{S}_{q}^{*}(\delta)$ be of the form (1). Then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leqq \begin{cases}\frac{\left(1+q+q^{2}\right) \psi_{1}^{2}-\mu(1+q)^{2} \psi_{2}}{q^{2} \psi_{2} \psi_{1}^{2}} & \left(\mu<\frac{\left(q^{2}+1\right) \psi_{1}^{2}}{(1+q)^{2} \psi_{2}}\right) \\ \frac{1}{q \psi_{2}} & \left(\frac{\left(q^{2}+1\right) \psi_{1}^{2}}{(1+q)^{2} \psi_{2}} \leqq \mu \leqq \frac{\psi_{1}^{2}}{\psi_{2}}\right) \\ \frac{\mu(1+q)^{2} \psi_{2}-\left(1+q+q^{2}\right) \psi_{1}^{2}}{q^{2} \psi_{2} \psi_{1}^{2}} & \left(\mu>\frac{\psi_{1}^{2}}{\psi_{2}}\right),\end{cases}
$$

where ψ_{n-1} is given by (10).
It is also asserted that, for

$$
\begin{gathered}
\frac{\left(q^{2}+1\right) \psi_{1}^{2}}{(1+q)^{2} \psi_{2}} \leqq \mu \leqq \frac{\left(1+q+q^{2}\right) \psi_{1}^{2}}{(1+q)^{2} \psi_{2}}, \\
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\mu-\frac{\left(q^{2}+1\right) \psi_{1}^{2}}{(1+q)^{2} \psi_{2}}\right)\left|a_{2}\right|^{2} \leqq \frac{1}{q \psi_{2}}
\end{gathered}
$$

and that, for

$$
\frac{\left(1+q+q^{2}\right) \psi_{1}^{2}}{(1+q)^{2} \psi_{2}} \leqq \mu \leqq \frac{\psi_{1}^{2}}{\psi_{2}}
$$

$$
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\frac{\psi_{1}^{2}-\mu \psi_{2}}{\psi_{2}}\right)\left|a_{2}\right|^{2} \leqq \frac{1}{q \psi_{2}}
$$

Proof. If $f \in \mathcal{R} \mathcal{S}_{q}^{*}(\delta)$, then it follows from (12) that

$$
\begin{equation*}
\frac{z D_{q} \mathcal{R}_{q}^{\delta} f(z)}{f(z)} \prec \phi(z) \tag{14}
\end{equation*}
$$

where

$$
\phi(z)=\frac{1+z}{1-q z} .
$$

We define a function $p(z)$ by

$$
p(z)=\frac{1+w(z)}{1-w(z)}=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots
$$

It is clear that $p \in \mathcal{P}$. From the above equation, we have

$$
w(z)=\frac{p(z)-1}{p(z)+1} .
$$

From (14), we find that

$$
\frac{z D_{q} \mathcal{R}_{q}^{\delta} f(z)}{f(z)}=\phi(w(z))
$$

together with

$$
\phi(w(z))=\frac{2 p(z)}{(1-q) p(z)+1+q} .
$$

Now

$$
\begin{aligned}
& \frac{2 p(z)}{(1-q) p(z)+1+q} \\
&=1+\frac{1}{2}(1+q) p_{1} z+\left\{\frac{1}{2}(q+1) p_{2}-\frac{1}{4}\left(1-q^{2}\right) p_{1}^{2}\right\} z^{2} \\
&+\left\{\frac{1}{2}(1+q) p_{3}-\frac{1}{2}\left(1-q^{2}\right) p_{1} p_{2}+\frac{1}{8}(1+q)(1-q)^{2} p_{1}^{3}\right\} z^{3} \\
&+\left\{\frac{1}{2}(1+q) p_{4}=\frac{1}{4}\left(1-q^{2}\right) p_{2}^{2}-\frac{1}{2}\left(1-q^{2}\right) p_{1} p_{3}\right. \\
&\left.+\frac{3}{8}(1+q)(q-1)^{2} p_{1}^{2} p_{2}+\frac{1}{16}(1+q)(1-q)^{3} p_{1}^{4}\right\} z^{4}+\cdots .
\end{aligned}
$$

Similarly, we get

$$
\begin{aligned}
\frac{z D_{q} \mathcal{R}_{q}^{\delta} f(z)}{\mathcal{R}_{q}^{\delta} f(z)}= & 1+q a_{2} \psi_{1} z+\left\{\left(q+q^{2}\right) \psi_{2} a_{3}-q \psi_{1}^{2} a_{2}^{2}\right\} z^{2}+\left\{\left(q+q^{2}+q^{3}\right) \psi_{3} a_{4}\right. \\
& \left.-\left(2 q+q^{2}\right) \psi_{1} \psi_{2} a_{2} a_{3}+q \psi_{1}^{3} a_{2}^{3}\right\} z^{3}+\left\{\left(q+q^{2}+q^{3}+q^{4}\right) \psi_{5} a_{5}\right. \\
& -\left(2 q+q^{2}+q^{3}\right) \psi_{2} \psi_{3} a_{2} a_{4}-\left(q+q^{2}\right) \psi_{2}^{2} a_{3}^{2} \\
& \left.+\left(3 q+q^{2}\right) \psi_{1}^{2} \psi_{2} a_{2}^{2} a_{3}-q \psi_{1}^{4} a_{2}^{4}\right\} z^{4}+\cdots
\end{aligned}
$$

Therefore, we have

$$
\begin{gather*}
a_{2}=\frac{(1+q)}{2 q \psi_{1}} p_{1} \tag{15}\\
a_{3}=\frac{1}{2 q \psi_{2}} p_{2}+\frac{\left(q^{2}+1\right)}{4 q^{2} \psi_{2}} p_{1}^{2} \tag{16}
\end{gather*}
$$

and

$$
\begin{align*}
a_{4} & =\frac{(1+q)}{2 q\left(1+q+q^{2}\right) \psi_{3}} p_{3}-\frac{(1+q)(q-2)(2 q+1)}{4 q^{2}\left(1+q+q^{2}\right) \psi_{3}} p_{1} p_{2} \\
& +\frac{(1+q)\left(q^{2}+1\right)\left(q^{2}-q+1\right)}{8 q^{3}\left(1+q+q^{2}\right) \psi_{3}} p_{1}^{3} \tag{17}
\end{align*}
$$

We thus obtain

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right|=\frac{1}{2 q \psi_{2}}\left|p_{2}-\left(\frac{\mu(1+q)^{2} \psi_{2}-\left(1+q^{2}\right) \psi_{1}^{2}}{2 q \psi_{1}^{2}}\right) p_{1}^{2}\right| . \tag{18}
\end{equation*}
$$

Finally, by applying Lemma 1 and Equation (13) in conjunction with (18), we obtain the result asserted by Theorem 1.

We now state and prove Theorem 2 below.
Theorem 2. Let $f \in \mathcal{R} \mathcal{S}_{q}^{*}(\delta)$ be of the form (1). Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leqq \frac{1}{q^{2} \psi_{2}^{2}}
$$

Proof. From (15)-(17), we obtain

$$
\begin{aligned}
a_{2} a_{4}-a_{3}^{2}= & \left(\frac{(1+q)^{2}}{4 q^{2}\left(1+q+q^{2}\right) \psi_{1} \psi_{3}}\right) p_{1} p_{3}-\left(\frac{(1+q)^{2}(q-2)(2 q+1)}{8 q^{3}\left(1+q+q^{2}\right) \psi_{1} \psi_{3}}+\frac{\left(q^{2}+1\right)}{4 q^{3} \psi_{2}^{2}}\right) p_{1}^{2} p \\
& -\left(\frac{1}{4 q^{2} \psi_{2}^{2}}\right) p_{2}^{2}+\left(-\frac{\left(q^{2}+1\right)^{2}}{16 q^{4} \psi_{2}^{2}}+\frac{(1+q)^{2}\left(q^{2}+1\right)\left(q^{2}-q+1\right)}{16 q^{3}\left(1+q+q^{2}\right) \psi_{1} \psi_{3}}\right) p_{1}^{4}
\end{aligned}
$$

By using Lemma 2, we have

$$
\begin{aligned}
a_{2} a_{4}-a_{3}^{2}=(& \left.\frac{(1+q)^{2}\left(q^{2}+1\right)\left(q^{2}-q+1\right)}{16 q^{3}\left(1+q+q^{2}\right) \psi_{1} \psi_{3}}-\frac{\left(q^{2}+1\right)^{2}}{16 q^{4} \psi_{2}^{2}}\right) p_{1}^{4} \\
& +\left(\frac{(1+q)^{2}}{16 q^{2}\left(1+q+q^{2}\right) \psi_{1} \psi_{3}}\right) p_{1}\left\{p_{1}^{3}+2 p_{1}\left(4-p_{1}^{2}\right) x\right. \\
& \left.-p_{1}\left(4-p_{1}^{2}\right) x^{2}+2\left(4-p_{1}^{2}\right)\left(1-|x|^{2}\right) z\right\}+\left(\frac{\left(q^{2}+1\right)}{8 q^{3} \psi_{2}^{2}}\right. \\
& \left.\cdot \frac{(1+q)^{2}(q-2)(2 q+1)}{16 q^{3}\left(1+q+q^{2}\right) \psi_{1} \psi_{3}}\right) p_{1}^{2}\left\{\left(p_{1}^{2}+\left(4-p_{1}^{2}\right) x\right)\right\} \\
& -\left(\frac{1}{16 q^{2} \psi_{2}^{2}}\right)\left\{p_{1}^{4}+\left(4-p_{1}^{2}\right)^{2} x^{2}+2 p_{1}^{2}\left(4-p_{1}^{2}\right) x\right\}
\end{aligned}
$$

Now, taking the moduli and replacing $|x|$ by ρ and p_{1} by p, we have

$$
\begin{align*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leqq & \frac{1}{\Lambda(q)}\left[\omega(q) p^{4}+2 q(1+q)^{2} \psi_{2}^{2} p\left(4-p^{2}\right)\right. \\
& +\Omega(q)\left(4-p^{2}\right) p^{2} \rho+\left(q(q+1)^{2} \psi_{2}^{2} p^{2}+q\left(4-p^{2}\right)\right. \tag{19}\\
& \left.\left.\cdot\left(1+q+q^{2}\right) \psi_{1} \psi_{3}-2 q(1+q)^{2} \psi_{2}^{2} p\right)\left(4-p^{2}\right) \rho^{2}\right] \\
= & F(p, \rho)
\end{align*}
$$

where

$$
\begin{gathered}
\Lambda(q)=16 q^{3}\left(1+q+q^{2}\right) \psi_{1} \psi_{3} \psi_{2}^{2} \\
\omega(q)=\mid\left(3+3 q-q^{3}+q^{4}\right)(1+q)^{2} \psi_{2}^{2}-\left(1+3 q+2 q^{2}+2 q^{3}+q^{4}\right) \\
\cdot\left(1+q+q^{2}\right) \psi_{1} \psi_{3} \mid
\end{gathered}
$$

and

$$
\Omega(q)=\left|(1+q)^{2}\left(2 q^{2}-5 q-2\right) \psi_{2}^{2}+2 q\left(q^{2}+2\right)\left(1+q+q^{2}\right) \psi_{1} \psi_{3}\right|
$$

Upon differentiating both sides (19) with respect to ρ, we have

$$
\begin{aligned}
& \frac{\partial F(p, \rho)}{\partial \rho}=\left(\frac{1}{\Lambda(q)}\right)\left[\Omega(q)\left(4-p^{2}\right) p^{2}+2\left(q(q+1)^{2} \psi_{2}^{2} p^{2}+q\left(4-p^{2}\right)\right.\right. \\
&\left.\left.\cdot\left(1+q+q^{2}\right) \psi_{1} \psi_{3}-2 q(1+q)^{2} \psi_{2}^{2} p\right)\left(4-p^{2}\right) \rho\right]
\end{aligned}
$$

It is clear that

$$
\frac{\partial F(p, \rho)}{\partial \rho}>0
$$

which show that $F(p, \rho)$ is an increasing function of ρ on the closed interval $[0,1]$. This implies that the maximum value occurs at $\rho=1$. This implies that

$$
\max \{F(p, \rho)\}=F(p, 1)=: G(p)
$$

We now observe that

$$
\begin{align*}
G(p)= & \left(\frac{1}{\Lambda(q)}\right)\left[\left(\omega(q)-\Omega(q)-q(q+1)^{2} \psi_{2}^{2}+\left(q+q^{2}+q^{3}\right) \psi_{1} \psi_{3}\right) p^{4}\right. \\
& +\left(4 \Omega(q)+4 q(q+1)^{2} \psi_{2}^{2}-8\left(q+q^{2}+q^{3}\right) \psi_{1} \psi_{3}\right) p^{2} \tag{20}\\
& +16\left(q+q^{2}+q^{3}\right) \psi_{1} \psi_{3} \\
= & G(p)
\end{align*}
$$

By differentiating both sides of (20) with respect to p, we have

$$
\begin{aligned}
G^{\prime}(p)=\left(\frac{1}{\Lambda(q)}\right)[& 4\left(\omega(q)-\Omega(q)-q(q+1)^{2} \psi_{2}^{2}+\left(q+q^{2}+q^{3}\right) \psi_{1} \psi_{3}\right) p^{3} \\
& \left.+2\left(4 \Omega(q)+4 q(q+1)^{2} \psi_{2}^{2}-8\left(q+q^{2}+q^{3}\right) \psi_{1} \psi_{3}\right) p\right]
\end{aligned}
$$

Differentiating the above equation once again with respect to p, we get

$$
\begin{array}{r}
G^{\prime \prime}(p)=\left(\frac{1}{\Lambda(q)}\right)\left[12\left(\omega(q)-\Omega(q)-q(q+1)^{2} \psi_{2}^{2}+\left(q+q^{2}+q^{3}\right) \psi_{1} \psi_{3}\right) p^{2}\right. \\
\left.+2\left(4 \Omega(q)+4 q(q+1)^{2} \psi_{2}^{2}-8\left(q+q^{2}+q^{3}\right) \psi_{1} \psi_{3}\right)\right]
\end{array}
$$

For $p=0$, this shows that the maximum value of $(G(p))$ occurs at $p=0$. Hence, we obtain

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leqq \frac{1}{q^{2} \psi_{2}^{2}}
$$

The proof of Theorem 2 is thus completed.
If, in Theorem 2, we let $q \longrightarrow 1$ - and put $\delta=1$, then we are led to the following known result.
Corollary 1. (see [18]) Let $f \in \mathcal{S}^{*}$. Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leqq 1
$$

and the inequality is sharp.
Theorem 3. Let $f \in \mathcal{R} \mathcal{S}_{q}^{*}(\delta)$. Then

$$
\left|a_{2} a_{3}-a_{4}\right| \leqq \frac{(1+q) \kappa(q)}{\psi_{1} \psi_{2} \psi_{3}\left(q^{2}+q^{3}+q^{4}\right)}
$$

where

$$
\begin{equation*}
\kappa(q)=\left|\left(1+q+q^{2}\right)^{2} \psi_{3}-\left(q^{4}-3 q+6 q^{2}+q+1\right) \psi_{1} \psi_{2}\right| . \tag{21}
\end{equation*}
$$

Proof. Using the values given in (15) and (16) we have

$$
\begin{align*}
a_{2} a_{3}-a_{4} & =\left(\frac{(1+q)\left(q^{2}+1\right)}{8 q^{3} \psi_{1} \psi_{2}}-\frac{(1+q)\left(q^{2}+1\right)\left(q^{2}-q+1\right)}{8 \psi_{3}\left(q^{2}+q^{3}+q^{4}\right)}\right) p_{1}^{3} \\
& +\left(\frac{(1+q)}{4 q^{2} \psi_{1} \psi_{2}}-\frac{(q-2)(2 q+1)(1+q)}{4 \psi_{3}\left(q^{2}+q^{3}+q^{4}\right)}\right) p_{1} p_{2} \tag{22}\\
& -\left(\frac{(1+q)}{2\left(q+q^{2}+q^{3}\right) \psi_{3}}\right) p_{3}
\end{align*}
$$

We now use Lemma 2 and assume that $p_{1} \leqq 2$. In addition, by Lemma 3, we let $p_{1}=p$ and assume without restriction that $p \in[0,2]$. Then, by taking the moduli and applying the trigonometric inequality on (22) with $\rho=|x|$, we obtain

$$
\begin{aligned}
\left|a_{2} a_{3}-a_{4}\right| \leqq & \left(\frac{(1+q)}{8\left(q^{3}+q^{4}+q^{5}\right) \psi_{1} \psi_{2} \psi_{3}}\right)\left[\kappa(q) p^{3}+\eta(q) p\left(4-p^{2}\right) \rho\right. \\
& \left.+2 q^{2} \psi_{1} \psi_{2}\left(4-p^{2}\right)+q^{2} \psi_{1} \psi_{2}(p-2)\left(4-p^{2}\right) \rho^{2}\right] \\
= & F(\rho)
\end{aligned}
$$

where

$$
\eta(q)=\left|\left(q+q^{2}+q^{3}\right) \psi_{3}+\left(2 q^{3}-q^{2}-2 q\right) \psi_{1} \psi_{2}\right|
$$

and $\kappa(q)$ is given by (21). Differentiating $F(\rho)$ with respect to ρ, we have

$$
\begin{aligned}
F^{\prime}(\rho) & =\left(\frac{(1+q)}{8\left(q^{3}+q^{4}+q^{5}\right) \psi_{1} \psi_{2} \psi_{3}}\right)\left[\eta(q) p\left(4-p^{2}\right)+2 q^{2} \psi_{1} \psi_{2}(p-2)\left(4-p^{2}\right) \rho\right] \\
& >0
\end{aligned}
$$

This implies that $F(\rho)$ is an increasing function of ρ on the closed interval $[0,1]$. Hence, we have

$$
F(\rho) \leqq F(1) \quad(\forall \rho \in[0,1])
$$

that is,

$$
\begin{aligned}
F(\rho) \leqq & \left(\frac{(1+q)}{8\left(q^{3}+q^{4}+q^{5}\right) \psi_{1} \psi_{2} \psi_{3}}\right)\left[\left(\kappa(q)-\eta(q)-q^{2} \psi_{1} \psi_{2}\right) p^{3}\right. \\
& \left.+\left(4 \eta(q)+4 q^{2} \psi_{1} \psi_{2}\right) p\right] \\
= & G(p)
\end{aligned}
$$

Since $p \in[0,2], p=2$ is a point of maximum. We thus obtain

$$
G(p) \leqq \frac{(1+q) \kappa(q)}{\left(q^{3}+q^{4}+q^{5}\right) \psi_{1} \psi_{2} \psi_{3}}
$$

which corresponds to $\rho=1$ and $p=2$ and it is the desired upper bound.
For $\delta=1$ and $q \rightarrow 1-$, we obtain the following special case of Theorem 3.
Corollary 2. (see [22]) Let $f \in S^{*}$. Then

$$
\left|a_{2} a_{3}-a_{4}\right| \leqq 2
$$

Finally, we prove Theorem 4 below.
Theorem 4. Let $f \in \mathcal{R} \mathcal{S}_{q}^{*}(\delta)$. Then

$$
\mathcal{H}_{3}(1) \leqq\left[\frac{\left(1+q+q^{2}\right)}{q^{4} \psi_{2}^{3}}+\frac{\varkappa(q) \kappa(q)}{q^{5}\left(1+q+q^{2}\right)^{2} \psi_{1} \psi_{2} \psi_{3}^{2}}+\frac{\tau(q)}{q^{5}\left(1+q+q^{2}+q^{3}\right)\left(1+q+q^{2}\right) \psi_{2} \psi_{4}}\right]
$$

where

$$
\begin{gather*}
\varkappa(q)=(1+q)^{2}\left(q^{4}-3 q^{3}+6 q^{2}+q+1\right) \tag{23}\\
\tau(q)=(1+q)\left(4 q^{7}+2 q^{6}+6 q^{5}+7 q^{4}+13 q^{3}-q-1\right) \tag{24}
\end{gather*}
$$

and $\kappa(q)$ is given by (21).
Proof. Since

$$
\mathcal{H}_{3}(1) \leqq\left|a_{3}\right|\left|a_{2} a_{4}-a_{3}^{2}\right|+\left|a_{4}\right|\left|a_{2} a_{3}-a_{4}\right|+\left|a_{5}\right|\left|a_{3}-a_{2}^{2}\right|
$$

by using Lemma 3, we have

$$
\left|a_{4}\right| \leqq \frac{(1+q)\left(1+q+6 q^{2}-3 q^{3}+q^{4}\right)}{q^{3}\left(1+q+q^{2}\right) \psi_{3}}
$$

and

$$
\left|a_{5}\right| \leqq \frac{\tau(q)}{q^{4}\left(1+q+q^{2}+q^{3}\right)\left(1+q+q^{2}\right) \psi_{4}}
$$

where $\tau(q)$ is given by (24). Now, by applying Theorems $1-3$, we have the required result asserted by Theorem 4.

4. Conclusions

By making use of the basic or quantum ($q-$) calculus, we have introduced a Ruscheweyh-type q-derivative operator. This Ruscheweyh-type q-derivative operator is then applied to define a certain subclass of q-starlike functions in the open unit disk \mathbb{U}. We have successfully derived the upper bound of the third Hankel determinant for this family of q-starlike functions which are associated with the Ruscheweyh-type q-derivative operator. Our main results are stated and proved as Theorems $1-4$. These general results are motivated essentially by their several special cases and consequences, some of which are pointed out in this presentation.

Author Contributions: All authors contributed equally to the present investigation.
Funding: This work is partially supported by Sarhad University of Science and I.T, Ring Road, Peshawar 2500, Pakistan.

Acknowledgments: The first author would like to acknowledge Salim ur Rehman, V.C. Sarhad University of Science \& I. T, for providing excellent research and academic environment.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Miller, S.S.; Mocanu, P.T. Differential subordination and univalent functions. Mich. Math. J. 1981, 28, 157-171. [CrossRef]
2. Miller, S.S.; Mocanu, P.T. Mocanu. In Differential Subordination: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics, No. 225; Marcel Dekker Incorporated: New York, NY, USA; Basel, Switzerland, 2000.
3. Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193-203.
4. Jackson, F.H. q-difference equations. Am. J. Math. 1910, 32, 305-314. [CrossRef]
5. Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77-84. [CrossRef]
6. Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited, Chichester); John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australian; Toronto, ON, Canada, 1989; pp. 329-354.
7. Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 2019, 7, 181. [CrossRef]
8. Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of q-starlike functions associated with the Janowski functions. Symmetry 2019, 11, 292. [CrossRef]
9. Mahmood, S.; Jabeen, M.; Malik, S.N.; Srivastava, H.M.; Manzoor, R.; Riaz, S.M.J. Some coefficient inequalities of q-starlike functions associated with conic domain defined by q-derivative. J. Funct. Spaces 2018, 2018, 8492072. [CrossRef]
10. Srivastava, H.M.; Bansal, D. Close-to-convexity of a certain family of q-Mittag-Leffler functions. J. Nonlinear Var. Anal. 2017, 1, 61-69.
11. Aldweby, H.; Darus, H. Some subordination results on q-analogue of Ruscheweyh differential operator. Abstr. Appl. Anal. 2014, 2014, 958563. [CrossRef]
12. Ezeafulukwe U.A.; Darus, M. A note on q-calculus. Fasc. Math. 2015, 55, 53-63. [CrossRef]
13. Ezeafulukwe. U.A.; Darus, M. Certain properties of q-hypergeometric functions. Int. J. Math. Math. Sci. 2015, 2015, 489218. [CrossRef]
14. Sahoo, S.K.; Sharma, N.L. On a generalization of close-to-convex functions. Ann. Pol. Math. 2015, 113, 93-108. [CrossRef]
15. Uçar, H.E.Ö. Coefficient inequality for q-starlike functions. Appl. Math. Comput. 2016, 276, 122-126.
16. Kanas S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183-1196. [CrossRef]
17. Ruscheweyh, S. New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49, 109-115. [CrossRef]
18. Janteng, J.; Abdulhalim, S.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 1, 619-625.
19. Mishra, A.K.; Gochhayat, P. Second Hankel determinant for a class of analytic functions defined by fractional derivative. Int. J. Math. Math. Sci. 2008, 2008, 1-10. [CrossRef]
20. Singh, G.; Singh, G. On the second Hankel determinant for a new subclass of analytic functions. J. Math. Sci. Appl. 2014, 2, 1-3.
21. Srivastava, H.M., Altinkaya, Ş. and Yalçın, S. Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator. Filomat 2018, 32, 503-516. [CrossRef]
22. Babalola, K.O. On $\mathcal{H}_{3}(1)$ Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 2007, 6, 1-7.
23. Ma, W.C.; Minda, D. A. unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis (Tianjin, 1992); Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Cambridge, UK, 1994; pp. 157-169.
24. Libera, R.J.; Zlotkiewicz, E.J. Early coefficient of the inverse of a regular convex function. Proc. Am. Math. Soc. 1982, 85, 225-230. [CrossRef]
25. Libera, R.J.; Zlotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in \mathcal{P}. Proc. Am. Math. Soc. 1983, 87, 251-257. [CrossRef]
26. Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983.
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
