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Abstract: The main purpose of this article is two-fold: first, to justify the choice of Kirchhoff vertex
conditions on a metric graph as they appear naturally as a limit of Neumann Laplacians on a family
of open sets shrinking to the metric graph (“thick graphs”) in a self-contained presentation; second,
to show that the metric graph example is close to a physically more realistic model where the edges
have a thin, but positive thickness. The tool used is a generalization of norm resolvent convergence
to the case when the underlying spaces vary. Finally, we give some hints about how to extend these
convergence results to some mild non-linear operators.

Keywords: metric graphs; open sets converging to metric graphs; Laplacians; norm convergence of
operators; convergence of spectra

1. Introduction

The study of operators on metric graphs has been an ongoing and active area of research for at
least two decades. Several natural questions arise in the study of Laplacians on metric graphs: As there
is some freedom in defining a self-adjoint Laplacian on a metric graph due to the vertex conditions
(see, e.g., [1] and the references therein), can one justify a certain choice of such vertex conditions?
Second, in a realistic physical model (a thick graph), the wires have a thickness of order ε, but in the
metric graph model, it is simplified to ε = 0: Can one justify some sort of limit of a Laplacian on the
network with thickness ε > 0 as ε→ 0?

The aim of this article is to give an answer to both questions. We show that the Neumann Laplacian
on the ε-neighborhood of the metric graph (embedded in some ambient space Rm+1) converges to
the Kirchhoff Laplacian on the metric graph. This gives answers to both questions above: First,
the “natural” vertex conditions are the so-called Kirchhoff conditions; see Equations (3) and (4). Second,
the limit problem is a good approximation to a realistic physical model on a thick graph as ε → 0.
Note that the problem significantly simplifies in the limit, as we only have to consider a system of
ODEs instead of a PDE on a complicated and ε-dependent space. Moreover, the problem on the metric
graph can often be solved explicitly.

A technical difficulty is that the Laplacian on the thick graph and on the metric graph live on
different spaces. We therefore generalize the notion of norm resolvent convergence to this case; this was
first done in [2]; see also the monograph [3] for a history of the problem and [4] for a recent list of
references. Convergence of the (discrete) spectrum for the Neumann Laplacian on a thick graph
converging to a compact metric graph has already been established by variational methods in [5–7].

The aim of this article is also to provide an almost self-contained presentation of the results for
linear operators on thick and metric graphs to the “non-linear” community and also to give some ideas
of how they can be extended to some mild non-linear operators.
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2. Metric Graphs and Their Laplacians

For a detailed presentation of metric graphs and their Laplacians, we refer to [1,3] and the
references therein. Let X0 denote a metric graph given by the data (V, E, `), where V and E are the (at
most countable) sets of vertices and edges, respectively, and where ` : E −→ (0, ∞). e 7→ `e denotes the
length of the edge e ∈ E; a metric edge will be the interval Ie := [0, `e]. The metric graph X0 is now the
disjoint union of all metric edges ·⋃e∈E Ie after identifying the endpoints ∂Ie with the corresponding
vertices. A metric graph is a metric space using the intrinsic metric (i.e., d(s, s̃) is the length of the
shortest path in X0 between s and s̃). Moreover, there is a natural measure on X0 given by the sum of
the Lebesgue measures on each metric edge Ie.

As the Hilbert space on X0, we choose:

H0 := L2(X0) =
⊕
e∈E

L2(Ie),

where we write f ∈ L2(X0) as family ( fe)e∈E with fe ∈ L2(Ie); moreover,
⊕

e∈E L2(Ie) denotes the
Hilbert orthogonal sum with f being in it if its squared norm:

‖ f ‖2
L2(X0)

:= ∑
e∈E

∫
Ie
| fe(s)|2 ds

is finite. Similarly, we define Hk
dec(X) :=

⊕
e∈E Hk(Ie) for k ∈ N0. The label “dec” refers to the fact that

for k ≥ 1, there is no relation between the (well-defined) values of fe and its derivatives at a vertex v
for different e ∈ Ev. Here, Ev denotes the set of edges that are adjacent with the vertex v ∈ V. Recall
that functions in H1(Ie) are continuous as we have the estimate:

∣∣ fe(s)− fe(s̃)
∣∣2 ≤ |s− s̃|

∫
Ie
| f ′e(u)|2 du.

Using a suitable cut-off function, we conclude the Sobolev trace estimate:

| fe(v)|2 ≤ Ce‖ fe‖H1(Ie)
= Ce

∫
Ie

(
| fe(s)|2 + | f ′e(s)|2

)
ds (1)

with Ce = 2/ min{1, `e}, where fe(v) denotes the evaluation of fe at one of the endpoints of Ie

corresponding to v ∈ V. In particular, we assume that:

`0 := min{ inf
e∈E

`e, 1} > 0. (2)

From (1) and (2), we then conclude that the subspace:

H1(X0) := H1
dec(X0) ∩ C(X0) =

{
f ∈ H1

dec(X0)
∣∣ fe(v) is independent of e ∈ Ev for all v ∈ V

}
(3)

is closed in H1
dec(X0). We denote by f (v) := fe(v) the common value of f at the vertex v. It follows that:

l0( f ) := ‖ f ′‖2 = ∑
e∈E

∫
Ie
| f ′e(s)|2 ds, f ∈ dom l0 := H1(X0),

defines a closed, non-negative quadratic form in H0 = L2(X0). The associated self-adjoint and
non-negative operator L0 is given by:

(L0 f )e = − f ′′e , f ∈ dom L0 =
{

f ∈ H2
dec(X0)

∣∣∣ f ∈ C(X0), ∑
e∈Ev

f ′e(v) = 0
}

. (4)
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Here, f ′e(v) denotes the (weak) derivative of fe along e towards the vertex v. The operator L0 is
sometimes referred to as the (generalized) Neumann Laplacian or Kirchhoff Laplacian (the second because
of the flux condition ∑e∈Ev f ′e(v) = 0 on the derivatives). Note that for vertices of degree one, the vertex
condition is just the usual Neumann boundary condition f ′e(v) = 0, and for vertices of degree two,
we have fe1(v) = fe2(v) and f ′e1

(v) + f ′e2
(v) = 0, i.e., the continuity of f and its derivative along v

(recall that f ′e(v) denotes the derivative towards the vertex v).

3. Thick Graphs and Their Laplacians

We assume first that the metric graph X0 is embedded in some space Rm+1 (m ≥ 1) such that all
edges are straight line segments in Rm+1. For ε > 0, denote by:

X�ε :=
{

x ∈ Rm+1 ∣∣ d(x, X0) < ε/ωm
}

the ε/ωm-neighborhood of X0 in Rm+1. Here, ωm is the mth root of the volume of the unit Euclidean
ball in Rm, i.e., ω1 = 2, ω2 =

√
π, ω3 = 3

√
4π/3, etc. We say that X�ε is a graph-like space or a thick graph

constructed from the metric graph X0 if there is ε0 > 0 such that:

X�ε =
⋃

v∈V
X�ε,v ∪

⋃
e∈E

X�ε,e (5)

for all ε ∈ (0, ε0] (cf. Figure 1), where X�ε,v and X�ε,e are open and pairwise disjoint subsets of Rm+1 such
that the so-called vertex and edge neighborhoods fulfil:

X�ε,v
∼= εXv and X�ε,e

∼=
(
ε, `e − 2aeε

)
× εB, (6)

i.e., X�ε,v is isometric to the ε-scaled version of an open subset Xv, X�ε,e is isometric with the product of
an interval of length `e − 2aeε, and B ⊂ Rm is a ball of radius 1/ωm, having m-dimensional volume
one by the definition of the scaling factor ωm. Moreover, 2aeε is the sum of the lengths of the two parts
of the metric edge inside the vertex neighborhood. For finite graphs, the existence of ε0 > 0 is no
restriction, but for infinite graphs with an arbitrary large vertex degree, this might be a restriction
on the embedding and the edge lengths. More details on spaces constructed according to a graph
(so-called “graph-like spaces”) can be found in the monograph [3]; see also the references therein.

X�ε,vHHHj
v

-e

Xε

X�ε,e

Figure 1. The decomposition of a graph-like space of thickness of order ε into vertex neighborhoods
X�ε,v (dark grey) and edge neighborhoods X�ε,e (light grey) according to a metric graph X0 embedded
in R2.

As the Hilbert space, we set H �
ε := L2(X�ε ). As the operator, we use the (non-negative) Neumann

Laplacian L�ε defined as the self-adjoint and non-negative operator associated with the closed and
non-negative quadratic form given by:

a�ε (u) := ‖∇u‖2
L2(X�ε )

in H �
ε = L2(X�ε ).
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In our calculations later, it is more convenient to work with edge neighborhoods Xε,e that are
isometric with the product of the original edge Ie times the ε-scaled ball B, i.e.,

Xε,e ∼= Ie × εB

instead of the slightly shortened edge neighborhood X�ε,e. For v ∈ V, we set Xε,v = X�ε,v = εXv.
We then construct Xε as the space obtained from gluing the building blocks Xε,v and Xε,e such that a
decomposition similar to (5) holds, now without the label (·)�. Note that Xε is defined as an abstract
flat manifold with boundary and might not be embeddable into Rm+1 any longer. We also call Xε a
graph-like space or thick graph. We state that the Neumann Laplacians on Xε and X�ε are “close to each
other” in Lemma 4.

Due to a decomposition of Xε into its building blocks similar to (5) and the scaling behavior, the
norm in the Hilbert space Hε := L2(Xε) fulfills:

‖u‖2
L2(Xε)

= ∑
v∈V

εm+1
∫

Xv
|uv(x)|2 dx + ∑

e∈E
εm
∫

Ie

∫
B
|ue(s, y)|2 dy ds,

where uv and ue denote the restriction of u onto the ε-independent building blocks Xv and Xe = Ie × B.
Note that with this notation, we have put all ε-dependencies into the norm (and later also into the
quadratic form).

As the operator, we use the (negative) Neumann Laplacian Lε defined as the self-adjoint and
non-negative operator associated with the closed and non-negative quadratic form given by:

lε(u) :=‖∇u‖2
L2(Xε)

= ∑
v∈V

εm−1
∫

Xv
|∇uv(x)|2 dx + ∑

e∈E
εm
∫

Ie

∫
B

(
|u′e(s, y)|2 + 1

ε2 |∇Bue(s, y)|2
)

dy ds

in Hε = L2(Xε) using the scaling behavior of the building blocks. Here, u′e denotes the derivative with
respect to the longitudinal (first) variable s, and ∇B denotes the derivative with respect to the second
variable y ∈ B.

4. Convergence of the Resolvents

How can we now compare the two Laplacians L0 and Lε (resp. L�ε )? The idea is first to consider
the resolvents:

R0 := (L0 + 1)−1 resp. Rε := (Lε + 1)−1

in H0, resp. Hε, since they are bounded operators. In order to define a norm difference of these
resolvents, we need a so-called identification operator:

Jε : H0 −→Hε,

in our situation given by

(Jε f )v = 0 and (Jε f )e(s, y) = ε−m/2 fe(s),

i.e., we set J f to zero on the vertex neighborhood and transversally constant on the edge neighborhood,
together with an appropriate rescaling constant. As the identification operator in the opposite direction,
we use J∗ε : Hε −→H0, where an easy calculation shows that:

(J∗ε u)e(s) = εm/2
∫

B
ue(s, y)dy.

It is easy to see that J∗ε Jε f = f , i.e., Jε is an isometry.
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We now compare the two resolvents, sandwiched with Jε. Let:

Dε := Rε Jε − JεR0 : H0 −→Hε.

What does Dε look like? The best way to deal with it is to consider 〈Dεg, w〉Hε
for g ∈ H0 and

w ∈Hε. We have:

〈Dεg, w〉Hε
= 〈Jεg, Rεw〉Hε

− 〈JεR0g, w〉Hε

= 〈JεL0 f , u〉Hε
− 〈Jε f , Lεu〉Hε

,

where u = Rεw ∈ dom Lε and f = R0g ∈ dom L0. Note that

(Lεu)e = −u′′e +
1
ε2 LBue,

where LB is (minus) the Neumann Laplacian on B acting on the second variable y ∈ B. In particular,
we conclude:

〈JεL0 f , u〉Hε
− 〈Jε f , Lεu〉Hε

= εm/2 ∑
e∈E

∫
Ie

∫
B

(
− f ′′e (s)ue(s, y)− fe(s)

(
−u′′e +

1
ε2 LBue

)
(s, y)

)
dy ds

= εm/2 ∑
e∈E

[
− f ′e(s)

∫
B

ue(s, y)dy + fe(s)
∫

B
u′e(s, y)dy

]`e

s=0

= εm/2 ∑
v∈V

∑
e∈Ev

(
− f ′e(v)

∫
B

ue(v, y)dy + fe(v)
∫

B
u′e(v, y)dy

)
,

where we used partial integration and the fact that LB is a self-adjoint operator in L2(B) and LB fe = 0
(as fe is independent of the second variable y) for the second equality and a reordering argument in the
third equality. Moreover, plugging v into s means evaluation at s = 0, resp. s = `e, if v corresponds to
zero, resp. `e; for the longitudinal derivative, we assume u′e(v, y) = −u′e(0, y), resp. u′e(v, y) = u′e(`e, y)
if v corresponds to zero, resp. `e.

We now use the fact that f ∈ dom L0: first note that ∑e∈Ev f ′e(v) = 0, so that we can smuggle in a
constant Cvu into the first summand, namely:

∑
e∈Ev

(
− f ′e(v)

∫
B

ue(v, y)dy
)
= ∑

e∈Ev

f ′e(v)
(

Cvu−
∫

B
ue(v, y)

)
dy.

We specify Cvu in a moment. For the second summand, we use the fact that fe(v) = f (v) is
independent of e ∈ Ev, and we have:

∑
e∈Ev

fe(v)
∫

B
u′e(v, y)dy = − f (v)

∫
∂Xv

∂nu(x)dx = − f (v)
∫

Xv
∆u(x)dx.

For the second equality, we used the fact that B at s = v corresponds to the subset ∂eXv of ∂Xv

where the edge neighborhood is attached and that the normal derivative (pointing outwards) of u
vanishes on ∂Xε,v ∩ ∂Xε due to the Neumann conditions. For the last equality, we used the Gauss–Green
formula (write ∂nu = ∂nu · 1).

As u ∈ dom Lε, we expect that the average
∫

B u(v, y)dy of u over the boundary component ∂eXv

is close to the average of u over Xv itself (recall that volm B = 1); hence, we set:

Cvu := −
∫

Xv
u(x)dx.
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Define now:

(A0g)(v) := ( f ′e(v))e∈Ev ∈ CEv , (Aεw)(v) := εm/2
(

Cvu−
∫

B
ue(v, y)dy

)
e∈Ev
∈ CEv ,

(B0g)(v) := f (v) ∈ C, (Bεw)(v) :=
εm/2

deg v

∫
Xv
(−∆u)(x)dx,

where deg v denotes the degree of v (i.e., the number of elements in Ev), then we have shown that:

〈Dεg, w〉Hε
= ∑

v∈V

(
〈A0g)(v), (Aεw)(v)〉CEv + (B0g)(v)(Bεw)(v)deg v

)
.

Defining G := `2(V, deg) (with the weighted norm given by ‖ϕ‖2
`2(V,deg) = ∑v∈V |ϕ(v)|2 deg v)

and G̃ :=
⊕

v∈V CEv , the previous equation reads as:

Dε = A∗ε A0 + B∗ε B0 (7)

in operator notation, where:

A0 : H0 −→ G̃ , (A0g)e(v) = (R0g)′e(v), B0 : H0 −→ G , (B0g)(v) = (R0g)(v)

and:

Aε : Hε −→ G̃ , (Aεw)e(v) = εm/2
(

Cv(Rεw)−
∫

B
(Rεw)e(v, y)dy

)
,

Bε : Hε −→ G , (Bεw)(v) =
εm/2

deg v

∫
Xv
(−∆(Rεw))(x)dx.

Let us now estimate the norms of the auxiliary operators: it also explains why we work with the
weighted space `2(V, deg):

Lemma 1. Assume that (2) holds, then:

‖A0‖H0→G̃ ≤
2
√

2√
`0

and ‖B0‖H0→G ≤
2√
`0

.

Proof. From (1) and (2), for each fe, the fact that f (v) = fe(v), and summing over v ∈ V, we conclude:

‖B0g‖2
`2(V,deg) = ∑

v∈V
| f (v)|2 deg v = ∑

v∈V
∑

e∈Ev

| fe(v)|2 ≤ ∑
v∈V

∑
e∈Ev

2
`0
‖ fe‖2

H1(Ie)
=

4
`0

∑
e∈E
‖ fe‖2

H1(Ie)

where g = R0 f . Now, the last sum equals:

l0( f ) + ‖ f ‖2
H0

= ‖(L0 + 1)1/2 f ‖2
H0

= ‖(L0 + 1)−1/2g‖2
H0
≤ ‖g‖2

H0
;

hence, the second norm estimate holds. For the first one, we argue: similarly

‖A0g‖2
G̃
= ∑

v∈V
∑

e∈Ev

| f ′e(v)|2 ≤ ∑
v∈V

∑
e∈Ev

2
`0
‖ f ′e‖2

H1(Ie)
=

4
`0

(
‖ f ′‖2

L2(X0)
+ ‖ f ′′‖2

L2(X0)

)
,

Now,

‖ f ′‖L2(X0)
= ‖L1/2

0 (L0 + 1)−1g‖L2(X0)
≤ ‖g‖L2(X0)

and

‖ f ′′‖L2(X0)
= ‖L0(L0 + 1)−1g‖L2(X0)

≤ ‖g‖L2(X0)
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by the spectral calculus, and the first norm estimate follows.

More importantly, we now show that the ε-dependent operators have actually a norm converging
to zero as ε→ 0:

Lemma 2. Assume that (2) and:

deg v ≤ d0 < ∞, λ2(Xv) ≥ λ2 > 0 and
volXv

deg v
≤ c < ∞ (8)

hold (By some modifications in the decomposition (6) (namely, one uses X�ε,e = (εae, `e − aeε) for some
appropriate ae > 0), one can avoid a direct upper bound d0 on the vertex degrees, but then ae has to be large
if deg v is large; also, the high degree will make vol Xv larger in order to have enough space to attach all the
edge neighborhood; see also the discussion in ([2], Section 3.1.) for all v ∈ V, where λ2(Xv) is the second (first
non-zero) Neumann eigenvalue of Xv, then:

‖Aε‖2
Hε→G̃

≤ 2εd0

(
1 +

1
λ2

)
and ‖Bε‖2

Hε→G ≤ ε3c.

Proof. We need the following vector-valued version of (1):

‖ue(v, ·)‖2
L2(B) ≤ 2

(
‖∇u‖2

L2(Xv)
+ ‖u‖2

L2(Xv)

)
(9)

(actually, we apply (1) to u(·, y) for each y ∈ B into a line of length one at y ∈ B perpendicular to
∂eXv ∼= B into Xv, and integrate then over y ∈ B). We then have:

∣∣Cvu−
∫

B
ue(v, y)dy

∣∣2 =
∣∣∫

B
(Cvu− ue(v, y))dy

∣∣2 ≤ ‖Cvu− ue‖2
L2(B)

≤ 2
(
‖∇u‖2

L2(Xv)
+ ‖u− Cvu‖2

L2(Xv)

)
(recall that

∫
B dx = 1). Now, u− Cvu is the projection onto the eigenspace of the Neumann problem

on Xv of all eigenfunctions orthogonal to the constant; hence, we have:

‖u− Cvu‖2
L2(Xv)

≤ 1
λ2(Xv)

‖∇u‖2
L2(Xv)

by the variational characterization of eigenvalues. In particular, we have:

∣∣Cvu−
∫

B
ue(v, y)dy

∣∣2 ≤ 2
(

1 +
1

λv(Xv)

)
‖∇u‖2

L2(Xv)
.

Now, letting u = Rεw, we have:

‖Aεw‖2
G̃
= εm ∑

v∈V
∑

e∈Ev

∣∣Cvu−
∫

B
ue(v, y)dy

∣∣2 ≤ 2εm ∑
v∈V

deg v
(

1 +
1

λv(Xv)

)
‖∇u‖2

L2(Xv)
.

Moreover,

εm ∑
v∈V
‖∇u‖2

L2(Xv)
≤ εlε(u) = ε‖L1/2

ε (Lε + 1)−1w‖2
L2(Xε)

≤ ε‖w‖2
L2(Xε)

;

hence, ‖Aε‖2
Hε→G̃

≤ ε supv∈V 2(deg v)(1 + 1/λ2(Xv)) ≤ 2εd0(1 + 1/λ2).
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For the second norm estimate, we have:

‖Bεw‖2
G = εm ∑

v∈V

1
deg v

∣∣∣∫
Xv
(−∆u)(x)dx

∣∣∣2 ≤ εm ∑
v∈V

vol Xv

deg v
‖−∆w‖2

L2(Xv)

≤ ε3c‖Lε(Lε + 1)−1w‖2
L2(Xε)

≤ ε3c‖w‖2
L2(Xε)

From the calculation of Dε in (7) and Lemmas 1 and 2, we conclude:

Theorem 1. Under the uniformity assumptions (2) and (8), the operator norm of:

Dε = Rε Jε − JεR0 : H0 = L2(X0) −→Hε = L2(Xε)

is of order ε1/2. In particular, if X0 is a compact metric graph, then ‖Dε‖ = O(ε1/2) without any assumption.

Note that the operator norm of Aε in Dε = A∗ε A0 + B∗ε B0 leads to the error estimate O(ε1/2), as it
is dominant if ε→ 0.

5. Generalized Norm Resolvent Convergence

Let Lε be a family of self-adjoint and non-negative operators (ε ≥ 0) acting in an ε-independent
Hilbert space H . We say that Lε converges in the norm resolvent sense to L0 if:

‖(Lε + 1)−1 − (L0 + 1)−1‖H →H → 0.

As a consequence, operator functions of Lε also converge in the norm, e.g., for the semigroups,
we have:

‖e−tLε − e−tL0‖H →H → 0.

Moreover, the spectra converge uniformly on bounded intervals. In particular, if Lε all have
a purely discrete spectrum, then λk(Lε) → λk(L0), where λk(·) denotes the kth eigenvalue ordered
increasingly and repeated with respect to multiplicity.

We now want to extend these results to operators acting in different Hilbert spaces.

Definition 1. For ε ≥ 0, let Lε be a self-adjoint and non-negative operator acting in a Hilbert space Hε.
We say that Lε converges to L0 in the generalized norm resolvent sense, if there is a family of bounded operators
Jε : H0 −→Hε such that:

‖Rε Jε − JεR0‖H0→Hε
→ 0, J∗ε Jε = idH0 and ‖(idHε

−Jε J∗ε )Rε‖Hε→Hε
→ 0, (10)

where Rε := (Lε + 1)−1 denotes the resolvent.

There are actually more general versions of generalized norm resolvent convergence; see, e.g., [2,3]
or also [4] and the references therein. We can also specify the convergence speed as the maximum of
the two norm estimates.

Moreover, almost all conclusions that hold for norm resolvent convergence are still true here, e.g.,
the convergence of eigenvalues or the spectrum. Moreover, if Lε converges to L0 in the generalized
norm resolvent sense with convergence speed δε → 0, then the corresponding semigroups converge,
i.e., we have, e.g.,

‖e−tLε − Jεe−tL0 J∗ε ‖Hε→Hε
≤ Ctδε → 0, ε→ 0.

One can even control the dependency on t (Ct = O(1/t) as t→ 0); see ([4], Ex. 1.10 (ii)) for details.
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As an application, we show that the corresponding solutions of the heat equations converge:
denote by ut, resp. ft, the solution of

∂ ft + L0 ft = 0 and ∂ut + Lεut = 0

with initial data f0 = J∗ε u0 at t = 0, then we have:

‖ut − Jε ft‖Hε
= ‖(e−tLε − Jεe−tL0 J∗ε )u0‖Hε

≤ Ctδε‖u0‖Hε
, (11)

i.e., the approximate solution Jε ft converges to the proper solution uε of the more complicated problem
on Hε uniformly with respect to the initial data u0.

We have already shown the first norm convergence and the equality in (10) in the previous section
(cf. Theorem 1); but we even have:

Theorem 2. Under the uniformity assumptions (2) and (8), the Neumann Laplacians Lε on the graph-like
space Xε converge to the Kirchhoff Laplacian on the underlying metric graph X0 in the generalized norm
resolvent sense.

Proof. It remains to show the last limit in (10). We have:

‖u− Jε J∗ε u‖2
Hε

= ∑
v∈V
‖u‖2

L2(Xε,v)
+ εm ∑

e∈E

∫
Ie
‖ue(s, ·)−

∫
B

ue(s, y)dy‖2
L2(B) ds.

The integrand in the second sum can be estimated by:

‖ue(s, ·)−
∫

B
ue(s, y)dy‖2

L2(B) ≤
1

λ2(B)
‖∇Bu(s, ·)‖2

L2(B)

using again the variational characterization of eigenvalues. In particular, the second sum can be
estimated by εlε(u). The first sum is also small, as functions with bounded energy do not concentrate at
the vertex neighborhoods Xε,v. The arguments to show this (actually, ‖u‖2

L2(Xε,v)
≤ O(ε)lε(u)) are very

similar to the ones used in the proof of Lemma 2. Details can be found, e.g., in ([3], Section 6.3).

Note that, once having proven the generalized norm resolvent convergence, with an error term of
order ε1/2, we can approximately solve the heat equation on Xε as in (11): note that on a metric graph,
one might even find explicit formulas for the solutions of the heat equation ft, at least for simple metric
graphs; hence, one has automatically approximate solutions for the corresponding heat equation on
the more complicated space Xε.

Let us now come back to the original thick graph given by X�ε , where the edge neighborhoods
have slightly shorter edge lengths.

We say that two operators Lε and L�ε are asymptotically close in the generalized norm resolvent sense,
if (10) holds with Rε = (Lε + 1)−1 and R0 replaced by (L�ε + 1)−1. We have the following result (for
the proof, see, e.g., ([3], Prp. 4.2.5):

Lemma 3. If Lε converges to L0 and if Lε and L�ε are asymptotically close, both in the generalized norm resolvent
sense, then L�ε converges to L0 in the generalized norm resolvent sense.

Now, in our concrete example with the slightly shortened edges, we have (for a proof, see ([3],
Prp. 5.3.7)):

Lemma 4. Assume that Lε and L�ε are given as in Section 3, then Lε and L�ε are asymptotically close in the
generalized norm resolvent sense.
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We then immediately conclude from Theorem 2:

Corollary 1. Under the uniformity assumptions (2) and (8), the Neumann Laplacians L�ε on the
ε/ωm-neighborhood X�ε of an embedded metric graph X0 ⊂ Rm+1 converge to the Kirchhoff Laplacian on
X0 in the generalized norm resolvent sense.

6. Outlook

The author is currently working on extending this result to some mildly non-linear equations
with Claudio Cacciapuoti and with Michael Hinz and Jan Simmer in two different settings. Probably,
the first systematic treatment of (non-linear) partial differential operators on thin domains was given
in the nice overview of Geneviéve Raugel [8], combining some abstract results with concrete examples,
but to the best of our knowledge, no thick graph domain and its limit were considered there explicitly.
For Neumann Laplacians on thick graphs, there were actually results about the convergence of
certain non-linear problems in [9,10], but Kosugi’s papers did not contain an abstract approach using
identification operators as we do.

At the conference, Jean-Guy Caputo also presented results on non-linear waves in networks and
thick graphs justifying at least numerically the Kirchhoff vertex conditions; see [11,12]. There is another
interesting application of the concept of generalized norm resolvent convergence: Berkolaiko et al. [13]
studied the behavior of Laplacians on metric graphs if some edge lengths shrink to zero. A similar
result (a compact part of the metric graph shrinks to a point) using different methods has been
presented by Cacciapuoti [14] at the conference. A general convergence scheme also for some mildly
non-linear equations would allow extending their analysis to non-linear problems.

We have the following type of equations in mind. Let:

∂tut = Lεut + Fε(ut),

for ε > 0 and
∂t ft = L0 ft + F0( ft).

As the non-linearity, we think of Fε(ψ) = αε|ψ|2µψ for some µ > 0 and αε > 0. For the the solution,
we make the ansatz:

ut = e−tLε u0 −
∫ t

0
e−(t−s)LεFε(us)ds

and similarly for ft. The non-linearity and the identification operators have to fulfil some compatibility
conditions, namely Fε ◦ Jε − Jε ◦ F0 has to be small in some sense. One might use an iteration procedure
in order to obtain a sequence of functions converging to the solution. If Fε(ψ) = αε|ψ|2µψ in our
example of thick metric graphs converging to metric graphs, then we must have αε = εmµα0.

If one wants to consider the non-linear Schrödinger equation i∂tut = Lεut + Fε(ut), one faces
the additional problem that the (generalized) norm resolvent convergence does not imply norm
convergence of the unitary group eitLε for general initial data u0; if one restricts u0 to the range of
the spectral projection 1[0,λ0]

(Lε) for some λ0 > 0, then there are still some operator norm estimates;
see ([3], Thm. 4.2.16) for details. Nevertheless, one also has to make sure that Fε(u0) still remains in the
range of 1[0,λ0]

(Lε), which is probably too restrictive.
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